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Abstract 

We use an RCT to investigate whether small group instruction improves student performance 

in mathematics in the early grades. The RCT is large-scale, covering 159 Norwegian schools 

over four years. The students - 7-9 years old - are pulled out from their regular mathematics 

classes into small, homogenous groups for mathematics instruction for 3 to 4 hours per week, 

for two periods of 4-6 weeks per school year. Unlike many other recent tutoring experiments, 

all students are pulled out, not only struggling students. In our intention-to-treat analysis, we 

find that students in treatment schools increased their performance by .06 standard deviations 

in national tests 0.5 years after the intervention, with no differential effect by pre-ability level 

or gender. Our study is particularly relevant for policy-makers seeking to use additional 

teaching resources to target a heterogeneous student population efficiently. 
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1. Introduction 

Student heterogeneity is a persistent and fundamental challenge in all school systems. For 

decades, smaller classes2F

1, more assistants3F

2, and special education have been the preferred 

solutions to improve educational achievement across ability groups. The evidence in favor of 

these policies is at best mixed, leading actors within the education sector and researchers to 

look for alternatives. One of the most prominent alternatives is tutoring – defined as one-on-

one or small group instruction – which has been shown to substantially positively affect student 

learning (Dietrichson et al. 2017; Nickow et al. 2020). It has also emerged as a promising 

strategy for addressing COVID-related learning loss (Robinson & Loeb, 2021). 

We present new evidence from an experiment of low-dosage tutoring in mathematics in 

a setting where additional teachers are used to provide small group instruction as an alternative 

to classroom-based teaching in the same subject for a shorter period of time. Tutoring is directed 

at students of all ability levels in mostly homogenous groups, allowing us to target the effect of 

a customized learning approach for all ability levels while holding instruction time fixed. 

The experiment was conducted as a large-scale pre-registered randomized controlled 

trial (RCT) using additional teachers to tutor small groups of students during mathematics 

classes from 2016/17 to 2019/20. About 7,500 students aged 7–9 in 159 Norwegian elementary 

schools were each year pulled out from their regular mathematics classes for two periods of 4-

6 weeks per school year to receive mathematics instruction in small groups of 4-6 students. To 

allow for tailoring of instruction, teachers were advised to construct small groups with students 

of similar ability levels in mathematics. From surveys, we know that most teachers chose this 

strategy.  

                                                 
1 Leuven & Oosterbeeek (2018) and Schanzenbach (2020) provide recent reviews of the literature on class size. 
2 Finn & Achilles (1999), Muijs & Reynolds (2003), Blatchford et al. (2012) and Webster et al. (2013) find no beneficial effect from having 
teacher assistants whereas Andersen et al. (2020) report beneficial effects from teacher aides.  
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The Norwegian government made this field experiment possible by allocating around 

20 million Euros to hire 80 qualified teacher person-years for four school years. Four cohorts of 

students born between 2008-2011 participated with variation in starting age and treatment 

length across cohorts. 78 treatment schools received funding to hire an additional teacher, while 

81 schools served as the control group. About 30,000 students within ten local governments 

participated in the RCT. We closely follow the pre-registration plan published before gaining 

access to administrative data (Bonesrønning et al., 2018). 

We find sizable average treatment effects on student performance. In our intention-to-

treat analysis, we find that students in treatment schools increased their performance on national 

tests in mathematics by .06 standard deviations 0.5 years after the intervention. We also find 

that all student subgroups benefit from treatment, regardless of pre-ability level and gender.  

Our paper adds to the literature on the effect of increased teacher-student (TS) ratio on 

student performance (e.g., Schanzenbach 2006; Angrist et al. 2019; Hoxby 2000; Browning and 

Heinesen 2007; Fredriksson and Öckert 2008; Leuven et al. 2008; Iversen and Bonesrønning 

2013). While the evidence is mixed (see Leuven & Oosterbeeek (2018) and Schanzenbach 

(2020) for recent reviews), previous research has shown no or small effects in the resource rich 

Norwegian context (Leuven et al. 2008; Iversen & Bonesrønning 2013; Falch et al. 2017; 

Leuven & Løkken 2018; Haaland et al. 2021; Borgen et al. 2022). Most of this literature 

investigates the impact of increased TS ratio through reduced class size, suggesting that more 

flexible approaches to increasing the TS ratio may be key (Solheim & Opheim 2018). 

Alternative strategies to reduce the TS ratio include adding additional teachers to the classroom. 

A recent paper by Haaland et al. (2021) finds that additional teachers in literacy instruction only 

yield positive effects in combination with teacher professional development. In contrast, our 

study suggests that using extra teachers to provide low-dose tutoring at young ages yields 
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positive effects for all students.3 This is a more flexible and potentially less costly way of 

reducing the TS ratio, as it allows schools to target subjects or students needing additional 

support. 

As such, our paper also adds to the literature on tutoring. A review by Nickow et al. 

(2020) shows that tutoring programs yield consistent and substantial effects on learning 

outcomes, typically in the area of .30-.40 of a standard deviation. Further, a recent meta-analysis 

by Dietrichson et al. (2017) found tutoring to be both the most common and most effective 

intervention to improve the educational achievement for low socioeconomic status students.4 

However, the reviewed tutoring programs are typically high dosage, targeted at low-ability 

students, and in many cases may entail increased instruction time–replacing recreational 

activities, unfilled time, or potentially crowding out instruction time in other subjects. Little is 

known about the performance of the type of low-dosage tutoring investigated in this paper, 

where instruction time in the subject is held fixed. Such knowledge is in high demand from 

policy-makers since they are less costly to implement at full scale.  

Finally, our paper adds to the literature on ability grouping, as small groups were largely 

comprised of students of similar ability levels in mathematics. A scarce literature credibly 

identifies the impact of tracking within schools on student outcomes. Duflo et al. (2011) show 

that within school ability tracking in a developing country (Kenya) benefits all students. 

However, as they note in their paper, this is not necessarily directly transferable to countries 

with different educational contexts, teacher incentives, and distribution of student ability. 

