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1 Introduction

In recent years, literature on capital budgeting has been largely enriched by numerous

publications on real options [e.g. Myers (1977), Brennan and Schwartz (1985), McDonald

and Siegel (1986), Majd and Pindyck (1987), Dixit (1989), Pindyck (1991), Dixit and

Pindyck (1994), Trigeorgis (1996), Grenadier and Weiss (1997), Moretto (2000), Lensink

and Sterken (2001)]. Real option theory - the application of option pricing theory on

non-financial investment - takes account of uncertainty and irreversibility of investment

decisions. Recently, public economists have extended real option theory by integrating

taxation [e.g. Harchaoui and Lasserre (1996), Alvarez and Kanniainen (1997), Niemann

(1999)].

A real option-based investment model requires the decision between two approaches: ei-

ther dynamic programming (DP), similar to decision-tree analysis, or contingent claims

analysis (CCA), an approach derived from the pricing of financial options. While both

methods yield equivalent results in the tax-free case [cf. for a mathematically rigorous

analysis of the relationship of DP and CCA in tax-free models Knudsen, Meister and Zer-

vos (1999)], integrating taxes reveals some interesting differences, especially under risk

aversion. This raises the question if there is a superior approach and if there are limits to

the integration of taxes in capital budgeting.

Our article deals with this agenda beginning with a simplifying assumption widely used

in public economics, but often rejected in financial economics: risk neutrality. Our aim

is to demonstrate the basic principles of the DP- and the CCA-approach in real option

theory. In chapter 2, we present the general assumptions underlying both approaches and

demonstrate in chapter 3 that there are similarities in the pre-tax and post-tax case. In

chapter 4, the risk neutrality assumption is relaxed and the DP- and the CCA-method

are discussed in the more general setting of risk aversion, including a proof of neutral tax

systems. In chapter 5, the properties of both approaches are compared before and after

taxes, under risk neutrality and under risk aversion. Chapter 6 summarizes with some

concluding remarks.

Traditional models of investment under uncertainty neglect an aspect crucial to invest-

ment decisions in reality: flexibility when decisions are irreversible. Under conditions of

irreversibility, abandoning a project already in place becomes impossible or at least expen-

sive. A supposedly beneficial project can prove disadvantageous when market conditions
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turn sufficiently unfavorable. Therefore, the possibility to defer a decision and wait for

more information can help to avoid harmful decisions. Thus, flexibility constitutes an

economic value of its own. Deriving a rule for optimal investment under uncertainty

and irreversibility requires the valuation of managerial flexibility. Since the 1970s, an

important branch of financial economics deals with this matter: option pricing theory.

Therefore, flexibilities in the context of non-financial (real) investment are called real

options.

Although real option literature characterizes many other types [for an overview, cf. Tri-

georgis (1996)], real options - like their financial counterparts - can be roughly divided

into calls and puts. A “real” call is an option to invest. It provides the opportunity to

acquire a project with stochastic cash flow and thus uncertain present value. A “real” put

is an option to abandon a project already in place. Further real options can be modeled

as multi-stage combinations of calls and puts.

The main fields of application are commodity-related investment projects like oil explo-

ration, mining and forestry [cf. Brennan and Schwartz (1985), Morck, Schwartz and

Stangeland, (1989)]. Real option-based models are also being applied to real estate devel-

opment and strategic acquisitions [cf. Quigg (1995), Smith and Triantis (1995)]. Mathe-

matically, these investment decisions are characterized by an optimal stopping problem.

Since real options seem to be widely accepted for assessing investment projects in finan-

cial theory as well as in business practice, it suggests itself to integrate taxation into real

option-based models. By doing so, it is possible to derive an investment rule considering

taxational effects and to identify tax systems that are neutral with respect to invest-

ment decisions. For risk neutral investors, such tax systems have already been proved [cf.

Niemann (1999)].

As under the classical net present value rule, the investment rule in real option-based

models is simply that a project’s benefits must outweigh its costs. Here, the benefits

are defined by the expected present value of the investment project plus the additional

real options generated by realizing the project. The costs, in contrast, consist of the

strike price, i.e., the project’s initial outlay and the value of the real options exercised by

carrying out the investment. All components of the costs and benefits can be functions

of one or more stochastic variables. The decision rule gives the realization of stochastic

variables that is necessary and sufficient to stop waiting and abandon flexibility.

