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Abstract

Using hourly electricity consumption data for 22,000 households in Norway, we
conduct a randomized controlled trial to evaluate the impact of nine critical peak
pricing (CPP) events on the grid transmission charge during the winter 2019-2020,
with day-ahead notification, on residential electricity consumption. In contrast to
most studies, our experimental design relies on an enrollment by default to mitigate
sample selection bias. Results show a 13% reduction in electricity consumption during
CPP events. We observe little load shifting to non-CPP hours, leading to overall net
reductions in electricity consumption, consistent with adjustments in heating-related
demand on cold days. Interestingly, electricity consumption reduction is not tied to
households having access to real-time consumption, nor is it limited to high-electricity
users. We observe, however, that households with electric cars reduce consumption
slightly more than other households, with some load shifting to shoulder hours and to
the next days.
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1 Introduction

Economists have long advocated for time-varying electricity rates to improve the management

of electricity supply generation and retail demand. Large investments in smart metering

technology in many parts of the world have recently enabled charging customers for the

marginal cost of electricity generation. Different types of time-varying price regimes exist,

ranging from simple time-of-use (TOU) rates, which include a few fixed rates (typically peak

and off-peak) that vary across periods of the day and/or days of the week, critical peak

pricing (CPP) that introduces an infrequent but often dramatic, fixed, and short-lived price

rate increase, variable peak pricing (VPP) that allows for variations in the critical price rate

increase, to real-time pricing (RTP) that varies according to contemporaneous generation

and/or transmission costs.

Yet policy makers and retail electric utilities have largely remained shy of employing

time-varying pricing, partly due to concerns about consumers not responding to changes in

rates and fear of complaints. In spite of a growing number of recent experimental studies

and pilot projects focusing on estimating consumer demand elasticity in specific contexts,

uncertainty remains regarding the effect of time-varying rates among the general population.

Furthermore, differences in experimental designs such as pricing structure and levels, types

of notifications, access to real-time consumption, small sample sizes, and, not least, sample

selection bias, make existing results difficult to compare and generalize [Harding and Sexton,

2017].

This paper examines the impact of critical peak pricing (CPP) on residential electricity

consumption in Norway, where (1) CPP is implemented with respect to the grid transmission

charge, (2) consumers are enrolled by default in a randomized controlled trial (RCT) with

an opt-out option, and (3) consumers typically do not have access to real-time electricity

consumption. Specifically, using hourly electricity consumption data for about 22,000 house-

holds in Norway, we conduct an RCT with CPP on the grid transmission charge during the

late afternoons and early evenings on nine selected cold days between December 2019 and

April 2020. CPP on the grid transmission charge during a few days in the winter is a relevant

policy intervention in Norway. Indeed, the retail price for electricity supply generation al-
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ready reflects the real-time spot price. However, the grid transmission charge is set to either

a winter rate or summer rate, thereby ignoring time-varying congestion on the grid, which

may approach transmission capacity constraints on a handful of days every winter. In our

experiment, CPP events are announced by text messages on the day prior to each event.

Results show a 13% reduction in electricity consumption during CPP events in the treat-

ment group relative to the control group. Interestingly, electricity consumption reduction

is not limited to a small share of households as documented in Reiss and White [2005]. It

also does not rely on households having access to real-time consumption information in con-

trast with Jessoe and Rapson [2014], and is not mostly coming from high-users as shown

in Ito et al. [2018] and Burkhardt et al. [2019]. We observe, however, that households with

electric cars reduce electricity consumption slightly more than other households, with some

load shifting to shoulder hours, consistent with findings in Burkhardt et al. [2019]. Yet,

in general, non-electric car households appear to respond to CPP events on cold days with

net reductions in electricity consumption, with even some small reductions persisting out-

side CPP hours and on the next days, differing from the load shifting behavior observed in

Bollinger and Hartmann [2015].

These findings are important given the existing challenges associated with balancing a

highly variable demand, both throughout the day and across days, with electricity generation

supply and transmission congestion along the grid. Generation supply is increasingly volatile

due to a growing penetration of renewable energy sources, which has been identified as

the culprit for rolling blackouts in California in summer 2020 [Meyer and Waters, 2020].

Furthermore, global electricity demand is predicted to keep rising as a result of rising incomes

and increased levels of electrification in developing countries. Electrification has further been

promoted globally by policy makers as one of the solutions to mitigating climate change by

moving away from fossil fuels, while recent research further suggests that climate change

will exacerbate peak demand [Auffhammer et al., 2020]. As a result, current challenges

with balancing electricity supply generation and grid transmission with local demand will

only become more acute. Policy makers and regulators thus face the challenge of managing

future peak demand or addressing future grid capacity constraints with large, likely socially

inefficient, investments in expanding the generation and grid capacity.
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This paper contributes in three ways to the rapidly growing experimental literature on

the effect of time-varying pricing with advanced notice on residential electricity consumption.

First, it is the first study to examine a time-varying price for electricity transmission along

the grid. Indeed, despite time-varying prices having received much attention as a means to

reduce peak load demand when electricity generator capacity binds, they have not been for-

mally examined in the context of peak-load congestion in transmission networks [Wolak, 2011,

Harding and Sexton, 2017]. Because of local grid capacity constraints, the marginal costs of

electricity delivery to households do not only vary over time but also across regional trans-

mission networks. Therefore, reducing peak demand in a local transmission network close to

capacity is considerably more valuable that reducing peak demand in a different transmission

network with plenty of spare transmission capacity, all else equal. Grid transmission may

be particularly well-suited to CPP as capacity constraints become locally binding on certain

days of the year. In particular, grid CPP can offer a long-term, cost-effective solution if

the local transmission network serves consumers with a relatively elastic peak demand, e.g.,

thanks to the the presence of an elastic heating or cooling demand, a high penetration of

electric cars with flexible charging needs, or automation technology.

Second, our default enrollment design is critical for minimizing sample selection bias and

estimating an accurate response of the effect of time-varying pricing. Most experimental

studies rely upon the voluntary recruitment of customers who likely display greater interest

in and attention to prices than non-recruited customers. Similarly, the demand response

among recruited customers is likely to differ systematically from the demand response of the

underlying population of interest, thus limiting the external validity of the results [Joskow

and Wolfram, 2012, Harding and Sexton, 2017]. To the best of our knowledge, Fowlie et al.

[2017] is the only other study implementing a default enrollment design with opt-out. Their

opt-in design leads to a take-up rate of 20%, contrasting with over 90% of the customers

remaining in the treatment in their enrollment by default design. The passive customers,

i.e., the 70% of customers who would not have opted in but did not opt out when enrolled by

default, reduce peak consumption during peak events by only half relative to the customers

who actively opted in. Importantly however, the higher participation rate in the enrollment

by default design contributes to an aggregate reduction in peak demand that exceeds that
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achieved by the opt-in group.1 Furthermore, in the context of an opt-in study design, An-

dersen et al. [2019] find that demand response estimates are revised downwards by up to four

folds when using a censored selection model that accounts for full population participation

based on observables. Our default enrollment design enables us to closely approximate the

general population’s response in Norway.2

Third, in contrast with many studies (e.g., Ito et al. [2018], Gillan [2017]), our RCT

design does not rely on consumer access to real-time electricity consumption, e.g., via an in-

home-display (IHD). We can thus test whether CPP might be readily implementable, albeit

conditional on the availability of smart-metering technology. IHD technology enables cus-

tomers to learn precisely how much electricity each appliance consumes, however, it requires

the home installation of a costly piece of technology. The few customers in our sample with

IHD prior to the start of the experiment (5%) are randomly assigned among the treatment

and control groups. Consumers with IHD reduce peak demand by a further 36% relative

to other consumers. This finding is considerably smaller than the 150% additional effect

documented in Jessoe and Rapson [2014] and 45% average (up to 76%) effect in Bollinger

and Hartmann [2015]. Overall, our results suggest that aggregate reduction in peak demand

does not hinge on the availability of IHD.

The paper is organised as follows. The next section provides background on the Norwe-

gian electricity market. Section 3 presents the study design and data. Section 4 outlays the

empirical analysis. Section 5 describes and discusses the results. Last, Section 6 concludes.

2 Background on the Norwegian electricity market

Norway has one of the world’s highest per capita consumption of electricity, with 23.5 MWh

per capita in 2019 – compared with 12.8 MWh in the United States and 6.0 MWh in the

EU [IEA, 2020]. Norway faces cold winter temperatures and is highly electrified, with most

1Fowlie et al. [2017] show that customer participation choices do not correlate with their expected gains
from being in the treatment group. It suggests that customer inattention to the opt-out option drives their
passive enrollment decision, rather than switching costs, discounting, or present-biased preferences.

2However, our results likely underestimate the treatment effect as the day-ahead notifications do not
include the transmission charge and the winter 2019-2020 was an unusually warm winter, limiting the scope
for heating-related demand adjustments.
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appliances predominantly relying on electricity, including heaters, water heaters, washing ma-

chines, and induction stoves. It further has a high penetration of electric vehicles, amounting

to 43% of new sales and 9% of the existing registered fleet in 2019 [Norwegian Goverment,

2019]. This high level of electrification makes Norway a particularly interesting case study

for policy makers and regulators as it offers a snapshot into what demand may look like in

many countries in the near future. If such as a high level of electrification improves peak

demand flexibility, it would bode well for demand-side management policies in the long-term.

Consumers in Norway may respond to high electricity prices during peak hours by re-

ducing indoor heating demand and cooking and washing machine use, and adjusting when

to charge electric cars. Indeed, studies monitoring appliance-specific electricity use find that

home heating and cooling demands are relatively elastic among the demands for electricity

services [Reiss and White, 2005, Burkhardt et al., 2019]. Yet, if high electricity prices co-

incide with mild temperatures, customers may have little room for reducing peak demand

through adjusting indoor thermostats. Most drives are quite short and do not require a full

battery, however, range anxiety may generate a considerable disutility. Without access to

automation, actively curbing peak consumption may reduce welfare, e.g., through the cog-

nitive burden of making adjustment to thermostats or when to charge an electric car, and

lead to inelastic demands.

