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This supplementary appendix is organized as follows. Section S.1 formalizes the unique-
ness properties of BEU representations. Section S.2 focuses on the representation obtained
by inverting the order of moves of Optimism and Pessimism and uses this to characterize
different degrees of ambiguity seeking. Sections S.3 and S.4 present two generalizations of
BEU that correspond to relaxations of certainty independence.

S.1 Uniqueness

For any φ ∈ RS and λ ∈ R, let Hφ,λ := {µ ∈ ∆(S) : µ · φ ≥ λ} denote the closed half-space
in ∆(S) that is defined by φ and λ. For any belief-set collection P, define its half-space
closure by

P := {H ⊆ ∆(S) : H is a closed half-space in ∆(S) and P ⊆ H for some P ∈ P}.

Proposition S.1.1. Suppose (P, u) is a BEU representation of %. Then for any belief-set
collection P′ and utility u′, (P′, u′) is a BEU representation of % if and only if P = P′ and
u ≈ u′.

Below we fix the unique functional I : RS → R associated with%, as given by Lemma B.1.
We begin with the following lemma:

Lemma S.1.1. Suppose (P, u) is a BEU representation of %. Then P = {Hφ,λ : φ ∈ RS, λ ≤
I(φ)}.

Proof. First, take any φ ∈ RS, λ ∈ R such that λ ≤ I(φ). Since (P, u) represents %, there
exists P ∈ P such that minµ∈P µ · φ = I(φ). Thus, P ⊆ Hφ,I(φ) ⊆ Hφ,λ, which implies
Hφ,λ ∈ P.

Conversely, take any P ∈ P. By definition of P, there exist φ ∈ RS, λ ∈ R, and P ′ ∈ P
such that P ′ ⊆ P = Hφ,λ. Since (P, u) represents %, I(φ) ≥ minµ∈P ′ µ · φ ≥ minµ∈Hφ,λ φ · µ.
Hence, λ ≤ I(φ).
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Proof of Proposition S.1.1. For the “only if” direction, the fact that P = P′ is immediate
from Lemma S.1.1 and uniqueness of I. The proof that u ≈ u′ is standard.

For the “if” direction, by uniqueness of I, it suffices to show that maxP ′∈P′ minµ∈P ′ µ ·φ =

I(φ) for all φ ∈ RS. To show this, observe first that by Lemma S.1.1 and since P = P′,
there exists P ′ ∈ P′ such that P ′ ⊆ Hφ,I(φ). This ensures minµ∈P ′ µ ·φ ≥ I(φ). Suppose next
that minµ∈P ′′ µ · φ − I(φ) =: ε > 0 for some P ′′ ∈ P′. Then Hφ,I(φ)+ε ⊇ P ′′, which implies
Hφ,I(φ)+ε ∈ P′. Since P′ = P, this contradicts Lemma S.1.1.

S.2 Minmax BEU representation

While BEU assumes that Optimism plays first and Pessimism plays second, this is equivalent
to a model with the opposite order of moves. We omit all proofs for this section, as they can
be obtained as minor modifications of the original proofs for BEU.

Theorem S.2.1. Preference % satisfies Axioms 1–5 if and only if % admits a minmax BEU
representation, i.e., there exists a belief-set collection Q and a nonconstant affine utility
u : ∆(Z)→ R such that

W (f) = min
Q∈Q

max
µ∈Q

Eµ[u(f)]

represents %.

Our construction of the maxmin BEU representation considered in the text uses the belief-
set collection P∗ = cl{P ∗φ : φ ∈ RS} with P ∗φ := {µ ∈ ∂I(0) : µ · φ ≥ I(φ)}. Analogously,
it can be shown that the belief-set collection Q∗ := cl{Q∗φ : φ ∈ RS} with Q∗φ := {µ ∈
∂I(0) : µ · φ ≤ I(φ)} yields a minmax BEU representation. Paralleling Section 2.3, it is
straightforward to show that C := ∂I(0) again corresponds to the smallest set of priors that
is contained in co

⋃
Q∈QQ for all minmax BEU representations Q of %, with equality for

representation Q∗.
While the different notions of ambiguity aversion are most conveniently characterized

using the maxmin BEU representation (cf. Theorem 2), the minmax BEU representation is
useful for characterizing their ambiguity-seeking counterparts. Axioms 8 and 9 and Theo-
rem S.2.2 below provide the analogs of Axioms 6 and 7 and Theorem 2, respectively.

