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Abstract

Pandemics can lead to rich inflation dynamics with strong inflationary
as well as deflationary forces. Initially, deflationary pressures play a
dominating role because idiosyncratic risk is elevated until recovery
arrives. The inflation dynamics are highly dependent on government
policies. Government lending programs allow the contact-intensive,
distressed sector to become more indebted, which prevents deflation if
the pandemic is short-lived but amplifies deflation if the pandemic lasts
longer. Redistribution moderates the deflationary forces and can lead to
excessive inflation in the long-run.

1 Introduction

The COVID-19 pandemic has brought dramatic economic changes around the
world. Many industries have been forced to shutdown or restructure operations
and governments have run large budget deficits to fund extensive support
programs. Historical experience suggests that these changes are likely to lead to
subtle inflationary and deflationary dynamics, which are highly dependent on
policy decisions. In this paper, we develop a model to decompose the various
short run and long run inflation and deflation pressures that are emerging as
governments respond to the pandemic.

We consider a model with two sectors, one of which is unexpectedly shutdown
for a random duration. Agents in both sectors produce using idiosyncratically
risky capital. Capital volatility ends up increasing the longer the pandemic
lasts. There are three key frictions. First, idiosyncratic capital risk is not
insurable. This implies that “safe” assets, such as government debt, provide a
“self-insurance” benefit and so trade at a premium. Second, capital is costly
to adjust and only tradable within a sector. This implies that the shutdown
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sector must borrow or convert capital in consumption goods in order to smooth
consumption. Finally, the agents face a borrowing constraint.

We derive five main results. First, we show that the initial pandemic shock
has an ambiguous impact on bond demand and so its impact on the price level
is ambiguous. This is because there are counteracting forces affecting bond
demand when the pandemic occurs. Aggregate productivity decreases, which
lowers aggregate net-worth and so bond demand. However, the volatility outlook
for the economy also increases and so agents undertake more precautionary
saving, which increases bond demand.

Second, without any government fiscal policy, there is a strong deflationary
force as long as the pandemic lasts. Agents in the shutdown sector smooth
consumption by selling bonds and converting capital. This decreases aggregate
capital stock, net-worth and bond demand, which generates inflation. However,
over time, there is also a reallocation of capital away from the shutdown sector.
This increases idiosyncratic risk, which increases bond demand and generates
deflation. In our numerical examples, the later force dominates and we get
sustained deflation during the pandemic. Once the pandemic ends, the forces
reverse because agents start to rebuild capital and idiosyncratic risk starts to
decrease. This leads to sustained inflation during the recovery. In this sense,
our model generates an “inflation whipsaw”, where a deflationary force during
the pandemic is quickly followed by an inflationary force once the pandemic
ends.

Third, if the government introduces a lending program, then agents are
less afraid hitting the borrowing constraint later on and hence they are more
aggressive in their consumption smoothing. They borrow more rather than
convert capital goods into consumption goods. This is because they anticipate a
large increase capital prices when the recovery arrives. If the pandemic is short,
then this ensures a fast recovery because capital doesn’t have to be rebuilt.
However, if the pandemic lasts longer than expected, then the shutdown sector
become highly indebted and agents rapidly destroy capital. We can think about
this as the agents’ “gamble on recovery” not paying off. Under this policy,
inflationary pressures dominate early in the pandemic but they are overpowered
by deflationary forces if the recovery takes longer than expected. In this sense,
introducing a government lending program makes the inflation and deflation
dynamics more sensitive to the length of the pandemic.

Fourth, we show that intratemporal redistribution across sectors is
inflationary. Unlike in many other papers, this does not occur because the
sectors have a different marginal propensity to consume out of wealth. Instead,
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it occurs because the sectors have a different willingness to hold capital. This
means that fiscal policy makers face a trade-off. If they don’t address inequality,
then they get a strong deflationary force during the crisis and a slow recovery in
output once the crisis ends. Alternatively, if they redistribute wealth during the
pandemic, then they get a faster recovery but also a strong inflationary force
during the crisis and recovery phase.

Finally, we consider intertemporal redistribution. Ricardian equivalence
holds if the government introduces a lending program to eliminate the borrowing
constraint and funds transfers through lump-sum taxation. However, under
other policies, Ricardian equivalence breaks. If the government uses lump-
sum taxation but does not introduce a lending program, then B is indifferent
about the timing of taxes but sector A would prefer that the government raises
taxes once their borrowing constraint is no longer binding. If the government
raises taxes proportional to wealth, then the transfer scheme provides additional
insurance against idiosyncratic risk. Ultimately, this decreases bond demand
and so generates more inflation.

1.1 Related Literature

In our model, bond (or money) demand comes from precautionary saving to
self-insure against non-contractible shocks. This generates the key feature of
our model that changes to the price and quantity of risk affect the portfolio
choice between bonds (or money) and capital. The emphasis on treating
money demand as a portfolio choice problem is part of a long tradition (e.g.
Tobin (1965)) and also builds on more recent papers, such as Brunnermeier
and Sannikov (2016b), Di Tella (2019), and Szoke (2019), which emphasise
how portfolio reallocation into money can impact investment. For tractability,
we work with a reduced form model with exogenous market incompleteness
that prevents agent from insuring against idiosyncratic capital risk. This
uses the framework developed in Bewley (1980, 1983), Angeletos (2007), and
Brunnermeier and Sannikov (2016a). Although we are not interested in the
micro-foundations of money or debt demand in this paper, we would get a
qualitatively similar link between risk and money demand in models with a
richer foundation. For example, prominent models of liquidity premia typically
focus on self-insurance against idiosyncratic shocks to the marginal utility of
consumption, the marginal productivity of investment or the timing of supplier
payments (e.g. Diamond and Dybvig (1983), Holmström and Tirole (1998),
Lagos and Wright (2005), and Kiyotaki and Moore (2019)). Alternatively, we
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would get a similar channel if we used a “safe asset” model or inserted stochastic
death rates into an OLG model. The contribution of our paper is to examine
how changes to precautionary saving during a period of high volatility and
inequality impact inflation and investment.

There is also a long literature studying the link between fiscal policy and
inflation (e.g. Sargent and Wallace (1981), Sargent (1982), Woodford (1995),
Sims (1994), Brunnermeier et al. (2020)). Our main contribution is to integrate
this literature with precautionary saving demand for money and a pandemic
style shock.

Finally, there have been many recent papers on the COVID crisis (e.g.
Guerrieri et al. (2020), Kaplan et al. (2020), Eichenbaum et al. (2020), e Castro
(2020), as well as many others). Our main contribution is focus on aggregate
risk.

2 Model

2.1 Environment

We consider a continuous time, infinite horizon economy populated by a
continuum of agents, who are interpreted as entrepreneurs and indexed by
i ∈ [0, 2]. The agents can be in one of two sectors, indexed by I ∈ {A, B}. Each
sector has its own type of capital, which is used to produce a different type of
intermediate good. There is also a final good, which is used for consumption
and investment.

Agent i in sector I has preferences described by the expected utility function:

E0

[∫ ∞

0
e−ρtu(cIi

t )dt

]
,

where Et is the expectation taken with respect to information at time t, cIi
t

denotes the agent’s consumption of the final good at time t and u(c) = log(c).
Agent i in sector I operates a technology that produces intermediate good

I according to the production function:

yIi
t dt = aI

t kIi
t dt,

where aI
t denotes the productivity in sector I, yIi

t denotes the flow output of
good I produced by agent i, and kIi

t denotes the capital owned by agent i in

4



sector I. Absent capital trading, capital stock evolves according to:

dkIi
t = (Φ(ιIi

t ) − δ)kIi
t dt + σ̃I

t kIi
t dZ̃Ii

t ,

where ιIi
t is the flow investment rate per unit capital, Φ(ι) = (1/φ) log(1 + φι)

is the flow capital created by ι (net of adjustment costs), Z̃Ii
t denotes an

idiosyncratic Brownian motion process and σ̃t denotes the volatility of the
idiosyncratic process. We allow σ̃t to vary with time to consider the possibility
that idiosyncratic risk could change as the economic environment changes. In
numerical examples, we will focus on the case that σ̃t = σ̃(κt) = σ̃+σ̃κ(κt−κSS),
where κt = KA

t /Kt is the ratio of total capital in sector A to total capital in
the economy and κSS is steady state value of κt. We interpret this equation
as saying that if the capital allocation is more distorted, then idiosyncratic risk
increases.

A representative final goods firm uses the input goods to produce the final
consumption good according to the aggregation function:

Yt =
[
αA(Y A

t )
ε−1

ε + αB(Y B
t )

ε−1
ε

] ε
ε−1

.

where Y I
t denotes total inputs goods from sector I and αI reflects the relative

importance of good I in the CES aggregator.
The only aggregate shock in the economy is the arrival of a pandemic, which

is modelled in the following way. Before the pandemic occurs, productivity in
both sectors is constant at aA

t = aB
t = a. At time t0, the pandemic begins and

productivity aA
t immediately decreases from a to a, while productivity aB

t stays
at a. Productivity aA

t then remains at a for the duration of the pandemic. We
interpret the decrease in aA

t as the shutdown of production in the non-essential
services sector during the pandemic. The pandemic ends according to a Poisson
jump process, denoted by Jt, with arrival rate λt. After the pandemic ends, at

reverts immediately to a. In summary, if we let t1 denote the time at which the
pandemic ends, then

aA
t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a, for t < t0

a for t0 ≤ t < t1

a, for t ≥ t1

aB
t = a

The initial pandemic shock is unexpected but agents in the economy know the
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probability with which the pandemic ends.
The only type of financial asset is an infinitesimally short term bond. We

normalise the interest rate on bonds to iM units of bonds. Bonds can be
issued by the government and by private agents. However, private agents face
a constraint that their share of wealth in bonds, denoted by θM

t , cannot be less
than θ. We let Mt denote the positive net supply of bonds at time t (i.e. the
bonds issued by the government). Although we call the government liabilities
bonds, they could also be interpreted as interest paying reserves.