The Norwegian electricity market is deregulated with more than 50 different utilities of-

fering retail electricity contracts to consumers. Grid utilities manage electricity transmission

on regional or local networks. They typically have a monopoly over the local grid. Thus,

the total electricity price that households face consists of a real-time variable price for retail

electricity purchase (the regional spot price augmented by a small fee that accrues to the

retailing utility), a rent for the grid connection paid to the grid utility, and a couple of other

variable small fees levied by the government. As most electricity in Norway is generated from

hydro-power plants, the intra-day variations in spot price are relatively small (Figure A2).

However, seasonal variations can be large depending on the hydrological balance. Figure

A3 illustrates the variations in the daily spot price in the study region. Possibly because

of these relatively small daily variations in spot prices, customers in Norway do not have

access to real-time consumption or prices (except through a few small, recent government-
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sponsored pilot programs), nor do they use automation technologies such as smart chargers

for electric cars. The grid rent consists of a fixed fee, which varies across apartments (1,000

NOK per year, or about USD111 using the November 2020 currency rate) and detached or

semi-detached houses (2,500 NOK per year), and a variable transmission charge per kWh.

This variable transmission charge is set to either a summer tariff or a winter tariff, 0.1813

NOK/kWh and 0.2563 NOK/kWh, respectively, in the years 2017 and 2018. The winter

tariff, in effect from November 1st to April 30th, is more expensive due to greater congestion

levels on the transmission networks. Grid utilities are mandated to deliver electricity at all

times, thus the total capacity of the grid is determined by local peak demands. Peak hours

generally occur in the late afternoons and early evenings on cold weekdays in the winter.

Yet, as the winter tariff does not vary within days or across days, customers do not currently

receive price information signals about grid congestion.

3 Experimental design and data

3.1 Experimental design

We partner with the grid utility Ringerikskraft Nett to design and implement an RCT

aimed at studying the effect of time-varying grid pricing on peak electricity consumption.

The grid utility serves around 22,000 customers in the municipalities Ringerike and Hole in

the Southeast of Norway (one hour drive north of Oslo).

In Norway, electricity transmission levels approach grid capacity constraints a small num-

ber of days over the winter, ranging from a few days to a dozen days depending on the inten-

sity of the winter. Grid congestion can be relatively well predicted based on the temperature

forecast a day in advance. Furthermore, the literature documents that, absent automation

technology, day-ahead notifications perform better at triggering a consumer response than

day-of notices, for example because consumers may adjust non-communicating thermostats

before leaving for work in the morning [Jessoe and Rapson, 2014, Harding and Sexton, 2017].

This ruled out real-time pricing and time-of-use designs and motivated the choice of a peak

pricing design with day-ahead notification.
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Furthermore, a growing amount of evidence suggests that, even conditional on access

to real-time consumption and price information, consumers are not sensitive to changes in

price levels. For example, Jessoe and Rapson [2014] examine price increases from 200% to

600%, while Gillan [2017] investigates price increases from 31% to 1,875%. Limited attention

has been proposed as a plausible explanation for consumers’ inelastic response to changes

in prices [Chetty et al., 2009, Gillan, 2017]. As a result, we choose to focus on a single

transmission charge increase, with CPP, rather than exploring VPP.

To select our customer sample, we keep the registered electricity meters satisfying the

following criteria. First, we keep meters with total electricity consumption in 2018 between

2,000 kWh and 50,000 kWh so as to exclude potential businesses or malfunctioning meters.

Second, we discard customers who did not provide a mobile phone number to send day-ahead

SMS notifications. Third, we require meters to be registered with a single customer and

customers to be associated with a single meter to ensure the person receiving the notifications

lives at the address where the meter is located. At the end of the selection process, our sample

consists of 11,712 pre-selected electricity meters.3 The final sample consists of 11,476 meters.

Using a stratified random sampling design, residential electricity customers were assigned

to either the treatment group or the control group. Stratification ensured that the two

groups were balanced across households with registered electric car(s) and with real-time

consumption IHD. The treatment group consists of 3,833 customers, while the control group

consists of 7,643 customers.4 Non-compliance to the experimental design was observed for

560 customers in the treatment group (14.6%) who contacted the utility to opt-out and,

thus, did not face the CPP pricing. Figure A1 illustrates the timing of non-compliance in

3Of the 11,712 pre-selected meters, subsequent data on 190 meters were not provided by the utility, for
example due to customers moving. An additional 12 meters with values exceeding 50 kWh for a single hour
are also dropped. Finally, a further 34 meters are dropped due to having zero electricity consumption in
three consecutive weeks.

4Our pre-registration plan included a 2×2 design featuring a second treatment arm consisting of an
information treatment, with information as similar as possible as that received in the price treatment but
without any price change. However, due to the warm winter forecast in Norway in 2019-2020 and low
congestion levels anticipated on the grid, the grid utility canceled this arm of the treatment prior to the
start of the RCT as it seemed unethical to ask customers to reduce peak demand to alleviate pressure on the
grid. Customers originally assigned to the information treatment arm were pooled with the control group.
Because of the warm weather, the grid utility further decided to skip the first treatment event planned for
November 2019, resulting in nine events instead of the ten originally planned. The average temperature in
the study area during winter 2019-2020 (December through April) was 2.3◦C, which is 2.5◦C warmer than
in winter 2018-2019 and 3.9◦C warmer than in winter 2017-2018.
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the treatment group – 70% of those 560 customers were non-compliant prior to the first

CPP event. Another nine customers from the control group (0.1%) requested to participate

in the CPP treatment and, thus, received CPP pricing.5 However, these non-compliers are

included in the analysis according to their original assignment to maintain the randomization.

Therefore, we estimate the intention-to-treat effect.

The CPP treatment raises the winter grid tariff from 0.24 NOK/kWh to 10 NOK/kWh

from 16h to 22h on nine CPP weekdays in the period December 2019 to April 2020 (two

CPP days per month from December to March and one CPP day in April). CPP weekdays

were called by the grid utility a day in advance as informed by high transmission congestion

forecasts related to cold temperatures.6 The CPP program was designed to be revenue-

neutral for the grid utility, based on electricity consumption in the prior year. Consequently,

the winter grid tariff for non-CPP hours was reduced to 0.05 NOK/kWh in the treatment

group so as to offset the effect of the 10 NOK/kWh CPP pricing for the average customer,

assuming no adjustment in consumption.

Every customer in the treatment group was mailed a letter in late November about the

overall goal of the CPP program to reduce peak demand grid congestion and avoid future

costly investments in expanding grid capacity. The letter included the number of CPP days

and CPP hours, and information on how to opt out. Enclosed to the letter was a two-

sided brochure featuring on one side the CPP transmission charge of 10 NOK/kWh with an

example of cost calculation for running an appliance during CPP hours, and tips on reducing

peak electricity demand on the other side. The letter and brochure are shown in Appendix

C.2. On December 6th, customers were emailed a shorter version of the letter they received

in the mail, notifying them that the first CPP event would occur the following week, and a

reminder on how to opt out (Appendix C.3). The email also included a link to the online

brochure that they received in the mail. Customers in the treatment group received an SMS

on the day prior to a peak event, between 14h00 and 15h00, with a second SMS reminder sent

on the day of an event for the first five events. An overview of the timing of the CPP events

5A utility representative gave an interview about the CPP program in the local newspaper, leading to a
few customers requesting to participate in the CPP treatment.

6By choice, Mondays were never called by the utility as it would have required calling employees to
work overtime on a Sunday to prepare for the Monday event. In practice, most CPP weekdays happened on
Tuesdays and Thursdays, with one Wednesday drawn. No Friday ended up being called.
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and communication with the customers is depicted in Figure C1. The content of the SMSs

is shown in Appendix C.4. Importantly, note that, per decision of the grid utility who feared

customer complaints, only the brochure featured the CPP transmission charge level, but not

any of the SMSs nor the letters. We do not know how many customers read the brochure in

the mail or online. Of those who read the brochure, we cannot say which fraction remembered

the CPP transmission charge level when making electricity consumption decisions during the

nine CPP events. Therefore, it is likely that our treatment effect is underestimated.

To examine whether peak demand response to CPP can be made more effective, we

implement a secondary treatment using social comparisons. Experimental studies have found

mixed effects of nudges and social norms on peak demand consumption [Carlsson et al.,

Forthcoming]. In general, the effect is marginal, typically less than 3%, however, the cost

of such interventions is also usually relatively small [Gillan, 2017, Ito et al., 2018, Andersen

et al., 2019]. Our secondary treatment design consists of including social comparisons to the

CPP treatment in the last two CPP events. Specifically, half of the CPP treatment group

receives information on their electricity consumption during the previous CPP event and

during the same hours on the day prior to that CPP event, plus information on how much

the rest of the treatment group changed consumption between the same two time periods.

The other half of the CPP treatment group receives the same CPP event notification as

usual.7

3.2 Data

Using Ringerikskraft Nett’s high-frequency smart meter data on household electricity con-

sumption in the pre-treatment period and during the experiment, we construct our main

dependent variable as the natural logarithm of hourly electricity consumption in and outside

7The grid utility implemented several notable deviations from the pre-registration plan due to unforeseen
technical challenges with computing the change in one’s own consumption and sending out the messages.
First, the grid utility decided to postpone the secondary treatment, which was originally planned for the last
four events. Second, it simplified the social comparison information by not including the change in one’s
own consumption, but only the levels, making the social comparison with the rest of the group’s change in
consumption less straightforward (see SMS in Appendix C.4). Third, the second half of the CPP treatment
group was supposed to receive feedback information on their own change in electricity consumption during
the last CPP event, but without the social comparison, in order to isolate the effect of social comparisons
from the simple information feedback on one’s own consumption.
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of the treatment window (16h-22h). The temperature variable is constructed using the hourly

temperature at the Hønefoss weather station and, thus, does not vary across households. Us-

ing customers’ name and address, we match households with the electric vehicle ownership

registration database from the Norwegian Public Roads Administration (Vegdirektoratet).

Per mid-September 2019, 1,200 inhabitants in the municipalities Ringerike and Hole were

registered as the owner of at least one electric car. 611 of these were merged by first and

last names to the electricity meter. To include cases where the car and meter are registered

to different members in the household, a further 103 were merged by last name and address.

Finally, 107 (unique) matches were made using the address only, but we deemed the quality

of those matches too uncertain, and do not include them in the analysis. Table 1 includes

data on the 714 electric car records that are matched on full name or last name and address.

