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Convexity, Di¤erential Equations, and Games
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Abstract. Theoretical and experimental studies of noncooperative
games increasingly recognize Nash equilibrium as a limiting outcome of play-
ers’ repeated interaction. This note, while sharing that view, illustrates and
advocates combined use of convex optimization and di¤erential equations, the
purpose being to render equilibrium both plausible and stable.
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ential equations, stability.

1. Introduction
While economics has grown game-theoretic, the demanding nature of the central so-
lution concept has increasingly been recognized. That concept, the Nash equilibrium,
captures, in one shot, rationality, optimality and foresight. But, precisely by achiev-
ing so much, it cries out for justi…cation in dynamic terms. Indeed, legitimacy for
making Nash equilibria key items of inquiry can only be produced by dynamics which
eventually converge to such focal points. It is unsatisfactory to study stability after
equilibrium reigns without exploring …rst what process brought that distinguished
state into being. Common and unifying features of such processes are that players
² have imperfect foresight, knowledge, or understanding of possibilities, intentions,
and consequences, yet
² steadily seek to improve own payo¤.

Thus real, repeated play is likely to unfold with manifold imperfections in the
short run. To analyze possible long-run convergence this paper advocates use of
convex analysis, di¤erential equations, and (stochastic) approximation. After de…ning
the in…nitely repeated stage game in Section 2, I synthesize some generic instances
and indicate extensions. For the sake of illustration the classical Cournot oligopoly
will come on stage time and again. Since the main concerns of this paper are with
modelling, some technicalities get limited attention.

2. The Stage Game
There is a …nite, …xed set I of economic agents who play the same game repeatedly.
At every stage individual i 2 I seeks to maximize - or merely improve - his payo¤
¼i(xi; x¡i) 2 R[f¡1g with respect own strategy xi 2 Ei: Here Ei is a Euclidean

¤University of Bergen and Norwegian School of Economics and Business Administration;
sjur.‡aam@econ.uib.no. This work was completed at CES. Thanks for generous support are due
CES, Røwdes fond, Meltzers høyskolefond, and Ruhrgas.
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space, endowed with inner product h¢; ¢ii ; and x¡i stands for the strategy pro…le
(xj)j 6=i implemented by i’s rivals. The value ¡1 accounts for constraints if any. A
point x = (xi) is then declared a Nash equilibrium i¤ each xi 2 arg max¼i(¢; x¡i);
that is, i¤ for all i

0 2 mi(x) :=
@

@xi
¼i(x): (1)

Here @
@xi

denotes the partial superdi¤erential operator of convex analysis, namely:

gi 2 @

@xi
¼i(x) , ¼i(x̂i; x¡i) � ¼i(xi; x¡i) + hgi; x̂i ¡ xiii ;8x̂i 2 Ei:

I henceforth take existence of at least one Nash equilibrium for granted and posit
that each payo¤ ¼i(xi; x¡i) be concave in own variable xi.

Ever since von Neumann’s …rst study [30] there has been some predilection with
…nite-strategy games.1 That restriction seems not fully fortunate though. First, it of-
ten entails approximations. Second, apart from facilitating learning schemes [5], [32],
it can hardly generate smooth dynamics. Third, it seems a paradox that although
players are commonly supposed to respond optimally, they make virtually no use of
optimization theory or methods. By contrast, the classical Cournot oligopoly [9], fea-
turing a continuum of strategies and no approximation, begs for calculus, optimality
conditions, dynamics, and convex analysis. So, to illustrate and motivate use of such
analysis, I shall often activate, here below, that workhorse model of applied game
theory.

The Cournot oligopoly goes as follows: Firm i 2 I produces quantity xi 2 R
of one and the same perfectly divisible, homogeneous good to obtain a pro…t

¼i(x) = P (a)xi ¡ ci(xi)

which incorporates a convex cost function xi 7! ci(xi) 2 R[ f+1g and a smooth
price curve a 7! P (a): Speci…cally, P (a) is the price at which consumers will demand
the aggregate quantity a :=

P
i2I xi: Assuming concavity of individual objectives -

and suitable di¤erentiability as well - a Cournot-Nash equilibrium obtains i¤ for all i

0 2 mi(x) := P (a) + P
0(a)xi ¡ @ci(xi); (2)

@ denoting here the customary subdi¤erential of convex analysis.2

1Then payo¤ ¼i(x) becomes multilinear and equals ¡1 whenever xi falls outside the probability
simplex of mixed strategies.