Similarly, Zimmer (2003) finds that within school tracking is beneficial for lower achieving 

students in the US, suggesting that tailored instruction outweighed any potential adverse effects 

from low-ability students losing their high-ability peers, although e.g. Matthewes (2021) finds 

                                                 
3 Both studies were funded by the Research Council of Norway to implement a randomized controlled trial on the effect of additional teachers 
on student performance.  
4 Recent papers that evaluate different tutoring programs include e.g. Gersten et al. (2015), Fryer (2014), Dobbie and Fryer (2013), Fryer (2017) 
and Fryer and Howard-Noveck (2020). 
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the opposite for Germany where between-school tracking is harmful for low-achieving 

students. This paper measures the impact of a less comprehensive form of tracking with ability 

grouping in one subject only for a limited period of time, implying less of an impact from peer 

effects than more comprehensive forms of tracking. Our results, with beneficial effects across 

all student ability levels, suggest that the impact of customized instruction may be an important 

mechanism through which ability grouping can increase student outcomes. 

The rest of the paper is organized as follows: The institutional context and intervention 

are presented in section 2, while section 3 discusses the randomization process, data, and 

balance. Section 4 presents the empirical specification, whereas the estimated treatment effects 

of the small-group instruction are presented in section 5. Finally, section 6 offers some 

concluding remarks and discusses our results and previous findings in the literature. 

2. Institutional context and the intervention 

a. Institutional context 

Compulsory education is free of charge, and less than 4 percent of students attend private 

schools. The public sector at the municipal level is responsible for providing compulsory 

education. There are three stages: lower primary education, grades 1-4 (ages 6-10); upper 

primary education, grades 5-7 (ages 10-13) and lower secondary education, grades 8-10 (ages 

13-16). Compulsory education is comprehensive with a common curriculum for all students, 

and there is no tracking. The grade cutoff date is January 1, and grade promotion or retention 

is very uncommon, ensuring that nearly all students follow their cohort and graduate from lower 

secondary school the year they turn 16. The school year lasts from August to June, from about 

8:30 to 1:30. All children in grades 1-4 are entitled to enroll in voluntary before/after school 

programs, with most children enrolling particularly for the lowest grades. Enrollment in after 

school programs has increased in recent years due to an increase in subsidies to cover parental 

fees. 
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 About 5 percent of students in grades 1-4 were eligible for special education in 2017. 

37% of the special education students received assistance in their regular classes, the rest were 

taught alone or in small groups of eligible students.  

 While the Norwegian Education act allows for small group instruction, results from our 

teacher survey indicate that there was no wide-spread use of small group instruction in 

Norwegian primary schools. During the intervention, when asked about the number of students 

that participated in small group instruction during the previous mathematics lesson, teachers at 

treatment schools reported an average of 3.78 students whereas the corresponding result for 

control schools was 0.37 – likely reflecting special needs students receiving assistance outside 

of the regular class. 

b. Treatment description 

School leaders in the intervention schools were allocated an additional teacher person-year in 

the school years 2016/17-2019/20, which they were instructed to use for small group tutoring 

in mathematics in specific grades. Due to the combination of in-school delivery and a pull-out 

strategy, the design of the intervention had to comply with the national legislation for public 

elementary schools. First, permanent tracking is not allowed, but small homogenous student 

groups can be pulled out of their regular class for shorter periods. It was accepted that six weeks 

is within the limit for a short period. Second, the treatment dosage is determined by legislation 

saying that the students will be taught mathematics for 560 hours during grades 1-4, or on 

average 140 hours per year, implying a planned dosage for treated students of minimum 30 

hours (1800 minutes) of small group instruction per year. The sessions differed in length, as 

there are local variations in the schools' organization of the regular mathematics instruction. 

While some schools have long sessions (up to 90 minutes), others have shorter sessions, often 

60 or 45 minutes, but always adding up to 140 hours per year. Instruction was given in parallel 

to all regular mathematics classes. See the online appendix A or the pre-analysis plan 

(Bonesrønning et al. 2018) for further details on the intervention. 
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 From a registration form sent to small group instructors5 we have information on the 

number of minutes spent in small group instruction for all students, excluding time used on 

breaks. Calculating the averages for students in the treatment group by cohort and treatment 

year, we know that the average small group consisted of about 5 students and that students 

received about 8 weeks of small group instruction per treatment year–amounting to between 

1075 to 1184 minutes of instruction time–depending on the cohort and treatment year. This 

amounts to between 60 and 66 percent of the planned minimum treatment.6  

National legislation requires that teachers are formally qualified to teach mathematics 

at the elementary level so that only formally qualified teachers are hired. From a teacher survey 

we have some information on how small group instructors were recruited as well as information 

on characteristics of small group instructors and regular teachers.7 31% of small group 

instructors had previously worked at the same school, meaning that the majority were externally 

recruited.  Compared to regular mathematics teachers, a larger fraction was male 28% compared 

to 13% for regular teachers, they were on average 40 years old compared to 42 for regular 

teachers, had 12 years of teaching experience compared to 19 years for regular teachers, and 

had more credits in mathematics, 58 credits compared to 37 for regular teachers, which is 

equivalent to about 2/3 of a semester in higher education. There was no difference in the share 

that had completed teacher education, which was 98% for both groups.8  

The small group teachers received no training as tutors, but they (together with the 

regular teachers) received a handbook including detailed instructions on how to implement the 

intervention–i.e small group size, duration etc.–information on data collection as well as 

                                                 
5 See online appendix B and online appendix H, Table A5 for details on data and implementation. 
6 Note that planned and received treatment may not be directly comparable as received treatment deducts time spent on breaks. 
7 See online appendix H for details. 
8 The teachers survey also provides some information on how the class teacher experience the small group intervention: Teachers were asked 
to rate, on a likert scale, where 1 is strongly disagree and 5 corresponds to strongly agree, the following statement: “If a group of students 
participate in small group instruction, I (the class teacher) am able to follow up the students much better”. The average score is 4.4, which 
indicates that teachers agree or highly agree with this statement. 
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recommendations based on previous research. The handbook contained information about the 

characteristics of previous successful interventions using additional teachers and, importantly, 

encouraged the teachers to create small groups with students of similar mathematical abilities.9 

Based on survey data from small group instructors we know that the majority of small group 

instructors followed this recommendation as 97% reported that they agreed or strongly agreed 

with the statement that “Small groups were composed of students of nearly equal ability level 

in mathematics”.  

One birth cohort (2010) was treated only in 4th grade (2019/20). The cohorts 2008 and 

2011 were treated for two years, starting in 3rd grade (2016/17) and 2nd grade (2018/19), 

respectively. Those born in 2009 were treated for three years, starting in 2nd grade (2016/17). 

In this paper, we mainly restrict the analysis to cohorts for which we have data on the national 

tests in 5th grade, i.e., the 2008 and 2009 cohorts. These are also the only two cohorts unaffected 

by the Covid-19 pandemic when completing the national tests. 