Last, although every customer in Norway is equipped with a smart meter, households

typically learn about their electricity consumption via their monthly bill. The most timely

electricity consumption is available only up to the previous day by logging onto an app or

into a secure government website. There is thus an apparent disconnect between facing real-

time retail prices, while not having information on real-time retail prices and consumption.

Several small, recent, ongoing government-sponsored grant programs examine the effect of

IHD on consumption. One of these programs involve the customers served by our grid

utility (https://www.energipilot.no/). The program randomly made free IHD offers to 1,865

customers in 2017. Of those, 738 customers accepted the offer, received the device, and

installed it – of whom 595 remained at the end of the pre-selection process for our CPP

experiment. We randomize those customers, resulting in 201 customers with IHD assigned

to the treatment group and 394 to the control group.8

Descriptive statistics are shown in Table 1. Electricity consumption and observables

driving electricity consumption and the response to the treatment appear well balanced

between the treatment group and control group in the pre-treatment period. Therefore, the

table provides support for the randomization of treatment across our sample.

8In summer 2019, a survey was distributed to all customers who had accepted the IHD offer and received
the device, albeit not necessarily installed it. Summary statistics are shown in Table A1.
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Table 1 Descriptive statistics for the estimation sample in the pre-treatment period (January 1
– November 30 2019).

Treatment Control
Mean SD Mean SD

Electricity consumption (kWh) 1.81 (1.54) 1.81 (1.53)
00h-16h 1.73 (1.47) 1.72 (1.47)
16h-22h 2.02 (1.67) 2.02 (1.67)
22h-00h 1.88 (1.57) 1.88 (1.56)

Electric car household (0/1) 0.06 (0.25) 0.06 (0.24)
Real-time in-home display (0/1) 0.05 (0.22) 0.05 (0.22)
Temperature (◦C) 6.86 (8.52) 6.86 (8.52)
Non-complier (0/1) 0.14 (0.35) 0.00 (0.03)

N 3,833 7,643

4 Empirical strategy

4.1 Empirical models

The main hypothesis is that the CPP treatment will decrease peak electricity consumption.

Important questions we aim to answer is which consumer groups respond to the treatment,

how does the treatment leads to a reduction in electricity consumption during peak hours,

i.e., elicit whether this decrease represents a net reduction in electricity use or load shifting

to non-peak hours or other days, and whether we detect habituation to the treatment with

declining effects over time.

Our basic model specification is shown in equation (1):

Eit = β1Treati ∗ Peakd ∗Dayd + γ1Treati ∗NPeakd ∗Dayd
+β2Treati ∗ Peakd ∗ Postd + γ2Treati ∗NPeakd ∗ Postd
+δf(temp)t + φXit + εit.

(1)

The variable Eit indicates household i’s log of electricity use in kWh in each hour t.

Each day d is divided into two time periods: non-peak hours, namely 00-16h and 22-24h

(NPeakd), and peak hours 16-22h (Peakd). Treati denotes treatment group status (0 or

1). Dayd is a dummy variable that takes the value 1 on days when a CPP event occurs

and 0 otherwise. Postd denotes the two days following a CPP event. The variable temp
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represents hourly temperature in degree Celsius in the town of Hønefoss. Our measure of

temperature, f(temp)t, consists of a polynomial of degree three in hourly temperature and

linear measures of the average temperature the preceding 24, 48 and 72 hours. The vector

Xit includes household fixed effects, time of day fixed effects (peak or non-peak hours) and

date fixed effects to control for demand shocks that affect our sample.

Households owning at least one electric car may respond differently to treatment relative

to non-electric car households due to a larger electric consumption to start with and greater

flexibility regarding when to charge the car. Thus, to allow for treatment heterogeneity

across households with or without electric cars, we interact all the terms in equation (1),

except Xit and f(temp)t, with a dummy variable, Ecar, indicating whether the household

owns an electric car.

To examine more precisely whether households shift electricity consumption to pre- and

post-CPP hours, we refine equation (1) to include shoulder hours.9 Our preferred specifica-

tion is depicted in equation (2):

Eit = β1Treati × Peakd ×Dayd + γ1Treati ×NPeakd ×Dayd
+β2Treati × Peakd × Postd + γ2Treati ×NPeakd × Postd
+λ1Shldd + λ2Treati × Shldd ×Dayd + δf(temp)t + φXit + εit.

(2)

The shoulder hours in each day are defined as the two hours pre- and post-CPP hours,

i.e., 14-16h and 22-24h, while the non-peak hours are now redefined as 00-14h. Time of day

fixed effects now consist of peak, non-peak, or shoulder hours to control more precisely for

changes in daily electricity consumption patterns.

4.2 Graphical inspection

Next, we provide visual evidence of the effect of the CPP treatment on electricity consump-

tion. The following figures offer (1) an overview of electricity consumption over the five

months of the experiment, (2) a focus on each CPP event, and (3) an inspection of the

differential response of households with or without electric cars.

9Equation (2) contained a typo in the pre-registration plan that said that the shoulder hours indicator
was to interact with the indicator for the post-CPP days. This should have been the indicator for the CPP
day. The pre-registration plan was amended accordingly.
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Figure 1 depicts the log of electricity consumption for the treatment and control groups for

all weekdays in the period December 2019 – April 2020, which includes all nine CPP events.10

Days with CPP are easily recognizable from the difference in consumption patterns between

the treatment and control groups, while no differences between the two groups are noticeable

on non-CPP days.

Figure 2 shows the log of electricity consumption on the nine CPP events, including on

the day prior and the day after the CPP event. The treatment effect appears concentrated

on the six CPP hours on the day of the CPP event, with no evidence of load shifting to

non-CPP hours or non-CPP days. The treatment effect possibly declines over the last CPP

event. This seems to be correlated with warmer temperatures (see Figure A3), which may

trigger lower heating-related demands and leave less scope for adjustments.

Figure 3 illustrates the log of electricity consumption for each CPP event, while separating

the response of households with electric cars from that of households without. Although

households with electric cars have a higher electricity consumption, the consumption pattern

between electric car and non-electric car households is relatively similar across the nine days

with CPP. Furthermore, the solid and dashed lines for the treatment and control groups,

respectively, follow each other closely, except during CPP events during which they diverge

sharply. Households with electric cars appear to respond slightly more to CPP events than

households without electric cars. This is not surprising as electric cars offer one additional

margin of adjustment on which consumers can act upon. Therefore, even though smart

chargers are not common in Norway, households appear to exploit this margin of adjustment

and actively forego or postpone charging their car during CPP events.

Figure 4 shows the log of electricity consumption on the last two CPP events for the CPP

treatment group. Half of the treatment group received feedback information on their own

consumption during the previous CPP event and on the day prior to that CPP event during

peak hours, with a social comparison with the relative change in consumption between these

two time periods in the rest of the treatment group. The other half of the treatment group

received the regular CPP event notification. Similarly to Figure 3, the response to treatment

10Short, local power outages (e.g., due to trees falling on power lines) took place on January 7th and 14th
and February 21st. These outages affected treatment and control groups alike and always occurred outside
CPP events.

14



.4

.6

.8

1

.4

.6

.8

1

.4

.6

.8

1

.4

.6

.8

1

.4

.6

.8

1

0 6 12 18 24 0 6 12 18 24 0 6 12 18 24

0 6 12 18 24 0 6 12 18 24

02 03 04 05 06

09 10 11 12 13

16 17 18 19 20

23 24 25 26 27

30 31

ln(kwh)

time of day

(a)

0

.5

1

0

.5

1

0

.5

1

0

.5

1

0

.5

1

0 6 12 18 24 0 6 12 18 24

0 6 12 18 24 0 6 12 18 24 0 6 12 18 24

01 02 03 06 07

08 09 10 13 14

15 16 17 20 21

22 23 24 27 28

29 30 31

ln(kwh)

time of day

(b)

.4

.6

.8

1

.4

.6

.8

1

.4

.6

.8

1

.4

.6

.8

1

0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24

03 04 05 06 07

10 11 12 13 14

17 18 19 20 21

24 25 26 27 28

ln(kwh)

time of day

(c)

.2

.4

.6

.8

.2

.4

.6

.8

.2

.4

.6

.8

.2

.4

.6

.8

.2

.4

.6

.8

0 6 12 18 24 0 6 12 18 24 0 6 12 18 24

0 6 12 18 24 0 6 12 18 24

02 03 04 05 06

09 10 11 12 13

16 17 18 19 20

23 24 25 26 27

30 31

ln(kwh)

time of day

(d)

-.2
0
.2
.4
.6

-.2
0
.2
.4
.6

-.2
0
.2
.4
.6

-.2
0
.2
.4
.6

-.2
0
.2
.4
.6

0 6 12 18 24 0 6 12 18 24 0 6 12 18 24

0 6 12 18 24 0 6 12 18 24

01 02 03 06 07

08 09 10 13 14

15 16 17 20 21

22 23 24 27 28

29 30

ln(kwh)

time of day

(e)

Figure 1 Log of hourly electricity consumption. Every frame depicts a day. All days during the
five months of the experiment, from December 2019 (panel (a)) to April 2020 (panel (e)) are shown,
with weekends excepted. Solid line depicts the treatment group; dashed line the control group.
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Figure 2 Log of hourly electricity consumption on the nine CPP days (middle panels), including
one day prior (left panels) and one day post CPP event (right panels). Each CPP event is depicted
on a different row, with the 1st CPP event on December 10th on the top row and the 9th CPP
event on April 28th on the bottom row. The nine events occurred on: 1) 10-12-2019, 2) 19-12-
2019, 3) 23-01-2020, 4) 30-01-2020, 5) 13-02-2020, 6) 26-02-2020, 7) 05-03-2020, 8) 31-03-2020, 9)
28-04-2020. Solid line depicts the treatment group; dashed line the control group. The CPP hours
(16h-22h) are marked with vertical dashed lines.
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Figure 3 Log of hourly electricity consumption on the nine CPP days, differentiating the response
to treatment across households with (top lines) and without electric cars (bottom lines). Vertical
bars denote 95-% confidence intervals. Each panel depicts a day with a CPP event. The nine
events occurred on: 1) 10-12-2019, 2) 19-12-2019, 3) 23-01-2020, 4) 30-01-2020, 5) 13-02-2020, 6)
26-02-2020, 7) 05-03-2020, 8) 31-03-2020, 9) 28-04-2020. The solid lines depict the treatment group;
dashed lines the control group. The CPP hours (16h-22h) are marked with vertical dashed lines.
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Figure 4 Log of hourly electricity consumption on the last two CPP days, which feature social
comparisons with feedback on one’s own consumption during the prior CPP event and on the
day prior, differentiating the response to treatment across households with (top lines) and without
electric cars (bottom lines). Vertical bars denote 95-% confidence intervals. Each panel depicts
a day with a CPP event. The secondary treatment was implemented during the 8th and 9th
CPP events, which occurred on: 31-03-2020 and 28-04-2020. The solid lines depict the half of
the treatment group that received one’s own consumption feedback and social comparison; dashed
lines the other half of the treatment group that received the regular CPP event notification. Note
that data are not shown for the control group. The CPP hours (16h-22h) are marked with vertical
dashed lines.

