
 

Economics of Digitization 
Munich, 19–20 November 2020 

 
Moderate economic inequality boosts AI 
Tunç Durmaz and Burak Ünveren 

 



 

1 
 

Moderate economic inequality boosts AI 

Tunç Durmaz* and Burak Ünveren† 

September 2020 

Abstract. This study is an empirical exploration of the economic incentives for 

developing artificial intelligence (AI). Standard economic principles predict that high 

wages would encourage labor-saving innovations such as AI-based technologies. To test 

this hypothesis, we use hourly wage and AI investment data from 27 countries. The 

results show that the relationship between wages and AI is statistically insignificant. 

Labor-saving innovations, however, are strongly related to the distribution of income. 

According to our estimates, there is indeed a statistically significant and robust 

relationship between AI investments and income inequality. Moreover, the relationship 

is hump-shaped, implying that per capita AI investment achieves its peak at a certain 

level of inequality, measured by the Gini coefficient. The available data shows that this 

optimal degree of economic inequality (0.389) is very close to the moderate inequality 

levels observed among the global top-three countries in AI investment per capita— the 

US (0.382), Singapore (0.386), and Israel (0.350).   

JEL: D30; O31 

Keywords: Artificial intelligence; economic inequality; wages  

1. Introduction 

This study investigates how wages and income inequality shape the incentives of investing in 

AI from an empirical standpoint. Theoretically, the basic economic prediction is simple: if 

wages are sufficiently high, then replacing labor with AI would be profitable. That is, focusing 

on incentives suggests that high wages would boost demand for AI, reminiscent of the analysis 

of the Industrial Revolution in the 18th century by Allen (2009, 2011). According to Allen, 

during the 18th century, high wages and cheap capital in Britain encouraged labor-saving 

innovations, and thus, became the root cause of the Industrial Revolution.  

Based on this historical experience, and simple economic inference, can we deduce that higher 

wages would help countries to get ahead in the ongoing AI revolution? To empirically test this 

hypothesis against real-world observations, we use data from 26 countries, including major 
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OECD countries such as the US, Germany, UK, and Canada. Our dataset also includes major 

developing economies such as India and China. Due to the availability of the AI data, which 

we obtained from the Stanford Institute for Human-Centered Artificial Intelligence, the time 

span of the data is from 2015 to 2018. This gives us 104 data points. We also control for human 

capital, physical capital per worker, and total factor productivity. The estimation results suggest 

a statistically insignificant relationship between AI investments and wages.  

The lack of a significant impact of wages on AI investments is indeed not very surprising if we 

remind ourselves that wages paid to employees do not fully capture the cost of labor. For 

example, many firms invest in AI-based technologies to reduce their payroll tax burden, 

according to an op-ed published by the New York Times in 2019. Moreover, the cost of labor 

is not the only factor that determines the demand for labor-saving technologies and related AI-

based systems. The net rate of return on investment–collectively determined by interest rates, 

price markups, taxes, and subsidies–is also potentially relevant. As it happens, all these 

variables are very crucial for the distribution of disposable income and economic inequality, 

typically measured by the post-tax Gini coefficient.  

Figure 1: AI vs Gini 

 

Notes: Logarithm of AI investment per capita and Gini data on average from 2015 to 2018 for 27 

countries. The solid line depicts the simple 2nd order polynomial fitting. 
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Consequently, we investigate the relationship between AI investments and the Gini coefficient. 

According to our estimations, there is a statistically significant relationship between income 

inequality and AI investments. The most remarkable aspect of this relationship is its non-

linearity. Specifically, the estimated relationship between AI and Gini is hump-shaped; that is, 

a certain degree of inequality leads to a maximum of level investments in AI.  

Incidentally, the Gini coefficients of the global leaders in per capita AI investments are very 

close to this optimal level: 0.389. These figures are 0.382 in the US, 0.386 in Singapore, and 

0.350 in Israel, the global leader. It is safe to say that these figures represent moderate income 

inequality levels in the world as the range of the Gini coefficient in our data set is 0.25-0.60. 

Lastly, it is noteworthy that China, which attracted global attention with its significant leap in 

AI development, also has a Gini coefficient (0.412) in the proximity of this optimal level. 