Throughout the project, small group teachers reported which students received small 

group instruction and the instruction length for each session. Additionally, the project group 

met with small group teachers and school leaders yearly, all teachers and school leaders 

received yearly surveys, and visits were carried out at some treatment schools. Together, this 

allowed us to follow implementation closely and quickly detect whether schools were having 

any problems with implementation due to e.g. misunderstandings, teacher absence, or teacher 

turnover. The school visits comprised classroom observation, interviews with school principals, 

as well as interviews with math teachers (both the main teachers and small group teachers). An 

important finding was that small group instruction generally was much appreciated (Bubikova-

Moan & Opheim 2020).  

                                                 
9 For further details on the content of the handbook se online appendix B. 
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3. Randomization, data, and balance 

a. Randomization 

Randomization was carried out at the school level within each of the ten municipalities 

participating in the project.5F

10 We randomized at the school level to avoid resistance from 

schools and parents due to similar students being treated differently within schools. Also, 

school-level randomization ensured that the control group was less likely to be affected by the 

treatment through spill-over effects. 

We conducted stratified randomization in the following manner: Schools with at least 

20 students per grade were eligible to participate within each municipality. We ranked the 

schools based on their mean test score in the 5th-grade national test in mathematics, averaging 

over the mean score in the two preceding school years to reduce measurement error. Next, we 

constructed a set of strata of at least four schools in each stratum. In doing so, we follow Imbens' 

(2011) recommendation to have at least two treatment and control schools in each stratum to 

derive a within-strata variance in the treatment effect. Most strata consist of four or six schools. 

We randomized schools to the treatment or the control group by using a random number 

generator. One school refused to participate after their treatment status was revealed. Following 

the pre-analysis plan, we exclude all schools in the respective strata. 

All treatment schools received one additional teacher person-year regardless of cohort 

size. This implied that the smallest schools in our sample have a larger increase in the student-

teacher ratio than the larger schools, with about 70 students in each grade. Additionally, as 

larger schools would not obtain sufficient treatment intensity for all students, we randomized 

classes or groups to treatment at these schools. 

                                                 
10 The ten municipalities are geographically spread from the southern to the northern part of Norway, all fairly 
densely populated. 
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b. Data 

The main data source is administrative data collected and organized by Statistics Norway. We 

have background information about the students and test scores from the national tests in 5th 

grade from administrative registers (see online appendix for details). We use this data to identify 

the main treatment effects and to assess balance across treatment and control groups. In 

addition, we analyze pre-test and post-test data collected by the project. We developed math 

tests in collaboration with teachers and math educators. For most cohorts, the pre-tests were 

conducted late in the school year prior to entering the project.6F

11 The post-tests were conducted 

at the end of the school year (May-June). We use this data to identify short-term treatment 

effects at a younger age than the national tests and to examine treatment heterogeneity on 

baseline test scores. 

A small percentage of students have no reported test score on the national test. We find 

no evidence of a correlation between missing test scores and treatment status (see online 

appendix Table A1). This is important since it indicates that missing test scores will not bias 

our results and will have a negligible impact on statistical power. In the online appendix (Table 

A3), we also show that there is no important treatment-control difference in geographic 

mobility, measured as whether they completed the national test in another school than the 

baseline test. 

c. Balance tests 

Following the pre-analysis plan, we study balance on gender, parental level of education, the 

share of first or second-generation immigrants, and school size (see online appendix for details 

on background variables).7F

12 Table 1 shows that treatment and control schools are balanced 

across these variables, except for a slightly higher share of students in the treatment group with 

                                                 
11 The exception is the first year of the project (the 2016/2017 school year), for which we did the pre-tests early in 
the school year (August). 
12 The pre-analysis plan says that we will study balance on the teacher-student ratio as well, but we have been 
unable to obtain that information broken down by cohort and school class. 
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parents in the highest education level category. Reassuringly, the F-test of joint significance 

produces a large p-value of .41. We therefore conclude that randomization was successful. 

Table 1. Balance test. 
 Control  Treatment  Difference 
 N/[Schools] Mean/SE N/[Schools] Mean/SE (1)-(2) 
Female 8128 0.481 8148 0.488 -0.007 
  [81] (0.006) [78] (0.007)  
Parental edu: Primary 8128 0.055 8148 0.054 0.001 
  [81] (0.007) [78] (0.007)  
Parental edu: Secondary 8128 0.213 8148 0.196 0.017 
  [81] (0.012) [78] (0.013)  
Parental edu: College, low 8128 0.390 8148 0.373 0.017 
  [81] (0.009) [78] (0.009)  
Parental edu: College, high 8128 0.308 8148 0.339 -0.031* 
  [81] (0.019) [78] (0.019)  
Parental edu: Missing 8128 0.035 8148 0.039 -0.004 
  [81] (0.003) [78] (0.004)  
Foreign-born  8128 0.063 8148 0.064 -0.000 
  [81] (0.005) [78] (0.004)  
Second generation 8128 0.100 8148 0.101 -0.002 
 [81] (0.011) [78] (0.013)  
School size 8128 56.615 8148 58.579 -1.964 
 [81] (2.153) [78] (2.238)  
F-stat joint significance, p-
value 

    1.04, .41 

Notes: Standard errors are clustered at school. Strata and cohort FE are included in all estimations. *** p<0.01, 
** p<0.05, * p<0.1 

4. Empirical specification 

We identify the intention-to-treat (ITT) effects using the following regression models: 

𝑦௜ = 𝛽𝑇𝑅𝐸𝐴𝑇𝐸𝐷௚ + 𝛼௦ + 𝜇௖ + 𝑋௜
ᇱ𝛾 + 𝜖௜ 

where i indexes individuals, g schools, s randomization strata, and c cohorts. y is the test score 

and TREATED is a binary indicator of whether the student was enrolled in a school in the 

treatment group when entering the project. We define all students in a treatment school as 

treated despite randomizing classes or groups to treatment or control in larger schools. This is 

due to potential spill-over effects from the treated classes and because schools might have 

changed the class compositions in response to the class randomization. Thus, our classification 

ensures that β is the cleanest ITT estimate, although likely representing a lower bound estimate 

of the treatment effect. Because randomization was performed within strata, we include strata 
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fixed effects α. Cohort fixed effects, μ, and a vector X with socio-economic background 

variables, are included to improve statistical power. Standard errors are adjusted for clustering 

at the school level, the level of treatment assignment and delivery. 