of households with electric cars is separated from that of non-electric car households – and

their consumption remains the highest. Figure 4 fails to show a clear effect of the feedback

with social comparison treatment relative to the regular CPP event notification. The absence

of a visible effect is noticeable for both households with and without electric cars. However,

it is important to keep in mind that the last two events (on March 31 and April 28) occurred

on warmer, spring days (Figure A3), during which the heating-related demand is lower and

may not offer much scope for adjustment.
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5 Results

5.1 Response to CPP treatment for all consumers

In this section, we show empirically the effect of the grid CPP treatment on household peak

electricity consumption. Regression results with household fixed effects are shown in Table 2

and without household fixed effects in Table B1. In each table, results for equation (1), both

without and with temperature controls, are shown in columns (1) and (2), while results for

the model allowing for treatment heterogeneity across households with or without electric

cars are depicted in column (3). Results for equation (2) with shoulder hours, both without

and with electric car treatment heterogeneity, are shown in columns (4) and (5).

For each specification in Table 2, a CPP event is associated with a reduction in peak

electricity consumption among treatment households of 0.14 log points (or 13%) relative to

control households (Treat× Peak ×Day). Taking into account variations in the spot price

over the nine CPP events (from 0.14 NOK/kWh to 0.59 NOK/kWh), the total electricity

price increase between the treatment and control groups ranged from 892% to 1,498%, with

mean 1,242%. This is equivalent to an average price elasticity of -0.015. Starting with the

basic model in equation (1), without or with temperature controls (columns (1) and (2),

respectively), estimates indicate a slightly lower electricity consumption during the two days

post CPP, in particular during peak hours. There is thus no sign of load shifting to the

next days but, rather, evidence of a small persistence effect on the two days following a CPP

event. This persistence effect is consistent with households responding to a CPP event by

adjusting the setting of programmable thermostats during peak hours and not returning the

thermostat to the pre-CPP event setting for some days.

Treatment heterogeneity across households with or without electric cars is shown in col-

umn (3). Households with electric cars display higher electricity consumption during peak

hours than non-electric car households (0.059 log points or 5.7%; p-value<0.01). However,

they reduce consumption during CPP events with a few percentage points more than treated

households without electric cars (0.057 log points or 5.5%; p-value<0.05). Interestingly, elec-

tric car households substantially shift their consumption to non-peak hours both on the CPP
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Table 2 Effect of CPP events on log of hourly electricity consumption. (1) and (2): Equation
(1) both without and with temperature controls. (3): Equation (1) with treatment heterogeneity
across households with or without electric cars. (4) and (5): Equation (2) with shoulder hours,
both without and with electric car treatment heterogeneity. All specifications include household,
date, and time of day (peak or non-peak) fixed effects. In columns (4) and (5), time of day fixed
effects consist of peak, non-peak, or shoulder time. (The mean log electricity consumption (ymean)
is 0.586.)

(1) (2) (3) (4) (5)
Treat× Peak ×Day -0.140*** -0.139*** -0.136*** -0.139*** -0.135***

(0.005) (0.005) (0.005) (0.005) (0.005)
Treat×NPeak ×Day -0.002 -0.003 -0.004** 0.007*** 0.005**

(0.002) (0.002) (0.002) (0.002) (0.002)
Treat× Peak × Post -0.026*** -0.018*** -0.017*** -0.018*** -0.017***

(0.002) (0.002) (0.002) (0.002) (0.002)
Treat×NPeak × Post -0.003* -0.005*** -0.006*** -0.005*** -0.006***

(0.002) (0.002) (0.002) (0.002) (0.002)
Peak 0.138*** 0.143*** 0.140*** 0.161*** 0.157***

(0.002) (0.001) (0.001) (0.002) (0.002)
Treat× Peak ×Day × Ecar -0.057** -0.057**

(0.022) (0.022)
Treat×NPeak ×Day × Ecar 0.020*** 0.020**

(0.007) (0.008)
Treat× Peak × Post× Ecar -0.021** -0.021**

(0.009) (0.009)
Treat×NPeak × Post× Ecar 0.014** 0.014**

(0.006) (0.006)
Peak × Ecar 0.059*** 0.063***

(0.006) (0.007)
Treat× Shld×Day -0.042*** -0.042***

(0.003) (0.003)
Shld 0.065*** 0.064***

(0.001) (0.001)
Treat× Shld×Day × Ecar 0.003

(0.012)
Shld× Ecar 0.017**

(0.005)

temp No Yes Yes Yes Yes

R2 0.727 0.727 0.727 0.728 0.728
N 42,323,924 42,323,924 42,323,924 42,323,924 42,323,924

Note: Robust clustered standard errors at the household level in parentheses. * p<0.10, ** p<0.05, ***
p<0.01.
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day and on post-CPP days (Treat×NPeak×Day×Ecar and Treat×NPeak×Post×Ecar).

Consumption remains somewhat lower during peak hours on post-CPP days (Treat×Peak×

Post × Ecar). Together these findings suggest persistent adjustments in the car charging

timing and a potential for habit formation.

Load shifting to shoulder hours is shown in columns (4) and (5), without and with

allowing for heterogeneity across electric car households, respectively. Results in column (4)

suggest that the reduction in electricity consumption outside the peak hours of a CPP day

largely took place in the shoulder hours, with a reduction of 0.042 log points or 4.1% for the

treatment group relative to the control group. The reduction in electricity consumption in

the shoulder hours is not significantly different when examining the response of electric car

households (Treat×Shld×Day×Ecar; column (5)), despite them having a slightly higher

electricity consumption during those hours of the day.

-.15
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0

.05

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1719819 20 21 22 23

Figure 5 Effect of CPP events on log of hourly electricity consumption for each hour of a CPP
day. Hourly effects, depicted with 95%-confidence intervals, are estimated by modifying equation
(1) to include Treat×Hour ×Day, where Hour denotes each hour from 00h to 23h. Electric car
treatment heterogeneity and household and date fixed effects included.

To examine more precisely how CPP affects the behavior of the treatment group relative

21



to the control group throughout the day, we show the effect of CPP on household electricity

consumption for each hour of a CPP day in Figure 5. In addition to the sharp peak demand

reduction observed during the CPP hours, 16h-22h, reductions in demand are already no-

ticeable from 9h on and last until 23h, possibly capturing the effect of households manually

adjusting heating thermostats before leaving to work. The most pronounced reduction occurs

in the afternoon hours, 12h-15h, prior to the start of the CPP event (about 0.05 log points

or 5%). Interestingly, we observe a small increase in consumption during the night and early

morning hours of a CPP day, from 1h until 8h, indicating a small amount of load shifting,

consistent with the sign of Treat × NPeak ×Day in Table 2, column (5), which separates

shoulder hours from other non-peak hours. However, the net overall effect during the day,

i.e., encompassing non-peak and shoulder hours, remains negative (Treat × NPeak ×Day

in Table 2; column (3)).

5.2 Response to CPP treatment across consumer groups

To better understand who the households that respond to treatment are, we now re-estimate

for different consumer groups our preferred specification, i.e., equation (2) with household

fixed effects and allowing for heterogeneity among households with or without electric cars.

Results are shown in Table 3 for consumers with or without IHD, and for consumer type

as defined by their electricity consumption quartile in the pre-treatment period (January –

November 2019).

Table 3 shows that all consumer groups reduce electricity consumption during CPP

events, with an effect ranging from -0.11 to -0.18 log points or -10% to -16%. This find-

ing is relevant to policy makers and contrasts with results from prior studies that suggest

that peak pricing without access to real-time consumption information has a considerably

weaker effect [Jessoe and Rapson, 2014], or that most of the response comes from high-use

consumers (e.g., Reiss and White [2005]). In addition, we do not find strong evidence that

electric car households in any of the groups considered drive the response to treatment, which

is in contrast with findings in Burkhardt et al. [2019]. Furthermore, rather than shifting their

electricity demand to shoulder hours or onto the next two days, most groups have a tendency

to also reduce their electricity consumption, in particular during shoulder hours and the peak
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Table 3 Effect of CPP on log of hourly electricity consumption for consumer groups based on real-
time IHD (columns (1) and (2)), and on pre-treatment electricity consumption quartiles (columns
(3) and (6)). All specifications use equation (2) with shoulder hours and electric car treatment
heterogeneity. All specifications include household, date, and time of day (peak, non-peak, or
shoulder hours) fixed effects.

