
 

Economics of Digitization 
Munich, 19 – 20 November 2021 

 
Algorithmic Recommendations and Human 

Decisions: Evidence from Hotel Pricing 
Daniel Garcia, Juha Tolvanen, Alexander K. Wagner 

 



Algorithmic Recommendations and Human

Decisions: Evidence from Hotel Pricing∗

Daniel Garcia⊕ Juha Tolvanen	 Alexander K. Wagner⊗

October 18, 2021

Abstract

We study the interaction between algorithmic advice and human decisions in

the context of dynamic pricing in hotels. We provide evidence of adjustment costs

and inertia that induce a conflict of interest between the human manager and the

algorithmic advisor, resulting in biased recommendations and suboptimal decisions.

We develop a simple structural model of advice that is consistent with the data and

allows us to quantify the losses from this bias as well as the benefits from a potential

shift into a fully automated algorithmic pricing system.
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1 Introduction

Organizations rely increasingly on algorithmic systems to make decisions. Examples range

from hiring policies at tech firms (Hoffman et al., 2018) to bail decisions by judges in Florida

(Kleinberg et al., 2018). Algorithmic systems are particularly prominent in pricing, both in

online platforms (Chen et al., 2016) as well as in traditional markets (Assad et al., 2020). In

a large fraction of these applications, however, human managers retain final decision rights

and machines act as mere advisors. As the literature on advice shows,1 algorithmic advice

will be effective only to the extent that the incentives of the human and the machine are

sufficiently aligned. In this paper, we study algorithmic recommendations in hotel pricing,

identify a source of misalignment, and show that it leads to suboptimal decisions.

To do so, we leverage a proprietary dataset that contains approximately 5.5M prices for

a number of hotels over a period of just under a year. Hoteliers have access to algorithmic

price recommendations provided by an external revenue management services company.

Because of time constraints, managers change prices only infrequently (roughly once a

month). Algorithmic recommendations change much more often, which inevitably leads to

divergence between prices and recommendations. We show that this wedge induces a moral

hazard problem since the algorithm would like to motivate the manager to change prices

more frequently. We show that the algorithm optimally exaggerates its private information

to incentivize faster updating, leading to substantial welfare losses. We finally perform a

counterfactual exercise where decisions are fully delegated to the machine and show that

it significantly outperforms the current arrangement for most hotels.

We begin our analysis by establishing three empirical patterns. First, price updates are

rare. On average, managers update prices for a particular room-arrival-date combination

once every month. Second, managers often update the price to exactly match the recom-

mended price (85%), and they are even more likely to do so when the recommendation’s

cumulative change since the last update is large (95% if it exceeds 10%). Third, whenever

1See Sobel (2013) for an excellent summary of the vast literature. In Section 2 we discuss the contri-

butions of our study to this literature.
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managers depart from the price recommendation they still tend to incorporate it in the

price, but they do so imperfectly. A one-percent increase in the recommendation leads to

a 0.72 percent increase in the expected price, provided that the two are different.

To make sense of these findings, we build a simple model of information processing that

mimics the environment faced by our managers. In our model, managers display limited

attention to price changes and face adjustment and information processing costs.2 We

assume that the manager observes (for free) the current price and the price recommendation

for that particular product (a specific room-arrival-date combination). She then decides

whether to keep the current price (at no additional cost) or to put some attention to this

specific price (at a positive cost). If she chooses the latter, she gets to observe a private

signal about the specific demand and cost conditions of this product. At that point, the

manager has to decide whether to adjust the price to equal the recommendation (at no

additional cost) or to proceed further and acquire more information before making her

final decision (incurring a further cost). This timeline is motivated by the distinctive

features of the dashboard displayed to the hoteliers, which makes it easy to implement

the recommendation, and requires hoteliers to access a different tab in order to manually

update the price.

The model is able to match the empirical patterns discussed above. For each realization

of the recommendation, there exists a cutoff cost such that the manager devotes attention

to this price only if her cost shock is lower than that cutoff. This cutoff is increasing in

the size of the recommendation, as larger deviations motivate higher effort. As a result

the expected cost draw, given that the manager puts attention to a price is increasing in

the recommendation size. This induces positive selection and helps explain the increased

likelihood of matching the recommendation as the cumulative change grows. Finally, if

the hotelier believes that the recommendation is biased (exaggerated), she will be more

2There is a large literature in macroeconomics that studies adjustment and information processing costs

in price setting. Our model is closest to Alvarez et al. (2011), which includes both types of frictions. The

main difference is that we study a static model. As we argue in Section 4, the data is consistent with static

optimization.
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likely to depart from it when her private information suggests a change in a different

direction (say increase rather than decrease). Thus the hotel manager is more likely to

set her own price when her private information contradicts the direction of change in the

recommendation. This pattern, which we call negative selection, further dampens the pass

through. To sum up, the model is able to generate the somewhat counterintuitive pattern

of a high unconditional copy rate combined with considerably dampened pass-through of

recommendations when the hotelier sets her own price.

The crucial component of the model is, therefore, the perceived bias in the recommen-

dation. We rationalize this bias as the endogenous outcome of the interaction between the

algorithm (or its coder) and the hotelier. We posit that the algorithm wants to induce

optimal decisions and has correct expectations about the hotelier’s response to different

recommendations. The algorithm secretly chooses a reporting strategy which, for simplic-

ity, we assume to be a linear factor that multiplies the change in the privately observed

component of the price. If this factor is above one, the algorithm would exaggerate her

private information, while if it was below one it would be dampening it. In equilibrium,

the hotelier has correct beliefs about this factor and, therefore, forms correct expectations

about the private information held by the algorithm. Because the hotelier often chooses a

price that exactly matches the recommendation, this distortion translates into suboptimal

decision-making.

The model provides a good fit for the data. We recover the parameters using a minimum

distance estimator and imposing the equilibrium condition on the resulting bias component.

For the whole sample of hotels, the bias factor we identify is 1.25, which is significantly

higher than one but also lower than the naive estimate of 1.38 necessary to explain the low

pass-through in a model without selection. There is, however, considerable heterogeneity

across hotels with estimates ranging from 1 to 1.5. We also find that hoteliers’ information

is more volatile than the information held by the algorithm, but since this information is

only rarely used it shows very high costs of information processing. This translates into

inaccurate decisions: the standard deviation of the difference between the optimal price

and the realized price is larger than the standard deviation of the price we observe in the
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data.