There are competitive markets for the final consumption good, the
intermediate goods and bonds. The market for capital is competitive but
segmented. Agents in sector I can only trade capital with other agents in sector
I. We denote prices in the following way. Let the price of the final consumption
good be the numeraire. Let pI

t denote the price of good I ∈ {A, B}. Let qI
t

denote the price of capital I ∈ {A, B}. Let 1/Pt denote the price of bonds so
that Pt denotes the price of goods in term of bonds. We guess (and verify) that
there exist μqI

t , μP
t , νqI

t and νP
t such that the asset prices evolve according to:

dqI
t = μqI

t qI
t dt + νqI

t qI
t dJt

dPt = μP
t Ptdt + νP

t PtdJt

2.2 Agent Problems

We now specify the government budget constraint and the agent problems. We
start by defining some additional notation that will be useful throughout this
section. Let mIi

t and nIi
t := qI

t kIi
t + (1/Pt)mIi

t denote the bond holdings and
net-worth of agent i in sector I. Let KI

t , M I
t , N I

t , Y I
t , II

t , and CI
t denote the

total capital, bonds, net-worth, output, investment and consumption in sector
I at time t.

2.2.1 Government

The government sets an exogenous path of transfers. We allow the transfers to
depend upon the sector, I, but not upon the idiosyncratic Z̃i

t process or the
recovery shock, dJt. Let T Ii

t denote the transfer to agent i in sector I. We
restrict transfers to be proportional to agent net-worth. This implies that:

T Ii
t dt = τ I

t nIi
t dt
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for some transfer rate τ I
t that is independent of i. We further restrict τ I

t to be
of the form τ I

t = τ I(ηt), where ηt := NA
t /Nt is sector A’s share of total wealth1.

Observe that T Ii
t > 0 represents a transfer to agent i in sector I and T Ii

t < 0
represents a tax on agent i in sector I. The total transfer to sector I is then
denoted by T I

t =
∫

T Ii
t di = τ I

t N I
t .

The government also sets a path of bond supply, which we denote by dMt =
(μM

t − iM )Mtdt. The budget constraint of the government becomes:

(T A
t + T B

t )dt =
1
Pt

dMt + d

(
1
Pt

)
dMt =

(μM
t − iM )Mt

Pt
dt (2.1)

2.2.2 Final Goods Firm

Given intermediate input goods prices, {pI
t }I∈{A,B}, at each t, the final goods

producer chooses intermediate inputs, {Y I
t }I∈{A,B}, to solve the static problem:

max
{Y I

t }I∈{A,B}

{
Yt − pA

t Y A
t − pB

t Y B
t

}
s.t.

Yt =
[
αA(Y A

t )
ε−1

ε + αB(Y B
t )

ε−1
ε

] ε
ε−1 (2.2)

The first order conditions give the intermediate good demand functions:

Y A
t =

(
αA

pA
t

)ε

Yt

Y B
t =

(
αB

pB
t

)ε

Yt

2.2.3 Entrepreneur

Given price and transfer processes, agent i in sector I solves the optimization
problem:

max
c,ι,θ

{
E0

[∫ ∞

0
e−ρtu(cIi

t )dt

]}
s.t.

dnIi
t =

[
μrMI

t + (μrkIi
t − μrMI

t )θkIi
t − cIi

t

nIi
t

]
nIi

t dt

+ σ̃tθ
kIi
t nIi

t dZ̃i
t +
[
ν

1/P
t + (νqkI

t − ν
1/P
t )θkIi

t

]
nIi

t dJt

where θkIi
t := qI

t kIi
t /nIi

t is the share of wealth that agent i in sector I allocates
to capital, θmIi

t := (1/Pt)mIi
t /nIi

t = 1 − θkIi
t is the share of wealth that agent

1This restriction will ensure that the problem is recursive

7



i in sector I allocates to bonds, ν
1/P
t (1/Pt) is the jump in 1/Pt when the

recovery occurs, μrkIi
t is the expected return from holding capital and μrkIi

t is
the expected return from holding bonds. The expected returns (after transfers)
are given by the expressions:

μrkIi
t :=

pI
t aI

t − ιIi
t

qI
t

+ Φ(ιIi
t ) − δ + μqI

t + τ I
t

μrMI
t := iM − μP

t + τ I
t

2.3 Equilibrium

We now define and characterise a recursive equilibrium for this economy. We
start by defining the state variables. The idiosyncratic state variable for agent i

in sector I is their net worth nIi
t . The aggregate state variables for the economy

are2: Xt := {Kt, Mt, κt, ηt, at}, where recall that:

κt :=
KA

t

Kt
, ηt :=

NA
t

Nt
, at := aA

t

Where convenient, we will also use the additional notation that ηI
t := N I

t /Nt

and κI
t := KI

t /Kt.

2.3.1 Entrepreneur HJBE

Let V Ii(nIi, X) denote the value function for agent i in sector I with
idiosyncratic wealth nIi when the aggregate state is X. Then, V Ii(nIi, X)
solves the HJBE:

ρV Ii(nIi, X)

= max
cIi,ιIi,θkIi

{
u(cIi) + ∂nV Ii(nIi, X)

(
μrMI + (μrkIi − μrMI)θkIi − cIi

nIi

)
nIi

+ ∂XV Ii(nIi, X)μX(X) +
1
2

∂2
nV Ii(nIi, X)σ̃(κ)2(θkIi)2(nIi)2

+ λ
(

V Ii
((

1 + ν1/P + (νqkI − ν1/P )θkIi
)

nIi, (1 + νX(X))X
)

− V Ii(nIi, X)
)}

s.t. θkIi ≤ 1 − θ (2.3)

2Observe that, even though we have a continuum of agents, we will be able to aggregate
agents within each sector and so the wealth and capital shares of sector A will be sufficient
state variables for determining equilibrium prices.
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where μX(X)X is the drift in the aggregate state variable and νX(X)X is the
jump in X when the recovery occurs.

Standard arguments show that the value function takes the form:

V Ii(nIi, X) =
1
ρ

log(nIi) + ΓI(X)

for some function ΓI(X) independent of i. It follows that the first order
conditions for the HJBE become:

cIi = ρnIi

ιIi =
1
φ

(qI − 1) =: ιI

μrkI − μrMI = σ̃(κt)2θkI − λ(νqI − ν1/P )
1 + νnI

+ ρψI (2.4)

where ψI is the Lagrange multiplier on the constraint θkI = 1−θmI ≥ 1−θ and
where, under the optimal choices, the expected return on capital and investment
adjustment cost are given by:

μrkI :=
pIaI − ιI

t

qI
+ Φ(ιI) − δ + μqI + τ I

Φ(ιI) =
1
φ

log(1 + φιI) =
1
φ

log(qI)

We can immediately see that all agents in a given sector I choose the same
investment rate per unit of capital, ιI , and the same portfolios: θkI

t and θmI
t =

1 − θkI
t . We can observe that the aggregate component of the value function,

ΓI(X), does not end up appearing in the first order conditions and so we do not
solve explicitly for ΓI(X).

2.3.2 Equilibrium Definition

Definition 1. A (recursive) equilibrium is a collection of price
functions, {pI(X), qkI(X), P (X), }I∈{A,B}, laws of motion for
the (aggregate) state variables, as characterised by the drifts,
{μK(X), μM (X), μη(X), μκ(X), μa(X)}, and jump exposures,
{νK(X), νM (X), νη(X), νκ(X), νa(X)}, government policy functions,
{τ I(η)}I∈{A,B}, and entrepreneur value functions, {V Ii(n, X)}i∈[0,2],I∈{A,B},
and policy functions, {cIi(n), ιIi(n, X), θIi(X)}i∈[0,2],I∈{A,B} such that:

• Given price functions and laws of motion for the aggregate state
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variables, the value function and entrepreneur policy functions solve the
entrepreneur HJBE (2.3),

• The final good producer solves their optimization problem (2.2),

• The government budget constraint (2.1) is satisfied,

• The market clearing conditions are satisfied:∫
ci

tdi +
∫

ii
tdi = Yt . . . Final consumption good,∫

yIi
t di = Y I

t . . . Intermediate good I ∈ {A, B},∫
kIi

t di = KI
t . . . Capital in sector I ∈ {A, B},∫

mi
tdi = Mt . . . Bonds.