2



2 General assumptions

The following section provides a summary of the assumptions that are common for all

models discussed in this paper. We will consider different models including an option

to invest. Its owner permanently faces the decision on either exercising the option, i.e.,

stopping, carrying out the project and collecting the resulting cash flow or continuing

waiting and sacrificing cash flows but keeping the option to avoid unexpectedly low cash

flows. It is assumed that the initial outlay I0 is deterministic and constant and that all

uncertainty is summarized in a single continuous-time stochastic process, P , following a

geometric Brownian motion
dP

P
= α dt + σ dz (1)

with constant drift α and constant volatility σ, where dz denotes the increment of a

standard Wiener process.

Exercising the option to invest is assumed totally irreversible, i.e., it is impossible to

abandon a project during its economic life ending at time T . T may be finite or infinite.

For reasons of simplicity, we will mostly assume an infinitely-lived project and a perpetual

option to invest. The project does not include any additional flexibility, so its only benefit

is the expected cash flow. Generally, the project’s cash flow π is a function of the stochastic

variable P and time t: π ≡ π(P, t).

Integrating taxation, some simplifying assumptions concerning the tax base and the tax

rate are necessary. The tax base equals cash flow π less depreciation allowances d that may

be deterministic or stochastic1. The tax rate τ is assumed deterministic and constant, so

under an immediate loss-offset, the post-tax cash flow πτ is defined as:

πτ = π − τ (π − d) = (1− τ) π + τ d. (2)

As long as the option to invest is not exercised, available funds yield the risk-free capital

market rate r that is assumed constant. The debit and credit rates are identical. A fraction

γ of credit or debit interest payment is liable to tax or tax-deductible, respectively. The

risk-free after-tax interest rate rτ can be written as rτ = (1− γ τ) r.

1Depreciation allowances might also include immediate write-offs.
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3 Real options under risk neutrality

3.1 Tax-free case

One method to derive the optimal investment rule under uncertainty and to assess the

value of the option to invest is a technique widely used in economics: dynamic program-

ming [cf. Bellman (1957)]. An alternative method has emerged from option pricing theory:

contingent claims analysis. Since the optimality principles are well known in real option

theory, we will only give a brief introduction in order to focus on post-tax problems.

It is known from real option literature that assuming an output price P following a

geometric Brownian motion and the investment decision being completely irreversible,

yields the general objective function

max
u
{max {V (P )− I0, F (P )}} (3)

with F (P ) = max
T>t

{
E
[
(VT (P )− I0) e−r(T−t)

]
, 0
}

(4)

E [·]: expectations operator
F (P ): value of the option to invest
u: action variable
V (P ): expected present value of the investment project,

which is independent of applying either the DP or the CCA approach.

To derive a rule for optimal investment, at first we have to assess the value of the un-

derlying asset, the investment project. If the project is in place, it does not involve any

flexibility, so its economic value consists solely of its future cash flows. For reasons of sim-

plicity, the cash flow π(P, t) is set equal to the geometric Brownian motion P : π(P, t) = P .

Assuming risk neutrality, the project value V is determined by its expected present value

computed with the risk-free rate r:

V ≡ V (P ) = E
[∫ ∞

t
P (ξ) e−r(ξ−t)dξ

]
=

P

r − α
; r > α. (5)

3.1.1 Dynamic programming

Given the value of the underlying asset (eq. 5), the value of the option to invest can

be determined. Since the owner of the option can only decide between waiting and

exercising, the decision variable is binary, so it is possible to check optimality by complete

enumeration. We will start with the continuation region in which the option is kept alive.

The optimal transition to the stopping or exercise region will be modeled by boundary

conditions.
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The option does not carry any cash flows, so its possible payoff only consists of its ex-

pected appreciation in value. The continuous-time Hamilton-Jacobi-Bellman equation for

determining the value of the call can be written as:

r F
!
= E [dF ] . (6)

Its economic interpretation is that the owner of the option expects an instantaneous return

that in equilibrium equals the risk-free rate. Application of Itô’s lemma to the stochastic

differential dF and further transformation yields the partial differential equation:

∂F

∂t
+

1

2
σ2 P 2 ∂2F

∂P 2
+ α P

∂F

∂P
− r F = 0. (7)