2Note that (2) …ts the parametrized variational inclusions studied in [8].
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3. Parametric Interaction
Motivated by (2) suppose optimality condition (1) assumes the form

0 2 mi(xi; a); (3)

featuring an endogenously determined parameter a that belongs to a nonempty com-
pact convex set A ½ Rn. We posit that a results from a continuous aggregation mech-
anism x 7! a = Ax 2 A; maybe nonlinear and/or unknown. Also suppose that each
inclusion (3) admits a parameter-dependent, continuous solution a 7! xi(a): Taken to-
gether these solutions admit common observation of a new aggregate outcome, called
f (a); via the following string:

a 2 A 7! [xi(a)] =: x(a) 7! Ax(a) =: f (a) 2 A: (4)

Consequently, a steady state prevails i¤ a = f (a): That is, any …xed point of f; in
con…rming expectations, supports a Nash equilibrium.

In many instances, aggregation like (4) may simplify play, reduce the complexity
of strategic interaction, and lower the perceived dimensionality. To wit, instead of
players having to learn about each other, they need only form predictions about the
parameter a: While still out of equilibrium, such predictions are likely to be wrong -
and refuted by observations. Whenever so, they had better be improved. One way
of intentional improvement is modelled next. It involves a sequence of step sizes
sk 2 (0; 1] that tend to zero, but so slowly that

P
sk = +1: Agents will

start at an initial point a0 2 A determined by guesswork, accident, or historical
factors not elaborated here;
update the current prediction ak iteratively at stages k = 0; 1; ::: by the mean-value
rule

ak+1 := (1¡ sk)ak + skf(ak); (5)

continue until convergence (if ever).

Evidently, sk strikes a balance between the state ak, which prevails at stage k; and
the fresh observation f(ak). In other words, compromise (5) re‡ects on-going learn-
ing. The requirement that

P
sk = +1 ensures that learning never comes to a halt.

Property sk ! 0+ accounts for increasing experience or maturation as k ! +1. 3

Theorem 1. (Global convergence to equilibrium) Suppose f maps a compact convex
set A ½ Rn continuously into itself. Also suppose the ‡ow _a = f(a) ¡ a has unique
integral curves, and that each minimal invariant set must be an isolated point. Then,

3Earlier studies of (5) include [21], [24], [25]. Multi-valued mappings a ; f (a) may also be
accommodated; see e.g. [13]. Format (5) is the one which dominates in studies of so-called …ctitious
play; see [7], [22] and [32].
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for arbitrary initial a0 2 A; process (5) converges to a …xed point of f:

Proof. Let L denote the nonempty set of accumulation points of the sequence©
ak

ª
: By the Limit Set Theorem in [4] L is compact, connected, invariant under

_a = f (a) ¡ a; and does not contain a proper attractor. But then, by assumption, L
reduces to a singleton whence there is convergence. 2

Pemantle [31], in exploring stochastically perturbed versions of (5), provides con-
ditions under which linearly unstable equilibria almost surely cannot be limit points;
see also [5]. David and Jonathan Borwein show that given n = 1; that is, if A ½ R,
then a constant step size could be applicable:

Proposition 1. (One-dimensional convergence with constant step sizes [6]) Suppose
f is Lipschitz with modulus L; i.e., jf (a) ¡ f(â)j � L ja ¡ âj for all a; â 2 A ½ R:
Also suppose that sk ´ s 2 (0; 2

L+1 ): Then the sequence
©
ak

ª
generated by (5) con-

verges to a …xed point of f: 2

Example 1. (One-dimensional interaction, repeated Cournot play [13]) Suppose
each oligopolist i 2 I knows the price curve P (¢) albeit nothing about his rivals. But
presumably he is able to solve (2) for the unknown xi = xi(a); depending continuously
on the predicted aggregate supply a: That supply belongs to a nonempty compact
interval A ½ R. If A is invariant under a 7! P

i xi(a) =: f (a); and f has isolated
…xed points, then (5) converges to a rational-expectation, market-clearing, aggregate
demand a = f (a) which complies with Cournot-Nash equilibrium.