We interpret our results as follows. In the US, Singapore, and Israel, where rates of return are 

higher due to more capital-friendly tax code than the Western European countries, income 

inequality is also higher. This incentivizes AI investments more strongly in the top-three. Due 

to higher levels of payroll taxes, however, it is more profitable to substitute labor with AI, for 

example, in Western European countries compared to Brazil and South Africa where higher 

income inequality levels are observed. This mechanism explains why a moderate level of 

income inequality would yield the right conditions for AI, as is empirically observed among the 

top three countries. 

The estimation results are, nonetheless, asymmetric in the sense that the detrimental impact of 

economic inequality on AI investments is clearly larger than that of equality. So the unequal 

income distribution levels that can be observed in Brazil and South Africa have a stronger 

negative impact on AI investment than the egalitarian income distribution levels in the 

Scandinavian countries. This asymmetry can be visually verified by inspecting Figure 1 above. 

The numerical simulations of our theoretical model also produce a similar asymmetric 

relationship between AI and income inequality. 

We also conduct robustness checks by invoking different econometric techniques and 

specifications. The results are almost identical to our original findings. We also seek for outliers 

in the data and find no evidence in this regard. Finally, to demonstrate the theoretical 

foundations of our empirical results, we present a toy model in the appendix where firms invest 

in AI in pursuit of profit maximization. Consistent with our empirical findings, we numerically 



 

4 
 

show that there is indeed an optimal inequality level that yields the highest level of AI in our 

theoretical model.  

The paper is organized as follows. The next section discusses the data. Section 3 explains the 

econometric model and results. We conduct robustness checks in Section 4. The final section 

concludes.    

2. Data  

We use annual data from 26 countries, covering the period from 2015 to 2018. These data 

include AI investments, wages, post-tax Gini coefficients, and several control variables, such 

as physical capital, human capital, and total factor productivity. In the following, we provide 

further details of the variables we use in the analysis.  

2.1 AI Investments 

We obtain the AI investment data from The Global AI Vibrancy Tool provided by the Human-

Centered AI Institute at Stanford University, Stanford, CA (see vibrancy.aiindex.org). This 

dataset provides several country-specific AI metrics ranging from the number of unique AI 

occupations to the number of AI patents per capita. Due to our focus on AI investments, we use 

the private AI investment per capita data from this data set. The investment data covers 26 

countries and is available from 2015 to 2018.  

2.2 Wages 

The annual wages per worker per hour across countries were calculated using data from Penn 

World Table (PWT, v.9.1; Feenstra et al., 2015). To calculate the wages, we used data on shares 

of labor compensation in the gross domestic product (GDP) at current national prices, 

population, real GDP, and average annual hours per worker:  

Hourly wage ൌ
Labor share ൈ GDP

Employment ൈ Average working hours
. 

The PWT data is available up to year 2017. As for 2018, we extrapolate the country-specific 

hourly wages by estimating a first-order autoregressive process with a linear trend:  

𝑊௜,௧ ൌ 𝛼௜,଴ ൅ 𝛼௜,ଵ𝑊௜,௧ିଵ ൅ 𝛼௜,ଶ𝑡 ൅ 𝑢௜,௧, 
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where 𝑊௜௧ denotes hourly wages in country 𝑖 and year 𝑡 ൌ ሼ2000, … , 2017ሽ, and 𝑢௜,௧ is the 

country-specific error term. As we shall see when we present our robustness checks, we also 

estimate the model without extrapolated data, and the results virtually stay the same. 

2.3 Income inequality  

In this study, the main indicator for income inequality is the post-tax Gini coefficient in the 

countries that we are interested in. The post-tax Gini coefficients are obtained from 

Standardized World Income Inequality Database (Solt, 2019). The Gini coefficient is a measure 

that varies between zero and one. When it is zero, this indicates perfect equality of income 

distribution where everyone has the same income. When the Gini coefficient is equal to one, 

all income is earned by a single individual. The corresponding data is available up to 2017. 

Nonetheless, because the Gini coefficient exhibits very little variation over time, we used 

2017’s coefficients for 2018.  

2.4 Control variables 

The variables that we control for are physical capital, human capital, and total factor 

productivity (TFP). Notice that human capital is typically associated with successful 

developments in technology (Lucas, 1988), science, and computer-related fields (Caselli and 

Coleman, 2001; He et al., 2019). By the same token, TFP is also clearly relevant.  