Axiom 8 (Uncertainty Seeking). If f, g ∈ F with f ∼ g, then
1

2
f +

1

2
g - f .

Axiom 9 (k-Ambiguity Seeking). For all f1, ..., fk ∈ F with f1 ∼ f2 ∼ · · · ∼ fk and any
p ∈ ∆(Z),

1

k
f1 + · · ·+ 1

k
fk = p⇒ p - f1.
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We say that % is absolutely ambiguity-seeking if there exists a nondegenerate subjective
expected utility preference that is more ambiguity-averse than %. Analogous to Lemma 1,
this is characterized by ∞-ambiguity seeking, i.e., k-ambiguity seeking for all k.

Theorem S.2.2. Suppose that % admits a minmax BEU representation (Q, u). Then:

1. % satisfies uncertainty seeking if and only if
⋂
Q∈Q

Q = C;

2. % is absolutely ambiguity-seeking if and only if
⋂
Q∈Q

Q 6= ∅;

3. % satisfies k-ambiguity seeking if and only if
⋂
i=1,··· ,kQi 6= ∅ for all Q1, · · · , Qk ∈ Q.

S.3 Boolean variational representation

The variational model introduced by Maccheroni, Marinacci, and Rustichini (2006) (hence-
forth, MMR) relies on the following relaxation of certainty independence, which retains the
“location invariance” property of preferences but relaxes the “scale invariance” property; we
refer to MMR for a discussion.

Axiom 10 (Weak Certainty Independence). For any f, g ∈ F , p, q ∈ ∆(Z), and α ∈ (0, 1),

αf + (1− α)p % αg + (1− α)p =⇒ αf + (1− α)q % αg + (1− α)q.

We now show that dropping uncertainty aversion from MMR’s axioms corresponds to
adding a maximization stage into the variational model. A cost collection is a collection
of functions c : ∆(S) → R ∪ {∞} such that each c ∈ C is convex and C is grounded (i.e.,
maxc∈C minµ∈∆(S) c(µ) = 0).

Theorem S.3.1. Preference % satisfies Axioms 1–4 and Axiom 10 if and only if % admits
a Boolean variational (BV) representation, i.e., there exists a cost collection C and a
nonconstant affine utility u : ∆(Z)→ R such that

WBV (f) := max
c∈C

min
µ∈∆(S)

Eµ[u(f)] + c(µ) (20)

is well-defined and represents %.

We note that our characterization of the set of relevant priors under BEU generalizes
to the Boolean variational model. Specifically, let dom(c) := {µ : c(µ) ∈ R} denote the
effective domain of any cost function. Then there exists a unique closed, convex set C such
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that C ⊆ co
(⋃

c∈C dom(c)
)
for all Boolean variational representations of %, with equality for

the representation C∗ we construct in the proof of Theorem S.3.1 below. Moreover, it can
again be shown that C is the Bewley set of the unambigous preference %∗. The argument
relies on the observation that C = co

(⋃
φ∈intU ∂I(φ)

)
, where I is the utility act functional

obtained in the proof of Theorem S.3.1 and U its domain. Details are available on request.

S.3.1 Proof of Theorem S.3.1

We will invoke the following result from MMR:

Lemma S.3.1 (Lemma 28 in MMR). Preference % satisfies Axioms 1–4 and Axiom 10 if
and only if there exists a nonconstant affine function u : ∆(Z) → R with U := (u(∆(Z)))S

and a normalized niveloid I : U → R such that I ◦ u represents %.