2.3.3 Sector Aggregation

Since agent consumption rules are linear in wealth and agent investment and
portfolio allocations are independent of wealth, we can solve for prices using the
sector level aggregate variables rather than the full distribution. From the first
order conditions and production functions we have:

Y I
t = aI

t KI
t

II
t = ιI

t KI
t

CI
t = ρN I

t

and the laws of motion for KI
t and N I

t are given by:

dKI
t = (Φ(ιI

t ) − δ)KI
t dt

dN I
t = (μrMI

t + (μrkI
t − μrMI

t )θkI
t − ρ)N I

t dt

+ (ν1/P
t + (νqkI

t − ν
1/P
t )θkI

t )N I
t dJt (2.5)

For convenience, we will denote the drift and volatility of N I
t by μNI

t Nt and
νNI

t N I
t respectively.
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2.3.4 Equilibrium Characterization

In appendix B, we derive a set equations that characterise the equilibrium. In
this section, we state the main results. The aggregate production function is:

Yt = A(κt, at)Kt

where the “aggregate productivity” is given by:

A(κt, at) =
(

αA(atκt)
ε−1

ε + αB(a(1 − κt))
ε−1

ε

) ε
ε−1

Although we cannot derive closed from expressions for the asset prices, we
show in proposition 1 that we can derive expressions for the asset prices in terms
of the share of wealth that agents hold in money, ϑt, and the share of capital
wealth in sector A, ϕt. These shares are defined by:

ϑt :=
qM

t (MA
t + MB

t )
Nt

ϕt :=
qA

t KA
t

qA
t KA

t + qB
t KB

t

Proposition 1. In equilibrium, the total net-worth of the private sector is:

Nt =
(

1 + φA (κt, at)
1 − ϑt + ρφ

)
Kt

and the asset prices for capital and bonds are given by:

qA
t =

ϕt(1 − ϑt)
κt

Nt

Kt

qB
t =

(1 − ϕt)(1 − ϑt)
1 − κt

Nt

Kt

1
Pt

= ϑt
Nt

Mt
(2.6)

Proof. See appendix B.2.

We can also derive the laws of motion for the aggregate state variables
in terms of the asset prices (and so in terms of ϕt and ϑt). This is done in
proposition 2.
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Proposition 2. The laws of motion for Kt, κt, and ηt are:

dKt =
(
κtΦ(ιA

t ) + (1 − κt)Φ(ιB
t ) − δ

)
Ktdt (2.7)

dκt =
(
Φ(ιA

t ) − Φ(ιB
t )
)

κt(1 − κt)dt (2.8)

dηt = (1 − ηt)ηt

[
(μNA

t − μNB
t )dt +

(
νNA

t − νNB
t

1 + ηtνNA
t + (1 − ηt)νNB

t

)
dJt

]
(2.9)

Proof. See appendix B.2.

We can use proposition 2 to understand how the state variables evolve. First,
consider Kt and κt. From equations (2.7) and (2.8), we can see that the drift of
Kt is determined by the total net investment in both sectors and the drift in κt

is determined by difference between investment rates across the sectors. Recall
that, from the first order conditions, Φ(ιI

t ) = log(qI) and so the laws of motion
can be expressed as:

dKt =
(
log
(
(qA

t )κt(qB
t )1−κt

)− δ
)

Ktdt

dκt = log
(

qA
t

qB
t

)
κt(1 − κt)dt

It follows that the drift of Kt is determined by the κt weighted composite capital
price and the drift of κt is determined by the ratio of capital prices. Neither
Kt nor κt changes when the recovery jump occurs because agents cannot trade
capital across sectors or frictionlessly destroy capital.

Now, consider the law of motion for ηt. By combining equations (2.9) and
(2.5), we can see that the drift of ηt is determined by the sectorial differences
in government transfers and earned risk premia:

μηη = (1 − ηt)ηt

(
τA

t − τB
t + (μrkA

t − μrMA
t )θkA

t + (μrkB
t − μrMB

t )θkB
t

)
From equation (2.5), we can see that ηt increases when the recovery jump occurs
if wealth increase by more in sector A than in sector B. This will be the case if
qA

t increases by more than qB
t .

We close the equilibrium characterisation by deriving laws of motion for ϑt

and ϕt. These are given in proposition 3.

Proposition 3. The laws of motion for ϑt and ϕt are given by:

dϕt = μϕ
t ϕtdt + νϕ

t ϕtdJt

dθt = μθ
t θtdt + νθ

t θtdJt
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where

μϕ
t =

(
σ̃2

t (1 − ϕt)
(

ϕt

ηt
− 1 − ϕt

1 − ηt

)
− λ

(
νqA

t − νQ
t

1 + νNA
t

− νqB
t − νQ

t

1 + νNB
t

)

− 1
qK

t

(
pA

t aA
t κt

ϕt
− pB

t aB
t (1 − κt)
1 − ϕt

+
1
φ

κt − ϕt

ϕt(1 − ϕt)

)
+ ψA − ψB

)
(1 − ϕt)

νϕ
t =

νqA
t − νqK

t

1 + νqK
t

μϑ
t = ρ − (1 − ϑt)2σ̃2

t

(
ϕ2

t

η
+

(1 − ϕt)2

1 − ηt

)
+ λ(1 − ϑt)

(
(νqA

t − νQ
t )ϕt

1 + νNA
t

+
(νqB

t − νQ
t )(1 − ϕt)

1 + νNB
t

)
+ (1 − ϑt)(μM

t − iM ) − (1 − ϑt)(ϕtψ
A + (1 − ϕt)ψB)

νϑ
t = − (1 − ϑt)

(
νqK

t − νQ
t

ϑt(1 + νQ
t ) + (1 − ϑt)(1 + νqK

t )

)

and where νQ
t Qt and νqK

t qK are the jumps in Qt := 1/Pt and qK
t = κtq

A
t + (1 −

κt)qB
t respectively when the recover occurs.

Proof. See appendix B.2.

We are particularly interested in interpreting the equation for the equilibrium
share of wealth in bonds, ϑt, because it is such a prominent component of bond
demand. Since it is a backwards equation, it will be helpful to express it in
integral form (after discounting by e−ρt):

ϑt = Et

[∫ ∞

t

e−ρ(s−t)ϑs

(
(1 − ϑs)2σ̃2

s

(
ϕ2

s

ηs
+

(1 − ϕs)2

1 − ηs

)
+ (1 − ϑs)(iM − μM

s ) + (1 − ϑs)(ϕtψ
A
s + (1 − ϕs)ψB

s )

− λ(1 − ϑs)
(
ϕs(νqA

s − νqM
s )ΔA

s + (1 − ϕs)(νqB
s − νqM

s )ΔB
s

))
ds

]
(2.10)
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where ΔA
s and ΔB

s are given by:

ΔA
s =

1
1 + νNA

s

− 1
1 + νN

s

ΔB
s =

1
1 + νNB

s

− 1
1 + νN

s

Equation (2.10) illustrates the forces that determine ϑt. First, an increase in
the future path of idiosyncratic risk will lead to an increase in ϑt. This is
because higher idiosyncratic risk leads to greater precautionary saving, which
increases the portfolio share in bonds. Second, ϑt is larger when ϕt/ηt + (1 −
ϕt)2/(1 − ηt) increases. This is because the distortion of idiosyncratic risk is
higher and so idiosyncratic risk insurance is more valuable. Third, ϑt is higher
when iM − μM

s is higher. This is because the government is printing less money
(net of interest) and so the distortion that comes from redistributing seignorage
revenue proportional to net-worth rather than money holdings is lower. Finally,
ϑt is higher when the weighted average distortion in recovery shock exposure,
as measured by ϕs(νqA

s − νqM
s )ΔA

s + (1 − ϕs)(νqB
s − νqM

s )ΔB
s , is lower. This

term arises because agents are unable to trade claims on the aggregate shock.
If such claims existed, then agents would choose νNA

s = νNB
s = νN

s and so we
would have ΔA

t = ΔB
t = 0.

2.4 Inflation Dynamics

We can use the bond pricing equation (2.6) to decompose the forces that drive
the price level. If we rearrange the equation, then we get:

Pt =
Mt

ϑtNt
=

Mt

ϑt

(
1+φA(κt,at)

1−ϑt+ρφ

)
Kt

The numerator is exogenous bond supply. The denominator is real bond
demand. So, as we would expect, the price level is increasing in bond supply
and decreasing in bond demand. We can also understand the forces that change
bond demand. An increase in productivity, At, or aggregate capital, Kt, will
increase bond demand because they increase agent net-worth. An increase in
ϑt will increase bond demand both because it increases agent net-worth and
because it increases the agent portfolio allocation in bonds.

We can see this more precisely by using Itô’s lemma to get that the law of
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motion for dPt:

dPt =
(

μM
t − 1 + φρ

1 − ϑt + φρ
μϑ

t − φAt

1 + φAt
μA

t − μK
t

)
dt

+
1

1 + νϑ
t

(
1 − (1 + νϑ

t )ϑt + ρφ

1 − ϑt + ρφ

)(
1 + φAt

1 + φ(1 + νA
t )At

)
dJt(2.11)

2.5 Asset Pricing Interpretation

The stochastic discount factor for agents in sector I is given by:

ξI
t := e−ρt∂nV I(nt, X) = e−ρt 1

ρnt
.