A natural implication of these results is that delegation may improve decision-making.

Delegation has some obvious benefits (instantaneous and costless decisions) but also some

costs: the information privately held by the manager is no longer part of the decision. In

addition, it eliminates the moral hazard friction and therefore results in aligned preferences.

We show that for a majority of hotels in our sample, delegation would reduce losses by

about 10%. Out of these gains, the majority comes from more frequent decisions (70%),

while the rest comes from de-biasing (15%) and costless information processing (15%).

2 Related Literature

There exists a vast theoretical literature on strategic advice in economic organizations.3 In

the canonical setup, an informed agent communicates with an uninformed principal who

has to make a decision that affects both the agent and the principal’s payoffs. The agent

and the principal have only partially aligned interests in that, conditional on the realized

state of the world, they disagree on the optimal action. Instead, we focus on the principal’s

attention as the source of disagreement. We believe this is a relevant consideration in

many organizations, whereby decision makers’ span-of-control may greatly exceed that of

the agents with whom they communicate. In the context of the interaction between human

decision-makers and machine advisors, this is almost certainly guaranteed to occur, as the

attention cost of the machine is infinitesimal compared with that of the human. In the spirit

of Aghion and Tirole (1997) machines hold real authority as the principal’s information

processing costs greatly exceed those of the algorithm.

A similar tension arises in (Kartik et al., 2007), who introduce a cheap talk model

in which a fraction of the audience is naive and takes the message at face value. In

3See Sobel (2013) for a recent survey on communication, focusing mostly on cheap-talk messages.

Kamenica (2019) provides an overview of recent advances in bayesian persuasion and information design,

where the sender can commit in advance to an information structure. Our model lies somewhere in

between, as the agent chooses a linear reporting strategy but can secretly deviate from it.
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equilibrium, senders exaggerate their claims so that the marginal incentive to misrepresent

their information to sophisticated receivers equals the cost they bear on the naive ones.

In our case, all receivers are sophisticated, but behave as if they were naive in order to

economize attention costs. Our structural model includes this trade-off but takes into

account that the attention decision is endogenous.

To the best of our knowledge, there exist only two papers that explicitly incorporate

inattentive decision-makers in a model of advice. Agrawal et al. (2019) studies the impact

of artificial intelligence in human decision making in a setting where the principal has to

choose whether to implement a new project with uncertain costs and benefits and has

access to (truthful) information provided by a machine (à la Aghion and Tirole, 1997).

In the presence of a large number of different projects, the human will tend to focus her

attention on those with higher stakes and fully delegate decision-making to the machine in

those with lower stakes. In our setting, we observe hoteliers choosing a price that exactly

matches the recommendation (akin to delegation, or rubber-stamping) more often precisely

when the recommendation departs less from the status quo. The key insight, however, is

that even rubber-stamping requires some attention from the principal as opposed to fully

automated decision-making.4

Bloedel and Segal (2020) study a persuasion model where the principal is subject to

rational inattention. Just like in our setting, inattention induces a sort of moral hazard

problem that leads the advisor to distort her messages as a way to motivate the principal

to pay attention. They show that it is optimal to fully disclose messages only when stakes

are low and instead pool medium and high stakes. In the present study, we consider only

linear reporting strategies and leave the full-fledged analysis of the sender for future work.5

More broadly, we contribute to the empirical literature on strategic communication

4In the algorithmic pricing industry, some companies offer an arrangement similar to that suggested in

Agrawal et al. (2019). The algorithm directly implements changes if they are within a certain range of the

target price, while human approval is needed if the suggested price falls outside that range.
5We do not observe any form of pooling or bunching in the data, whether in levels or in logs. On

average, prices set manually by the hotelier increase continuously in the recommendation.
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in organizations.6 We are aware of two papers that use equilibrium analysis to identify

strategic communication behavior. Backus et al. (2019) provides evidence of strategic

communication in bargaining in an online marketplace, where impatient sellers use round

numbers in their posted price as a signaling device. Camara and Dupuis (2014) study

movie reviews through the lens of a reputational cheap-talk model, uncovering a significant

conservative bias. Our setting has a number of advantages. First, both the sender and

the receiver are professional and face serious financial consequences from their actions.

Second, there is an obvious mapping between messages and recommended actions. Third,

the action space is sufficiently rich that we can directly identify the posterior beliefs of the

receiver whenever she chooses a price that departs from the recommendation.

We also contribute to the literature on algorithmic bias and human decision-making.

Most of these papers consider algorithmic predictions as potential substitutes of human

experts, and assess potential advantages (accuracy, speed) and disadvantages (algorithmic

bias or negative perception of third-parties).7 An exception is Bundorf et al. (2019) who

study the impact of algorithmic recommendations on the purchasing decision of health in-

surance plans among the elderly. Just like in our setup, human inertia is a major concern

but the algorithmic recommendation is assumed to be non-strategic. Our study suggests

that assuming truthful recommendations as a counterfactual scenario may be neither op-

timal nor realistic.

3 Data and Institutional Background

Our data set contains more than 5 million observations of hotel-room pricing informa-

tion and the corresponding universe of about 60 thousand bookings, all aggregated at the

6There is a growing literature that empirically studies persuasion, from advertising to mass media (see

DellaVigna and Gentzkow (2010) for an excellent summary.) The large majority of these papers focus on

identifying the persuasion effect (or lift ratios). Instead, we attempt at uncovering the economic incentives

underlying persuasion and explore counterfactual arrangements that would improve decision-making.
7Some examples of papers in this vein include Hoffman et al. (2018), Kleinberg et al. (2018), Ribers

and Ullrich (2019), Chan Jr et al. (2019) and Currie and MacLeod (2017).
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daily level. This high-resolution proprietary data set was made available by our corporate

sponsor, whose identity is withheld by request. The corporate sponsor is based in Central

Europe and provides a number of revenue management services, including price recommen-

dations, to a large number of independent hotels. The rate and booking data comes from

9 different hotels, eight of which are located at resort destinations (A-H), and one in an

urban area (hotel I). Our data contains bookings and prices for each hotel over a period of

about 14 months. For each potential arrival date, we observe the flow of bookings, actual

rates charged by the hotel, and rates recommended for every room by the revenue manage-

ment company. The actual rate can be thought of as an index price set by the hotel. It is

modified by pre-specified and channel-specific discounts or fees and is then pushed to each

channel in which the product is offered. Both the revenue management system (which we

shall refer to as the algorithm) and the hotelier use this variable as the main instrument

for price optimization.8

A crucial input to our analysis is the recommended rate provided by the algorithm.