5. Treatment effects 

This section presents the estimated treatment effects. Section a presents treatment effects on 

our main outcome, test scores on a national test in mathematics in 5th grade, while section b 

discusses effects on national tests in reading and English. Section c supplements the estimated 

treatment effects from section a with analyses of test scores on own tests in mathematics carried 

out at the end of the treated school years. Treatment effect heterogeneity is analyzed in section 

d. 

a. Medium-term effects – national test scores in mathematics 

The main intention to treat (ITT) estimates are presented in Table 2. The first column is without 

individual level controls, while the second includes the vector of controls used in the balance 

tests. Without controls, we find that students in the treatment schools increase their performance 

by .066 standard deviations relative to students in the control group.13 When we add SES 

controls, the estimate declines to .058 standard deviations. For comparison, we find that 

students with a university-educated father perform about .14 standard deviations better than 

other students. Thus, the effect amounts to about one-third of the education difference. Our 

estimates are in-between the high-dosage (.31) and small-dosage (.015) treatment estimates in 

Fryer (2017). 

                                                 
13 To rule out that any treatment effects are driven by researchers’ interactions with several treatment schools visited during the 

intervention period, we have run a specification check where we re-run the estimation in column (1) on a sample excluding the 14 strata 
containing schools visited. Reassuringly, the results are unaltered—for results see online appendix Table A1.  
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Table 2. Baseline results. Dependent variable is standardized national test scores. 
 (1) (2) 
 Mathematics 
Treatment school .066** (.031) .058** (.026) 

Observations 14,891 14,891 

Strata FE Yes Yes 
Cohort FE Yes Yes 
SES controls No Yes 
RI p-value .05 .05 
IWE .067** (.031) .057** (.027) 
Note: OLS regression with robust standard errors adjusted for clustering on school in parentheses. *** p<0.01, 
** p<0.05, * p<0.1. 

Our conclusions are robust to using randomization inference (RI) to derive p-values 

(Imbens and Rubin, 2015; Hess 2017), which is reassuring since RI avoids assumptions 

regarding resampling, the parametric distribution of t-values, and is valid irrespective of the 

sample size. It is potentially useful to avoid these assumptions since the intervention only 

involves 159 schools, which might imply that asymptotic characteristics do not apply.  

The ITT estimate using conventional fixed effects models can be misleading if there is 

important treatment heterogeneity (Gibbons et al., 2018), as such models place more weight on 

averages from the groups (in our case strata) with the most within-group variance. This does 

not seem to be a problem in our case, as the treatment effect estimates are identical if we follow 

Gibbons et al. (2018) and interact the treatment indicator with the strata fixed effects and derive 

the average treatment effect from these interaction terms. 

b. Effects on national test scores in reading and English 

Table A4 in the online appendix presents the ITT estimates on national test scores in 5th-grade 

reading and English. These outcomes are not true placebo outcomes since there might be spill-

overs from small group instructions in mathematics, e.g., from cognitive development or 

improved motivation for school work. However, the intervention aims to improve skills in 

Mathematics, so we should not expect similar-sized treatment effects on these outcomes. For 

English, the ITT is essentially zero, while the ITT for reading is .029, less than half of the effect 
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on mathematics. The difference between the ITT for math and reading is, however, not 

statistically significant. 

c. Short-term effects 

Next, we use our own pre- and post-tests to estimate short-term effects. These short-term 

estimates are useful because we can examine whether the treatment effect increases or declines 

with time since treatment. However, the interpretation of the ITT effects on the post-test scores 

is complicated by a lower test completion rate in the control group. The share of missing test 

scores is about six percentage points lower in the treatment group on average across cohorts 

(see online appendix Table A2). The treatment-control difference in completion likely reflects 

lower teacher motivation in the comparison schools to carry out additional testing for students 

that missed the first test due to absence.  

In Table 3, we analyze post-test scores for the 2008 and                                                                                                                             

2009 cohorts at the end of third grade, and the 2011 cohort at the end of second grade. We 

include the 2011 cohort since comparisons across cohorts provide information on the 

importance of length and timing of treatment. When our tests were completed, the 2009 cohort 

had been treated for two years (second and third grade), whereas the 2008 and 2011 cohorts 

had been treated for one year (respectively in third and second grade). When we pool data from 

all cohorts, we find a treatment effect of .158, which is about three times larger than the 

treatment effect on the national tests.8F

14 The treatment effects are quite similar across cohorts, 

despite differences in age, years of treatment, and teacher experience in small group 

instructions. Thus, we find no substantial benefits from being treated for two years compared 

to one year. 

                                                 
14 The estimates in Table 3 are precisely estimated, but due to the difference in missing test scores between 
treatment and control schools they do not accurately reflect the uncertainty in the treatment effect estimate. 
Therefore we also estimate so-called Lee trimming bounds on the treatment effects (Lee, 2009), which suggest 
that the pooled treatment effect is between .04 and .30 for the Always-Reporters. 
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Table 3. Short-term effects. Dependent variable is standardized score from project tests. 
  

Pooled 
Cohort 
2008 

Cohort 
2009 

Cohort 
2011 

 
Treatment school 

 
.158*** (.031) 

 
.144*** (.049) 

 
.169*** (.046) 

 
.164*** (.051) 

Observations 21,983 7,790 7,179 7,014 

Strata FE Yes Yes Yes Yes 
Cohort FE Yes Yes Yes Yes 
SES controls No No No No 
Years treatment  1 2 1 
Test grade  3 3 2 
Note: Robust standard errors adjusted for clustering on school in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

d. Treatment effect heterogeneity 

In this final section, we study treatment heterogeneity. First, we study heterogeneity on the 

national test score across cohorts and gender. In the first column in Table 4 we present results 

when we include an interaction term between an indicator for the 2009 cohort and the treatment 

indicator. This interaction term is negative and indicates that the 2008 cohort drives the 

treatment effect in Table 2. This result is unexpected since the 2009 cohort was treated longer 

and from a younger age. The difference might reflect extraordinary motivation among teachers 

at the beginning of the project that decreased over time (Dietrichson et al., 2017). However, the 

interaction term is not statistically significant, so we cannot rule out that the effect is the same 

for both cohorts. 

 The second column in Table 4 shows a large gender gap in the test score, as male 

students perform much better on the national test. The intervention appears to reduce this gap 

slightly since the treatment effect is larger for female students. However, the treatment effect 

difference across gender is not statistically significant. 

Table 4. Cohort-specific effects. Dependent variable is standardized national test score. 