These data are obtained from the PWT and are available on an annual basis. The physical capital 

is at current purchasing power parities (PPPs, in mil. 2011US$). The human capital index is 

based on years of schooling and returns to education. The TFP is also calculated at current PPPs 

and normalized by taking the US TFP equal to one.  

As the PWT data is available up to the year 2017, we also extrapolate these country-specific 

data for 2018 using the same strategy that we use for extrapolating the wage data. As we 

mentioned earlier, we also conduct our analysis without extrapolation by using lagged values 

as a robustness check. Our results are not affected by this alternative approach. 

3. Model and results 

In this section, we present the estimated models and the results. We use the standard linear 

regression model with a time trend. The first model that we analyze involves wage as an 

explanatory variable:  

ln 𝐴𝐼௜௧ ൌ 𝛽଴ ൅ 𝛽ଵ𝑡 ൅ 𝛽ଶ𝑊௜௧ ൅ 𝛽ଷ𝑊௜௧
ଶ ൅ 𝜷𝟒𝑿𝒊𝒕 ൅ 𝜖௜௧ 
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where 𝐴𝐼௜௧ is per capita investments in AI in country 𝑖 in year 𝑡, 𝑊௜௧ stands for the level of 

wages, and 𝑿𝒊𝒕 stands for the country specific set of control variables.  

Note that our econometric model includes the square of the wage rate. This is to capture the 

non-linear relationship between AI investments and cost of labor. The results are provided in 

Table 1. Note that in model 1 (M1) we simply estimate a quadratic relationship between wages 

and the per capita AI investments with a time trend.  We then add all other variables one by one 

to the estimation, until all available variables are used in M4. 

Table 1 

Estimation Results: AI and Wage 

 M1 M2 M3 M4 

Constant -4.169*** -8.033*** -7.990*** -10.447*** 

 
0.856 1.376 1.458 1.752 

Trend 0.539*** 0.501*** 0.503*** 0.528*** 

 
0.156 0.149 0.151 0.148 

Wage 0.221*** 0.083 0.092 -0.071 

 
0.067 0.075 0.122 0.137 

Wage2 -0.003** -0.001 -0.001 0.0001 

 
0.001 0.001 0.002 0.002 

Human Capital 1.840*** 1.809*** 2.023*** 

 
0.529 0.621 0.613 

Capital -2.11E-07 5.46E-08 

 
2.24E-06 2.19E-06 

TFP 6.307** 

 
2.618 

R2 0.31 0.39 0.39 0.42 

Notes: Standard errors are in smaller fonts. *P<0.1, **P<0.05, ***P<0.01. 
 

Our results indicate that the relationship between AI investments and wage rates is hump-

shaped if other economic variables are not controlled for. This outcome is in line with economic 

reasoning which predicts that high wages could encourage labor saving technology, such as AI. 

Due to increasing cost of production, however, this relationship is not linear but strictly 

concave. Nevertheless, once we control for other economic variables that are expected to affect 

AI investments, such as human and physical capita and TFP, the relationship between AI 

investments and wage becomes statistically insignificant. Comparing models M1 and M2 
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suggests that wages act as a proxy for human capital. Further analyses conducted using M3 and 

M4 show that we cannot reject the hypothesis that TFP has a statistically significant impact on 

AI, while the coefficient of physical capital is statistically insignificant.  

We believe that these results shed light on the production technology of AI, as it seems that the 

most crucial factors of production are an educated workforce (human capital) and accumulated 

knowledge (TFP). In contrast, physical capital has a negligible role. 

Nonetheless, there would be no room for relative prices to play a role in AI investments 

according to these results as wages are out of the picture due to insignificant coefficient 

estimates. Yet, there are other crucial economic factors and variables, such as interest rates, 

taxes, and market power, which can have significant impacts on AI investments. As it happens, 

these variables play a decisive role in determining income inequality and distribution. The 

standard measure that collectively captures the effects of these variables on income inequality 

is the Gini coefficient. Consequently, in the following, we investigate the relationship between 

the post-tax Gini coefficient and AI investments, while controlling for the same set of variables. 