Assuming a perpetual real option, the time derivative ∂F
∂t

vanishes and eq. (7) reduces to

the ordinary differential equation:

1

2
σ2 P 2 d2F

dP 2
+ α P

dF

dP
− r F = 0 (8)

with the general solution

F (P ) = A P λ, A > 0, λ =
1

2
− α

σ2
+

√(
1

2
− α

σ2

)2

+
2 r

σ2
> 1, (9)

where A is a constant to be determined. The boundary conditions are:

F (0) = 0 (10)

F (P ∗) = V (P ∗)− I0 (11)

dF (P ∗)

dP
=

dV (P ∗)

dP
. (12)

Eq. (10) implies that a call on a worthless underlying is itself worthless. Eqs. (11)

and (12) are free boundary conditions determining the transition from the continuation

region to the stopping region at the critical investment threshold P ∗. Eq. (11) means

that a project’s benefits must equal its costs at the point of transition. It is called value-

matching condition. Eq. (12) is a so-called smooth-pasting or high contact condition

requiring the identity of marginal benefits and marginal costs at the critical threshold.

Further transformation yields the critical investment threshold P ∗:

P ∗ =
λ

λ− 1
(r − α) I0. (13)

The critical value P ∗ indicates whether investment should be delayed or not. If the

actually observed realization P is higher than the critical value P ∗, the investment should

be carried out immediately, otherwise it must be postponed until P ∗ is reached.
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3.1.2 Contingent claims analysis

In analogy to the Black-Scholes formula [cf. Black and Scholes (1973)] in CCA, a risk-free

portfolio has to be formed to assess the value of the option to invest and herewith to

determine the decision rule. The portfolio Φ consists of one option to invest and n units

in a short position of the investment project or a perfectly replicating asset:

Φ = F (P )− nP. (14)

For n = ∂F
∂P

all stochastic terms vanish, so the portfolio is riskless. In the absence of

arbitrage opportunities, the riskless total return from the portfolio equals the return from

the real option plus the negative return from the short position during a time interval of

length dt. Substituting for n yields

r Φ dt = dF − ∂F

∂P
dP − ∂F

∂P
δP dt, (15)

with δ = r − α, the dividend rate. After some transformations, the ordinary differential

equation (8) from dynamic programming can be derived. Considering identical boundary

conditions a critical threshold, which is equivalent to the one from dynamic programming

(eq. 13) can be determined.

A critical assumption of CCA is the replication or spanning property. In reality, there are

only very few perfectly replicating assets for real investment, especially in commodity-

related projects like oil exploration or mining. In any case, the existence of futures markets

often enables to construct a replicating portfolio.

An advantage of CCA is the endogenization of the capital market rate whereas DP is

limited to cases in which the discount rate is given exogeneously. In this chapter, the

analysis is restricted to a risk neutral scenario, so the problem of finding an adequate

discount rate is irrelevant. Both approaches refer to the exogeneously determined risk-

free rate. The derivation of an appropriate discount rate will gain importance in a context

of risk aversion in chapter 4.

3.2 Integrating taxes

The literature on real options hardly considers taxation [Exceptions are Majd and Myers

(1987), Mauer and Ott (1995), Harchaoui and Lasserre (1996), Pennings (2000), Agliardi

(2001), e.g.]. Neither investment nor taxes are treated in a general mode. Therefore,

these approaches are not applicable to draw general conclusions concerning the influence

of taxation on investment behavior.

6



3.2.1 Dynamic programming

The integration of taxes requires the same steps as in the tax-free case. At first, the value

of the underlying asset has to be determined. The project value after taxes Vτ is the

expected present value of the future after-tax cash flows πτ
V :

Vτ ≡ Vτ (P ) = E
[∫ ∞

t
πτ

V e−rτ (ξ−t)dξ
]

= E
[∫ ∞

t
[(1− τ) P (ξ) + τ d] e−rτ (ξ−t)dξ

]
. (16)

Separating this term into the tax-reduced cash flow and the tax shield on the depreciation

allowances yields:

Vτ (P ) =
(1− τ) P

rτ − α
+ τ

∫ ∞
t

E [d] e−rτ (ξ−t)dξ =
(1− τ) P

rτ − α
+ τ E [D] ; rτ > α, (17)

with D as the present value of immediate write-offs and current depreciation deductions.