The revenue management company offers an algorithmic price recommendation service

with the objective to maximize the client’s revenue through optimized pricing. For price

optimization, the revenue management company has access to all bookings from a hotel on

a real-time basis, as well as additional demand-related information such as local variation

in weather conditions, events, public holidays, hotel reputation, competitor prices, etc.

In addition, the revenue manager and the hoteliers are regularly exchanging information

about local demand conditions. Hoteliers are trained to transmit private information

about local demand shocks to the revenue management company. The company combines

all relevant information and feeds it into its proprietary pricing algorithm to produce a

rate recommendation for each product of the hotel.9

8See Garcia et al. (2021) for more details.
9We do not have access to the company’s proprietary pricing algorithm. A common concern in com-

petition policy is that algorithmic pricing can be used to coordinate with competitors. We believe that

coordination through algorithmic pricing is not much of a concern in our context. Given the highly frag-

mented nature of the industry, the number of hotels that use recommendations from our corporate sponsor

is very small (≤ 1%) compared to the size of the industry in the considered regions.
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The hotelier decides every day whether to log into the system. If she does, she observes

the current rate recommendation for each room and then decides which rates to update

and by how much. After manual confirmation by the hotelier, updated actual rates are

pushed from the algorithm to the hotel’s property management system and distribution

channels (mostly OTAs). Although the hotels in our data are typical for their respective

regions, with about 50 rooms per hotel they are relatively small by international standards.

Most of them are family-run which means that the manager’s job description includes

many responsibilities beyond revenue management. From private communications with

the revenue management company, we learned that managing prices takes only a small

fraction of a hotelier’s weekly work schedule.

For most of our analysis, we will rely on recommendation and price changes as the

main variables (see Table 1). From the panel of daily rates, we construct the first dif-

ferences in the log price and define an update whenever this difference is non-zero. We

define the change in the recommendation to be the change in the logarithm of the algo-

rithm’s recommended price since the last update. We restrict the sample to include only

those observations in which the initial price matched the recommendation. This allows

us to interpret differences between the final price and the recommendation as differences

in the current information processing. It has the additional benefit of removing any feed-

back effects from past prices into future recommendations. The resulting sample includes

approximately 52% of observations and 64% of the price updates.

4 Stylized Facts and Relationship to Literature

In this section we present a selection of empirical patterns from the data that we think are

important and that allow us to pin down the right model. In this section we pool together

observations from all hotels but these features hold (qualitatively) for all hotels in our sam-

ple.

Prices adjust infrequently relative to recommendations
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The first observation is that actual rates change only infrequently. On average, we ob-

serve a price change every 35 days, but there is considerable heterogeneity across dif-

ferent hotels (see Table 1). Algorithmic recommendations change much more frequently

(every week or so), which inevitably leads to a disparity between both. This inertia is

also reflected in the distribution of price changes, as there are relatively few observa-

tions around 0 (see Figure 2). Both of these patterns indicate that the hoteliers are

facing considerable adjustment and information costs (Nakamura and Steinsson, 2008).

The update rate is positively correlated with the change in recommendation

Larger changes in the recommendation are associated with a higher likelihood of a price

update, as depicted in Figure ??. For instance, if the algorithmic recommendation has not

changed since the last time that the hotelier updated the price, the probability of an up-

date is less than 1%, while if the current recommendation is not within a ten-percent band

of the original, this probability exceeds 11%. This implies that recommendations contain

important information. Furthermore, the adjustment costs that the hoteliers face are not

limited to opportunity cost of sitting down at the computer to check the recommendation.

The hotelier must face an additional adjustment cost after observing the recommendation

to choose not to update the price every time they observe the recommendation changing.

The probability that the updated price matches the recommendation is increas-

ing in the change in the recommended price

Conditional on an update, hotel managers are very likely to update the price to exactly

match the recommendation. On average, around 85% of the price changes result in a price

that equals the current recommendation, with small differences across hotels. This percent-

age is even higher if we condition on a large change in the recommendation (see Figure 4).

In particular, whenever the recommendation change exceeds 10%, the hotelier will choose

a price that exactly matches the recommendation with 95% probability. To the extent

that the algorithm would prefer the manager to change prices more often and more inten-

sively (see below), this pattern is inconsistent with off-the-shelf models of advice, whereby
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the influence of the adviser decreases when making more extreme recommendations .10

The hazard rate of updates is (approximately) constant

There is a large literature on price adjustment in macroeconomics, whereby firms engage

in forward-looking optimization. Most of the literature fits into two camps: exogenous and

endogenous adjustment decisions. If the timing of adjustment is exogenously determined

we expect the time since the last update to follow a exponential distribution (as discussed in

Alvarez et al. (2016)). If instead the adjustment is endogenous, we would typically observe

an initial inaction period, followed by a discrete jump in the probability. In our data, the

hazard rate of updates is almost perfectly constant, aligning with the predictions in the first

camp (see Figure 3). Because the cross-sectional variation of updates can only be explained

by endogenous adjustment (see above), we will consider a static optimization framework.11

The changes in the recommendation are only partially passed through to real-

ized prices

If the interests of the hotelier and the revenue manager are perfectly aligned and the

hotelier’s arrival of private information is uncorrelated with the direction of that private

information, one would expect that on average a one Euro increase (decrease) in the rec-

ommendation would bring about a one Euro increase (decrease, respectively) in the price.

The realization of the difference between the two would then represent the additional, id-

iosyncratic information held by the manager.12 Instead. we observe a pass-through rate of

around 72% (see Table 2). In other words, when hoteliers manually update their prices the

10This feature manifests itself in different shapes across different models. In cheap-talk games, it results

in less precise communication. The same comparative static holds in games that introduce reputational,

moral or strategic concerns of lying (Kartik et al., 2007). strategic concealment and disclosure (Aghion

and Tirole, 1997) this leads the principal to maintain decision rights.
11Notice that the typical hotel in our data has roughly 2000 different products (different rooms for

different dates) on a given day. It is probably very difficult for her to keep track of her previous updates

and framing the problem as static is likely to provide a good approximation.
12See Appendix ? for details.
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average price change dampens the recommended price change. Including various controls

(room type-arrival week fixed effects and a polynomial of the days before arrival) leads to

a modest increase in the estimated coefficient (73%). It follows that hoteliers’ must believe

that the revenue managers’ algorithm exaggerates the optimal price change (on average).