Continuous dependence can here be derived via an auxiliary problem [28], namely:
Since P 0(a) < 0, maximization of the strictly concave, coercive objective

X

i2I

½
pxi +

p0

2
x2i ¡ ci(xi)

¾
; (6)

featuring short notation p = P (a); p0 = P 0(a); will produce a unique, continuously
dependent, optimal solution x(p; p0): Since a 7! (p; p0) = [P (a); P 0(a)] is already
presumed continuous, the desired overall continuity follows by composition. 2

Still with A ½ R equation (5) also …ts well to models concerned with price pre-
dictions; see [1], [12]. We next let A ½ R2:

Proposition 2. (Convergence with two-dimensional interaction) Suppose A ½ R2 is
nonempty compact convex and that f : A ! A is C1 with isolated …xed points and
divf := @f1

@a1
+ @f2

@a2
6= 2: Then, for arbitrary initial a0 2 A; process (5) converges to a

…xed point of f:

Proof. By the Bendixon-Poincaré theorem _a = f(a) ¡ a accumulates to a …xed
point of f; or to a periodic solution (possibly a limit cycle) [29]. The latter possibility
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is excluded, however, by Green’s theorem. This shows that minimal invariant sets
are isolated singletons, and then Theorem 1 applies. 2

Example 2. (Two-dimensional interaction; repeated Cournot play [17]) We continue
with the Cournot oligopoly. But more realistically than in Example 1, suppose now
that each producer knows neither the price curve P (¢) nor his rivals. Everybody then
forms a belief a = (a1; a2) := (p; p0) 2 R2 about the upcoming price p = P (

P
xi) > 0

and the associated slope p0 = P 0(
P
xi) < 0: Consequently, x(a) = x(p; p0) is the

unique solution of (6). Under appropriate hypotheses the implicit function theorem
certi…es that

P
xi(a) becomes C1 whence so is f (a) = (f1; f2)(a) := [P; P 0] (

P
xi(a)).

One may argue, or reasonably assume, that a higher predicted price a1 := p; inspires
increased supply

P
xi(a) and thereby lower realized price f1(a), i.e. @f1

@a1
� 0: Sim-

ilarly, assuming P 0(¢) concave, a ‡atter price curve (that is, a more moderate slope
a2 := p0) incites greater supply and thereby smaller realized p0; i.e. @f2

@a2
� 0: Taken

together the last two inequalities largely su¢ce for divf < 2. 2

Proposition 2 seemingly applies to …ctitious play of 2 £ 2 games; see [5], [7], [14],
[22], [32]. But smoothness is then absent. That much studied instance attests to the
need for a qualitative theory of planar vector …elds with discontinuous right hand
side.

When A ½ Rn with n ¸ 3; matters become more di¢cult. But sometimes a 7!
f (a) has monotonicity properties caused by substitution or complementarity. The
following is a well known result in that vain:

Proposition 3. (Convergence under monotone interaction) Suppose f : A ! A ½ Rn
is strictly monotone in the sense that

hf(a)¡ f(¹a); a ¡ ¹ai � ka ¡ ¹ak2 ¡ ¹(ka ¡ ¹ak) (7)

where ¹ : R+ ! R+ is continuous, increasing, vanishes only at 0; and ¹a is any …xed
point of f . Then f has a unique …xed point to which (5) converges.