Whereas the option to invest might principally be regarded as depreciable2, we focus on a

non-depreciable option to invest. Thus, the option’s cash flow generally consisting of the

tax shield on depreciation deductions vanishes in the case considered here. Computing

the post-tax option value Fτ requires the Hamilton-Jacobi-Bellman equation

rτ Fτ
!
= E [dFτ ] , (18)

that can be transformed to the ordinary differential equation

1

2
σ2 P 2 d2Fτ

dP 2
+ α P

dFτ

dP
− rτ Fτ = 0 (19)

with the general solution

Fτ (P ) = Aτ P λτ , Aτ > 0, λτ =
1

2
− α

σ2
+

√(
1

2
− α

σ2

)2

+
2 rτ

σ2
> 1, (20)

with Aτ , a constant to be determined. The boundary conditions for the generalized case

of stochastic depreciations are similar to the tax-free case:

Fτ (0) = 0 (21)

Fτ (P ∗
τ ) = Vτ (P

∗
τ )− I0 (22)

dFτ (P ∗
τ )

dP
=

dVτ (P ∗
τ )

dP
. (23)

Generally, it is not possible to compute the critical investment threshold in the model with

taxes P ∗
τ analytically unless the stochastic nature of depreciation allowances is known, e.g.,

in the special case of deterministic depreciations:

P ∗
τ =

λτ

λτ − 1

rτ − α

1− τ
(I0 − τ D) , (24)

2Acquired real options are depreciable under most tax regimes.
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The optimal investment rules before and after taxes at hand, it is possible to derive neutral

tax systems by equating the critical investment thresholds and solving for the present value

of depreciation allowances. Since neutral tax systems are well-known under certainty

[cf. Brown (1948), Preinreich (1951), Samuelson (1964), Johansson (1969), Brennan and

McGuire (1975), Boadway and Bruce (1984)] and neutral taxes have already been derived

under risk neutrality in real option literature [e.g. Niemann (1999)], we will not discuss

their properties in detail and will leave further derivations aside. It should only be noted

that the cash flow tax and the Johansson-Samuelson tax are special cases of such neutral

tax systems.

3.2.2 Contingent claims analysis

Referring to the tax system from chapter 2, the riskless portfolio with taxes becomes:

Φτ = Fτ −
∂Fτ

∂P
P. (25)

For tax purposes, it has to be clarified, whether the portfolio consists of depreciable assets

or financial and therefore non-depreciable assets. Excluding acquired options, the real

option is assumed non-depreciable and therefore has to be interpreted as a financial asset.

The short position has to be regarded as a liability. Since the investor is selling short

and therefore not owning the output from investment, he is not supposed to depreciate

the short position. The writer of the short position receives a taxable payment of ∂Fτ

∂P
δP .

From the investor’s viewpoint, the portfolio is a financial asset.

For simplification, we will assume that the portfolio’s pre-tax value in a world with tax-

ation is identical to the one in the tax-free model. The equilibrium condition is

rτ Φτ dt = Nτ dt, (26)

where Nτ represents the portfolio’s after-tax return and Φτ the after-tax value of the

portfolio. The right hand side of this equilibrium condition describes the after-tax cash

flow the investor receives during a time interval of length dt when liquidating the portfolio.

Because the portfolio is non-depreciable, this cash flow amounts to:

Nτ dt = (1− γτ)

(
dF − ∂F

∂P
dP − ∂F

∂P
δ P dt

)

=

(
dFτ −

∂Fτ

∂P
dP − ∂Fτ

∂P
δ P dt

)
. (27)
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In order to reach an investment decision and to prove tax neutrality, the critical value P ∗
τ

has to be derived. Substituting for Nτ , we find in equilibrium:

rτ

(
Fτ −

∂Fτ

∂P
P

)
dt = dFτ −

∂Fτ

∂P
dP − ∂Fτ

∂P
δP dt (28)

and further the ordinary differential equation known from eq. (19). In contrast to dynamic

programming (eq. 17), the investment project’s post-tax present value V τ (P ) in CCA does

not include the tax shield on depreciation allowances for notational reasons. Whether the

tax shield on depreciation allowances is included in the effective initial outlay Iτ
0 or in

the project value does not affect the boundary conditions. The effective after-tax initial

outlay under deterministic depreciation deductions can be denoted as

Iτ
0 = I0 − τD. (29)