Interestingly, the (unconditional) relation between recommnedations and prices is al-

most perfectly linear (see Figure 1). This fact is inconsistent with equilibria in traditional

cheap-talk models, which display discontinuities/bunching to ensure incentive compatibil-

ity. It is also at odds with mutlidimensional models of communication in which the size of

the recommendation change signals the quality (precision) of the information held by the

advisor –thus inducing a higher likelihood of copying when the recommendation is further

from the current price. As the size of the recommendation change increases, the marginal

impact on the posterior belief of the manager should increase, regardless of whether the

manager actually copies it.

5 Model

We now introduce a simple model of price adjustment with recommendations and private

information acquisition that can rationalize the findings above. To ease the mapping of

the model to the data, we normalize all variables to refer to percentage changes since the

last update.

5.1 Model Description

We begin by introducing the main elements of the model. Hoteliers care about profits,

defined as Π = Π0−η(p−p∗)2, where p∗ is the ideal price given demand and cost conditions

and η > 0 is a parameter.13 We assume that p∗ = x+ y + z, with x, y, z being symmetric,

mean-zero random variables, with respective variances σ2
i , for i = x, y, z. In our empirical

13This expression can be micro-founded as the profit function with a log-linear demand, with semi-

elasticity η.
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specification we will assume that these are normally distributed, but none of the theoretical

results depend on this feature. We assume that all these variables are drawn independently.

Variable x is privately observed by the algorithm (but not by the hotelier). The hotelier

does observe some recommendation r, which we assume is a linear function of x: r = 1
λ
x,

for some λ > 0. Variables y and z may be observed by the hotelier (upon incurring their

corresponding costs costs).

We assume that the manager observes the current price (normalized to 0) and the

recommendation r, as well as the realized adjustment costs (c1, c2). Upon observing this

information, the hotelier may decide whether to stop and maintain the current price (p = 0)

without incurring any additional cost or acquire signal y at a cost c1. We think of y as

information that the hotelier may gather from her own recollections of events concerning

a particular product (e.g. the cook is on vacation that week) and does not require further

information acquisition efforts (e.g. accessing booking histories, competitor prices, etc.).

If the hotelier does observe y, then she faces the choice whether to update the price to

exactly match the recommendation, which she can do directly in the dashboard, resulting

in p = r or accessing further information z at cost c2. Only at this later stage can the

manager update the price freely (p = E(p∗ | r, y, z) = E(x | r) + y + z).

In order to keep the model as parsimonious as possible, we assume that costs c1 and c2

are both directly determined by the realization of a cost shock c, drawn from a distribution

F (c). In particular, we assume that ci = bic, with bi > 0. This cost structure is consistent

with two different interpretations. One may view c as the opportunity cost of a unit of

time for the hotelier and bi is then the time spent in each of the two stages. Alternatively,

c is a cognitive cost shock while bi measures the complexity of the task. We assume that

c is observed by the hotelier before entering the decision-making process.

The crucial ingredient of the model is the recommendation. We assume that the al-

gorithm chooses λ before observing x in order to maximize profits (Π). Crucially, the

algorithm does not care about the costs incurred by the hotelier when updating the price,

introducing a conflict of interest. The hotelier does not directly observe λ but has some

belief, which we impose will be correct in equilibrium. Let x̃(r) denote the induced expec-
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tation, given some belief about λ.

5.2 Analysis

We begin our analysis with the problem of the hotelier. Upon observing (r, c) the hotelier

decides whether to initiate the information acquisiton process or maintain the current price.

In the latter case, she expects a loss of (x̃(r))2 + σ2
y + σ2

z , where x̃(r) is her belief about x

given r.

Alternatively, she may continue which has some expected loss l(r, c). In order to char-

acterize this expected loss we need to solve the problem once the hotelier acquires infor-

mation y. In such a case, the hotelier will choose to match the recommendation whenever

(r− x̃(r)−y)2 +σ2
z < c2. Let Y0(r, c) denote the set of values of y for which this expression

holds. Notice that Y0(r, c) is an interval centered at r − x̃(r). The expected loss is then:

l(r, c) = c1 +

∫
y∈Y0(r,c)

(
(r − x̃(r)− y)2 + σ2

z

)
dΨy(y) +

∫
y/∈Y0(r,c)

c2dΨy(y),

where Ψy is the cumulative distribution function of a mean-zero normal distribution with

variance equal to σ2
y.

Lemma 1. The continuation loss function l(r, c) satisfies l(r, c) = l(−r, c), increasing in

c and non-decreasing in |r|. Furthermore,

l1(r, c) ≤ 2r(1− λ̃)2

∫
y∈Y0(r,c)

dΨy(y) for all r > 0.

If σy > 0 and λ̃ < 1, the loss functions is strictly increasing in |r| and both of the above

inequalities are strict.

Because l(r, c) is continuous and increasing in c, for every r there exists cost realization

c(r) such that a hotelier will continue its information acquisition effort for costs lower than

c(r) and will keep the old price for costs higher than c(r). Notice that c(r) is an even

function. Conversely, for a given cost, the set of recommendations such that an update

occurs can be written as the union of two intervals (−∞,−r̄(c)) and (r̄(c),∞), for some
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function r̄(c). The following lemma provides a condition such that that both r̄(c) and c(r)

are strictly increasing functions.

Lemma 2. Suppose that 1
2
≤ λ̃ < 1 and σy > 0. Then r̄(c) is strictly increasing.

In other words, higher cost realizations require larger deviations in the recommendation

before the hotelier will re-evaluate the current price.

Notice then that the probability of choosing a price that exactly matches the recommen-

dation depends on the combination of two forces. First, the mass at Y0(r, c) is decreasing

in |r|. This shows that, conditional on an update of the price, the probability of departing

from the recommendation is higher at lower values of |r|, contradicting the observations

described above. Importantly, however, the probability of an update itself is increasing in

|r|. This implies that bigger changes in the recommendation are associated with a higher

chance that the hotelier considers copying the recommendation in the first place. The

resulting relationship between the size of the recommendation change and probability of

copying depends on the relative strength of these two forces. Let µ(r) denote the likeli-

hood of matching the recommendation conditional on an update. The following proposition

characterizes these effects.