IHD Consumption quartile
With Without 1st 2nd 3rd 4th

(1) (2) (3) (4) (5) (6)
T × P ×Day -0.181*** -0.133*** -0.107*** -0.120*** -0.167*** -0.148***

(0.023) (0.005) (0.005) (0.008) (0.010) (0.010)
T ×NP ×Day 0.003 0.006** 0.006 0.006 0.006* 0.003

(0.008) (0.002) (0.006) (0.004) (0.004) (0.003)
T × P × Post -0.010 -0.018*** -0.016*** -0.007 -0.026*** -0.018***

(0.009) (0.002) (0.006) (0.002) (0.003) (0.003)
T ×NP × Post -0.003 -0.008*** -0.007 -0.006** -0.008*** -0.003

(0.007) (0.002) (0.004) (0.002) (0.003) (0.002)
P 0.162*** 0.157*** 0.226*** 0.132*** 0.134*** 0.132***

(0.006) (0.002) (0.005) (0.003) (0.003) (0.002)
T × P ×Day × Ecar -0.142** -0.042* -0.059 -0.061 -0.023 -0.053

(0.068) (0.022) (0.048) (0.056) (0.041) (0.032)
T ×NP ×Day × Ecar 0.020 0.019** -0.044 0.015 0.029* 0.015

(0.018) (0.009) (0.039) (0.019) (0.015) (0.011)
T × P × Post× Ecar -0.023 -0.021** -0.149*** -0.067** 0.015 -0.011

(0.025) (0.009) (0.035) (0.028) (0.018) (0.011)
T ×NP × Post× Ecar 0.018 0.017*** -0.043 0.014 0.028** 0.008

(0.013) (0.006) (0.038) (0.016) (0.011) (0.006)
P × Ecar 0.040** 0.066*** 0.143*** 0.099*** 0.098*** 0.068***

(0.018) (0.008) (0.038) (0.021) (0.014) (0.008)
T × Shld×Day -0.033*** -0.042*** -0.039*** -0.042*** -0.050*** -0.042***

(0.011) (0.003) (0.007) (0.005) (0.004) (0.004)
Shld 0.052*** 0.065*** 0.110*** 0.049*** 0.047*** 0.047***

(0.005) (0.001) (0.003) (0.002) (0.002) (0.002)
T × Shld×Day × Ecar -0.026 0.007 -0.043 0.002 0.018 0.009

(0.034) (0.012) (0.060) (0.034) (0.029) (0.013)
Shld× Ecar 0.017 0.018*** 0.067*** 0.062*** 0.030*** 0.022***

(0.014) (0.006) (0.025) (0.015) (0.010) (0.006)

temp Yes Yes Yes Yes Yes Yes
ymean 0.896 0.569 -0.348 0.508 0.877 1.305

R2 0.615 0.727 0.541 0.322 0.347 0.444
N 2,190,913 40,133,534 10,562,665 10,582,188 10,589,902 10,583,005

Note: Robust clustered standard errors at the household level in parentheses. * p<0.10, ** p<0.05, ***
p<0.01.
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hours of the next two days, i.e., 16h to 22h. This may suggest adjustments in the setting

of programmable or non-programmable thermostats or water heater with some inertia for

returning to the original setting.

Columns (1) and (2) in Table 3 illustrate the effect of CPP events on consumers condi-

tional on whether or not they had installed an IHD prior to the experiment to monitor their

real-time consumption. Without IHD, households interested in their recent consumption

may log onto an app or a secure government website and observe their consumption for up

to the previous day. Notably, consumers who installed an IHD have on average a higher

electricity consumption (ymean = 0.896 vs. ymean = 0.569, or 2.45 kWh vs. 1.77 kWh),

possibly motivating them in the first place to monitor their consumption and save on their

electricity bill. Households with IHD display a reduction in consumption of 0.18 log points or

16%, compared to 0.13 log points or 12% for the group without IHD – amounting to a 33%

difference. When households with IHD also own electric cars, they dramatically reduce their

consumption during CPP events, i.e., by another 0.14 log points or 13% (T×P×Day×Ecar;

p-value<0.05).

Columns (3) to (6) in Table 3 show the effect of CPP events on consumer groups condi-

tional on their pre-treatment electricity consumption. The two lowest consumption quartiles

reduce electricity consumption by 0.11 to 0.12 log points, or 10% to 11%, in response to the

treatment, which is slightly less compared to the 0.15 to 0.17 log points, or 14% to 16%, for

the top two quartiles.

5.3 Habituation to CPP treatment (and potential Covid-19 effect)

In Appendix B Table B2, we examine whether consumers become habituated to CPP events

and, thus, less responsive over time. We do not find evidence of such trend with reductions

during CPP events ranging from 0.13 to 0.17 log points, or 12% to 16%, with the exception

of the last CPP event on April 28th that occurred on a warm spring day, with a reduction

of only 0.4 log points or 4%. The absence of a declining treatment response in the event

by event analysis suggests that such CPP interventions could be relevant for long-term grid

transmission congestion and peak demand management.

Furthermore, the last two CPP events coincide with the Norwegian Covid-19 lockdown,
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which started on March 12th 2020 and lasted, in its strictest form, until April 28th 2020.

Schools and gyms were closed, work from home was mandated whenever possible, and strict

restrictions on social gatherings and social life were implemented. Date fixed effects in all

specifications control for the component of the shock that affects all households. Yet, it is

possible that household behavior and response to treatment during the lockdown changed

in ways not captured by the date fixed effects. Interestingly, the results depicted in Table

2 hardly change when excluding the last two CPP events from the analysis. In addition,

the March 30th event remains associated with a 14% reduction in peak demand, which is

similar to the response to CPP events prior to the lockdown. The outlier is the April 28th

event. Unfortunately, we cannot say whether the 4%-reduction in peak demand observed

on that last CPP event is the result of the warm spring day, the Covid-19 lockdown, or a

combination of both.

5.4 Response to feedback and social comparison treatment

The effect of one’s own electricity consumption feedback with social comparison treatment is

depicted in Table 4. This secondary treatment is implemented on half of the CPP treatment

group on the last two CPP events (i.e., events 8 and 9 on March 30th and April 28th,

respectively). It is empirically estimated by interacting the consumption feedback with

social comparison treatment with the CPP treatment on the CPP day, differentiating for

peak (with CPP) and non-peak hours. Results suggest the feedback with social comparison

treatment is not associated with any significant change in electricity consumption relative to

receiving the simple CPP event notification – estimates for Treat× Peak ×Day × S.Comp

and Treat × NPeak × Day × S.Comp are both insignificant. The absence of a significant

effect is consistent with findings in some of the earliest studies using OPOWER in the US

[Schultz et al., 2007, Nolan et al., 2008]. More recent studies have documented a small

reduction in consumption in response to social comparisons, e.g., Ayres et al. [2012] and

Allcott find a 2% reduction. These studies combine descriptive and injunctive norms to

limit the boomerang effect, or regression to the mean of the consumers reducing more than

the average – our treatment only relies on descriptive norms. Yet, other factors may drive

our findings. First, the secondary treatment was implemented on the two warmest CPP
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Table 4 Effect of consumption feedback with social comparison in the CPP treatment group on
log of hourly electricity consumption. (1) and (2): Equation (1) both without and with temperature
controls. (3): Equation (1) with treatment heterogeneity across households with or without electric
cars. (4) and (5): Equation (2) with shoulder hours, both without and with electric car treatment
heterogeneity. All specifications include household, date, and time of day (peak or non-peak) fixed
effects. In columns (4) and (5), time of day fixed effects consist of peak, non-peak, or shoulder
hours. (For each specification, the mean log electricity consumption (ymean) is 0.586.)

(1) (2) (3) (4) (5)
Treat× P ×Day -0.140*** -0.140*** -0.137*** -0.140*** -0.137***

(0.005) (0.005) (0.005) (0.005) (0.005)
Treat×NP ×Day -0.004* -0.003 -0.005** 0.006** 0.005*

(0.002) (0.002) (0.002) (0.002) (0.002)
Treat× P × Post -0.026*** -0.018*** -0.017*** -0.018*** -0.017***

(0.002) (0.002) (0.002) (0.002) (0.002)
Treat×NP × Post -0.003* -0.005*** -0.006*** -0.005*** -0.006***

(0.002) (0.002) (0.002) (0.002) (0.002)
P 0.138*** 0.143*** 0.140*** 0.161*** 0.157***

(0.002) (0.001) (0.001) (0.002) (0.002)
Treat× P ×Day × S.Comp -0.001 0.010 0.010 0.013 0.013

(0.009) (0.009) (0.009) (0.009) (0.009)
Treat×NP ×Day × S.Comp 0.012* 0.008 0.008 0.007 0.007

(0.006) (0.006) (0.006) (0.006) (0.006)
Treat× P ×Day × Ecar -0.057** -0.057**

(0.022) (0.022)
Treat×NP ×Day × Ecar 0.020*** 0.020**

(0.007) (0.008)
Treat× P × Post× Ecar -0.021** -0.021**

(0.009) (0.009)
Treat×NP × Post× Ecar 0.014** 0.014**

(0.006) (0.006)
P × Ecar 0.059*** 0.063***

(0.006) (0.007)
Treat× Shld×Day -0.042*** -0.042***

(0.003) (0.003)
Shld 0.065*** 0.064***

(0.001) (0.001)
Treat× Shld×Day × Ecar 0.003

(0.012)
Shld× Ecar 0.017***

(0.005)

temp No Yes Yes Yes Yes

R2 0.727 0.727 0.727 0.728 0.728
N 42,323,924 42,323,924 42,323,924 42,323,924 42,323,924

Note: Robust clustered standard errors at the household level in parentheses. * p<0.10, ** p<0.05, ***
p<0.01.
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events (Figure A3). More energy efficiency and lower demand leave less scope for reduction,

which often cause social nudges to be ineffective [Carlsson et al., Forthcoming]. Indeed, the

last CPP event reduced peak demand by only 4% (Table B2). Second, the last two CPP

events further coincided with the Norwegian Covid-19 lockdown, which may have affected

household response to social nudges. Third, the grid utility, due to technical challenges

with computing one’s own change in consumption, altered the original social comparison

treatment. As a result, customers received a feedback message on their own consumption

levels on the prior CPP event and on the day prior to that event, without an explicit change

in one’s own consumption, making the comparison with the average change in consumption

in the rest of the treatment group less straightforward (see exact SMS language in section

C.4). As a result, we cannot conclude whether Norwegian consumers do not respond to social

comparison treatments or whether concerns with the treatment intervention – lack of direct

comparison between the group and one’s own response or poor timing due to warm weather

– prevents us from observing an effect.

5.5 Consumer welfare analysis

CPP programs are typically designed to be ex ante revenue neutral for the utility. In our

case, the grid utility did so by lowering the transmission charge outside the CPP events

in the treatment group from 0.24 NOK/kWh to 0.05 NOK/kWh. As a result, the average

consumer in the treatment group would pay exactly the same bill whether being subjected to

the treatment or control pricing, assuming she maintains her consumption pattern as in the

pre-treatment period (i.e., 0-price elasticity). However, consumers who consume relatively

more (less) electricity during peak hours would face a higher (lower) bill under the treatment

pricing, relative to the regular pricing faced by the control group. As Joskow and Wolfram

[2012] point out, one of the main barriers to the adoption of time-varying pricing is the fear of

large redistributions across customers. This can be the case if a small number of customers

are very responsive, for example because they own electric vehicles, and capture most of

the benefits from the CPP program at the expense of poorer households with less-elastic

demand.