Using Ito’s lemma, we have that:

dξI
t = − μξI

t ξI
t dt − σξI

t ξI
t dZ̃Ii

t − νξI
t ξI

t dJt

where the risk free rate, price of idiosyncratic risk and price of aggregate risk
are given by:

μξI
t =

(
μQ − λ

(
νqI

t − νQ
t

1 + νNI
t

)
(1 − ϑt)

ϕI
t

ηI
t

+ ψI
t

)
=: −rI

t

σξI
t = σ̃t(1 − ϑt)

ϕI
t

ηI
t

νξI
t =

(
νNI

t

1 + νNI
t

)

2.6 Steady State

We can derive closed form expressions for the steady state (after scaling by
aggregate capital and money supply) before and after the pandemic. The drifts
of the state variables become:

0 = μκ
t =

(
Φ(ιA

t ) − Φ(ιB
t )
)

κt(1 − κt) = (1 − κt) log
(

qA
t

qB
t

)
0 = μη

t = (1 − ηt)ηt(μNA
t − μNB

t ) = (1 − ϑt)2σ̃2
t

(
ϕ2

t

ηt
+

(1 − ϕt)2

ηt

)
(1 − ηt)ηt
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which imply that:

qA
t = qB

t

ϕSS = κSS = ηSS =
1
2

The drifts of ϕ and ϑ then become:

0 = μϕ
t = κt(1 − ϕt)pA

t a − (1 − κt)ϕtp
B
t a

0 = ρ − σ̃2
t (1 − ϑt)2 + (1 − ϑt)(μM − iM )

which imply that:

pA,SS
t = pB,SS

t

1 − ϑSS =
√

ρ + (1 − ϑSS)(μM − iM )
σ̃(κSS)

3 Simulations

In this section, we simulate the model under different government policies. We
discuss how to solve the numerical solution algorithm in appendix C.

3.1 Baseline Model

We start by considering the baseline model without any government policy. In
this case, there is no government lending program or transfer scheme. The
parameters used in the numerical simulations are outlined in figure 1. We set
λ = 1, which implies that agents expect the pandemic to last one year. We set
ϑ = 0, which restricts all agent borrowing. We set s = 2.0 so that goods A and
B are imperfect substitutes.

Parameter Value Parameter Value
ρ 0.0155 σ̃κ 1.0
ϑ 0.0 φ 2.0

aH 0.285 s 2.0
aL 0.0 λ 1.0
δ 0.1 μM 0.0
σ̃ 0.125 iM 0.02

Table 1: Parameters for Baseline Model:
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Figure 1 plots the time series for simulations with these parameters. We
start the economy in the steady state, then introduce the pandemic at time
t = 0 and simulate the economy for different possible recovery dates. The solid
blue lines show time paths if there is no recovery. The red dashed lines show
the time paths if the recovery occurs after 1 year (the expected length of the
pandemic). Finally, the yellow dashed lines show the time paths if the recovery
occurs after 4 years.

First, we can observe what happens when the pandemic occurs. Productivity
in sector A decreases to zero. This leads to a decrease in At because A-type
and B-type goods are not perfect substitutes. It also leads to an increase in
ϑt because agents anticipate higher future idiosyncratic volatility. These two
changes have offsetting impacts on bond demand and so, ultimately, the initial
change in the price level is ambiguous. Under our parameters, the overall effect
is an increase in the price level. We can also see that the capital price decrease
by more in sector A than sector B. This implies that sector A has become
relatively poorer and so ηt decreases.

Next, we can observe the dynamics during the pandemic. Sector A sells
money and destroys capital in order to smooth consumption. This leads to a
decrease in ηt and κt. The time path for κt is slightly concave because agents
destroy more capital once they hit their borrowing constraint. However, the
concavity is mild because agents anticipate hitting their borrowing constraint
and so sell more capital earlier. As κt decreases, the idiosyncratic risk, σ̃t

increases. This leads agents to substitute their portfolio towards safe assets,
which increases ϑt and decreases the price level, Pt. The decrease in κt also
leads to a gradual increase in aggregate productivity because capital is slowly
being reallocated to the more productive sector. From the solid blue line, we
can see that if the recovery never occurs, then Pt keeps decreasing and we have
sustained deflation. From the dashed red and yellow lines, we can see that, if the
recovery occurs, then the trends reverse: productivity immediately increases, ϑt

immediately decreases, ηt and κt start to recover, and idiosyncratic risk starts
to fall. Ultimately, this leads to an increase in the price level, Pt. In this sense,
our model generates an “inflation whipsaw”, where deflation forces during the
pandemic are quickly followed by inflation forces once the pandemic ends.

Figure 2 uses equation (2.11) to decompose the contributions to inflation
for the case when no recovery occurs. The red and yellow lines show the
contributions from capital growth (−μK) and productivity growth (−φA/(1 +
φA)μA) respectively. Negative capital growth during the pandemic is
inflationary because it decreases agent net-worth and so bond demand.
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Figure 1: Time paths with no transfers. The solid blue lines show the time paths if
there is no recovery. The red dashed line shows the time paths if the recovery occurs
after 1 year (the expected length of the pandemic). The yellow dashed line shows the
time paths if the recovery occurs after 4 years.
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By contrast, positive productivity growth during the pandemic is slightly
deflationary because it increases agent net-worth and so bond demand. The blue
line shows the contribution from portfolio reallocation (−(1+φρ)/(1−ϑ+φρ)μϑ).
As can be seen, agent reallocation from capital to bonds is the main deflationary
force in the model. The dashed black line shows total inflation, which is
dominated by the deflationary forces during the pandemic.

Figure 2: Decomposition of inflation. The black dashed line shows inflation. The
red line shows the contribution from capital growth: −μK . The purple line shows
the contribution from money supply growth: μM + iM . The yellow line show the
contribution from productivity growth: −φA/(1 + φA)μA. The blue line shows the
contribution from portfolio reallocation: −(1 + φρ)/(1 − ϑ + φρ)μϑ.

3.2 Government Loans

We now consider a model in which the government “eliminates” the borrowing
constraint by offering a lending program. In effect, this means that the
government acts as an intermediary between sectors.

The time paths with and without the government lending program are
shown in figure 3 and the inflation decomposition is shown in figure 4. As
can be seen, once the government lending program is introduced, the time path
for κt becomes significantly more concave. This is because agents are now
more able to “gamble on recovery”. Initially, agents borrow heavily in order to
smooth consumption without destroying capital and so κt decreases very little.
However, if the pandemic lasts longer than expected, then sector A becomes
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highly indebted and aggressively sells capital. Ultimately, this leads to a larger
decline in κ and so lower output.

These dynamics have strong implications for inflation. Introducing the
government loan program is initially inflationary because the lack of capital
destruction prevents idiosyncratic risk from increasing. However, if the
pandemic lasts longer than expected, then idiosyncratic risk ends up higher and
so the deflationary forces are stronger. In this sense, introducing a government
loan program makes the economy more sensitive to the length of the recovery.

3.3 Government Transfers

In the previous simulations, the government did not use taxes and transfers to
reduce inequality during the pandemic. We now consider the implications of
government redistribution. We start by considering an intratemporal tax and
transfer policy satisfying:

τA
t − τB

t = τ0

(
max{η − η, 0}

ηt − η
− max{η + η − 1, 0}

1 − ηt − η

)
This implies that the government starts taxing sector B (A) and subsidizing
sector A (B) once η falls below η (1 − η increases above 1 − η) and prevents η

(1−η) from falling below (increasing above) η (1−η). The additional parameters
used in this section are shown in table 2.

Parameter Value
τ0 0.1
η 0.45
η 0.42

Table 2: Additional Parameters for Tax and Transfer Policy:

The time paths with and without the intratemporal government
redistribution scheme are shown in figure 5 and the inflation. As expected, the
introduction of taxes and transfers moderate the decrease in both ηt and κt.
This dampens the increase in volatility, which dampens the increase in bond
demand and ultimately leads to inflation during the pandemic. In this sense,
the policy makers faces a trade-off. If they don’t address inequality, then there
is deflation during the crisis. However, if they attempt to address inequality,
then they get inflation. Furthermore, we get this result even though both
sectors have the same marginal propensity to consume out of wealth. Instead,
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Figure 3: Time paths with and without government lending. The blue lines show the
time paths for the baseline economy without any government policy. The red lines
show the times paths when the there is a government lending program. The solid lines
show time paths when there is no recovery. The dashed lines show time paths when
there is a recovery after one year.
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Figure 4: Decomposition of inflation. The left plot show the decomposition for the
baseline economy without policy. The right plot shows the decomposition for the
economy with a government lending program. On both plots, the red lines shows
the contribution from capital growth: −μK . The purple lines shows the contribution
from money supply growth: μM + iM . The yellow lines show the contribution from
productivity growth: −φA/(1 + φA)μA. The blue lines shows the contribution from
portfolio reallocation: −(1 + φρ)/(1 − ϑ + φρ)μϑ.
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the redistribution drives inflation because the different sectors have different
willingness to hold capital.

Discussion on Intertermporal Transfers and Ricardian Equivalence: So far,
we have only discussed intratemporal transfers. It worth considering whether
agents are indifferent about the timing of government taxes. If the government
introduces a lending program and raises lump sum taxes, then Ricardian
equivalence holds and there is no difference between intratemporal and
intertermporal redistribution. If the government does not introduce a lending
program, then sector B is indifferent about the timing of taxes but sector A

would prefer that the government raises taxes once their borrowing constraint
is no longer binding. Finally, if the government raises taxes proportionally
to wealth, then the tax and transfer scheme provides partial insurance against
idiosyncratic risk. Ultimately, this would decrease bond demand and so generate
more inflation.