Proposition 1. If b2σ
2
y < b1σ

2
z , then µ(r) = 0 for all r. Else, µ(0) > 0, limr→0 µ(r) = 0,

and µ′(r) ≥ 0 for all r ∈ (0, r∗). In addition, µ(r) is (weakly) increasing if λ̃ = 1 and

(weakly) decreasing if F (c(0)) = 1.

The two special cases highlighted in the proposition are instructive. First, if λ = 1,

higher values of r induce hoteliers with higher opportunity costs of time to put attention

to the price. This translates into a higher likelihood of copying the recommendation since

there is no additional selection. Second, if F (c(0)) = 1, there is no inertia (hoteliers update

the price every period) and higher r makes copying the recommendation less appealing

(since it is associated with a higher loss). This comparative static holds in models of

strategic delegation, whereby the principal (hotelier) is more likely to rubber-stamp low

recommendations (e.g. Aghion and Tirole).
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We now focus our attention on the distribution of prices conditional on a departure

from the recommendation. The expectation of such a price can be written as

E(p | r, y /∈ Y0(r, c)) = x̃(r) + E(y | r, y /∈ Y0(r, c)). (1)

Since, Y0(r, c) is centered at r − x̃(r), E(y | r, y /∈ Y0(r, c)) depends on λ̃. If λ̃ = 1, then

r − x̃ = 0, Y0(r, c) is centered at the origin and hence E(p | r, y /∈ Y0(r, c)) = x̃(r) = r.

Instead, if λ̃ ∈ (0.5, 1), then conditional covariance of (x̃, y) given that y /∈ Y0(r, c) is

negative, resulting in a dampening of the pass-through rate below λ̃. This means that we

cannot directly identify λ̃ from the pass-through rate but instead must be jointly identified

with the remaining parameters.

Proposition 2. The expectated price conditional on the price departing from the recom-

mendation satisfies

E(p | r, y /∈ Y0(r, c)) ≤ λ̃r, for all r > 0

and

E(p | r, y /∈ Y0(r, c)) ≥ λ̃r, for all r < 0

with strict inequalities whenever σ2
y > 0 and 0.5 < λ̃ < 1.

Corollary 1. Conditional on the hotelier not copying the recommendation but changing the

price, the hotelier’s private information is negatively correlated with the recommendation,

i.e.

Cov(y, r | y /∈ Y0(r, c)) ≤ 0.

We finally discuss the problem of the algorithm. The algorithm chooses λ to maximize

expected profits but this choice is unobserved by the hotelier. An equilibrium is a triple

(λ, c(r), Y0(c, r)) such that λ maximizes profits given (c(r), Y0(c, r)) and (c(r), Y0(c, r)) are

optimal given x̃ = λr. In general, a marginal increase in λ brings about three changes in

the distribution of prices. First, it leads to a reduction in the variance in the distribution

of recommendations, which necessarily induces the hotelier to change prices less frequently.

Second, it has an ambiguous impact on the probability that the hotelier chooses a price
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that exactly matches the recommendation, as the function µ(r) is non-monotone. Third, it

reduces the distance between the recommendation and the optimal price which translates

into increased profits.

6 Estimation and Results

For the empirical implementation, we assume that c follows a lognormal distribution with

parameters (0, σc). We have then 6 structural parameters: three of them govern the infor-

mational environment (σx, σy, σz) and three that correspond to the distribution of shocks

(σc, b1, b2). Additionally, we need to estimate the reduced-form parameter λ̃ which mea-

sures the equilibrium bias in the revenue manager’s recommendations. To estimate these

parameters, we use a method of simulated moments, minimum distance estimator with

seven target moments (see Table 3) that additionally imposes the restriction that there is

no (secret) profitable deviation from the recommendation algorithm for the revenue man-

ager. Four of those targets (1 to 4) depend directly on the joint distribution of recommen-

dation and price updates. In addition, we match the likelihood of the price matching the

recommendation both unconditionally and conditionally on the recommendation change

exceeding 10% as well as the average update rate.

In practice our estimation algorithm proceeds as follows. We first fix a level of bias λ̃

and simulate the model to find structural parameters values that minimize the distance

between the simulated moments and their observed targets. We then check whether a local

deviation from λ̃ increases the revenue manager’s payoff. If such a profitable deviation

exists, we pick such a deviation λ̃′ as the new starting value and re-estimate the structural

parameters. We repeat this process until we find a λ̃ and a set of distance minimizing

parameters such that local deviations are not beneficial. We also try multiple starting

values and in case the algorithm finds two different equilibria with different parameter

configurations, we choose the one with the smallest distance between simulated moments

and target moments. We estimate the model both for the pooled data and for each hotel

individually.
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We now discuss identification. To this end it is convenient to consider a special case of

the model in which σy = 0. Because there is no selection into updating based on payoff-

relevant information, the difference between the price and the recommendation directly

determines the standard deviation of z, the covariance between r and p directly pins

down λ and the standard deviation of r determines the standard deviation of x (given λ).

Likewise, the ratio of the copy rate for large recommendation changes over the average rate

determines the standard deviation of the cost distribution. Given this, the two remaining

parameters can be directly obtained by matching the update rate and the average copy rate.

While things are more complicated when σy 6= 0, each of these moments are closely linked

to each of those parameters, with the standard deviation of price changes now helping to

determine the variance of y.

For a given λ and F (ci), σx is identified by the observed distribution of recommendations

(V ar(r | U)). Given σy, and λ, σz is directly pinned down by the standard deviation of

the difference between the price and the recommendations (V ar(p − r | U)). Now fix the

joint distribution of signals and notice that b1, b2, σc are then pinned down by the three

last moments. The last two moments then determine λ and y jointly.

We run the routine on the pooled dataset first. Results are summarized in the first row

of Table 4, including bootstrapped standard errors. We find that the private information

held by hoteliers accounts for less than 20% in the total variance of the optimal price. That

is, managers’ private information is at least five times as valuable as that of the algorithm.