By observing actual electricity consumption in the treatment group during the experi-
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ment, we can compare the actual bill of these consumers with their counterfactual bill if they

had received the control pricing, holding their new consumption pattern constant. Table 5

shows the difference and percentage difference between the actual and counterfactual bills

for the mean and various percentiles of consumers in the treatment group. (For the full

distribution, see Figure B1.)

Table 5 Average monthly difference and percentage difference between the actual and counter-
factual bills of consumers in the treatment group. The mean monthly consumption in the treatment
group is 1,783 kWh and amounts to 1,318 NOK.

Percentiles Avg. diff. in monthly bill (in NOK) Percentage diff.

p01 -315 -20.8 %
p05 -187 -13.9 %
p10 -136 -10.0 %
p15 -105 -7.9 %
p20 -87 -6.6 %
p25 -75 -5.7 %
p50 -37 -3.3 %
p75 -10 -1.2 %
p80 -5 -0.5 %
p85 1 0.1 %
p90 10 1.0 %
p95 27 2.8 %
p99 75 7.5 %

Mean -52 -3.9 %

In Table 5, the average consumer in the treatment group save an average of 52 NOK

per month (or USD5.8 using the November 2020 currency rate) over the five months of the

experiment, which represents 3.9% of her average monthly bill. Examining the distribution of

consumers who benefit or lose from the CPP program relative to the control pricing indicates

that over 80% of consumers save money, while a little over 15% lose money. The top 1%

save over 315 NOK on average per month (20.8% of their bill), while the bottom 1% lose

over 75 NOK (7.5% of their bill).

To better grasp which groups of consumers save versus pay more under the CPP program,

we divide our treatment households into four equal groups, denoted q1-q4, based on their

average difference in monthly bill between CPP and the counterfactual control pricing. In

Table 6, we calculate the average bill difference in each quartile (2nd column), and show the

distribution of attributes of interest across the four quartiles (columns (3) - (11)). Table 6
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Table 6 Distribution of treatment household characteristics across quartiles, q1-q4, as determined
by the average monthly bill differences between the actual (treatment) and counterfactual (control)
pricing. Bill diff.: Average monthly bill difference in each quartile in NOK. Q1-Q4: distributions
of pre-treatment electricity consumption quartiles, Ecar: distribution of electric cars, IHD: dis-
tribution of IHD, </>150m2: distribution of housing size smaller/greater than 150m2. Columns
(3) - (11) sum to 100%. (Data source for </>150m2 and Fireplace is the summer 2019 survey
distributed to all households having accepted the IHD offer.)

Qrtile Bill diff. Q1 Q2 Q3 Q4 Ecar IHD <150m2 >150m2 Fireplace

q1 -144 5 16 32 48 43 36 26 39 35
q2 -54 13 32 32 22 14 29 27 31 31
q3 -23 39 32 18 11 14 17 26 13 18
q4 14 43 19 18 18 30 18 21 17 17

shows that the lowest-user households (Q1) are more likely to belong to the top bill difference

quartile (row 4) – 43% of households in Q1 pay on average 14 NOK more per month, while

48% of the highest users (Q4) save an average of 144 NOK/month (bottom bill difference

quartile). Interestingly, households with electric cars are most likely to be found in the

bottom quartile (saving an average of 144 NOK/month) and in the top quartile (losing an

average of 14 NOK/month). It may be due to the fact that electric car households are

both high-electricity users, with more scope for adjustment, and are also characterized by

higher incomes, possibly less inclined to make changes to their consumption habits. Indeed,

the correlation between having an electric car and belonging to the highest consumption

quartile in the pre-treatment period (Q4) is 0.3, while it declines monotonically to -0.1 for

the lowest consumption quartile (Q1). Households with IHD are unambiguously more likely

to save under the new CPP program, likely due to their high consumption and interest in

electricity consumption and price information. Drawing from a survey of the consumers

who received and accepted an IHD offer prior to the CPP program (representative of IHD

households but not necessarily of our sample; last three columns), households with larger

homes (above 150m2) or who have access to wood-heating are more likely to benefit from

the CPP program.
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6 Conclusions

This paper documents household electricity consumption response to critical peak pricing

(CPP). Leveraging detailed hourly electricity consumption data and in partnership with a

grid utility in Norway, we implement an RCT to estimate the effect of grid CPP on peak and

non-peak consumption across groups of consumers. This is the first study that specifically

examines time-varying grid pricing to address grid transmission congestion. As the retail

electricity spot price already reflects the real marginal cost of electricity generation, the

pricing of grid transmission capacity constraints stands as the remaining major cause of

pricing inefficiency in Norway. Second, along with Fowlie et al. [2017], this is the first

study to feature a default enrollment design with an opt-out option. This matters for the

estimation of demand elasticities that are representative of the broader population since it is

well-known that opt-in studies suffer from considerable sample selection bias [Harding and

Sexton, 2017]. Last, our treatment does not rely on the installation of real-time consumption

IHD, suggesting that CPP may be readily implementable without the need of additional

investments from regulators or utilities. Our findings reveal that all consumer groups reduce

their peak demand in response to CPP events, assuaging fears that CPP programs lead

to large redistributions among consumer groups. Unfortunately, we cannot satisfactorily

conclude whether peak demand may be further reduced by combining CPP events with

nudging and social norms. Further research is needed in this area.
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Internet Appendix

A Additional data description

Table A1 Descriptive statistics for the summer 2019 survey distributed to all households who
accepted the IHD offer in 2017.

Treatment Control
Mean SD Mean SD

# members in HH 2.72 (1.19) 2.77 (1.24)
1 0.13 (0.34) 0.14 (0.35)
2 0.38 (0.49) 0.36 (0.48)
3 0.19 (0.40) 0.19 (0.39)
4 0.20 (0.40) 0.19 (0.40)
5+ 0.09 (0.29) 0.11 (0.32)

Housing type
Detached house 0.78 (0.41) 0.80 (0.40)
Semi-detached/townhouse 0.16 (0.37) 0.13 (0.34)
Other 0.05 (0.22) 0.07 (0.26)

Surface area (m2) 180.97 (58.31) 181.88 (59.55)
<50 0.01 (0.09) 0.00 (0.06)
51-100 0.16 (0.37) 0.18 (0.38)
101-150 0.33 (0.47) 0.30 (0.46)
151-200 0.26 (0.44) 0.29 (0.45)
201-250 0.16 (0.37) 0.14 (0.35)
>251 0.07 (0.26) 0.09 (0.28)

Building year 1975.85 (31.83) 1972.28 (27.65)
Has been renovated (0/1) 0.59 (0.49) 0.59 (0.49)
Fireplace (0/1) 0.82 (0.38) 0.81 (0.39)
# cars 1.75 (0.67) 1.75 (0.68)

0 0.01 (0.12) 0.01 (0.09)
1 0.33 (0.47) 0.36 (0.48)
2 0.54 (0.50) 0.50 (0.50)
3+ 0.11 (0.32) 0.13 (0.33)

Electric or plug-in car (0/1) 0.15 (0.36) 0.12 (0.33)
Education

High-school 0.46 (0.50) 0.39 (0.49)
Bachelor degree 0.29 (0.46) 0.34 (0.47)
Graduate degree 0.25 (0.43) 0.27 (0.44)

N 324 627
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Figure A1 Cumulative distribution of the number of non-compliers. The nine CPP events are
depicted as dashed lines. By the end of the intervention, a total of 560 customers had requested to
be taken out of the treatment group. Of those, 390 (70%) did so prior to the first CPP event.
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Figure A2 Average hourly spot price by month (December to April) for the winters 2017-2018
(top left), 2018-2019 (top right), and 2019-2020 (bottom).
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Figure A3 Average daily temperature and spot price. Top panels show temperature and middle
panels show the spot price, while left panels show the November 2019 to May 2020 period with the
nine CPP events depicted as dashed lines, and right panels show the November 2017 to May 2020
period with 10 December and 28 April depicted as dashed lines in each year. Bottom panels show
temperature (left) and spot price (right) for each of the nine CPP events.
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B Additional results

For each specification in Table B1, CPP events are associated with a 0.15-log point reduction

in peak electricity consumption in the treatment group relative to the control group. This

is slightly higher than in the model with household fixed effects (Table 2). Again, across all

specification, there is no sign of load shifting to non-CPP hours, but rather a small persistent

reduction effect on the two days following a CPP event.

Treatment heterogeneity across households with or without electric cars is shown in

columns (3) and (5). Although electric car households consume more electricity (the co-

efficient for Ecar is 0.43 log points), their response to CPP is not significantly different from

non-electric car households for specifications without household fixed effects.

Load shifting to shoulder hours is shown in columns (4) and (5), without and with allowing

for heterogeneity across electric car households, respectively. Results in column (4) suggest

that the reduction in electricity consumption outside the peak hours on a CPP day largely

took place in the shoulder hours, with a reduction of 0.042 log points for the treatment group

relative to the control group. The reduction in electricity consumption in the shoulder hours

is not significantly different when examining the response of electric car households in the

treatment group (Treat × Shld × Day × Ecar; column (5)), consistent with Table 2 with

household fixed effects.
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Table B1 Effect of CPP events on log of hourly electricity consumption, without household fixed
effects. (1) and (2): Equation (1) both without and with temperature controls. (3): Equation
(1) with treatment heterogeneity across households with or without electric cars. (4) and (5):
Equation (2) with shoulder hours, both without and with electric car treatment heterogeneity. All
specifications include date and time of day (peak or non-peak) fixed effects. In columns (4) and
(5), time of day fixed effects consist of peak, non-peak, or shoulder hours.