In particular, we estimate the following model:  

ln 𝐴𝐼௜௧ ൌ 𝛽଴௜ ൅ 𝛽ଵ𝑡 ൅ 𝛽ଶ𝐺𝑖𝑛𝑖௜௧ ൅ 𝛽ଷ𝐺𝑖𝑛𝑖௜௧
ଶ ൅ 𝜷𝟒𝑿𝒊𝒕 ൅ 𝑢௜௧ 

where 𝐺𝑖𝑛𝑖௜௧ is the level of income inequality measured by the Gini coefficient. The results are 

presented in Table 2.  

Table 2 

Estimation Results: AI and Gini coefficient 

 
M1 M2 M3 M4 

Constant -7.844* -14.461*** -15.095*** -18.832*** 

 3.157 3.002 3.108 3.195 

Year 0.561*** 0.501*** 0.493*** 0.536*** 

 0.157 0.140 0.141 0.136 

Gini (ൈ100)  0.445*** 0.398*** 0.420*** 0.586*** 

 0.164 0.144 0.147 0.150 

Gini2 -0.007*** -0.006*** -0.006*** -0.008*** 

 0.002 0.002 0.002 0.002 

Human Capital 2.171*** 2.076*** 1.325*** 

 0.369 0.388 0.440 

Capital 1.01E-06 -1.73E-06 

 1.26E-06 1.48E-06 

TFP 4.836*** 

 1.515 

R2 0.26 0.45 0.45 0.50 
Notes: Standard errors are in smaller fonts. *P<0.1, **P<0.05, ***P<0.01. 
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According to these results, we find a statistically significant relationship between the Gini 

coefficient and AI investments. In all specifications, this relationship between income 

inequality and AI is non-linear and concave. Particularly, there is a certain level of Gini 

coefficient that maximizes the AI investments even if we control for the other economic 

variables. Notice also that the signs of the coefficients of the control variables and their 

statistical significances have stayed the same in comparison to our first analysis based on wages. 

Furthermore, as can be seen from the R2 values, there is a significant increase in the explanatory 

power of the models with the Gini coefficient in the presence of the economic control variables.  

The results summarized in Table 2 suggest that moderate-income inequality levels provide the 

most suitable economic environment and incentives for AI investments. According to the 

benchmark case (M4), the Gini coefficient, which maximizes the AI investment per capita, is 

estimated as 0.389. We see that the US and Singapore, with the Gini coefficients 0.382 and 

0.386, respectively, are in the vicinity of this optimal level. Inspection shows that these two 

countries are among the top three in AI investments per capita, following Israel. The global 

leader, Israel, has a Gini coefficient of 0.350, which is also close to the optimal Gini coefficient 

level. To explain this empirical result in a rigorous fashion, we also develop a simple economic 

model and its results in the appendix. 

Our preferred explanation for our results is based on the opposite forces that high income taxes 

exert on the incentives of investing in AI. First of all, a high payroll tax would encourage AI 

investments by raising labor costs, while reducing income inequality by financing redistributive 

policies. Indeed, substantially higher AI investments per capita figures are observed in 

egalitarian Western European and Nordic countries compared to Brazil and South Africa, which 

are notoriously famous for their income inequality.  

On the other hand, despite its positive impact on income equality, a high income tax on capital 

gains would reduce profitability, discouraging risky investments in innovation and technology. 

Thus, due to higher income taxes on capital earnings, the Western European and Nordic 

countries lose their edge in AI investments to Israel, the US, and Singapore –the global leaders 

in per capita AI investments. To put it succinctly, income taxes on labor and capital 

unambiguously reduce income inequality while creating two opposite forces on automation 
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investments. This explains the hump-shaped relationship between income inequality and per-

capita AI investments in our estimations.  

One can notice that the results are asymmetric since the negative impact of economic inequality 

on AI investments is larger than that of economic equality. Hence the unequal income 

distribution levels observed in Brazil and South Africa have a more substantial negative impact 

on AI investments than the egalitarian income distribution levels in the Scandinavian countries. 

This asymmetry can be visually verified in figures 2a and 2b, which depict the partial effect of 

income inequality on per capita AI investments for years 2018 and 2015-2018, respectively.  