Unfortunately, accessing this information requires substantial effort. We estimate a mean

adjustment cost (c1) of approximately 0.2, with a standard deviation of 1.10.14 The cost

of acquiring further information is estimated to be an order of magnitude larger (mean

3.06 and s.d. 4.24). As a result, there is considerable dispersion between realized and

(counterfactual) optimal prices.

Our estimates also suggest a significant bias in recommendations (λ = 0.805). Since

most of the updates match the recommendation exactly, this translates into biased prices.

14Given our parametrization the mean of the distribution is exp(ln b1 + σ2
c/2).
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Nevertheless, the welfare impact of this bias is ameliorated by the fact that the manager

selects into the decision to match the recommendation (see Proposition 2).

The model is able to fit the target moments well (see Table 3). It also does a reason-

ably good job at replicating the empirical patterns described in Section 4. For instance,

it predicts an update rate of about 15% when the recommendation exceeds 5%, which is

a bit higher but reasonably close to the data. It also generates a relation between recom-

mendations and prices (conditional on an update) that it is consistent with the data.15

On average, we find that the current regime does a poor job at exploiting the available

information and is able to reduce losses from mispricing by less than 4%. This is not very

surprising, since managers only rarely update prices and, when they do, they tend to match

the recommendation.

We then run the routine separately for each hotel. We summarize results in rows 2-10 in

Table 4. Most hotels are well-represented by the pooled data. The variance of x accounts

for less than 30% of the total variance for all of them. There is, however, considerable

heterogeneity in the contribution of y versus z and the cost distributions.

We finally compute the expected profit loss for each hotel in the status quo, relative

to the profit loss they would experiment if they never updated their prices. This metric is

independent of η and takes into consideration that some hotels experience a more volatile

environment than others. Formally,

wi =
1

σ2
x + σ2

y + σ2
z

∫ (∫ c( xλ)

0

l
(x
λ
, c
)
dF (c) +

∫ ∞
c( xλ)

(x2 + σ2
y + σ2

z)

)
dΨ(x).

7 Counterfactual Exercise: Delegation

In light of these results, it appears that a majority of hotels would benefit from delegating

decisions to the algorithm. Delegation to an algorithmic system completely eliminates

15Notice that the scatter plot of the model has a smaller support than the model because the kurtosis

of the distribution of recommendation changes exceeds that of the normal distribution.
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information processing and menu costs, thereby eliminating delay in decision-making. It

should also lead to truthful recommendations since we identified inertia as the source of

conflict between the algorithm and the hotelier. In exchange, the algorithm does not have

access to the realizations of signals y and z, which the data suggests are even more valuable

than x. The key insight, however, is that the hotelier’s inertia reveals that this information

comes at significant costs, greatly reducing its value for decisions.

Our parameter estimates directly allows us to compute the residual losses under delega-

tion. We consider two extreme cases. Under the assumption that in the delegation regime

the algorithm has no incentives to distort its recommendations/decisions, we would expect

p = x, and thus, wi =
σ2
y+σ2

z

σ2
x+σ2

y+σ2
z
. Alternatively, the algorithm may not fully re-optimize

and continue to mis-represent its information. In this (worst) case, we would see p = x/λ

and,

wi =
(1− λ)2

λ2

σ2
x

σ2
x + σ2

y + σ2
z

.

Results are summarized in Table 5. For all hotels, we estimate that the current en-

vironment can mitigate only 1-4% of the profit loss due to demand/cost volatility. This

gain is even lower if we take into consideration the adjustment and information acquisition

costs that the manager has to incur to achieve them. This is not that surprising since

managers update prices only rarely and with delay, and they are very likely to copy the

recommendation.

Delegation is likely to improve outcomes significantly. We estimate that a hotel who

fully delegates to an unbiased algorithm would see a reduction of 5 to 40 percentage points

in the losses due to mispricing. Roughly 80% of this improvement comes from more frequent

adjustment, while 20% depends on the algorithm reporting truthfully. For hotels A and

B, however, delegation would still leave significant surplus in the table since we estimate

that most of the variation in optimal pricing can be discovered only by the hotelier.
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8 Conclusion

Algorithmic recommendations are a prominent tool for many decision-makers. In this

paper, we provide a framework to understand the interaction between recommendations

and human decisions. A key friction originates in managerial inattention, leading to biased

communication and decisions. We have applied our setup to a dataset containing 5M

prices from hotels in Central Europe. We have shown that full delegation is likely to be

welfare-improving, even if it forgoes the potential benefits of richer information.

There are many avenues for future research. The most obvious continuation of this

work would involve an explicit, fully dynamic model of price adjustment.

Another question that we have not attempted to answer in the present paper is why do

recommendation systems remain in place, even if they are quite inefficient. We believe the

answer has to do with the perception that algorithmic systems are biased (as it is in this

case), and that they are likely to make costly mistakes. Dietvorst et al. (2015) shows that

when humans see algorithms err (as it happens in our setting), they tend to avoid using

them, even if they are more accurate than the alternative.
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9 Tables and Figures (in main text)

Table 1: Updates and Recommendations

Min Mean Max

Update Rate 0.012 0.038 0.463

Update Rate (Rec 0) 0.012 0.038 0.463

Update Rate (Large Rec) 0.018 0.143 0.658

Copied Rec 0.757 0.840 0.894

Copied Rec (Large Rec) 0.869 0.950 1

Update Size 0.033 0.048 0.066

Update Size (Copy) 0.029 0.044 0.061

N 59719 223469 404196

Notes: For all statistics we report the maximum, minimum and average value across hotels. Update

rate is the proportion of products in which we observe an update on a given day. We report the

update rate unconditionally, conditional on the recommendation not having changed and conditional

on the recommendation having changed by more than 10% (rows 1-3). The Copied Rec rate is the

proportion of updatess in which we the price matches the recommendation exactly. We report both

the unconditional and the value conditional on an absolute change in the recommendation of at least

10%. The update size is the average change in the price following an update. We report this value

unconditionally and conditional on it matching the recommendation.
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Figure 1: Update Rate

Each point represents a 0.001-sized bin. The horizontal axis captures the log change in the

recommendation. The vertical axis contains the average probability for that bin.
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Figure 2: Size-Distribution of price updates (in log changes)

The black line plots the empirical cdf of price changes. The blue line depcits the empirical cdf of manual

price changes. The red line plots a normal cdf with the same standard deviation as the black distribution.
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Figure 3: Distribution of arrival of updates