As in DP, D in eq. (29) reflects the present value of depreciation allowances for the

project’s entire economic life. Applying the boundary conditions in the post-tax case:

Fτ (0) = 0 (30)

Fτ (P ∗
τ ) = V τ (P ∗

τ )− Iτ
0 (31)

dFτ (P ∗
τ )

dP
=

dV τ (P ∗
τ )

dP
, (32)

yields the same post-tax critical investment threshold as in eq. (24)

P ∗
τ =

λτ

λτ − 1

rτ − α

1− τ
(I0 − τD). (33)

Comparing it with the pre-tax model’s critical value P ∗ (eq. 13), it is obvious that

taxation might cause a distorting effect by asymmetrical treatment of financial and real

investment.

4 Real options under risk aversion

As demonstrated above, optimizing the investor’s objective function leads to equivalent

results for both methods under risk neutrality. Expanding the analysis with respect to

risk aversion, this result cannot be acknowledged as will be seen.

4.1 Tax-free case

4.1.1 Dynamic programming

Using the DP approach the derivation of the investment rule requires either an exoge-

neously determined risk-adjusted discount rate (RADR) or explicit knowledge of an in-
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vestor’s risk preferences. In the preceeding sections, for reasons of simplicity, we assumed

risk neutrality to restrict the computations on expected present values.

In reality, investors are typically risk averse, which is reflected by traditional capital

market models where risky assets yield higher expected returns than risk-free assets.

There are different ways to deal with risk aversion in models of capital budgeting, e.g.

RADRs or martingales. We will not use RADRs in the DP approach because even in

the tax-free case, the CAPM’s meaningfulness is quite limited with additional difficulties

in the integration of taxes [e.g. Bogue and Roll (1974), Fama (1977), Constantinides

(1980)]. A quite sophisticated method to model risk aversion are martingale measures [cf.

e.g. Harrison and Kreps (1979), Harrison and Pliska (1981)]. Since it is not yet clear if

martingales do exist after the integration of taxes, we will leave it as a subject for further

research. Instead, investors’ risk preferences are endogenized by their utility functions.

Strictly speaking, maximizing an individual’s utility under risk aversion requires a global

model of all decision variables since the utility function’s non-linearity does not permit

separation of partial decision models like consumption, saving and investment. Therefore,

some simplifying assumptions have to be made in order to concentrate on the investment

behavior. The optimal division of a cash flow into saving and consumption will be left aside

because it requires information from outside the investment model. For this reason, cash

flows instead of consumption expenditures will be used as the utility function’s argument.

This assumption can be justified by defining the utility from a cash flow being the result

of optimal intertemporal allocation of consumption.

Apart from this more restrictive assumption, the utility function U ≡ U(π) should be well-

behaved, i.e., time-invariant (∂U
∂t

= 0), twice continuously differentiable, with positive and

diminishing marginal utility (∂U
∂π

> 0, ∂2U
∂π2 < 0). Utility is assumed additive over time.

Intertemporal utility transformation can be realized only by intertemporal transformation

of cash flows. The risk-free interest rate r is assumed constant. Without restricting

generality, utility is standardized to U(0) = 0, U(1) = 1. Disutility from an investment

project’s initial outlay U(−I0) is treated as an individual constant.

Qualitatively speaking, the situation under risk aversion is the same as under risk neu-

trality. The investor holds a perpetual option to invest in an infinitely-lived project with

deterministic initial outlay I0 =const. and stochastic cash flow π ≡ π (P, t). Again, the

decision variable is binary: the investor can either continue waiting or exercise the op-

10



tion to invest. Nevertheless, the decision rule has to be adopted to risk aversion. Now,

exercising the option is optimal when the investment project’s discounted future utility

exceeds the initial outlay’s utility plus the option’s utility. In principle, this rule is valid

under risk neutrality, too, because utility is equivalent to expected monetary units in that

context. In contrast, under risk aversion, the numéraire is utility rather than money.