Proof. Existence of two distinct …xed points ¹a; a 2 A would contradict (7). So
let ¹a be the unique …xed point, _a = f(a) ¡ a; and L(t) := ka(t) ¡ ¹ak2 =2. Then
inequality _L = ha ¡ ¹a; f(a) ¡ ai � ¡¹(ka ¡ ¹ak) implies a(t) ! ¹a: Invoke Theorem 1
to conclude. 2

Example 3. (Cournot play with many commodities) In (1) suppose xi 2 Rn: This
means that each …rm can produce n homogeneous goods - to be sold at common
markets. Suppose now that the ”price slope” P 0(

P
xi) is a constant, known, sym-

metric, negative de…nite n£ n matrix, denoted ¡S: Then, regarding the upcoming
price vector p 2 Rn as the parameter, solutions x = (xi) to (1) coincide with those
of p 2 @ [ci(xi) + hxi; Sxiii =2] ;8i 2 I: Thus, letting C ¤i denote the Fenchel conjugate
of xi 7! ci(xi) + hxi; Sxiii =2; it holds that xi = xi(p) 2 @C¤i (p) for all i: This implies,
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quite naturally, that aggregate supply increases with more favorable price predictions,
i.e. hPi xi(p) ¡P

i xi(p̂); p¡ p̂i ¸ 0: It seems reasonable therefore, in this context,
to assume by ”the law of demand” that f (p) := P (

P
xi(p)) is decreasing, that is,

inequality hf(p)¡ f (p̂); p¡ p̂i � 0 (or a good approximation) should be satis…ed.
The upshot is that (7) holds with ¹(r) = r2: 2

4. Non-parametric Interaction
Nash equilibrium leaves the impression that each player foresees perfectly and re-
sponds optimally. Must human-like, rational agents really acquire both these facul-
ties? This section argues that in some instances neither is ever needed. To show this
repeated play is modelled here in various ways as processes driven by noncoordinated
pursuit of better payo¤.

For simplicity take ¼i(xi; x¡i) to be di¤erentiable in xi and su¢ciently smooth. I
begin by considering a …rst-order gradient process:

Proposition 4. (Convergence of a gradient method) Suppose there is ball B around
a point ¹x such that the standard inner product hx ¡ ¹x;m(x)i is negative and upper
semicontinuous on BÂ¹x. Then, solution trajectories of

_xi = mi(x);8i 2 I ;

emanating from any initial point x(0) 2 B; will converge to ¹x; this point being a Nash
equilibrium.

Proof. The function L(t) := 1
2 kx(t) ¡ ¹xk2 becomes Lyapunov provided x(0) 2 B:

Indeed, omitting explicit mention of time, _L = hx ¡ ¹x; _xi = hx¡ ¹x;m(x)i � 0
with strict inequality when x 6= ¹x: Thus kx(t)¡ ¹xk tends monotonically down-
wards to a limit r ¸ 0: Therefore, r � kx(t)¡ ¹xk � kx(0)¡ ¹xk for all t ¸ 0:
Let ¹ := max fhx ¡ ¹x;m(x)i : r � kx ¡ ¹xk � kx(0) ¡ ¹xkg : If r were positive, the up-
per semicontinuity of hx¡ ¹x;m(x)i would entail _L � ¹ < 0; whence the absurdity
L(t)& ¡1: Thus r = 0; and the last assertion follows immediately. 2

Example 4. (Gradient play of Cournot oligopoly [10]) Suppose P (a) = P (0)¡Sa for
positive constants P (0) and S: Then, with di¤erentiable convex cost ci; monotonicity
obtains because

hm(x) ¡m(x̂); x ¡ x̂i = ¡S(a¡ â)2¡ S kx¡ x̂k2 ¡
X

i

[@ci(xi) ¡ @ci(x̂i)] [xi ¡ x̂i] : 2

Gradient dynamic enjoys many appealing properties: It is decentralized and pro-
ceeds in parallel; it is easy to discretize and implement; it can incorporate con-
straints and nonsmooth data [3], [10], [11], [15], [16]. At times, however, such dy-
namics do not quite satisfy natural expectations: First, the monotonicity assumption
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hx ¡ ¹x;m(x)i � 0 may fail, and second, convergence often comes slowly, if at all.
These features lead me to consider brie‡y a method that uses not only m but deriva-
tives of m as well. Speci…cally, let

_xi =mi(x) + ¸i _mi(x) for all i 2 I: (8)

(8) incorporates some extrapolation via the term _mi(x) = m0
i(x) _x: Such behavior

mirrors that player i moves in the direction mi(x) of steepest payo¤ ascent, modi-
…ed somewhat by how rapidly that direction changes. Note how little information or
expertise the concerned parties need to keep process (8) going. It su¢ces that ev-
ery individual i continuously observes and appropriately reacts to ”his” current data
xi; mi, and _mi: The numbers ¸i are positive and typically rather large. Intuitively,
a large ¸i serves to mitigate the slowdown of gradient dynamics near stationary points.