The red line plots the empirical survival function of price updates (Kepler-Meier estimate). The blue line

depcits the theoretical exponential cdf with the same average arrival rate.
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Figure 4: Matching the Recommendation

Each point represents a 0.001-sized bin. The horizontal axis captures the log change in the

recommendation. The vertical axis represents the proportion of updates that exactly match the

recommendation.
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Figure 5: Model Fit: Recommendations and Prices

The left panel represents simulated data from the model. The right panel represents the true data. Each

point represents an update that does not match the recommendation. The horizontal axis captures the

log change in the recommendation. The vertical axis represents the change in the price.
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Table 2: Pass-Through Rates of Recommendation

Price Updates

All Manually Updated

Recommendation 0.974∗∗∗ 0.725∗∗∗ 0.733∗∗∗ 0.738∗∗∗

(0.002) (0.005) (0.006) (0.006)

Days ahead Poly No No Yes Yes

Room × Month FE No No No Yes

N 76090 76090 76090 76090

Notes: The dependent variable is the cummulative change in the actual

rate since the last update. Recommendation is the cummulative change

in the recommendation since the last update. All regression include all

updates; coefficients under manually updated are the interaction term

(recommendations times manual). Significance levels: ∗∗∗ p < 0.001
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Table 3: Targets for the Pooled Data

Moment Data Model√
V (p|U) 0.068 0.069√
V (r|U) 0.074 0.075√

V (p− r|U) 0.035 0.035√
E(pr|U) 0.068 0.067

Pr(C|U) 0.840 0.836

Pr(C|U,L) 0.947 0.958

Pr(U) 0.038 0.038

Notes: The first two rows report the standard deviation of the price

and the recommendation, both conditional on an update (U). The third

row reports the standar deviation of the difference between the price

and the recommendation and the fourth reports the square-root of the

covariance (both variables have zero mean), again conditional on an

update. Rows five and six report the copy rate both unconditionally

and conditional on the recommendation’s change exceeding 10% (L).

The last row reports the update rate.
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Table 4: Estimates

σx σy σz σc b1 b2

Pooled 0.034 0.045 0.056 1.86 0.035 0.543

A 0.030 0.103 0.088 1.29 0.0189 0.607

B 0.021 0.054 0.043 2.07 0.025 0.821

C 0.025 0.035 0.019 2.60 0.059 0.790

D 0.018 0.037 0.002 2.66 0.042 0.603

E 0.030 0.034 0.003 2.08 0.025 0.689

F 0.019 0.034 0.000 1.81 0.025 0.367

G 0.033 0.029 0.025 2.48 0.082 0.534

H 0.044 0.071 0.015 1.61 0.030 0.515

I 0.035 0.088 0.007 1.58 0.047 0.454

Notes: Estimated values for different hotels (A-I) and the pooled data.

Bootstrapped Standard errors to be reported.
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Table 5: Counterfactuals

Benchmark Profit Loss Delegation Biased

A 0.995 0.990 0.954 0.960

B 0.992 0.983 0.914 0.921

C 0.984 0.970 0.717 0.750

D 0.984 0.968 0.809 0.831

E 0.980 0.961 0.671 0.710

F 0.996 0.989 0.760 0.826

G 0.980 0.962 0.574 0.631

H 0.983 0.961 0.731 0.775

I 0.990 0.974 0.862 0.864

Notes: The value in the first column corresponds to the welfare loss

(profit plus costs) in the status quo relative to the profit loss under

complete inaction. The value in the second column is the implied ac-

counting profit loss (disregarding adjustment costs) relative to inaction.

The third column represents the welfare loss in the counterfactual ex-

ercise (delegation) relative to inaction. The last column describes the

welfare loss we would expect in a counterfactual where the algorithm

continues to make biased recommendations (decisions) relative to inac-

tion.
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A Ommitted Proofs

Proof of Lemma 1. We first establish that 0 ≤ l1(r, c) ≤ 2(1 − λ̃)2
∫
y∈Y0(r,c)

dΨy(y)r, for

r > 0 (and vice versa). Since the integrand of the first element is exactly equal to c2 at

the boundaries, only the derivative of the integrand matters. Hence,

l1(r, c) = 2(1− λ̃)

∫
y∈Y0(r,c)

(r − x̃(r)− y)dΨy(y). (2)

Consider any r > 0. Since x̃ = λ̃r and Y0(r, c) is an interval centered at r − x̃(r), then

the symmetry of the normal distribution about zero implies that 0 ≤
∫
y∈Y0(r,c)

ydΨy(y) ≤

(1 − λ̃)r. The inequalities are strict if σy > 0 and λ̃ < 1. Substituting the end points of

this interval into (2) yields both, that l is increasing in r for r > 0, and the first claimed

inequality in the lemma. When r < 0, an analogous argument shows that (1 − λ̃)r ≤∫
y∈Y0(r,c)

ydΨy(y) ≤ 0 and hence the inequalities are reversed, which proves the second

inequality in the lemma and that l is increasing in |r|.

Taking a derivative with respect to c we have simply l2(r, c) = b2

∫
y/∈Y0(r,c)

dΨy(y) >

0.

Proof of Lemma 2. The set of values of r and c for which the hotelier is indifferent between

keeping the old price and gathering gathering additional information is implicitly defined

by the identity

(λ̃r)2 + σ2
y + σ2

z ≡ l(r, c)

An application of the implicit function theorem to the positive root of this identity then

implies that

r̄′(c) =
l2(r̄, c)

2λ̃2r̄ − l1(r̄, c)
,

This is positive, since the numerator is positive and, when r̄ > 0, the denominator satisfies

2λ̃2r̄ − l1(r̄, c) > 2λ̃2r̄ − 2r̄(1− λ̃)2

∫
y∈Y0(r̄,c)

dΨy(y)

≥ 2λ̃2r̄ − 2(1− λ̃)2r̄ ≥ 0,

where the first inequality follows from the previous lemma, the last from the assumption

that λ̃ ≥ 1
2
.
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Proof of Proposition 1. Notice first that

(r − x̃(r)− y)2 + σ2
z < b2c

⇔ x− r −
√
b2c− σ2

z < y < x− r +
√
b2c− σ2

z .