Again, the investment project and the option to invest will be valued separately. Accord-

ing to the preceeding sections, the project’s cash flow π equals the stochastic variable P

which is still the only source of uncertainty and which follows a geometric Brownian mo-

tion. A project already in place does not offer any flexibility, so its value simply consists

of its expected discounted utility:

V (P ) = E
[∫ ∞

t
U(P ) e−r (ξ−t) dξ

]
. (34)

In the limiting case P → 0, the realized project has zero value because of the standard-

ization U(0) = 0: V (0) = 0. It should be emphasized that all assets are valued in utility

units. For comparison, monetary units have to be transformed by applying the utility

function.

As under risk neutrality, it is necessary to evaluate the option to invest under both settings

of the control variable. At the stopping region, the option value equals its intrinsic value

Ω which is the maximum of subjective project value plus the disutility resulting from the

initial outlay and zero:

Ω ≡ Ω(P ) = max{V (P ) + U(−I0); 0}. (35)

In the continuation region, the Hamilton-Jacobi-Bellman equation can be written as:

r F
!
= U(πF ) +

E [dF ]

dt
, (36)

where πF denotes the possible cash flow from holding the option. The economic interpre-

tation is that the risk-free return (measured in utility units) must equal the instantaneous

utility plus the expected change in utility during the next infinitesimal time interval.

Since the option comprises no pre-tax cash flow (πF = 0), its instantaneous utility is

zero: U(0) = 0. Transforming equation (36) yields the well-known ordinary differential

equation:
1

2
σ2 P 2 d2F

dP 2
+ α P

dF

dP
− r F = 0, (37)
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which is equivalent to the risk neutral case. Therefore, the option value function is

equivalent, too:

F (P ) = A P λ. (38)

The reason is that the differential equation determining the option value only depends on

the underlying stochastic process which by assumption is the same as under risk neutrality.

The option value itself is different, of course. The investor’s utility function determines

the underlying asset and therefore the option coefficient A.

Again, solving the investment problem requires two free boundary conditions. At the

optimal point of transition, P ∗, the expected utility of the continuation alternative must

equal the expected utility of the stopping alternative (value matching):

F (P ∗)
!
= V (P ∗) + U(−I0)︸ ︷︷ ︸

=const.

. (39)

The same applies to the marginal utilities of the continuation and the stopping alternatives

(smooth pasting):
dF (P ∗)

dP
!
=

dV (P ∗)

dP
. (40)

Without explicit knowledge of the utility function U(P ) these expressions cannot be

further elaborated.

Nevertheless, the procedure can be characterized in general. Because P is a geomet-

ric Brownian motion, a continuous function U(P ) follows a diffusion process with drift

function αU and volatility function σU .3 Applying Itô’s lemma on the stochastic utility

differential and further transformation yields:

dU =
dU

dP
dP +

1

2

d2U

dU2
(dP )2

=
dU

dP
(α P dt + σ P dz) +

1

2

d2U

dP 2
σ2 P 2 dt

=
(
α P

dU

dP
+

1

2
σ2 P 2 d2U

dP 2

)
︸ ︷︷ ︸

αU (U)

dt + σ P
dU

dP︸ ︷︷ ︸
σU (U)

dz. (41)

P can be eliminated by the inverse function U−1(U(P )) = P , so that the stochastic

differential equation (41) only contains functions of U . Accordingly, utility and expected

3These functions may be more complex than a geometric Brownian motion, so that it is not always
possible to compute expected utility.
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utility at time t can be written as stochastic and deterministic integrals:

U(t) = U(0) +
∫ t

0
αU(U(ξ)) dξ +

∫ t

0
σU(U(ξ)) dzξ

E [U(t)] = U(0) +
∫ t

0
αU(U(ξ)) dξ. (42)

Differentiating (42) with respect to t generates the following first-order ordinary differen-

tial equation:
d E [U(t)]

dt
− αU(U(t)) = 0. (43)

Its solution constitutes expected utility at time t. Since αU(U) may be nonlinear in U ,

there is no guarantee for analytical solutions. But even if these do exist, simple examples

demonstrate that the expected discounted utility

V =
∫ ∞

t
E [U(ξ)] e−r (ξ−t) dξ (44)

cannot always be computed. For economically useful results, sufficiently well-behaved

utility functions are required. One such example is the power utility U(P ) = PR (0 <

R < 1). Unfortunately, even widely-used utility functions like logarithmic or exponential

utility do not permit analytical solutions because solving the differential equation (37)

requires standardizing utility U(0) = 0 to avoid infinite nonhomogenous parts of the

equation.