Proposition 5. (Convergence of an extrapolative system) Suppose the trajectory
x(t); t ¸ 0; solves (8) in a domain where m0(x) is non-singular. Then, if all ¸i are
su¢ciently large, any accumulation point ¹x of x(t) must be a Nash equilibrium. In
particular, if ¹x is an isolated solution to (1), then x(t) ! ¹x:

Proof. For completeness we reproduce the argument in [35]. Denote by ¸ the
diagonal matrix having ¸i along the diagonal in block i: Then, with short notation
m = m(x);m0 = m0(x); system (8) can be rewritten as

_x = m+ ¸m0 _x; that is; _x = [I ¡ ¸m0]¡1m:

Let L(t) := km(x(t))k2 =2 and observe that

_L = hm;m0 _xi =
D
m;m0 [I ¡ ¸m0]¡1m

E
=

D
m;¸¡1¸m0 [I ¡ ¸m0]¡1m

E
:

At this point use the matrix identity [I ¡ ¸m0]¡1 ¡ ¸m0 [I ¡ ¸m0]¡1 = I to get _L =
m;¸¡1

©
¡I + [I ¡¸m0]¡1

ª
m

®
: Thus, for ¸ su¢ciently large m(x) 6= 0) _L < 0: 2

Process (8) is not straightforward to discretize, and constraints are not quite easy
to account for; see [18], [19]. More convenient in both regards is another procedure,
inspired by an important, recent paper of Attouch et al. [2]. To convey the main
idea assume …rst that each payo¤ function ¼i be …nite-valued. This means that there
are no constraints. The approach is then motivated as follows: Whenever player i
- and others similarly - sees _xi 6= mi(x); he attempts to restore equality by way of
suitable acceleration/retardation Äxi =mi(x)¡ _xi. Broadly speaking, if mi(x) exceeds
xi in some coordinate, then that velocity component should increase. The resulting
motion de…nes a di¤erential system

Äx =m(x) ¡ _x (9)
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which has each Nash equilibrium as a rest point. It also retains the merit of being
decentralized and simple.

Given this motivation I step back now and reintroduce constraints of the following
sort: For each i suppose xi 2 Xi µ Ei where Xi is compact convex. Suppose that
agent i; while using strategy xi 2 Xi; worries about feasibility as follows. Whatever
be his contemplated rate of change - that is, his desired velocity - vi; its normal
component, if any, must be suppressed. Otherwise that component would lead outside
Xi. Consequently, what should be retained of the proposed vi is only its tangential
part. Formally, let PTixi denote the orthogonal projection onto the tangent cone
Tixi := clR+(Xi ¡ xi); and posit

_xi := PTixi [vi] for all i: (10)

This operation bends (projects) any tentative velocity vi onto the local tangent cone
Tixi so as to avoid straying out of Xi:4 In sum, projection takes care of feasibility but
leaves the dynamics of vi unspeci…ed. For such speci…cation I imitate (9) and posit
that vi evolves according to

_vi = PTixi [mi(x)]¡ PTixi [vi] for all i: (11)

Since Tx = ¦i2ITixi is the tangent cone of the product set X := ¦i2IXi at x = (xi);
the di¤erential equations (10), (11) can be assembled into system form

_x = PTx [v]
_v = PTx [m(x)]¡ PTx [v]

¾
(12)

By a solution to this system is understood an absolutely continuous pro…le [x(t); v(t)] ;
t ¸ 0; that satis…es (12) almost everywhere. Since Tx is empty whenever x =2 X; it
goes without saying that x(¢) must be viable in the sense that x(t) 2 X for all t ¸ 0:
The total energy