4 Conclusion

We explored the short term and long term inflation and deflation forces arising
from different fiscal responses to the COVID-19 pandemic. We started by
showing that the arrival of the pandemic has an ambiguous impact on bond
demand and so an ambiguous impact on the price level. Next, we showed that,
without any government policy, there is a strong deflationary force during the
pandemic because idiosyncratic risk increases until the recovery arrives. We then
considered the impact of introducing two different government polices: state
loans and wealth redistribution. The first policy relaxes private sector borrowing
constraints. Agents in the shutdown sector respond by borrowing to smooth
consumption rather than destroying capital because they anticipate an increase
capital prices when the recovery arrives. This “gambling on recovery” prevents
deflation early in the pandemic but leads to higher deflation later on if agents lose
their bet and the pandemic lasts longer than expected. Under the second policy,
the government raises taxes to finance intratemporal redistribution. In this case,
the deflationary forces are dampened because inequality and idiosyncratic risk
increase less.

So far, the paper has only considered fiscal policy. The next step is to
consider how optimal monetary policy interacts with fiscal policy.
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Figure 5: Time paths with and without redistribution. The blue lines show the time
paths for the baseline economy without any government policy. The red lines show
the times paths when the government imposes intratemporal transfers. The solid lines
show time paths when there is no recovery. The dashed lines show time paths when
there is a recovery after one year.
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Figure 6: Decomposition of inflation. The left plot show the decomposition for the
baseline economy without policy. The right plot shows the decomposition when the
government imposes intratemporal transfers. On both plots, the red lines shows the
contribution from capital growth: −μK . The purple lines shows the contribution
from money supply growth: μM + iM . The yellow lines show the contribution from
productivity growth: −φA/(1 + φA)μA. The blue lines shows the contribution from
portfolio reallocation: −(1 + φρ)/(1 − ϑ + φρ)μϑ.

25



References

Angeletos, G.-M. (2007). Uninsured idiosyncratic investment risk and aggregate
saving. Review of Economic dynamics, 10(1):1–30.

Balderston, T. (1989). War finance and inflation in britain and germany, 1914-
1918. Economic History Review, pages 222–244.

Bewley, T. (1980). The optimum quantity of money. Models of monetary
economies, pages 169–210.

Bewley, T. (1983). A difficulty with the optimum quantity of money.
Econometrica, 51(5):1485–1504.

Brunnermeier, M. K., Merkel, S. A., and Sannikov, Y. (2020). The fiscal theory
of price level with a bubble. Technical report.

Brunnermeier, M. K. and Sannikov, Y. (2016a). The i theory of money.
Technical report, National Bureau of Economic Research.

Brunnermeier, M. K. and Sannikov, Y. (2016b). On the optimal inflation rate.
American Economic Review: Papers and Proceedings, 106(5):484–89.

Chantrill, C. (2020). Uk public spending. Retrieved from http://www.
ukpublicspending.co.uk, June 14, 2020.

Di Tella, S. (2019). Risk premia and the real effects of money. Technical report,
Stanford University working paper.

Diamond, D. W. and Dybvig, P. H. (1983). Bank runs, deposit insurance, and
liquidity. Journal of political economy, 91(3):401–419.

e Castro, M. F. (2020). Fiscal policy and covid-19: Insights from a quantitative
model.

Eichenbaum, M. S., Rebelo, S., and Trabandt, M. (2020). The macroeconomics
of epidemics. Technical report, National Bureau of Economic Research.

FRED (2020). Economic data. Retrieved from Federal Reserve Bank of St.
Louis; https://fred.stlouisfed.org/series/, June 14, 2020.

Guerrieri, V., Lorenzoni, G., Straub, L., and Werning, I. (2020). Macroeconomic
implications of covid-19: Can negative supply shocks cause demand
shortages? Technical report, National Bureau of Economic Research.

26



Holmström, B. and Tirole, J. (1998). Private and public supply of liquidity.
Journal of political Economy, 106(1):1–40.

Kaplan, G., Moll, B., and Violante, G. (2020). Pandemics according to hank.
Powerpoint presentation, LSE, 31.

Kiyotaki, N. and Moore, J. (2019). Liquidity, business cycles, and monetary
policy. Journal of Political Economy, 127(6):2926–2966.

Lagos, R. and Wright, R. (2005). A unified framework for monetary theory and
policy analysis. Journal of political Economy, 113(3):463–484.

Officer, L. H. (2020). What was the interest rate then? Retrieved from http:
//www.measuringworth.com/, June 14, 2020.

Sargent, T. J. (1982). The ends of four big inflations. In Inflation: Causes and
effects, pages 41–98. University of Chicago Press.

Sargent, T. J. and Wallace, N. (1981). Some unpleasant monetarist arithmetic.
Federal reserve bank of Minneapolis quarterly review, 5(3):1–17.

Sims, C. A. (1994). A simple model for study of the determination of the price
level and the interaction of monetary and fiscal policy. Economic theory,
4(3):381–399.

Szoke, B. (2019). Uncertainty shocks in a monetary economy.

Tobin, J. (1965). Money and economic growth. Econometrica, 66(4):671–684.

Woodford, M. (1995). Price-level determinacy without control of a monetary
aggregate. In Carnegie-Rochester conference series on public policy,
volume 43, pages 1–46.

Young, J. P. (1925). European currency and finance, volume 1. US Government
Printing Office.

27



A Historical Motivation

There are many historical examples where governments have run large budget
deficits during times of emergency. Figure 7 shows periods of war, the budget
surplus as a % of GDP, the nominal interest rate on short term debt and the
inflation rate in the United Kingdom (UK) from 1680 to 2018. Figure 8 shows
the same historical time series for the United States of America (USA) from
1860 to 2018. The figures illustrate a number of historical correlations. First,
fiscal expansions are typically correlated with inflation. The notable exceptions
are the great depression and the recent financial crisis. However, we must
also keep in mind that there are important differences between these historical
examples and the current COVID-19 pandemic. One important difference is
that during a war, there is high government demand for goods and services.
By contrast, during the current pandemic, the government has forcibly shut
down much human activity in order to decrease aggregate demand. Second,
aggressive fiscal contraction is required to restore the price level after a sustained
period of inflation. We see this with the attempts to return to the gold standard
following the first and second world wars. Third, nominal interest rates typically
rise immediately following wars rather than during wars, even when the war is
funded with large budget deficits.

Figure 9 shows the historical time series for Germany and the UK and
Germany during 1913 to 1925. This provides an instructive case study on how
much government policy can impact inflation dynamics. Balderston (1989) gives
a nice account about different in strategy. The UK following strategy employed
more than 100 years earlier, after the Napoleonic wars, and returned to the pre-
WWI gold standard imposing fiscal austerity. This resulted in deflation and slow
growth and was heavily criticized including by JM Keynes. Germany’s Weimar
Republic was politically much less stable. In the fall of 1920 it became clear that
Germany could not go for a fiscal consolidation route as the UK implemented
its plan. It ended up using the money printing press. Many Central European
countries experienced a similar dramatic development as Germany in the 1920.

The historical evidence suggests that the large budget deficits currently being
run by countries around the world could generate subtle short term and long
term inflation dynamics, and that these dynamics could vary significantly with
government policy decisions. In the remainder of the paper, we construct and
analyse a structural model in order to help understand which forces are relevant
for the current situation.
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Figure 7: UK wars, budget surpluses, short term nominal interest rates and inflation.
The budget surplus data comes from Chantrill (2020). The interest rate and inflation
data come from Officer (2020). The short term nominal interest rate is a composite
of interest rates on bonds with duration less than one year.

B Derivations and Proofs for Section 2.3 (For
Online Appendix Only)

In this appendix, we derive equations that characterise the equilibrium. In
section B.1, we provide additional working. In section B.2, we prove prove
propositions 1, 2, and 3 from the section 2.3 in the main text.

B.1 Preliminary Working

Additional Notation: It will be convenient to define additional notation for this
appendix. Define the variables:

Qt :=
1
Pt

qM
t :=

QtMt

Kt
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Figure 8: US Wars, Budget Surpluses, Short Term Nominal Interest Rates and
Inflation. The budget surplus data and nominal interest rate data comes from FRED
(2020). The nominal interest rate is a composite of yields on non-financial bonds
with duration less than three months. The inflation and GDP data come from Officer
(2020).