4.1.2 Contingent claims analysis

In contrast to DP, CCA requires an endogeneous discount rate. This might be useful if

we do not succeed in solving problems concerning individual risk preference functions.

Well-known from Black-Scholes analysis, option pricing theory, being the basis for CCA,

seems to allow a risk neutral scenario for risk averse investors and herewith apparently

offers the possibility to ignore individual risk preferences.

The objective function under risk neutrality (3) has to be adopted to risk aversion intro-

ducing a RADR µ:

max
u
{max {V (P )− I0, F (P )}} (45)

with F (P ) = max
T>t

{
E
[
(VT (P )− I0) e−µ(T−t)

]
, 0
}

.

In option pricing theory forming a portfolio allows risk neutral valuation of financial

options even for risk averse investors. For optimization purposes one may refer to the

exogeneous risk-free market rate of return r. Nevertheless, we have to find out, whether

13



the problem of a suitable risk-adjusted discount factor can really be avoided in the context

of real investment. The equilibrium condition (15) under risk aversion becomes:

r Φ dt = dF − ∂F

∂P
dP − ∂F

∂P
δ P dt. (46)

In CCA, the RADR influences the optimization calculus by the dividend rate δ although

a risk-free portfolio and herewith a risk neutral scenario is supposedly constructed. The

investor has to pay ∂F
∂P

δ P dt, where δ = µ − α, during an interval of length dt to the

writer of the short position.

In the Black-Scholes-formula expanded for dividend payments [cf. Merton (1973b), p.

171)], δ = µ−α appears, too. In contrast to the real options approach, risk aversion does

not influence the option value in the option pricing model since δ can be interpreted as an

exogeneously given dividend rate. The amount of the dividend payment is either known

or it can be estimated on the basis of former dividend payments. This seems permissable

since dividend payments in general remain constant over time [cf. Lintner (1956), Cragg

(1986), pp. 195-196] and financial options are normally short term investments, which

implies that they are unlikely to suffer unexpected changes of the dividend. Therefore, δ

may be considered exogeneous.

In contrast to financial option pricing, the dividend rate δ in CCA is endogeneous. This is

a result from the relation µ = α+ δ, where µ comprises a risk premium η σ and therefore,

µ = r + η σ, with η, the risk aversion coefficient [cf. Dixit and Pindyck (1994), pp.

149-150, Trigeorgis (1996), p. 97].

In order to determine the appropriate RADR, the distribution of the the risk premium η σ

among the growth rate α and the dividend rate δ has to be explained by a sophisticated

capital market model. Even abstracting from the CAPM inherent problems (e.g. appli-

cation of a one-period model to a multi-period decision problem etc.) [cf. e.g. Merton

(1973a), p. 885, Bogue and Roll (1974), pp. 604-606, Roll (1977), Kazemi (1991), p. 224,

Kulatilaka and Marcus (1992), p. 94, Sick (1995), pp. 634-636 and 639-643], the real

option approach fails to solve this problem.

Dixit and Pindyck assume δ to be independent of σ and only α to include the risk premium

[cf. Dixit and Pindyck (1994), pp. 149-150]. Accepting this assumption, analyzing tax

systems and applying CCA, there is no need to know µ and the risk premium ησ. Every α

comprising term included in the equilibrium condition vanishes after application of Itô’s

14



lemma. Consequently, the risk premium has no impact on the critical value P ∗. For this

scenario, the results under risk neutrality can be transferred unamended to the case of

risk aversion. Thus, the critical threshold is given by

P ∗ =
λ

λ− 1
δ I0. (47)

Whenever the risk premium is supposed to be included in α as well as in δ, a sophisticated

capital market equilibrium model is needed, which, among other aspects, allows to deduce

a rule for dividing up the risk premium between the two components. Consequently, λ

and herewith the critical threshold P ∗ will be influenced by risk aversion. It is not possible

to generate pseudo risk neutrality by forming a hedge portfolio any more.

4.2 Integrating taxes

Under risk neutrality, our focus was the presentation of the DP and the CCA approach

as a basis for their comparison in chapter 5. We referred to investment rules and neutral

tax systems only incidentically because these aspects are already known in real options

literature. In contrast, under risk aversion, no neutral tax systems have been proved until

now, so it should be discussed whether an optimal investment rule after taxes exists and

derive it to prove neutral tax systems.