 Cohorts 2008 & 2009 Gender 
Treatment .073** (.036) .046 (.029) 
Treatment  x 2009-cohort -.031 (.045)  
2009-cohort -.009 (.031)  
Treatment x Female  .024 (.030) 
Female  -.251*** (.021) 
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Observations 14,891 14,891 
Strata FE Yes Yes 
Cohort FE Yes Yes 
SES controls Yes Yes 
Note: OLS regression with robust standard errors adjusted for clustering on school in parentheses. *** p<0.01, 
** p<0.05, * p<0.1. 

Next, we use our own pre- and post-tests to study treatment heterogeneity depending on 

i) baseline ability, ii) average baseline score of the school, and iii) within school heterogeneity 

in baseline test scores. The test of treatment heterogeneity by average pre-test score in the 

school and within-school heterogeneity was not pre-registered and should be considered as 

exploratory. To examine heterogeneity on baseline ability, we interact the baseline test score 

with the treatment indicator. As mentioned above, there is a difference between treatment and 

control schools in the share of students that conducted the test. To reduce the bias from selection 

to the test, we follow the pre-registration plan and conduct entropy balancing (Hainmueller, 

2012) to reweight the sample so that the treatment-control difference in the baseline test score 

is zero. 

Figure 1 shows a positive correlation between the treatment effect and baseline test 

score, but the interaction term is not statistically significant (coeff = .01, p=.51). The L (low), 

M (medium), and H (high) point estimates and bars in red are treatment effect estimates from a 

regression where the baseline test score is divided into three equal-sized bins.9F

15 These estimates 

indicate that there is a weak non-linearity in the marginal effects. The treatment effect is slightly 

larger for the mid-level achievers on the baseline test.  

                                                 
15 See Hainmueller et al. (2019) for details. 
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Figure 1. Treatment heterogeneity by pre-test score.  

 
Note: The plot shows the estimated marginal effects using both a conventional linear interaction model and a 
binning estimator. The total height of the stacked bars refers to the distribution of the moderator (individual pre-
test score) in the pooled sample, and the red and white shaded bars refer to the distributions in the treatment and 
control groups, respectively. 
 

The online appendix presents treatment effects across average baseline scores and 

within-school heterogeneity. Figure A.1 is based on a regression model with an interaction 

between the treatment effect and the mean test score of the school, controlling for the individual 

level test score. We find that the marginal effect of treatment declines with school test scores 

in the linear model (p=.06). However, the linear model does not seem like the most appropriate 

specification since the estimated treatment effect is much larger for schools in the mid-range of 

the pre-test score distribution, as indicated by the point estimate for the medium group (in red). 

This result suggests that when compared to schools with medium average baseline test scores, 

schools with respectively low and high average baseline scores are somewhat less able to utilize 

the benefits of the treatment. Schools with high average baseline scores might also face ceiling 

effects. 
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In Figure A.2, we interact the treatment indicator with the school’s standard deviation 

of the baseline test score. Here we find that the linear model produces flat marginal treatment 

effects. We again see that schools in the middle of the distribution perform slightly better, but 

the differences across the bins are not significant. Thus, there is no evidence that the 

intervention has larger effects in heterogeneous schools where small homogenous groups would 

represent a stronger deviation from the normal situation. 

Perhaps the most surprising finding from the heterogeneity analyses is that low-

performing students seem to benefit as much from the intervention as high-performing ones. 

Guryan et al., (2021) in a recent paper provide evidence that individualization of instruction 

can explain much of the benefits from tutoring for struggling students. According to Duflo et 

al. (2011) who report from a tracking experiment in Kenya, such findings most likely reflect 

that the teachers successfully tailor their instruction to the students at hand.  

In future work we will investigate whether the treatment effects are due to tutors who 

tailor their instruction to the average ability level in the small groups, and/or whether the tutors 

take advantage of the small group to provide individualization of instruction within the small 

groups.  

Conclusion 

Our results show that low-dosage tutoring in mathematics for primary school students, can 

increase learning outcomes for students of all ability levels, even without increasing instruction 

time. We find sizable effects on performance in mathematics. Treatment schools score on 

average .16 standard deviations better than control schools after completing a school year with 

tutoring (a short-term effect). However, this effect drops to .06 standard deviations on the 

national test (a longer-term effect). 

It is also important to address the intervention’s effectiveness compared to costs. The 

descriptive statistics in Table A5 in the online appendix suggest that every student received a 

unique treatment equivalent to 222 minutes yearly. On average, the students were treated for 



19 
 

2.5 years. This constitutes 1.25 percent of a teacher’s person-year. The unit cost for a teacher 

person-year was NOK 705,000 in 2017, resulting in a total per student cost equal to NOK 8,800 

or 1,064 USD.  Following this approach, the intervention resulted in an ITT effect of around 

.056SD per 1000 USD. However, supported by findings in Section 5b, treatment might yield as 

much as .14SD per 1,000 USD, given that effects are similar for 1 as 2.5 years of treatment. 

This implies that our intervention is slightly more effective than preliminary findings from a 

small group instruction intervention targeting low-performing 8th graders in Norway 

(Kirkebøen et al. 2019) evaluated by the conservative estimate of 2.5 years duration. The effect-

cost ratio is quite similar to those found in Andersen et al. (2020) evaluating extra teacher’s 

aides in Demark (.076-.11SD per 1000 USD) and Guryan et al. (2021) evaluating the Saga 

tutoring program in the US, whereas the yield is significantly higher than what Schanzenbach 

(2006) estimates for Project STAR. 

The effect sizes are smaller than those in the high-dosage literature but larger than those 

found in previous low-dosage experiments (Fryer, 2017; Nickow et al., 2020). Limited to 

experiments with young students and mathematics, Smith et al. (2013) and Gersten et al. (2015) 

report much stronger effects than we do for young struggling students. A recent meta-analysis 

on tutoring (Nickow et al., 2020) shows larger positive effects than reported here, typically 

around .30-.40 standard deviations. The majority of the included programs are relatively high 

dosage and aimed at low-ability students. Tutoring typically lasts between 10 weeks and a 

school year, involves one-on-one tutoring and is catered for students who performed at or below 

a given threshold. A weakness in much of the literature is that it is unclear what activities 

students would have engaged in had they not been tutored – implying that increased instruction 

time is a potential confounding factor. Increased instruction time could either replace 

recreational activities, other unfilled time or crowd out instruction time in other subjects. In our 

study, instruction time is held constant by design. 
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 These findings add to the tutoring and tracking literature by showing that a pull-out 

strategy using small homogenous groups in mathematics while keeping instruction time 

constant can benefit all students. It is also worth noting that we find effects of additional teacher 

resources on student performance in a resource rich context where previous research has shown 

no or small effects of reduced student-teacher ratio (Leuven et al., 2008; Iversen & 