Recall that functional I : U → R is a niveloid if I(φ) − I(ψ) ≤ maxs(φs − ψs) for all
φ, ψ ∈ U . Lemma 25 in MMR shows that I is a niveloid if and only if it is monotonic and
constant-additive.
Based on this result, the necessity direction of Theorem S.3.1 is standard. We now prove
the sufficiency direction. Suppose % satisfies Axioms 1–4 and Axiom 10. Let I, u, and U be
as given by Lemma S.3.1. Since I is a niveloid, it is 1-Lipschitz. Hence, Lemma A.1 yields a
subset Û ⊆ intU with U \ Û of Lebesgue measure 0 such that I is differentiable on Û . Define
µψ := ∇I(ψ) and wψ := I(ψ)−∇I(ψ) · ψ for each ψ ∈ Û . By Lemma A.4 and the fact that
niveloids are monotonic and constant-additive, µψ ∈ ∆(S) for all ψ ∈ Û . For each ψ ∈ U ,
define

Dψ := {(µ,w) ∈ ∆(S)× R : µ · ψ + w ≥ I(ψ)} ∩ co{(µξ, wξ) : ξ ∈ Û},

and let D := {Dψ : ψ ∈ U}. The following lemma implies that each Dψ is nonempty; note
also that it is closed, convex, and bounded below.

Lemma S.3.2. For every φ, ψ ∈ U , min(µ,w)∈Dψ µ · φ+ w ≤ I(φ) with equality if φ = ψ.

Proof. First, consider any φ, ψ ∈ Û . Let Kψ := {ξ ∈ Û : µξ · ψ + wξ ≥ I(ψ)} be as in
Lemma A.6. Note that Dψ = co{(µξ, wξ) : ξ ∈ Kψ}, so that

inf
ξ∈Kψ

µξ · φ+ wξ = min
(µ,w)∈Dψ

µ · φ+ w,

where the minimum is attained as Dψ is closed and bounded below. Thus, Lemma A.6
implies that

min
(µ,w)∈Dψ

µ · φ+ w ≤ I(φ), (21)
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where (21) holds with equality if ψ = φ by definition of Dψ.
Next, consider any φ, ψ ∈ U . Take sequences φn → φ, ψn → ψ such that φn, ψn ∈ Û for

each n, where we choose φn = ψn if φ = ψ. For each n, the previous paragraph yields some
(µn, wn) ∈ Dψn such that µn · φn + wn = min(µ,w)∈Dψn µ · φn + w ≤ I(φn), with equality if
φ = ψ. Thus, for each n, we have I(ψn) − µn · ψn ≤ wn ≤ I(φn) − µn · φn. Since φn → φ,
ψn → ψ, and I is continuous, this implies that sequence (wn) is bounded. Thus, up to
restricting to a suitable subsequence, we can assume that (µn, wn) → (µ∞, w∞) for some
(µ∞, w∞) ∈ ∆(S) × R. Then (µ∞, w∞) ∈ Dψ and µ∞ · φ + w∞ ≤ I(φ) by continuity of I,
with equality if φ = ψ. Thus, min(µ,w)∈Dψ µ · φ + w = inf(µ,w)∈Dψ µ · φ + w ≤ I(φ), with
equality if φ = ψ, where the minimum is attained since Dψ is closed and bounded below.

Finally, we obtain a Boolean variational representation of % as follows. For each D ∈ D,
define cD : ∆(S) → R ∪ {∞} by cD(µ) := inf{w ∈ R : (µ,w) ∈ D} for each µ ∈ ∆(S),
where by convention the infimum of the empty set is ∞. Note that cD is convex for all D
by convexity of D. Moreover, for all φ ∈ U , min(µ,w)∈D µ · φ + w = minµ∈∆(S) µ · φ + cD(µ).
Thus, Lemma S.3.2 implies

I(φ) = max
D∈D

min
µ∈∆(S)

µ · φ+ cD(µ) (22)

for all φ ∈ U . Since I is normalized, applying (22) to any constant vector a ∈ U , yields
I(a) = a+maxD∈D minµ∈∆(S) cD(µ) = a. Thus, collection (cD)D∈D is grounded. Hence, C∗ :=

{cD : D ∈ D} is a cost collection and (C∗, u) is a BV representation of % by Lemma S.3.1.