Figure 2 

Figure 2a Figure 2b 

Notes: The graphs correspond to the regression system in Table 2/M4. The curve in the figure to the left (right) 
shows the partial relation between the Gini coefficient and the log of per capita AI investments for year(s) 2018 
(2015-2018), holding fixed the estimated effects of the explanatory variables other than the Gini coefficient and 
its square. 

It is noteworthy that China’s AI ambitions have recently attracted global attention and have 

frequently been covered in the media. According to our results, indeed, China has a Gini 

coefficient that is very close to the optimal level, indicating that it has a rather ideal level of 

income inequality for AI investments.  Note, however, that we use per capita AI investments in 

our analysis. In levels, China is indeed the second largest investor in AI. Nevertheless, in per 

capita terms, China is lagging behind.  

In light of our results, it seems that China must refrain from any policies that can deteriorate 

the income inequality to preserve its competitive position in the ongoing AI revolution. This is 

because higher income inequality is more damaging for per capita AI investments than lower-

levels of the Gini coefficient. 
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4. Robustness 

In this section we re-estimate our model using different techniques to test the robustness of the 

coefficient estimates generated by the least square regressions. These estimation methods are 

random effects models – including maximum likelihood (MLE) and generalized least squares 

(GLS) –and population averaged model (PA). The results with these three alternative estimation 

techniques are presented in Table 3.  

Table 4 

Estimation Results: Random-effects and population-averaged linear models 

 
GLS MLE PA GLS MLE PA 

Constant -5.030* -5.677* -5.677** -15.859** -16.682*** -16.682*** 

 3.008 2.988 2.758 6.912 5.509 5.484 

Year 0.513*** 0.513*** 0.513*** 0.503*** 0.511*** 0.511*** 

 0.085 0.082 0.082 0.076 0.075 0.075 

Wage 0.216 0.187 0.187  
  

 
0.216 0.207 0.201  

  

Wage2 -0.002 -0.002 -0.002  
  

 
0.003 0.003 0.003  

  

Gini (ൈ100)     0.569* 0.555** 0.555** 
    0.325 0.258 0.258 

Gini2  -0.008** -0.007** -0.007** 
    0.004 0.003 0.003 

Human Capital 0.669 0.876 0.876 1.173 1.330* 1.330* 

 1.114 1.081 1.020 0.846 0.703 0.700 
Capital 2.79E-07 2.04E-07 2.04E-07 2.27E-06 1.02E-06 1.02E-06 

 3.72E-06 3.44E-06 3.44E-06 2.80E-06 2.45E-06 2.33E-06 
TFP -2.036 -1.355 -1.355 0.612 1.773 1.773 

 3.338 3.429 3.180 2.361 2.230 2.130 
R2 (within) 0.46   0.45   

Notes: Standard errors are in smaller fonts. *P<0.1, **P<0.05, ***P<0.01. 

Despite some limited disparities in significance levels, the results in Table 3 are qualitatively 

identical to our original findings. To be specific, the coefficients estimates wages are 

statistically insignificant. On the other hand, the statistically significant Gini coefficient 

estimates further imply a hump-shaped relationship.  

As an additional robustness check, we test for the existence of outliers. Our approach is to re-

run the benchmark model (M4) after omitting each country one by one and to seek for any 

marked difference. This exercise is repeated for both the wage model and the Gini model, giving 

us 2 ൈ 26 different estimations as there are 26 countries in our dataset. Once again, the results 

for the Gini model exhibit no significant differences from our earlier findings which show that 
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the AI investments would follow an inverted-U shape as inequality rises. The most notable 

impact of this exercise is that the coefficient estimates of human capital and capital become 

statistically insignificant and significant, respectively, when the Singaporean data is omitted.  

Moreover, the coefficient estimate of the capital becomes statistically significant at 10% level 

when the Portuguese data is omitted.  

Likewise, in the first model that involves wage as the explanatory variable, wage coefficients 

are still statistically insignificant according to our analysis to detect outliers. However, the 

coefficient of TFP becomes insignificant when we omit the Israeli and Irish data once at a time. 

Omitting the Singaporean data, on the other hand, results in a statistically significant coefficient 

estimate of capital (at the 10% significance level) alongside with an insignificant human capital 

coefficient.  