(1) (2) (3) (4) (5)
Treat× Peak ×Day -0.153*** -0.152*** -0.151*** -0.152*** -0.151***

(0.014) (0.014) (0.014) (0.014) (0.014)
Treat×NPeak ×Day -0.015 -0.016 -0.019 -0.006 -0.010

(0.014) (0.014) (0.015) (0.015) (0.015)
Treat× Peak × Post -0.039*** -0.031** -0.033** -0.031** -0.032**

(0.014) (0.014) (0.014) (0.014) (0.014)
Treat×NPeak × Post -0.016 -0.018 -0.022 -0.018 -0.022

(0.014) (0.014) (0.015) (0.014) (0.015)
Peak 0.138*** 0.143*** 0.140*** 0.161*** 0.157***

(0.002) (0.001) (0.001) (0.002) (0.002)
Ecar 0.429*** 0.425***

(0.023) (0.023)
Treat× Peak ×Day × Ecar -0.024 -0.024

(0.038) (0.038)
Treat×NPeak ×Day × Ecar 0.054 0.053

(0.034) (0.035)
Treat× Peak × Post× Ecar 0.012 0.012

(0.033) (0.033)
Treat×NPeak × Post× Ecar 0.048 0.048

(0.034) (0.034)
Peak × Ecar 0.059*** 0.063***

(0.006) (0.007)
Treat× Shld×Day -0.042*** -0.042***

(0.003) (0.003)
Shld 0.065*** 0.064***

(0.001) (0.001)
Treat× Shld×Day × Ecar 0.002

(0.011)
Shld× Ecar 0.017***

(0.005)

temp No Yes Yes Yes Yes

R2 0.046 0.046 0.062 0.047 0.062
N 42,323,924 42,323,924 42,323,924 42,323,924 42,323,924

Note: Robust clustered standard errors at the household level in parentheses. * p<0.10, ** p<0.05, ***
p<0.01.
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Figure B1 Distribution of the average monthly bill difference (in NOK) between the actual bill
(with CPP) and the counterfactual bill (with control pricing) for consumers in the treatment group.
The dashed line indicates no difference.
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C Communication with customers in treatment group

C.1 Timeline overview
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Figure C1 Timeline overview of the CPP intervention and communication with the customers
in 2019-2020. The CPP intervention, depicted in red, consists of nine CPP events that took place
between December 10 2019 and April 28 2020. The last two CPP events also featured a social
comparison instrument. Sample selection and randomization was completed on October 23 2019,
prior to the experiment.
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C.2 First contact: Information sent in the mail in November

C.2.1 Letter about participation in the CPP program, with opt-out

 
 
 

 

 
 
Plass til adresse 
 
 
 
 

Pilotprosjekt for ny nettleiemodell 
 
Hei,  
 
Din husstand er tilfeldig plukket ut til å delta i vårt pilotprosjekt for ny nettleiemodell. Sammen med 
4000 av nettkundene våre får du fra 1. desember mulighet til å være med å teste og gi tilbakemeldinger 
på det som kan bli fremtidens nettleiemodell.  
 

Hvorfor? 
Måten vi bruker strøm på, og hvor mye strøm vi har behov for, er i endring. Elektrifisering av samfunnet, 
det vil si at stadig mer går på strøm, er et viktig og positivt klimatiltak. Ved økt strømbruk belaster vi 
kapasiteten i nettet stadig mer. Fortsetter vi å øke forbruket vil det være behov for å øke kapasiteten, en 
investering som er kostbar og som øker nettleien. Målet vårt er at denne nye modellen skal hjelpe oss 
alle med å få et mer bevisst forhold til hvordan vi bruker strøm, slik at vi unngår kapasitetsutfordringer 
og unødige kostnadsøkninger. 
 

Hva betyr dette for meg? 
Som pilotkunde får du bedre mulighet til å spare nettleie enn med tidligere prismodell. Det vil i praksis si 
at du, gjennom et bevisst forhold til eget strømforbruk, kan påvirke hvor mye du bruker og hvor mye 
strømregningen kommer på. Du får også mulighet til å gi tilbakemeldinger og innspill underveis slik at vi 
sammen kan skape en god modell som kan bidra til at vi unngår store investeringer i fremtiden. Om vi 
klarer å utnytte den gode kapasiteten vi allerede har gjennom hele døgnet, vil vi sammen klare å holde 
igjen investeringer som også påvirker nivået på nettleien. 

 

Hva skjer videre? 
10 dager i året blir du varslet på SMS i forkant av en dag med peaktimer mellom klokken 16.00 og 
22.00. Dette gjelder hovedsakelig i vintermånedene hvor vi bruker mest strøm og kapasiteten er minst. 
Dersom du er bevisst strømforbruket ditt i peaktimene og gjør noen sparetiltak vil du spare penger. Om 
du ikke gjør noen tiltak og bruker strøm som vanlig vil nettleien koste omtrent like mye som før. Bruker 
du mer strøm enn du pleier i peaktimene må du belage deg på at det vil koste deg ekstra.  
 
Med varsling i forkant av dager med peaktimer håper vi at vi kan oppfordre og inspirere til å bruke 
mindre strøm når kapasiteten er begrenset og prisene er høyere. Vi håper du vil bli med oss videre i 
prosjektet og hjelpe oss med å bygge fremtidens prismodell! Gjennom deltagelse i prosjektet gjør du oss 
i bedre stand til å levere bedre tjenester fremover, samtidig som du påvirker din egen strømregning. 

 
Kontaktinformasjon på baksiden    
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Kontakt oss 
Har du har spørsmål eller kommentarer til prosjektet eller nettleiemodellen – ikke nøl med å ta kontakt! 
Du kan ta kontakt med oss når som helst i pilotperioden, så hjelper vi deg med det du måtte lure på.  
 
Om du ikke ønsker å delta ber vi deg kontakte oss på 32 11 96 72, så vil kundesenteret vårt hjelpe deg. 
 
Du kan også lese mer om prosjektet på www.ringerikskraftnett.no/pilot  
 
Åpningstider 
Ring kundesenteret på 32 11 96 72 
Vi holder åpnet mandag til fredag kl. 08:00 til 16:00 
Fra 25.11 til 6.12 har vi utvidet åpningstid på telefon 32 11 96 72 til klokken 18:00 
 
 
 
Med vennlig hilsen 
 
Live Dokka 
Prosjektleder for pilotprosjektet 
 
Jan-Erik Brattbakk 
Nettsjef Ringerikskraft Nett 
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English translation

Your household has been randomly selected to participate in our pilot project for a new grid

rental model. Together with 4,000 of our customers, you will from December first have the

opportunity to take part in testing and giving feedback on what may be the utilities grid

rental model of the future.

Why? The way we use electricity and how much electricity we need is changing. Elec-

trification of society, ie, more and more electricity, is an essential climate measure. With

increased power consumption, we are increasingly straining the capacity of the grid. If we

continue to increase consumption, there will be a need to increase capacity. This costly

investment increases grid rent. Our goal is for this new model to help us all have a more con-

scious relationship with how we use electricity to avoid capacity challenges and unnecessary

cost increases.

What does this mean for me? As a pilot customer, you get a better opportunity to save

on grid rent than with the previous pricing model. In practice, this means that you, through

a conscious relationship to your electricity consumption, can influence the electricity bill

costs. You also get the opportunity to give feedback and input along the way so that we can

create a better model to avoid large investments in the future. If we manage to utilize the

capacity we already have throughout the day, we will be able to hold back investments that

will affect the grid rent.

What happens next? Nine days during the year, you will be notified by SMS in advance

of a peak day with peak hours between 16.00 and 22.00. This applies in the winter months

where we use the most electricity, and the capacity is stretched. If you are aware of your

electricity consumption during peak hours and take some saving measures, you will save

money. If you do not take any measures and use electricity as usual, the grid rent will cost

about as much as before. If you use more electricity than you usually do during peak hours,

you have to be aware that it will increase your cost.

With notice in advance of days with peak hours, we hope that we can encourage and

inspire to use less electricity when capacity is stretched, and prices are high. We hope you

will join us in the project and help us build the future pricing model! By participating in
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the project, you enable us to deliver better services in the future, at the same time as you

influence your electricity bill.

45



C.2.2 Two-sided brochure

NY PRISMODELL

Bruk mindre når
det koster mer
Med bevisst strømbruk kan vi unngå begrenset 
kapasitet og kostnadsøkninger. 

/ŕĚŒƥƑĿǶƙĚƑĿŠĳĚŠ�îǄ� 
samfunnet
Hvordan kom vi hit?
/ŕĚŒƥƑĿǶƙĚƑĿŠĳĚŠ�ĲƇƑĚƑ�ƥĿŕ�ƇŒƥ�ċĚŕîƙƥŠĿŠĳɇ�eŕūŒŒĚŠ�Ȃȇɍȁȁ�
kommer alle hjem fra jobb og skole. Elbilene lades, 
huset varmes opp, du tar en dusj, tørketrommel og 
oppvaskmaskinen går og middagen står i ovnen. Når alle 
bruker mye strøm samtidig, kan det enkelte dager oppstå 
kapasitetsutfordringer.

Økt forbruk belaster kapasiteten i nettet – og 
kapasiteten er ikke uendelig.
Dette gjelder i hovedsak på kalde dager og i ettermiddags-
timene. Fortsetter vi å øke forbruket på disse dagene, og 
om alle f.eks. lader elbilen på ettermiddagen, så vil det 
være behov for å gjøre store investeringer. Investeringer i 
økt kapasitet er kostbart og vil øke nettleien. 

Peaktimer og prising
Jo mer strøm du bruker, jo høyere blir strømregningen. 
Slik er det i dag, og slik vil det naturlig nok alltid være. 
Med den nye modellen er det lettere å spare penger enn 
tidligere.
 
¹îƑ�ēƭ�ĺĚŠƙǋŠ�ƥĿŕ�ƎĚîŒƥĿŞĚŠĚ�ƙūŞ�ŒūŞŞĚƑ�Ȃȁ�ēîĳĚƑ�
i året og justerer strømbruken, så påvirker du direkte 
sluttsummen på regningen. Forskjellen mellom en vanlig 
ettermiddag og en ettermiddag med peaktimer kan se 
ƙŕĿŒ�ƭƥɇ�
 
En vanlig tirsdag i november uten peaktimer (off peak) 
ŒūƙƥĚƑ�ƙƥƑƇŞŞĚŠ�Ȃ�ŒƑɓŒØĺɃɍ�/ƥƥĚƑŞĿēēîĳĚŠ�ĚƥƥĚƑ�ĚƑ�ēĚƥ�
ƎĚîŒƥĿŞĚƑ�ŞĚŕŕūŞ�Ȃȇɍȁȁ�ūĳ�ȃȃɍȁȁɍ�'î�ŒūƙƥĚƑ�ƙƥƑƇŞŞĚŠ�
Ȃȁ�ŒƑɓŒØĺɍɃ
 
eîŠ�ēƭ�ƭƥƙĚƥƥĚ�Ć�ċƑƭŒĚ�ƥƇƑŒĚƥƑūŞŞĚŕĚŠ�ūĳ�ŕîēĚ�ĚŕċĿŕĚŠ�
ŞĿēƥ�Ŀ�ƎĚîŒƥĿŞĚŠĚ�Ȃȁ�ēîĳĚƑ�Ŀ�ĆƑĚƥɎ�'î�ǄĿŕ�ēƭ�ƙƎîƑĚ�ƎĚŠĳĚƑ�
og samtidig sørge for mindre belastning på strømnettet 
når kapasiteten er minst. 