The variable Qt is the price of a bond in terms of units of the final good. The
variable qM

t is the price of a bond scaled by Mt/Kt. It is convenient to define
this scaled price because it will turn out that qK

t nor qM
t are both functions of ηt

and κt but not Kt or Mt. That is, the price of bonds is stationary after scaling
by Mt/Kt. Using this notation, we can simplify the share of wealth that agents
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Figure 9: UK and Germany post World War I. The UK budget surplus data comes
from Chantrill (2020) and the UK inflation data come from Officer (2020). The
German data comes from Young (1925).

hold in money, ϑt, as:

ϑt =
qM

t (MA
t + MB

t )
Nt

=
qM

t (MA
t + MB

t )
qA

t KA
t + QtMA

t + qB
t KB

t + QtMB
t

=
qM

t Mt

qK
t Kt + QtMt

=
QM

t Kt

qK
t Kt + qM

t Kt

=
qM

t

qK
t + qM

t

(B.1)

Denote the weighted average variables by:

qK
t := κtq

A
t + (1 − κ)qB

t

ιt := κtι
A
t + (1 − κt)ιB

t

Φt := κtΦ(ιA
t ) + (1 − κt)Φ(ιB

t )
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Using this notation and the first order conditions, we have that:

ιt = κt
1
φ

(qA
t − 1) + (1 − κt)

1
φ

(qB
t − 1) =

1
φ

(qt − 1) (B.2)

Φt = κtΦ(ιA
t ) + (1 − κt)Φ(ιB

t ) =
1
φ

log
(
(qA

t )κt(qB
t )1−κt

)
and that the share of capital wealth in sector A, ϕt, is given by:

ϕt =
κtq

A
t

qK
t

Finally, where convenient, we will also use the additional notation that
ηI

t := N I
t /Nt and κI

t := KI
t /Kt.

Sector Aggregation: Since agent consumption rules are linear in wealth and
agent investment and portfolio allocations are independent of wealth, we can
solve for prices using the sector level aggregate variables rather than the full
distribution.3 After imposing the first order conditions, for sector I, the sector
aggregate variables become:

M I
t =

∫
mIi

t di

KI
t =

∫
kIi

t di = κI
t Kt

N I
t =

∫
nIi

t di = qkIKI
t + qM M I

t

Y I
t =

∫
yIi

t di = aI
t KI

t = aI
t κI

t Kt

II
t =

∫
ιIi
t kIi

t di = ιI
t KI

t = ιI
t κI

t Kt

CI
t =

∫
cIi

t di = ρN I
t = ρηI

t Nt

Capital stock in sector I evolves according to:

dKI
t =

∫
dkIi

t di = (Φ(ιI
t ) − δ)KI

t dt =: μKI
t KI

t dt

3We defer the details of constructing a representative agent in each sector to the appendix.
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Net worth in sector I evolves according to:

dN I
t =

∫ ([
μrMI

t + (μrkIi
t − μrMI

t )θkIi
t − cIi

t

nIi
t

]
nIi

t dt

+ σ̃tθ
kIi
t nIi

t dZ̃i
t +
[
νqM

t + (νqkI
t − νqM

t )θkIi
t

]
nIi

t dJt

)
di

= (μrMI
t + (μrkIi

t − μrMI
t )θkI

t − ρ)N I
t dt

+ (νqM
t + (νqkI

t − νqM
t )θkI

t )N I
t dJt

=: μNI
t N I

t + νNI
t N I

t dJt

Aggregate Production: Using the sector aggregation results, the aggregate
production function then becomes:

Yt =
(

αA(Y A
t )

s−1
s + αB(Y B

t )
s−1

s

) s
s−1

=
(

αA(atκt)
s−1

s + αB(a(1 − κt))
s−1

s

) s
s−1

Kt

= A(κt, at)Kt

where:

A(κt, at) =
(

αA(atκt)
ε−1

ε + αB(a(1 − κt))
ε−1

ε

) ε
ε−1

Market Clearing Conditions: We now integrate the FOCs into the market
clearing conditions. The intermediate goods market clearing condition for sector
I is given by: ∫

yIi
t di = Y I

t

⇒ aI
t KI

t =
(

αI

pI
t

)ε

Yt

⇒ pI
t = νI

t

(A(κt, at)
aI

t κI
t

) 1
ε
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So, more explicitly, we have that:

pA
t = αA

(A(κt, at)
atκt

) 1
ε

pB
t = αB

(A(κt, at)
a(1 − κt)

) 1
ε

The final goods market clearing condition becomes:

Yt =
∫

ci
tdi +

∫
ii
tdi

⇒ Yt = ρNt + ιA
t KA

t + ιB
t KB

t

⇒ A(κt, at)Kt = ρ(qA
t KA

t + qB
t KB

t + QtMt) + ιA
t KA

t + ιB
t KB

t

⇒ A(κt, at) = ρ(qA
t κt + qB

t (1 − κt) + qM
t ) + ιA

t κt + ιB
t (1 − κt)

⇒ A(κt, at) = ρ(qK
t + qM

t ) + ιt (B.3)

The capital market clearing condition for sector I becomes:∫
kIi

t di = KI
t

⇒ θkI
t

N I
t

qI
t

= KI
t

⇒ θkI
t = (1 − ϑt)

qI
t κI

t

qK
t ηI

t

So, more explicitly, we have that:

θkA
t = (1 − ϑt)

qA
t κt

qtηt
(B.4)

θkB
t = (1 − ϑt)

qB
t (1 − κt)
qt(1 − ηt)

(B.5)

Substituting equations (B.4) and (B.5) into equation (2.4) gives that:

μrkA
t − μrMA

t = σ̃(κt)2(1 − ϑt)
qA

t κt

qtηt
− λ(νqA − νQ)

1 + νNA
+ ψA

μrkB
t − μrMA

t = σ̃(κt)2(1 − ϑt)
qB

t (1 − κt)
qt(1 − ηt)

− λ(νqB − νQ)
1 + νNB

+ ψB
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Substituting in the drifts, we get that:

pA
t aA

t − ιA
t

qA
t

+ Φ(ιA
t ) − δ + μqA

t − iM − μQ
t

= σ̃(κt)2(1 − ϑt)
qA

t κt

qtηt
− λ(νqA − νQ)

1 + νNA
+ ψA

pB
t aB

t − ιB
t

qB
t

+ Φ(ιB
t ) − δ + μqB

t − iM − μQ
t

= σ̃(κt)2(1 − ϑt)
qB

t (1 − κt)
qt(1 − ηt)

− λ(νqB − νQ)
1 + νNB

+ ψB

B.2 Proofs of Propositions 1, 2, and 3

Proof of Proposition 1: (Closed form expressions for the asset prices in terms
of ϑt and ϕt). Combining equation (B.2) (the aggregated first order condition
for ι), equation (B.3) (the good market clearing condition) and equation (B.1)
(the definition of ϑ), we have that:

ιt =
(1 − ϑt) A (κt, at) − ρ

1 − ϑt + ρφ

qK
t =

(1 − ϑt) (1 + φA (κt, at))
1 − ϑt + ρφ

qM
t =

ϑt(1 + φA (κt, at))
1 − ϑt + ρφ

We can immediately see that the price of money can be expressed as:

1
Pt

= Qt =
qM

t Kt

Mt
=
(

ϑt(1 + φA (κt, at))
1 − ϑt + ρφ

)
Kt

Mt

Finally, the capital prices can be expressed as:

qA
t =

ϕtq
K
t

κt

qB
t =

(1 − ϕt)qK
t

1 − κt

The proposition follows. �

Proof of proposition 2: (Law of motion for the state variables). First, observe

35



that the law of motion for aggregate capital stock, Kt evolves according to:

dKt = (Φ(ιA
t ) − δ)KA

t dt + (Φ(ιB
t ) − δ)KB

t dt

=
(
κtΦ(ιA

t ) + (1 − κt)Φ(ιB
t ) − δ

)
Ktdt

=: μK
t Ktdt

Second, observe that sector A’s capital share, κt, evolves according to:

dκt = d(KA
t /Kt)

=
(

dKA
t

KA
t

− dKB
t

KB
t

)
KA

t

Kt

KB
t

Kt
dt

=

[ (
(Φ(ιA

t ) − δ)dt
)− ((Φ(ιB

t ) − δ)dt
) ]KA

t

Kt

KB
t

Kt

=
(
Φ(ιA

t ) − Φ(ιB
t )
)

κt(1 − κt)dt

=
1
φ

log
(

ϕt(1 − κt)
(1 − ϕt)κt

)
κt(1 − κt)dt

=: μκ
t κtdt

Finally, sector A’s wealth share, ηt, evolves according to:

dηt = d

(
NA

t

Nt

)
=

NA
t

Nt

(
(μNA

t − μN
t )dt +

(
1 + νNA

t

1 + νN
t

− 1
)

dJt

)
= (1 − ηt)ηt

(
(μNA

t − μNB
t )dt +

(
νNA

t − νNB
t

1 + ηtνNA
t + (1 − ηt)νNB

t

)
dJt

)
=: μη

t ηtdt + νη
t ηtdJt
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Substituting the FOC and market clearing conditions into the drift gives that:

μη
t ηt = (1 − ηt)ηt(μNA

t − μNB
t )

= (1 − ηt)ηt

(
μrMA

t + (μrkA
t − μrMA

t )θkA
t − ρ

− (μrMB
t + (μrkB

t − μrMB
t )θkB

t − ρ)
)

= (1 − ηt)ηt(τA
t − τB

t + (μrkA
t − μrMA

t )θkA
t − (μrkB

t − μrMB
t )θkB

t )

= (1 − ηt)ηt

(
τA

t − τB
t + σ̃2

t (1 − ϑt)2
(

ϕ2
t

η2
t

− (1 − ϕt)2

(1 − ηt)2

)

− λ(1 − θt)

((
νqA

t − νQ
t

1 + νNA
t

)
ϕt

η
−
(

νqB
t − νQ

t

1 + νNB
t

)
1 − ϕt

1 − η

)

+ ψA − ψB

)

and gives that the jump is:

νη
t ηt =

(1 − ϑt)
(

(νqA
t − νQ

t ) ϕt

ηt
+ (νqB

t − νQ
t ) 1−ϕt

1−ηt

)
1 + νQ

t + (1 − ϑt)((νqA
t − νQ

t )ϕt + (νqB
t − νQ

t )(1 − ϕt))

The result follows. �

We have expressed the asset prices in terms of ϑt and ϕt. However, we still
need to solve for ϑt and ϕt. This, requires the derivation of expressions for μϑ

t ,
μϕ

t , νϑ
t and νϕ

t . We do this in the next proposition.