Bonesrønning, 2013; Falch et al., 2017; Leuven & Løkken 2018; Haaland et al., 2021, Borgen 

et al., 2021). This makes our study particularly relevant for policy-makers seeking additional 

teaching resources to target a heterogeneous student population efficiently. 
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Online appendix material 

 

Small Group Instruction to Improve Student Performance in Mathematics 
in Early Grades: Results from a Randomized Field Experiment 

 

A: Treatment16 

 

Treated schools were allocated an additional teacher man-year with the instruction of using it 

for small-group tutoring in mathematics in grades specified by the project (see Table A1). To 

ease the organization of the school timetable, schools were allowed to use the additional 

resource to recruit (no more than) two small group instructors—implying that some teachers 

divided their time between small group instruction and other teaching responsibilities at the 

school.  

Schools were instructed that students of all ability levels, not only struggling students, 

should participate. The only exception being special needs students–in the case where small 

group instruction would interfere with their rights to special needs education. It was left to the 

schools to make decisions on the participation of these students on a case-by-case basis, 

making sure that their rights remained intact. 

Two cohorts were treated each school year. Schools were instructed that as many 

students as possible, in each grade level, should receive at least two periods of small-group 

instruction during each school year, with each period lasting 4-6 weeks. Implying that to the 

extent possible–all students should receive the same number of hours of tutoring. If it was not 

feasible to give all students this target dosage, schools were instructed that instead of reducing 

the duration of small group instruction for all students, one group should receive a little less 

while the rest should receive the target dosage.  

Table A1 shows the planned use of one teacher-man yea during the intervention 

period.  

 

 

 

                                                 
16 This part is based the treatment description in the pre-analysis plan (see Boesrønning et al. 2018). 
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Table A1: Project plan for use of one teacher man-year for four years (T=treatment) 
School year:  

Cohort*: 

2016/17 2017/18 2018/19 2019/20 

2008 T (grade 3) T (grade 4)   

2009 T (grade 2) T (grade 3) T (grade 4)  

2010    T (grade 4) 

2011   T (grade 2) T (grade 3) 

*Cohort refers to the birth cohort. 

 

In the first year the 2nd and 3rd grades were treated by the additional teacher man-year. 

The second year, the 3rd and 4th grades were treated. In the third year, 2nd and 4th grades were 

treated, and in the fourth year, 3rd and 4th grades were treated. Thus, according to the initial 

plan, after four years, one cohort should have been treated for one year (4th grade in the final 

year of the intervention), two cohorts should have been treated for two years (starting in the 

3rd grade year 1, and starting in the 2nd grade year 3), and one cohort should have been treated 

for three years (starting in the 2nd grade year 1).  

Given that the dosage was intended to be the same in each treatment year–the expected 

treatment dosage between cohorts differs by the number of treatment years.17 The expected 

treatment dosage per year is determined by the minimum treatment requirement, stating that 

each student should receive at least two periods of small group instruction, with each period 

lasting a minimum of 4 weeks. Schools were instructed to give small group instruction in 

parallel to all regular mathematics classes. There is legislation in place dictating that students 

are to receive mathematics instruction for 560 hours during grades 1-4, or on average 140 

hours per year. This implies that treated students should receive instruction in small groups 

for a minimum of 30 hours (1800 minutes) per year18. The sessions differed in length, as there 

are local variations in the schools’ organization of the regular mathematics instruction. While 

some schools have long sessions (up to 90 minutes), others have shorter sessions, often 60 or 

45 minutes, but always adding up to 140 hours per year.  

Due to differences in cohort size between schools, we limited the number of included 

students for each cohort at each school. In small or medium sized schools all student at each 

grade level could be included. In large schools (more than 48 students or more than two 

                                                 
17 In total four cohorts were included in the intervention–with the intended treatment duration ranging from 1 to 3 years. However, 
due to the pandemic, small group instruction was severely disrupted in the last months of the intervention – implying that the 2010 
and 2011 cohorts received less treatment than we originally planned for. In this article only the 2008 and 2009 cohorts are included 
in the analysis. 
18 A school year lasts for 38 weeks. 
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classes at each grade level), only a share of the students can participate. In these cases, the 

project selects students to the treatment group either by randomly selecting classes or singular 

students (of the students that are not organized in fixed classes). The selection of students in 

large schools was necessary to ensure that each student receives sufficient ‘dose’ of treatment 

during a school year (2 x 4 weeks minimum, in a group of maximum 6 students).  

 

 

B: Handbook with information to teachers 

 

To inform treated schools about different aspects of project participation, the participating 

school leaders and teachers received a “handbook” containing instructions on how the 

additional teaching resource should be used, information about the data collection19 as well as 

some advice based on previous research–including information about characteristics of 

previous successful interventions using additional teachers. The distinctions between what 

should be done (mandatory) and advice (optional) was made clear. 

Information on how the resource should be used is described in Appendix A. 

Information on data collection included information about test-taking, information about the 

electronic registration form sent to small group instructors as well as information about the 

different surveys.  

To be able to monitor the received treatment dosage, all small group instructors 

received an electronic registration form where they were asked to provide specific details on 

how the small group teaching in mathematics was carried out. The form essentially included 

lists with names of students. The small group instructor was asked to indicate which students 

had participated in small group teaching in each of the mathematics lessons along with the 

duration of each session. They were asked to report the actual time spent on small group 

instruction–thereby excluding time used for other things such as moving from one classroom 

to the room where small group instruction was taking place, breaks and so on. On a couple of 

occasions we also used this registration form to gather information on small group instructors’ 

own time use in the teaching situation. The final information about the data collection 

contained a brief description of the scope of the annual surveys to all teachers and school 

leaders–surveys aimed at both treatment and control schools, but with additional questions to 

treatment schools regarding the implementation of the intervention. 

                                                 
19 The information on data collection pertaining to the control group was sent to control group schools in a separate document. 
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The advice-section of the “handbook” described elements that could help make the 

intervention effective and can be summarized as follows:   

 Group students into small groups by ability level.  

 Customize instruction according to the ability composition of the small group. 

 Close monitoring of student learning. 

 Close cooperation between the small-group instructor and classroom teacher. 

 The class teacher and small group instructor should work together to make a plan for 

each mathematics lesson containing clear learning objectives. 