One may argue that our econometric specification succumbs to the endogeneity problem due to 

reverse causality. To be specific, wages and income inequality could be considered as the 

dependent variable as AI reduces labor demand, affecting wages and income distribution. To 

address this issue and to avoid reverse causality, we estimate two alternative models where we 

take the lagged values of the dependent variables, i.e. wages, Gini coefficients, and control 

variables.  In formal terms, we estimate 

ln 𝐴𝐼௜௧ ൌ 𝛽଴ ൅ 𝛽ଵ𝑡 ൅ 𝛽ଶ𝑊௜௧ିଵ ൅ 𝛽ଷ𝑊௜௧ିଵ
ଶ ൅ 𝜷𝟒𝑿𝒊𝒕ି𝟏 ൅ 𝜖௜௧ 

and  

ln 𝐴𝐼௜௧ ൌ 𝛽଴௜ ൅ 𝛽ଵ𝑡 ൅ 𝛽ଶ𝐺𝑖𝑛𝑖௜௧ିଵ ൅ 𝛽ଷ𝐺𝑖𝑛𝑖௜௧ିଵ
ଶ ൅ 𝜷𝟒𝑿𝒊𝒕ି𝟏 ൅ 𝑢௜௧. 

where 𝑡 ൌ 2015, … ,2018. Another interesting feature of this alternative approach is that this 

specification does not require data extrapolation as the original values of wages, Gini 

coefficients, and the control variable are available for 2017. We take M4 as the benchmark case 

where all available control variables are included. The results are presented in Table 5. 
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Table 5 

Estimation Results with Lagged Dependents (no extrapolation) 

 
I II 

Constant -11.1*** -18.997*** 
   

1.759 3.217 

Yeart-1 0.5*** 0.535*** 
0.146 0.136 

Waget-1 -0.114  

0.131  

Waget-1
2 -0.0003  

0.0018  

Ginit-1 (ൈ100)   0.599*** 
  0.149 

Ginit-1
2  

-
0.0076*** 

  0.0018 

Human Capital t-1 2.186*** 1.287*** 
0.63 0.452

Capitalt-1 7.12E-07 1.45E-07 
2.12E-06 1.47E-07

TFPt-1 7.541*** 4.74*** 

2.622 1.552

R2 0.42 0.5 
 

According to Table 5, the results are almost identical to the corresponding findings presented 

in Table 1 and 2 (M4). This suggests that our main results are not affected by using the lagged 

values of the dependent variables, a strategy that avoids endogeneity due to reverse causality 

or other problems related to data extrapolation.  

To sum up, after conducting these robustness checks, we failed to find any evidence or 

alternative specification that would jeopardize our results presented in the main section.  In 

particular, different econometric techniques yield practically identical results compared to our 

original findings. We find no evidence for outliers that could discredit the hump-shaped 

relationship between per capita AI investments and Gini coefficients or the statistically 

insignificant coefficients of wages. Our results are also robust with respect to using lagged 

values of the dependent variables that tackle the issue of reverse causality and allow us to 

dispense with data extrapolation. 
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5. Conclusion 

In this study, we empirically analyze how wages and income inequality affect AI, a key labor-

saving technology. Our results suggest that the impact of wages on AI is statistically 

insignificant. Nonetheless, we cannot reject the hypothesis that income inequality measured by 

the standard Gini coefficient has a statistically significant effect on per capita AI investments. 

According to our results, the relationship between income inequality and AI is nonlinear. In 

particular, we find that per capita AI investment reaches its peak point at a certain economic 

inequality level, corresponding to 0.389 as the Gini coefficient. Supporting our empirical 

findings; the Gini coefficient of Israel (0.350), the US (0.386), and Singapore (0382)—the 

global leaders in AI per capital--are clustered around this particular optimal level of economic 

inequality.  

As the range of Gini coefficient is 0.25-0.60 in our dataset, these figures suggest that a moderate 

level of income inequality yields the most suitable environment for developing AI technologies. 