S.4 Rational Boolean representation

Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2011) (henceforth, CMMM) main-
tain uncertainty aversion, but further relax independence to hold only for objective lotteries:

Axiom 11 (Risk Independence). For any p, q, r ∈ ∆(Z) and α ∈ (0, 1),

p % q =⇒ αp+ (1− α)r % αq + (1− α)r.

Dropping uncertainty aversion from CMMM’s axioms yields the following Boolean gen-
eralization of their representation:

Theorem S.4.1. Preference % satisfies Axioms 1–4 and Axiom 11 if and only if % admits a
rational Boolean (RB) representation, i.e., there exists a collection (Gt)t∈T of quasiconvex
functions Gt : R×∆(S)→ R∪{∞} that are increasing in their first argument and grounded28

28That is, maxt∈T infµ∈∆(S)Gt(a, µ) = a for all a.
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and a nonconstant affine utility u : ∆(Z)→ R such that

WRB(f) := max
t∈T

inf
µ∈∆(S)

Gt(Eµ[u(f)], µ) (23)

is well-defined, continuous, and represents %.

S.4.1 Proof of Theorem S.4.1

The following result follows from a minor modification of the proof of Lemma 57 in CMMM:

Lemma S.4.1. Preference % satisfies Axioms 1–4 and 11 if and only if there exists a non-
constant affine function u : ∆(Z)→ R with U := (u(∆(Z)))S and a monotonic, normalized
and continuous functional I : U → R such that I ◦ u represents %.

Based on this result, the necessity direction of Theorem S.4.1 is standard. We now prove the
sufficiency direction. Suppose % satisfies Axioms 1–4 and 11. Let I, u, and U be as given
by Lemma S.4.1.

Define Dψ := {(µ, I(ψ) − µ · ψ) ∈ RS
+ × R : µ ∈ RS

+} for each ψ ∈ U . Note that Dψ is
nonempty and convex. Let Iψ(φ) := inf(µ,w)∈Dψ µ · φ+ w for each φ, ψ ∈ U .

Take any φ, ψ ∈ U . Observe that

Iψ(φ) = inf
α>0,s∈S

I(ψ) + α(φs − ψs) =

I(ψ) if φ ≥ ψ

−∞ if φ 6≥ ψ

Thus, I(φ) ≥ Iψ(φ) by monotonicity of I, with equality if φ = ψ. That is, for each φ ∈ U ,

I(φ) = max
ψ∈U

Iψ(φ). (24)

For each ψ ∈ U , define a function Gψ : R×∆(S)→ R ∪ {∞} by

Gψ(t, µ) = sup{Iψ(ξ) : ξ ∈ U, ξ · µ ≤ t}

for each (t, µ). The map is quasi-convex (Lemma 31 in CMMM) and increasing in t.

Lemma S.4.2. Iψ(φ) = infµ∈∆(S) Gψ(µ · φ, µ) for each φ, ψ ∈ U .

Proof. Observe that RHS = infµ∈∆(S) sup{Iψ(ξ) : ξ · µ ≤ φ · µ}. To see that LHS ≤ RHS,
observe that Iψ(φ) ≤ sup{Iψ(ξ) : ξ · µ ≤ φ · µ} holds for any µ ∈ ∆(S).

To see that LHS ≥ RHS, note first that if φ ≥ ψ then LHS = I(ψ) and RHS ∈
{I(ψ),−∞}, so the inequality clearly holds. If φ 6≥ ψ then φs < ψs for some s ∈ S.
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Thus, by taking µ = δs, any ξ with ξ ·µ ≤ φ ·µ satisfies ξs ≤ φs, which implies ξ 6≥ ψ, whence
Iψ(ξ) = −∞.

Setting T = U , Lemma S.4.2 and (24) ensure that WRB given by (23) represents %

and is continuous. Finally, to check groundedness, note that since I is normalized, we have
a = I(a) = maxψ∈U infµ∈∆(S) Gψ(a, µ) for any a ∈ R.
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