E(t) := kv(t)k2 =2 ¡
Z t

0


PTx(¿ ) [m(x(¿ ))] ; _x(¿ )

®
d¿ (13)

is de…ned as the sum of kinetic and potential energy. The latter is a line integral

Z x(t)

x(0)

hPTxm(x); dxi =
Z t

0


PTx(¿) [m(x(¿ ))] ; _x(¿)

®
d¿; (14)

calculated along the path of play.
The next result spells out the stability often inherent in (12). By incorporating

constraints it extends Theorem 3.1 in Attouch et al. (2000). For simple notations and
statements, when 1 � p � 1; let Lp := Lp(R+;E) be the space of (equivalence classes

4Clearly, given continuous time, projection is required only when xi resides at the boundary of
Xi :
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of) measurable functions 0 � t 7! x(t) 2 E := ¦iEi such that
R 1
0

kx(t)kp dt < +1:
In particular, x 2 L1 i¤ x is essentially bounded on R+.

Proposition 6. (Asymptotic stability and convergence of constrained play) Con-
sider the second-order process (12) with m(¢) Lipschitz continuous on bounded sets.
Suppose the potential energy

Z t

0


PTx(¿) [m(x(¿))] ; _x(¿ )

®
d¿

is bounded above along any solution trajectory.5 Then,
² from any admissible initial state [x(0); v(0)] 2 X £ E there emanates an in…nitely
extendable, feasible solution 0 � t 7! [x(t); v(t)] 2 X £ E of (12);
² the total energy E(t) converges monotonically downwards to a limiting …nite level
E(1) and v 2 L1; _x 2 L1 \ L2;
² it holds that _x; _v 2 L1 and, provided limt!+1PTx(t) [m(x(t))] exists, all points
_x(t); _v(t); PTx(t) [m(x(t))] tend to 0 as t ! +1; this saying that every cluster point
of x(t); t ¸ 0; is a Nash equilibrium. 2

Since no player acts continually, it is mandatory to recast (12) in discrete time.
As discretization we propose

xk+1 := P
£
xk + skvk

¤

vk+1 := vk +P
£
xk + skm(xk)

¤
¡ P

£
xk + skvk

¤ (15)

Here P is short notation for the orthogonal projection onto X, and sk, k = 0; 1; : : :
are the step sizes mentioned earlier. Evidently, in our context, (15) amounts to a
much decentralized system in which, iteratively at stages k = 0; 1; ::; each individual
i updates his strategy and velocity by the rule

xk+1i := Pi
£
xki + skv

k
i

¤

vk+1i := vki + Pi
£
xki + skmi(x

k)
¤
¡ Pi

£
xki + skv

k
i

¤

Here Pi denotes orthogonal projection onto Xi. The initial points (x0i ; v0i ); i 2 I; are
determined by accident or historical factors better discussed in each particular setting.

Theorem 2. (Convergence of discrete-time, constrained, repeated play) Suppose
system (12) has unique solution trajectories. Then, under the hypotheses of Propo-
sition 6 and the assumption that m(¢) has isolated roots, any bounded discrete-time
trajectory (xk; vk) generated by (15) must be such that xk converges to a Nash equi-
librium. 2

For proof of Proposition 6 and Theorem 2 see [20].

5 In the unconstrained case, the potential energy becomes upper bounded when m = P 0 for some
di¤erentiable, upper bounded potential P : E ! R; see [26], [27].
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5. Concluding Remarks
Noncooperative game theory cannot - and quite reasonably, does not - claim that real,
human-like players, when facing unfamiliar situations, will settle in Nash equilibrium
right away. That theory rather invites two questions: First, save a unique solution,
which principle can select a speci…c equilibrium? Second, what plausible sort of process
could eventually bring the parties there?

The literature already o¤ers several models of learning to play Nash over time.6

Common to these is the prime position - and somewhat overwhelming attention - given
to …nite-strategy games and best responses. By contrast, this paper used continuous
strategy spaces and quite often dispensed with best responses. In applying di¤erential
equations (and related approximation theory) it subscribes to a tradition that goes
back to Brown (1951) and Rosen (1965). It is also eminently pursued in [23] and [37].
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