 The class teacher and small group instructor should together carry out ongoing 

assessments/monitoring to identify which students are to be grouped together in the 

small groups, identify academic focus areas and regularly assess students' academic 

progress. 

 The topics covered in the small group instruction should be closely tied to the topics 

covered in the regular mathematics lesson. 

 

For further reading we provided the following references:  

Gersten, R., Beckmann, S., Clarke, B., Foegen, A., Marsh, L., Star, J. R., & Witzel, B. (2009). Assisting 
Students Struggling with Mathematics: Response to Intervention (RtI) for Elementary and Middle Schools. What 
Works Clearinghouse. http://ies.ed.gov/ncee/wwc/pdf/practice_guides/rti_math_pg_042109.pdf  

Higgins, S., Katsipataki, M., Kokotsaki, D., Coleman, R., Major, L.E., & Coe, R. (2014). The Sutton Trust-
Education Endowment Foundation Teaching and Learning Toolkit. London: Education Endowment Foundation. 
https://educationendowmentfoundation.org.uk/evidence/teaching-learning-toolkit 

Kulik, J., og Kulik, C. (1987), Effects of Ability Grouping on Student Achievement, Equity & Excellence in 
Education. Vol. 23:1-2, side 22-30. 

National Mathematics Advisory Panel (2008). Foundations for Success. The Final Report of the National 
Mathematics Advisory Panel. Washington, DC: U.S. Department of Education.  

Sharples, J., Webster, R., & Blatchford, P. (2015). Making Best Use of Teaching Assistants Guidance Report. 
London: Education Endowment Foundation.  

Slavin, R. (1987), Ability Grouping and Student Achievement in Elementary Schools: A Best-Evidence 
Synthesis, Review of Educational Research. Vol. 57:3, side 293-336. 
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C: School visits 

In total 14 schools were visited during the trial period, where 11 schools were visited one 

time, while 3 schools were visited on two occasions.  

 

Table A1. Excluding strata containing schools visited during the intervention period 

  Mathematics 
Treatment school 0.071 **(0.034) 
Observations 8313 
Strata FE Yes 
Cohort FE Yes 
SES controls No 

Note: OLS regression with robust standard errors adjusted for 
clustering on school in parentheses. *** p<0.01, ** p<0.05, * 
p<0.1.  

 

 

C: Missing test scores 

 

Table A1. Share of missing national test scores by treatment status. 

 

 (1) (2) 

Treatment school .000 .001 

 (.006) (.005) 

Observations 16,276 16,276 

Strata FE Yes Yes 

Cohort FE Yes Yes 

SES controls No Yes 
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Mean Y .09 .09 

Note: OLS regression where the outcome variable is an indicator of missing national test scores. Robust standard 
errors adjusted for clustering on school in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

Table A2. Share of missing short-term test scores by treatment status. 

  
Pooled 

Cohort 
2008 

Cohort 
2009 

Cohort 
2011 

 
Treatment school 

 
-.063*** 
(.014) 

 
-.042***  
(.012) 

 
-.056**  
(.027) 

 
-.091***  
(.025) 

Observations 25,337 8,491 8,736 8,110 

Strata FE Yes Yes Yes Yes 
Cohort FE Yes Yes Yes Yes 
SES controls No No No No 
Mean Y .13 .08 .18 .14 
Note: OLS regression where the outcome variable is an indicator of missing project test score. Robust standard 
errors adjusted for clustering on school in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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D: Geographic mobility 

 

Table A3. Geographic mobility by treatment status.  

 (1) (2) 

Treatment school -.027 -.023 

 (.025) (.024) 

Observations 16,276 16,276 

Strata FE Yes Yes 

Cohort FE Yes Yes 

SES controls No Yes 

Mean Y .08 .08 

Note: OLS regression where the outcome variable is an indicator of whether the student takes the national test in 
another school than s/he completed the baseline test. Robust standard errors adjusted for clustering on school in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

E: Treatment effects on Reading and English 

 

Table A4. Baseline results for reading and English. Dependent variable is standardized 
national test scores. 
 (3) (4) 
 Reading English 
Treatment school .029 (.027) -.009 (.026) 

Observations 14,735 14,985 

Strata FE Yes Yes 
Cohort FE Yes Yes 
SES controls No No 
Note: OLS regression with robust standard errors adjusted for clustering on school in parentheses. *** p<0.01, 
** p<0.05, * p<0.1. 
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F: Treatment heterogeneity  

 

Figure A1. Treatment heterogeneity by mean pre-test score by school 

 
Note: The plot shows the estimated marginal effects using both a conventional linear interaction model and a 
binning estimator. The total height of the stacked bars refers to the distribution of the moderator (pre-test score by 
school) in the pooled sample, and the red and white shaded bars refer to the distributions in the treatment and 
control groups, respectively. 
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Figure A.2. Treatment heterogeneity by within school heterogeneity 

 
Note: The plot shows the estimated marginal effects using both a conventional linear interaction model and a 
binning estimator. The total height of the stacked bars refers to the distribution of the moderator (SD of pre-test 
score) in the pooled sample, and the red and white shaded bars refer to the distributions in the treatment and control 
groups, respectively. 
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Table AX. Treatment heterogeneity on parental level of education and class size. 
Dependent variable is standardized national test scores. 
 (1) (2) (3) 
 Mathematics  
Treatment school .054 (.038) .055** (.027) .060*** (0.27) 

Treatment x College 
edu. 

.016 (.038)   

College edu. .497 (.023)   

Treatment x Class 
size 

 -.002 (.002)  

Class size   .003 (.002)  

Treatment x School 
size 

  .001 (.001) 

School size   -.002 (.001) 

Observations 14,891 14,891 14,891 

Strata FE Yes Yes Yes 
Cohort FE Yes Yes Yes 
SES controls Yes Yes Yes 
Note: OLS regression with robust standard errors adjusted for clustering on school in parentheses. College edu is 
a binary indicator of whether one of the parents have college education. Class size and school size (and 
interactions with treatment) are mean-centered so that the treatment school coefficient refers to the average 
treatment effect.  *** p<0.01, ** p<0.05, * p<0.1. 

 

G: Detailed description of administrative data sources and project tests 

 

From the registers, we have information on gender, country of birth, test results from the 

National tests in the 5th grade, as well as parental level of education and parental country of 

birth. We also have project tests that are both pre-tests and outcome variables. 