Proof of Proposition 3: (Laws of Motion for ϕt and ϑt). First, we derive the
law of motion for ϕt. We have that:

dϕt = d

(
κtq

A
t

qK
t

)
= (μκ

t + μqA
t − μqK

t )ϕtdt +

(
νqA

t − νqK
t

1 + νqK
t

)
ϕtdJt

=: μϕ
t ϕtdt + νϕ

t ϕtdJt
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Substituting the FOC and market clearing conditions into the drift gives that:

μϕ
t ϕt = (μκ

t + μqA
t − μqK

t )ϕt

=
(

μqA
t + μκ

t −
(

μqA
t

qA
t

qt
+ (1 − κt)μqB

t

qB
t

qt
+ μκ

t κt

(
qA

t

qt
− qB

t

qt

)))
ϕt

=
(

μqA
t + μκ

t −
(

ϕtμ
qA
t + (1 − ϕt)μqB

t + μκ
t κt

(
ϕt

κt
− 1 − ϕt

1 − κt

)))
ϕt

=
(

μqA
t − μqB

t +
μκ

t

1 − κt

)
(1 − ϕt)ϕt

=

(
σ̃2

t (1 − ϕt)
(

ϕt

ηt
− 1 − ϕt

1 − ηt

)
− λ

(
νqA

t − νqM
t

1 + νNA
t

− νqB
t − νqM

t

1 + νNB
t

)

− 1
qK

t

(
pA

t aA
t κt

ϕt
− pB

t aB
t (1 − κt)
1 − ϕt

+
1
φ

κt − ϕt

ϕt(1 − ϕt)

)
+ ψA − ψB

)
(1 − ϕt)ϕt

and the expression for the jump is:

νϕ
t ϕt =

(
νqA

t − νqK
t

1 + νqK
t

)
ϕt

Now, consider the evolution of ϑt. We have that:

dϑt = d

(
qM

t

qM
t + qK

t

)

=
qM

t qK
t

(qM
t + qK

t )2

⎛⎝(μqM
t − μqK

t )dt +

⎛⎝ νqM
t − νqK

t

qM
t

qM
t +qK

t
(1 + νqM

t ) + qK
t

qM
t +qK

t
(1 + νqK

t )

⎞⎠ dJt

⎞⎠
= (1 − ϑt)ϑt

(
(μqM

t − μqK
t )dt +

(
νqM

t − νqK
t

ϑt(1 + νqM
t ) + (1 − ϑt)(1 + νqK

t )

)
dJt

)
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Substituting the FOCs and market clearing conditions into the drift gives:

μϑ
t ϑt = (1 − ϑt)ϑt(μqM

t − μqK
t )

= ϑt

(
ρ − (1 − ϑt)2σ̃2

t

(
ϕ2

t

η
+

(1 − ϕt)2

1 − ηt

))

+ λ(1 − ϑt)

(
(νqA

t − νqM
t )ϕt

1 + νNA
t

+
(νqB

t − νqM
t )(1 − ϕt)

1 + νNB
t

)

+ (1 − ϑt)(μM
t − iM ) − (1 − ϑt)(ψA + ψB)

)

and

νϑ
t ϑt = −(1 − ϑt)ϑt

(
νqK

t − νqM
t

ϑt(1 + νqM
t ) + (1 − ϑt)(1 + νqK

t )

)
�.

In the main text, the differential equation for ϑt is written in integral form.
This is done in the following way. If we multiply by e−ρt, then we have that

d(e−ρtϑt) = e−ρt(−ρ + μϑ
t )ϑtdt + e−ρtνϑ

t ϑtdJt

⇒ e−ρT ϑT − e−ρtϑt =
∫ T

t

e−ρs(−ρ + μϑ
s )ϑsds +

∫ T

t

e−ρsνϑ
s ϑsdJs

After taking expectations, rearranging and taking the limit as T → ∞, we get
that:

ϑt = Et

[∫ ∞

t

e−ρ(s−t)(ρ − μϑ
s − λνϑ

s )ϑsds

]
To help understand the equation, we can expand the expressions for the drift
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and jump exposure. This gives that:

Et

[∫ ∞

t

e−ρ(s−t)

(
(1 − ϑs)2σ̃2

s

(
ϕ2

s

η
+

(1 − ϕs)2

1 − ηs

))
− (1 − ϑs)(μM

s − iM ) + (1 − ϑs)(ϕsψA
s + (1 − ϕs)ψB

s )

− λ(1 − ϑs)
(

(νqA
s − νqM

s )ϕs

1 + νNA
s

+
(νqB

s − νqM
s )(1 − ϕs)

1 + νNB
s

)
+ λ(1 − ϑs)

(
νqK

s − νqM
s

ϑs(1 + νqM
s ) + (1 − ϑs)(1 + νqK

s )

))
ϑsds

]

= Et

[∫ ∞

t

e−ρ(s−t)

(
(1 − ϑs)2σ̃2

s

(
ϕ2

s

η
+

(1 − ϕs)2

1 − ηs

))
− (1 − ϑs)(μM

s − iM ) + (1 − ϑs)(ϕsψA
s + (1 − ϕs)ψB

s )

− λ(1 − ϑs)

(
(νqA

s − νqM
s )ϕs

1 + νqM
s + (νqA

s − νqM
s )ϑkA

s

)

− λ(1 − ϑs)

(
(νqB

s − νqM
s )(1 − ϕs)

1 + νqM
s + (νqB

s − νqM
s )ϑkB

s

)

+ λ(1 − ϑs)

(
ϕsνqA

s + (1 − ϕs)νqB
s − νqM

s

1 + ϑsνqM
s + (1 − ϑs)(ϕsνqA

s + (1 − ϕs)νqB
s )

))
ϑsds

]

= Et

[∫ ∞

t

e−ρ(s−t)

(
(1 − ϑs)2σ̃2

s

(
ϕ2

s

η
+

(1 − ϕs)2

1 − ηs

)
− (1 − ϑs)(μM

s − iM ) + (1 − ϑs)(ϕsψA
s + (1 − ϕs)ψB

s )

+ λ(1 − ϑs)

(
(νqA

s − νqM
s )ϕs

1 + ϑsνqm
s + (1 − ϑs)νqK

s

− (νqA
s − νqM

s )ϕs

1 + ϑmA
s νqm

s + (1 − ϑmA
s )νqA

s

)

+ λ(1 − ϑs)

(
(νqB

s − νqM
s )(1 − ϕs)

1 + ϑsνqm
s + (1 − ϑs)νqK

s

− (νqB
s − νqM

s )(1 − ϕs)
1 + ϑmB

s νqm
s + (1 − ϑmB

s )νqB
s

))
ds

]

where we have used that νqK
t = ϕtν

qA
t + (1 − ϕt)νqB

t and θmI
t := 1 − θkI

t =
1− (1−ϑt)ϕtq

K
t /κt. Substituting in the expressions for the jumps in net-worth,

νNA
t , νNB

t , and νN
t , gives the required expression.
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C Solution Algorithm (For Online Appendix
Only)

C.1 Post Pandemic Economy

We guess (and verify numerically) that outside of the pandemic the functions
ϑt and ϕt take the form:

ϑt = ϑ(ηt, κt)

ϕt = ϕ(ηt, κt)

Using Ito’s lemma we have that:

dϑ(ηt, κt) =
[
μη

t ηt∂ηϑ(ηt, κt) + μκ
t κt∂κϑ(ηt, κt)

]
dt

dϕ(ηt, κt) =
[
μη

t ηt∂ηϕ(ηt, κt) + μκ
t κt∂κϕ(ηt, κt)

]
dt

So, equating drifts gives:

μ̃ϑ(ηt, κt) = μ̃η(ηt, κt)∂ηϑ(ηt, κt) + μ̃κ(ηt, κt)∂κϑ(ηt, κt)

μ̃ϕ(ηt, κt, a) = μ̃η(ηt, κt)∂ηϕ(ηt, κt) + μ̃κ(ηt, κt)∂κϕ(ηt, κt)

41



where

μ̃ϑ(ηt, κt) =

(
ρ − (1 − ϑ(ηt, κt))2σ̃(κt)2

(
ϕ(ηt, κt)2

ηt
+

(1 − ϕ(ηt, κt))2

1 − ηt

)
− (1 − ϑ(ηt, κt))(ϕ(ηt, κt)ψA

t + (1 − ϕ(ηt, κt))ψB
t ))

+ (1 − ϑ(ηt, κt))(μM
t − iM )

)
ϑ(ηt, κt)

μ̃ϕ(ηt, κt, at) =

(
σ̃2(κt)(1 − ϕ0(ηt, κt))

(
ϕ(ηt, κt)