Denote d(c) :=
√

min{b2c− σ2
z , 0}. Then we can write

µ(r) =

∫ c(r)
0

(Ψy(r − x̃(r) + d(c))−Ψy(r − x̃− d(c))) dF (c)

F (c(r))
.

If b2σ
2
y < b1σ

2
z , then b2c(0) < σ2

z , d(c(0)) = 0, and, therefore, the hotelier will acquire

signal z even if r = 0 and y = 0. Hence, µ(r) = 0 for all r. Instead if b2σ
2
y > b1σ

2
z ,

d(c(0)) > 0, and hence µ(0) > 0. In addition, as r →∞, the integrand vanishes, while the

denominator converges to 1. Hence, limr→∞ µ(r) = 0. Finally, to see that µ(r) is increasing

in a neighborhood of r = 0 observe that

µ′(r) =
1

F (c(r))

(
F ′(c(r))c′(r)η(r − x̃, d(c(r))) + 2

∫ c(r)

0

η1(r − x̃, d(c))(1− λ̃)dF (c)

)

− 1

F (c(r))2
F ′(c(r))c′(r)

∫ c(r)

0

η(r − x̃, d(c(r)))dF (c)

=
F ′(c(r))c′(r)

F (c(r))2

∫ c(r)

0

(
η(r − x̃, d(c(r)))− η(r − x̃, d(c))

)
dF (c)

+
2(1− λ̃)

F (c(r))

∫ c(r)

0

η1(r − x̃, d(c))dF (c),

with η(a, b) = Ψy(a + b) − Ψy(a − b) is decreasing in a and increasing in b. Hence, the

first term in the last step are weakly positive and the second is weakly negative. Since

c′(0) = 0, both terms are zero at r = 0 and the sign of µ(r) depends on the second

derivative. Disregarding terms that vanish at r = 0, we have

µ′′(0) =
F ′(c(0))c′′(0)

F (c(0))2

∫ c(0)

0

(
η(0, d(c(0)))− η(0, d(c))

)
dF (c)

=
F ′(c(0))c′′(0)

F (c(0))2

∫ c(0)

σ2z
b2

(
η(0, d(c(0)))− η(0, d(c))

)
dF (c) > 0,

by the assumption above. For λ = 1, the second term is zero and the first term is weakly

positive so µ(r) is weakly increasing. If F (c(0)) = 1, the first term is always zero and hence

µ(r) is weakly decreasing.
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Proof of Proposition 2. Assume first that r > 0. By (1), it is sufficient to establish that

x̃(r) + E(y | r, y /∈ Y0(r, c)) ≤ x̃, i.e. that E(y | r, y /∈ Y0(r, c)) ≤ 0. Now,

E(y | r, y /∈ Y0(r, c)) =
1

A

∫ c(r)

0

∫
y/∈Y0(c,r)

ydΨy(y)dF (c)

=
1

A

∫ c(r)

0

(∫ r−x̃(r)−d(c)

−∞
ydΨy(y) +

∫ ∞
r−x̃(r)+d(c)

ydΨy(y)

)
dF (c), (3)

where

A =

∫ c(r)

0

∫
y/∈Y0(c,r)

dΨy(y)dF (c) > 0.

Notice then that,∫ r−x̃(r)−d(c)

−∞
ydΨy(y) +

∫ ∞
r−x̃(r)+d(c)

ydΨy(y)

=

∫ −(r−x̃(r))−d(c)

−∞
ydΨy(y) +

∫ (r−x̃(r))−d(c)

−(r−x̃(r))−d(c)

rydΨy(y) +

∫ ∞
r−x̃(r)+d(c)

ydΨy(y)

=

∫ r−x̃(r)−d(c)

−(r−x̃(r))−d(c)

ydΨy(y) ≤ 0 (4)

where the inequality follows, since r − x̃(r) = ( 1
λ
− 1)r > 0 by assumption, d(c) > 0,

and hence the interval of integration is centered on a negative number while the normal

distribution is symmetric about zero. Furthermore, the inequality is strict whenever σ2
y > 0

and 0.5 < λ̃ < 1. Consequently, the whole integral in (3) must be negative. When r < 0

the inequality in (4) is simply reversed proving the proposition.

Proof of Corollary 1. It is enough to show that

1

A′

∫ ∞
−∞

∫ c(r)

0

∫
y/∈Y0(c,r)

r(x)ydΨy(y)dF (c)dΨx(x) ≤ 0, (5)

where

A′ =

∫ ∞
−∞

∫ c(r)

0

∫
y/∈Y0(c,r)

dΨy(y)dF (c)dΨx(x) > 0

and Ψx is the cumulative distribution function of a zero-mean standard normal distribution

with variance equal to σ2
x. It can be verified that multiplying the integrand in the proof of

the previous proposition by r does not change inequality (4) when r is positive and reverses

it when r is negative. Consequently, the inner double integral in (5) is always less than

zero proving the corollary.
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Lemma 3. r(x) is weakly increasing.

Proof. Let π(r, x) denote the interim expected profits of the algorithm given a signal x and

a report r. Recall that

π(r, x) =

∫
c(r)

(∫
y∈Y0(r,c)

(
(x+ y − r)2 + σ2

z

)
dΨy(y) +

∫
y/∈Y0(r,c)

(x̃(r)− x)2dΨy(y)

)
dG(c)

+(1−G(c(r)))x2

Rewritting we have

π(r, x) =

∫
c(r)

(∫
y∈Y0

(
(y − r)2 + σ2

z + 2(y − r)x
)
dΨy(y) +

∫
y/∈Y0

(
x̃(r)2 − 2xx̃(r)

)
dΨy(y)

)
dG(c)

+x2

= A(r)−B(r)x+ x2,

for some non-negative functions A(r) and B(r). It follows that for every pair r, r′, the set

X(r) := {x ≥ 0 : π(r, x) ≥ π(r′, x)} is convex (and analogous for x < 0). This rules out

the existence of a triple x0 < x1 < x2 with r(x0) = r(x2) 6= r(x1). Hence, we can assume

that for any x belonging to a decreasing segment of r(x), (x0, x1), x̃(r(x0)) = x. Hence,

B(r) =

∫
c(r)

(∫
y∈Y0

2(r − y)dΨy(y) +

∫
y/∈Y0

2r−1(x)dΨy(y)

)
> 0
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