Notice that another country leading the AI revolution is China, which is only second to the US 

in total AI investments. Indeed, the economic inequality in China (0.412) is very close to our 

estimated optimal level of the Gini coefficient. This result reveals that China has a valuable 

edge in the global AI race. Yet, for the years to come, it is crucial that China avoids worsening 

income inequality to protect its advantageous position.    
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Appendix: A Toy Economic Model 

Consider an economy with two individuals: a firm owner and a worker. In this simple economic 

model we shall demonstrate the hump-shaped relationship between the optimal AI investments 

and the disposable income inequality, measured by the post-tax Gini coefficient. In particular, 

we vary the tax rate and plot its impact on AI and income inequality levels.  

Now suppose that a consumption good is produced using human labor, 𝐻, supplied by the 

worker and artificial intelligence, 𝐴𝐼. So the production technology is 

 𝑄 ൌ 𝐹ሺ𝐻 ൅ 𝐴𝐼ሻ  

where 𝑄 is the level of output of the final consumption good, and 𝐹 is a concave increasing 

function. The AI development requires physical resources denoted by 𝑋:  

 𝐴𝐼 ൌ 𝑋௔  

where 𝑎 ∈ ሺ0,1ሻ.  

The government imposes sales/excise taxes  𝑡 ∈ ሾ0,1ሿ so that the revenue of producing 𝑄 net of 

taxes is ሺ1 െ 𝑡ሻ𝑄 for the firm owner. The collected taxes, 𝑡𝑄, is redistributed to each individual 

as lump-sum transfers, denoted by 𝑇. Therefore, the government budget constraint is 2𝑇 ൌ 𝑡𝑄. 

Assuming in-house development of 𝐴𝐼, the firm solves the profit maximization problem: 

π ≝ maxሺ1 െ 𝑡ሻ𝑄 െ 𝑤𝐻 െ 𝑋 

by choosing ሺ𝐻, 𝑋ሻ subject to Eq (1-2) above. The first order conditions of profit maximization 

are 

 ሺ1 െ 𝑡ሻ𝐹ᇱ ൌ 𝑤  

 ሺ1 െ 𝑡ሻ𝑎𝑋௔ିଵ𝐹ᇱ ൌ 1  
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where 𝐹ᇱ is the first order derivative of 𝐹ሺ∙ሻ.  

The labor supply of the worker is assumed to be 

ℎ ൌ 0.5ሺ1 െ 𝑇/𝑤ሻ 

so that the labor supply increases with wages and decreases with unconditional government 

transfers.‡ The firm owner does not supply labor so that 𝐻 ൌ ℎ at the labor market equilibrium.  

To numerically simulate the model; let 𝑎 ൌ 0.1, and 𝐹 ൌ ሺ𝐻 ൅ 𝐴𝐼ሻఉ where 𝛽 ൌ 0.15. At 

these parameter values, we solve the model and obtain the equilibrium level of AI and income 

distribution measured by the Gini coefficient at each 𝑡 ∈ ሾ0,1ሿ . The general formula for the 

Gini coefficient is  

𝐺𝑖𝑛𝑖 ൌ
2∑𝑖 ൈ 𝑦௜

𝑛 ൈ ∑𝑦௜
െ

𝑛 ൅ 1
𝑛

 

where 𝑦௜ ൑ 𝑦௜ାଵ is the income level of individual 𝑖 ൌ 1, … , 𝑛. In this toy model, in which 𝑛 ൌ

2, this expression boils down to 

𝐺𝑖𝑛𝑖 ൌ
π ൅ T

𝑄
െ

1
2

. 

The graph of the optimal 𝐴𝐼 and the Gini couple as taxes vary starting between 𝑡 ൌ 0 and 𝑡 ൌ

0.9 is plotted below: 

 

 

                                                            
‡ To be rigorous, the labor supply is the solution to the utility maximization problem: maxሼ𝑢ሺ𝑐, ℎሻ s.t. 𝑐 ൌ
𝑤ுℎ ൅ 𝑇ሽ where 𝑢ሺ𝑐, 𝑙ሻ represents the preferences of the individual over consumption, 𝑐, and labor supply, ℎ. 
Obviously, 𝑐 ൌ 𝑤ுℎ ൅ 𝑇 is the budget of the individual. The most widely used and known preference is Cobb-
Douglas, 𝑢ሺ𝑐, ℎሻ ൌ 𝑐 ൈ ሺ1 െ ℎሻ  which yields exactly the supply curve given above. 
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