Peaktimene vil alltid være varslet, og du kan selv velge 
om du ønsker å gjøre tiltak eller ikke. Siden nettleieprisen 
går ned på alle andre dager enn peakdagene, så vil du 
fortsatt ende opp med tilnærmet lik total nettleie som 
ƥĿēŕĿĳĚƑĚ�ŞūēĚŕŕ�ēĚƑƙūŞ�ēƭ�ĿŒŒĚ�ƇŠƙŒĚƑ�Ć�ǷǋƥƥĚ�ĲūƑċƑƭŒĚƥɍ
 

À¹×TegTsH/s

Bedre sammen
Hva kan vi gjøre sammen for å unngå dyre
investeringer? Sammen med kundene våre vil vi 
undersøke hvordan vi kan bygge opp best mulig ordning 
for nettleie for både kundene, samfunnet og nettselskapet. 
Om vi i fellesskap blir mer bevisst strømbruken vår 
og fordeler den mer utover døgnet, kan vi unngå 
kapasitetsutfordringer. 

¤ĿŠĳ�Ȅȃ�ȂȂ�Ȋȇ�Ȉȃ�ĲūƑ�ĺĚŠǄĚŠēĚŕƙĚƑ�ūŞ�ƎĿŕūƥƎƑūƙŏĚŒƥĚƥɍ�gĚƙ�ŞĚƑ�ƎĆ�ringerikskraftnett.no/pilot

~Ş�ēƭ�ċƑƭŒĚƑ�ƥƇƑŒĚƥƑūŞŞĚŕ�Ȃ�ƥĿŞĚ�ūĳ�ŕîēĚƑ�ĚŕċĿŕĚŠ�ƎĆ�Ȉ�ŒØ�Ŀ�ƥƑĚ�ƥĿŞĚƑ�ċƑƭŒĚƑ�ēƭ�ūŞƥƑĚŠƥ�ȃȄ�ŒØĺɍ

I peaktimene vil det koste 230 krɃOff peak vil det koste 23 krɃ

*Prisen på 1 kr/kWh og 10 kr/kWh er en gjennomsnittspris på både strøm og nettleie. Årsaken er at strømprisen varierer 
fra time til time. Nettleien varier kun mellom vanlig pris (off peak) og peaktimer. 
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Reduser mengden 
strøm til oppvarming 
fra panelovner og
varmekabler
! eîŠ�ēƭ�ƙŒƑƭ�ŠĚē�ƥĚŞƎĚƑîƥƭƑĚŠ� 
en grad eller to i rom du ikke bruker 
ƙĆ�ūĲƥĚɎ�/ŕŕĚƑ�ƎƑūĳƑîŞŞĚƑĚ�ūǄŠĚŠĚ�
ƥĿŕ�ċĚƙƥĚŞƥĚ�ƥĿēƙƎƭŠŒƥĚƑ�îǄ�ēƇĳŠĚƥɎ�

! Med varmepumpe kan du få mer varme med mindre 
strøm.

! På kalde dager kan det være lurt å fyre med ved om 
man har mulighet til det.

Alle trenger 
varmtvann, men 
klarer du å spare 
ŕĿƥƥɎ
! Å fylle et helt badekar
bruker mye mer varmtvann 
ĚŠŠ�ĚŠ�ēƭƙŏɍ�eƭƥƥĚƑ�ēƭ�ŠĚē�
antall dager med badekar,  
så kan du spare mye på  
strømregningen.

! eîŠ�ŠūĚŠ�îǄ�ēƭƙŏĚŠĚ�Ŀ�ŕƇƎĚƥ�
av uken gjøres unna på noen få minutter 
ĲƑĚŞĲūƑ�ĚŠ�ĺîŕǄƥĿŞĚɎ�'î�ĚƑ�ēĚƥ�ŞǋĚ�Ć�ƙƎîƑĚɊ

! Har du tatt oppvasken fremfor å sette i gang opp-
ǄîƙŒŞîƙŒĿŠĚŠ�ĲūƑ�Ć�ƙƎîƑĚ�ƙƥƑƇŞɎ�'Ěƥ�ĚƑ�ĿŒŒĚ�ƙĿŒŒĚƑƥ�ēĚƥ�
var lønnsomt. Oppvaskmaskiner er energieffektive, og 
man bruker gjerne mye varmtvann ved oppvask for hånd. 
Husk heller å fylle opp maskinen før du starter den.

Lad elbilen 
på natten
! Elbilen trekker 

mye strøm når den 
lader. Lad gjerne på

natten når resten
av strømforbruket 

er lavt.

eîŠ�ēƭ�ƙƥǋƑĚ�ǄîƑŞĚŠɎ
! eîŠ�ēƭ�ǄîƑŞĚ�ūƎƎ�ĺƭƙĚƥ�ŕĿƥƥ�ĲƇƑ�ēƭ�ŒūŞŞĚƑ�ĺŏĚŞ�
ĲƑî�ŏūċċɎ�'î�ŒîŠ�ēƭ�ƙĚŠŒĚ�ƥĚŞƎĚƑîƥƭƑĚŠ�ŕĿƥƥ�ƎĆ�ĚƥƥĚƑ-
middagen når strømmen gjerne er litt dyrere enn på 
dagtid. Og kanskje også holde varmen med vedfyring.

! En del varmepumper kan styres. Sjekk om du kan 
programmere din til bestemte tider av døgnet.

! Skal du ha ny varmt-
ǄîŠŠƙċĚƑĚēĚƑɎ�'Ěƥ�ŒūŞ-
mer stadig nye løsninger 
på markedet som er 
smartere og mer effektive 
enn tidligere modeller.

Nyttige sparetips
'Ě�îŕŕĚƑ�ǷĚƙƥĚ�ŒîŠ�ƥĚŠŒĚ�ƙĚĳ�Ć�ƙƎîƑĚ�ƎĚŠĳĚƑ�ƎĆ�Ć
bruke mindre strøm, men er usikker på hvordan
de gjør det samtidig som de skal få hverdagen
til å gå rundt. Her er noen tips til sparing 
som skal opprettholde komforten.
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C.3 Second contact: Email sent on December 6th, one week prior

to the first CPP event

Hei, 

  

Takk for at du er deltaker i prosjektet vårt for ny prismodell. Sammen med 4000 av kundene 
våre tester vi ut om en prismodell tilpasset etterspørsel og kapasitet i strømnettet kan gjøre 
oss mer bevisst egen strømbruk. Det kan bidra til at vi unngår kapasitetsutfordringer noen få 
timer i døgnet, og at vi utnytte den gode kapasiteten vi har totalt sett gjennom døgnet. 

Kaldere dager gir økt forbruk 

Det går mot kaldere tider, og vi ser at forbruket i nettet øker. Vi forbereder oss derfor på at 
det kommer en dag med peaktimer mellom kl. 16 og 22 neste uke. I disse timene er prisen på 
nettleien høyere, og ved å gjøre noen sparetiltak kan du både spare penger og fristille 
kapasitet i strømnettet. Alle andre timer som ikke er peaktimer er prisen lavere enn den 
vanlige nettleien. 

Vi varsler på SMS dagen før slik at du og din husstand er forberedt og har mulighet til å 
planlegge. Som en ekstra påminnelse sender vi også en SMS rett før timene med høyere 
nettleiepris starter. 

I desember vil det bli gjennomført to dager med peaktimer før jul, og deretter blir det to 
dager hver måned til og med april. 

I brevet du har fått i posten og på nettsidene våre har vi lagt ut noen sparetips og 
priseksempler. Det betyr ikke at du skal bekymre deg for å bruke strøm som normalt i disse 
timene, men for de av dere som ønsker å spare og ønsker å vite mer om hvilke tiltak som 
betyr mest, så er det verd å lese. Og husk, bruker du strøm som vanlig vil den totale 
strømregning bli omtrent lik som du er vant til. 

Sparetips til peaktimer 

•         Kan du redusere temperaturen i rom du ikke bruker så ofte eller programmere oppvarmingen til 
bestemte tidspunkter på døgnet? 

•         Kan du fyre med ved? 
•         Ta en kort dusj fremfor å fylle hele badekaret. 
•         Kan du planlegge noe av klesvasken utenom? 
•         Kan du lade elbilen på natta? 

Elsikkerhet er viktig for oss. Sparetipsene våre er ikke en oppfordring til å flytte alt forbruk til 
natten. Om du har elbil og lader den hjemme er det viktig at du benytter godkjent ladepunkt 
for elbil. 

Ta kontakt med oss ved spørsmål og tilbakemeldinger. Dine innspill er viktige for oss, og blir 
en del av prosjektvurderingen. 

Åpningstider 

Kundesenteret holder åpent mandag til fredag kl. 08:00 til 16:00  

Tlf. 32 11 96 72 
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C.4 SMSs sent to the treatment group

Figure C2 Example of SMS sent one day prior to a CPP event (left) and SMS reminder sent
on the day of the CPP event (right). English translation: (Left) Hi, tomorrow there will be peak
hours 16h-22h. You will save money if you reduce your electricity consumption during these hours.
We care about safety - thus we do not encourage you to shift your electricity consumption to when
you are asleep. Best regards, Ringerikskraft Nett. (Right) Hi, let us remind you about peak hours
from 16-22 today. Here you can find tips on how to save electricity www.riknett.no/pilot. Best
regards, Ringerikskraft Nett.

Figure C3 Example of SMS sent one day prior to a CPP event with information feedback +
social comparison. English translation: Hi, tomorrow there will be peak hours 16-22h. You will
save money if you reduce your electricity consumption during these hours. On the previous peak
day on day/month you used 15 kWh from 16-22h, compared to 17.47 kWh on the day prior to that
peak day. The average change in consumption for all customers was -10,48%. We care about safety
- thus we do not encourage you to shift your electricity consumption to when you are asleep. Best
regards, Ringerikskraft Nett
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