 

Outcome variables and pre-tests 

 

National test 5th grade: We use test scores from national achievement tests in mathematics from 

5th grade as our main outcome. Compulsory national tests in 5th grade have been administered 

since 2007 in reading, mathematics, and English. The Directorate of Education and Training 

commissions test development from subject experts at universities in Norway and psychometric 
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experts in the directorate (see https://www.udir.no/eksamen-og-prover/prover/nasjonale-

prover/om-nasjonale-prover/). The tests are designed to capture the full range of skills in these 

subjects among students within each grade. About 96% of all students in Norway take the test; 

students with special needs and those following introductory language courses may be exempt. 

Data from 2007 and onwards are available as a score summing up correct responses. In addition, 

from 2014, a scaled score based on a two-parameter IRT model is available (for details, see 

https://www.udir.no/globalassets/filer/vurdering/nasjonaleprover/metodegrunnlag-for-

nasjonale-prover-august-2018.pdf). The test results are mainly used to track school 

development over time. Results are conveyed to teachers and parents but have no direct 

consequence for students.  In the present study, we standardize the summed test scores within 

test and year.  

 

Project tests: The project collected pre-tests at the beginning of the treatment periods and post-

tests at the end of each school year for participating cohorts in 2nd and 3rd grade. These tests 

were developed by the research team in collaboration with teachers and math educators. The 

tests were digital and meant to mimic national tests while making the difficulty level appropriate 

for lower grades. They were also piloted before implantation. Teachers received detailed 

instructions on how to carry out the tests. In the second year, the software added the option to 

listen to the question read aloud. Psychometric analyses revealed that the tests were adequately 

unidimensional. Following recommended fit statistics (Maydeu-Olivares, 2013), the Rasch 

model fitted the data reasonably well in both grade 2 (M2(170) = 1090, p < .001, CFI = 0.951, 

RMSEA 95% CI = [0.040 - 0.044], SRMSR = 0.06), and in grade 3 (M2(170) = 1045, p < .001, 

CFI = 0.945, RMSEA 95% CI = [0.041 - 0.046], SRMSR = 0.057). We used empirical item 

characteristic curves to inspect item misfit, and no extreme discrepancies or anomalies were 

observed. Yen (1984)’s Q3 statistic was examined for both tests, but no local item dependency 

was indicated. As for test information and reliability, both tests adequately covered the lower-

to-average ability level, with marginal reliability around .70-.80.10F

20  

 

Measurement of background variables 

Girl: Dummy equal to 1 if the student is a girl. 

 

                                                 
20 For more information, see Haverkamp (2020). 
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Parental level of education: Five dummy variables representing the highest education level of 

the parents. The Norwegian Standard Classification of Education has 10 categories: No 

education (0), Primary education (1), Lower secondary education (2), Upper secondary 

education, basic (3), Upper secondary education, final (4), Post-secondary non-tertiary 

education (5), First stage of tertiary education, undergraduate level (6), First stage of tertiary 

education, graduate level (7), Second stage of tertiary education, postgraduate level (8), 

Unspecified (9). We recode categories 0,1,2 to primary education, 3,4,5 to upper secondary 

education, 6 to higher education lower level, 7, 8 to higher education higher level, and 9 to 

unknown education. 

 

Foreign born: Dummy equal to 1 if the student is not born in Norway.  

 

Second generation immigrant: Dummy equal to 1 if both parents are born abroad while the 

student is born in Norway.  

 

School size: Measured as the total number of students in the grade. 

 

 

  



37 
 

H. Implementation of treatment 

 

Table A5 summarizes descriptive statistics of received treatment dosage for students in the 

treatment group. The data source is information given by the small group instructors in the 

registration form (described in Appendix B).  Note that the information is calculated based on 

fewer observations than those included when estimating the ITT effects in Table 2. The 

discrepancy between number of students at treatment schools and the number of students 

receiving treatment is mainly due to not all students being allowed to participate in small group 

instruction in large treatment schools21, as described in Appendix A. It can also be partly 

explained by some students moving between the time of randomization and time of treatment 

as well as special needs students not participating if small group instruction was perceived to 

interfere with their rights to special needs education. Overall, about 73-74% of students at 

treatment schools participated in small group instruction in the school year 2016/17.  

 

Table A5: Implementation for 2008 and 2009 cohorts 

  2008-cohort 2009-cohort 
  Mean/SD N Mean/SD N 
School year 2016/17:     
Number of weeks in small group instruction  7.64 3104 7.60 3193 

 (2.40)  (2.47)  
Average small group size 4.99 3104 5.02 3193 

 (1.28)  (1.65)  
Total number of minutes in small group instruction 1103 3104 1075 3193 

 (418)  (410)  
School year 2017/18:     
Number of weeks in small group instruction  8.23 3082 7.98 3153 

 (2.80)  (2.85)  
Average small group size 4.61 3082 4.65 3153 

 (1.27)  (1.31)  
Total number of minutes in small group instruction 1184 3082 1077 3153 

 (501)  (449)  
School year 2018/19:     
Number of weeks in small group instruction    7.97 280022 

   (2.43)  
Average small group size   5.24 2800 

   (1.68)  
                                                 
21 For the 2008 and 2009 cohorts this amounts to 842 and 718 students, respectively. 
22 Note that the big drop in the number of students receiving small group instruction in 2018/19 compared to 2017/18 is due to some 

technical glitch in the registration form making us unable to merge information from the registration forms for all students in the treatment 
group. 
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Total number of minutes in small group instruction   1187 2800 
      (461)   
Note: Only the 2009 cohort continued receiving treatment in school year 2018/19. The number of included students decrease over time 
because students move to different schools. 
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Figure A3: Distribution of received treatment by cohort and school year 

 
 

 

 

 

 

 

 

 

 

 

 



40 
 

 

Table provides descriptive characteristics on small group instructors and regular mathematics 
teachers. The information comes from the annual teacher survey.  

Table A6: Teacher characteristics 

  
Small group 

teacher 
Regular teacher 

Male teacher 0.28 0.13 
Age 40 41.8 
Experience as teacher at this school 7.12 14.53 
Experience as teacher in total 11.51 19.29 
Number of credits in math at university 58.2 36.8 
Have you completed teacher education? 0.98 0.98 

 

In addition, from the teacher survey we know that 31% of small group instructors had 

previously worked at the school, implying that the majority of instructors were external hires. 

Finally, when asked to rate on a liker scale of 1-5 (where 5 is strongly agree) to whether 

“Small groups were composed of students of nearly equal ability level in mathematics” where 

97% of small group instructors agreed or strongly agreed with this statement.  
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