ηt
− 1 − ϕ(ηt, κt)

1 − ηt

)
− 1

qK
t

(
pA

t atκt

ϕ(ηt, κt)
− pB

t a(1 − κt)
1 − ϕ(ηt, κt)

+
1
φ

κt − ϕ(ηt, κt)
ϕ(ηt, κt)(1 − ϕ(ηt, κt))

)
+ ψA

t − ψB
t

)
(1 − ϕ0(ηt, κt))ϕ0(ηt, κt)

μ̃η(ηt, κt) =

(
σ̃2(κt)(1 − ϑ(ηt, κt))2

(
ϕ(ηt, κt)2

η2
t

− (1 − ϕ(ηt, κt))2

(1 − ηt)2

)

+ τA(ηt) − τB(ηt) + ψA
t − ψB

t

)
(1 − ηt)ηt

μ̃κ(ηt, κt) =
1
φ

log
(

ϑ(ηt, κt)(1 − κt)
(1 − ϑ(ηt, κt))κt

)
(1 − κt)κt

We solve the differential equations using a finite difference method. We
discrete the model in the η dimension with the grid points {η1, . . . , ηNη } and
in the κ dimension with the grid points {κ1, . . . , ηNκ}. The finite difference
approximations to the differential equations are denoted by:

μ̃ϑ
jk = μ̃η

jk∂ηϑjk + μ̃κ
jk∂κϑjk

μ̃ϕ
jk = μ̃η

jk∂ηϕjk + μ̃κ
jk∂κϕjk

The equation is non-linear so we use a semi-implicit Euler method (with
an upwind scheme) to iterate the equations backward until we get steady state
convergence. This is done with the following steps:

1. Guess initial discretized functions {ϑ0
j,k}j≤Nη,k≤Nκ and {ϕ0

j,k}j≤Nη,k≤Nκ .

2. At iteration n, given current guesses for the discretized functions,
{ϑn

j,k}j≤Nη,k≤Nκ and {ϕn
j,k}j≤Nη,k≤Nκ

, solve the following equations for
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{ϑn+1
j,k }j≤Nη,k≤Nκ and {ϕn+1

j,k }j≤Nη,k≤Nκ :

ϑn+1
jk − ϑn

jk

Δt
= [(μ̃η

jk)n]+∂ηF ϑn+1
jk + [(μ̃η

jk)n]−∂ηBϑn+1
jk

+ [(μ̃κ
jk)n]+∂ηF ϑn+1

jk + [(μ̃κ
jk)n]−∂ηBϑn+1

jk − (μ̃ϑ
jk)n

ϕn+1
jk − ϕn

jk

Δt
= [(μ̃η

jk)n]+∂ηF ϕn+1
jk + [(μ̃η

jk)n]−∂ηBϕn+1
jk

+ [(μ̃κ
jk)n]+∂ηF ϕn+1

jk + [(μ̃κ
jk)n]−∂ηBϕn+1

jk − (μ̃ϕ
jk)n

where ∂F and ∂B denote the forward and backward finite difference
approximations.

3. Check for convergence. If not, return to step 2.

C.2 Pandemic Economy

We guess (and verify numerically) that during the pandemic the functions ϑt

and ϕt take the form:

ϑt = ϑ̂(ηt, κt, at)

ϕt = ϕ̂(ηt, κt, at)

where we have used the hat symbol to distinguish the pandemic functions from
the post pandemic functions. Using Ito’s lemma, we have that:

dϑ̂(ηt, κt) =
(
μη

t ηt∂ηϑ̂(ηt, κt) + μκ
t κt∂κϑ̂(ηt, κt)

)
dt

+
(
ϑ((1 + νη

t )ηt, κt, a) − ϑ̂(ηt, κt)
)
dJt

dϕ̂(ηt, κt) =
[
μη

t ∂ηϕ̂(ηt, κt) + μκ
t ∂κϕ̂(ηt, κt)

]
dt

+ (ϕ((1 + νη
t )ηt, κt, a) − ϕ̂(ηt, κt))dJt

where, because the pandemic is unanticipated, ϑ(ηt, κt) and ϕ0(ηt, κt) can be
solved independently of ϑ̂(ηt, κt) and ϕ̂(ηt, κt) using the algorithm from the
previous section. Equating the drifts and jump exposures we have that:

μ̃ϑ̂(ηt, κt) = μ̃η(ηt, κt)∂ηϑ̂(ηt, κt) + μ̃κ(ηt, κt)∂κϑ̂(ηt, κt)

νϑ̂(ηt, κt)ϑ̂(ηt, κt) = ϑ((1 + νη(κt, ηt))ηt, κt) − ϑ̂(ηt, κt)

μ̃ϕ̂(ηt, κt, a) = μ̃η(ηt, κt)∂ηϕ̂(ηt, κt) + μ̃κ(ηt, κt)∂κϕ̂(ηt, κt)

νϕ̂(ηt, κt)ϕ̂(ηt, κt) = ϕ((1 + νη(κt, ηt))ηt, κt) − ϕ̂(ηt, κt)
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where now we have that the drifts include the recovery jump:

μ̃ϑ̂(ηt, κt) =

(
ρ − (1 − ϑ̂(ηt, κt))2σ̃2(κt)

(
ϕ̂(ηt, κt)2

ηt
+

(1 − ϕ̂(ηt, κt))2

1 − ηt

)

+ λ(1 − ϑ̂(ηt, κt))

(
(νqA

t − νqM
t )ϕ̂(ηt, κt)

1 + νNA
t

+
(νqB

t − νqM
t )(1 − ϕ̂(ηt, κt))
1 + νNB

t

)

+ (1 − ϑ̂(ηt, κt))(μM
t − (ψA − ψB))

)
ϑ̂(ηt, κt)

μ̃ϕ̂(ηt, κt, at) =

(
σ̃2(κt)(1 − ϕ̂(ηt, κt))

(
ϕ̂(ηt, κt)

ηt
− 1 − ϕ̂(ηt, κt)

1 − ηt

)

− λ

(
νqA

t − νqM
t

1 + νNA
t

− νqB
t − νqM

t

1 + νNB
t

)

− 1
qK

t

(
pA

t atκt

ϕ̂(ηt, κt)
− pB

t a(1 − κt)
1 − ϕ̂(ηt, κt)

+
1
φ

κt − ϕ̂(ηt, κt)
ϕ̂(ηt, κt)(1 − ϕ̂(ηt, κt))

)
+ ψA − ψB

)
(1 − ϕ̂(ηt, κt))ϕ̂(ηt, κt)

μ̃η(ηt, κt) =

(
σ̃2(κt)(1 − ϑ̂(ηt, κt))2

(
ϕ̂(ηt, κt)2

η2
t

− (1 − ϕ̂(ηt, κt))2

(1 − ηt)2

)

− λ(1 − θ̂(ηt, κt))

((
νqA

t − νqM
t

1 + νNA
t

)
ϕ̂(ηt, κt)

ηt

−
(

νqB
t − νqM

t

1 + νNB
t

)
1 − ϕ̂(ηt, κt)

1 − ηt

)

+ τA(ηt) − τB(ηt) + ψA
t − ψB

t

)
(1 − ηt)ηt

μ̃κ(ηt, κt) =
1
φ

log
(

ϕ̂(ηt, κt)(1 − κt)
(1 − ϕ̂(ηt, κt))κt

)
(1 − κt)κt

Once again, we solve the differential equations using a finite difference
method with a semi-implicit Euler method. We use the same discretization
scheme. This is done with the following steps:

1. Guess initial discretized functions {ϑ̂0
j,k}j≤Nη,k≤Nκ

and {ϕ̂0
j,k}j≤Nη,k≤Nκ

.

2. At iteration n, given current guesses for the discretized functions,
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{ϑ̂n
j,k}j≤Nη,k≤Nκ and {ϕ̂n

j,k}j≤Nη,k≤Nκ , solve the following equations for
{ϑ̂n+1

j,k }j≤Nη,k≤Nκ and {ϕ̂n+1
j,k }j≤Nη,k≤Nκ :

ϑ̂n+1
jk − ϑ̂n

jk

Δt
= [(μ̃η

jk)n]+∂ηF ϑ̂n+1
jk + [(μ̃η

jk)n]−∂ηBϑ̂n+1
jk

+ [(μ̃κ
jk)n]+∂ηF ϑ̂n+1

jk + [(μ̃κ
jk)n]−∂ηBϑ̂n+1

jk − (μ̃ϑ̂
jk)n

ϕ̂n+1
jk − ϕ̂n

jk

Δt
= [(μ̃η

jk)n]+∂ηF ϕ̂n+1
jk + [(μ̃η

jk)n]−∂ηBϕ̂n+1
jk

+ [(μ̃κ
jk)n]+∂ηF ϕ̂n+1

jk + [(μ̃κ
jk)n]−∂ηBϕ̂n+1

jk − (μ̃ϕ̂
jk)n

νϑ̂
jk =

ϑ((1 + νη
jk)ηj , κk) − ϑ̂jk

ϑ̂jk

νϕ̂
jk =

ϕ((1 + νη
jk)ηj , κk) − ϕ̂jk

ϕ̂jk

where ∂F and ∂B denote the forward and backward finite difference
approximations.

3. Check for convergence. If not, return to step 2.
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