4.2.1 Dynamic programming

Using DP, we will refer to the exogeneously determined risk-free rate r. Therefore, the

risk-free post-tax discount rate rτ is the same as under risk neutrality: rτ = (1 − γτ)r.

The value of the realized project is the intertemporal utility from its after-tax cash flows:

Vτ ≡ Vτ (P ) = E
[∫ ∞

t
U(πτ ) e−rτ (ξ−t)dξ

]
=

∫ ∞
t

E [U((1− τ) P + τ d)] e−rτ (ξ−t)dξ. (48)

Since the investor’s utility function is non-linear, it is not possible to separate the cash

flow and depreciation components in discounted utility terms. For this reason, the post-

tax critical investment threshold can be computed only in special cases. Even without

taking the option to invest into account, it becomes obvious that the derivation of neutral

tax systems involves a circular argument: the depreciation function d is already needed to

derive the critical investment threshold which in turn is necessary to compute the neutral

depreciation schedule. A special case in which the critical threshold can be explicitly

computed is the cash flow tax. It is well known that under risk aversion, the cash flow tax
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is not neutral. This result can be proved in a real options model, too. Compared with

the tax-free case, the cash flow tax will typically promote investment because it reduces

the initial outlay I0 as well as current cash flows by the same factor τ , while the marginal

utility obtained by the tax shield on the initial outlay exceeds the marginal utility from

the foregone cash flow.

Nevertheless, neutral tax systems can be proved in a generalized model with the following

additional assumptions:

• The project’s economic life may be finite: T ≤ ∞.

• Cash flows are a function of the geometric Brownian motion P and time t: π ≡
π(P, t).

• Cash flows equal zero after time T : π(P, T ) = 0.

• A fraction Di of the initial outlay I0 might be written off immediately. To separate

immediate write-offs from current depreciation deductions, the former are included

in the effective initial outlay Ieff
0 that is reduced by the tax shield on the immediate

write-off: Ieff
0 = (1− τ Di) I0.

• The option to invest is assumed depreciable. Depreciation deductions associated

with the option to invest are denoted by dF ∈ IR. Accordingly, it might involve a

non-zero cash flow πF = τ dF .4

• Depreciation allowances may be stochastic as well as deterministic: dV ≡ dV (P, t),

dF ≡ dF (P, t).

In this case, the project’s pre-tax value V is given by:

V (P, t) = E

[∫ T

t
U(πV (P, ξ)) e−r(ξ−t)dξ

]
=
∫ T

t
E [U(πV (P, ξ))] e−r(ξ−t)dξ. (49)

with V (0, t) = V (P, T ) = 0. The Hamilton-Jacobi-Bellman equation for the option value

in the continuation region is once again:

r F
!
= U(πF ) +

E [dF ]

dt
. (50)

4Variables concerning the option are denoted with subscript F , variables concerning the investment
project with subscript V .
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It can be used in the present context of a non-perpetual option as well, but following

from the time-dependence the partial derivative ∂F
∂t

does not vanish, so the option value

is determined by the partial differential equation5:

∂F

∂t
+

1

2
σ2P 2∂2F

∂P 2
+ αP

∂F

∂P
− r F = 0, (51)

with F (0, t) = F (P, T ) = 0. Although the partial differential equation is equivalent to the

risk neutral case, it has to be mentioned that the option value as well as the project value

is measured in utility units rather than monetary units. The free boundary conditions

are

F (P ∗, t)
!
= V (P ∗, t) + U(−I0) (52)

∂F (P ∗, t)

∂P
!
=

∂V (P ∗, t)

∂P
. (53)

Since this problem involves a free boundary problem with a partial differential equation,

it typically cannot be solved analytically. For this reason, it is not possible to derive a

rule for optimal investment. As a consequence, neutral tax systems cannot be derived by

simply equating the pre-tax and the post-tax investment thresholds, i.e., it is not possible

to refer to the neutrality condition that is necessary as well as sufficient.

Nevertheless, we can fall back on a condition that is only sufficient. In the model presented

here, it is admissable to use the pre-tax model as a yardstick for measuring tax effects,

because maximization of individual utility in a tax-free scenario leads to the desired Pareto

optimum. As a first step towards neutral tax systems, the post-tax investment problem

is formulated. The project value is given by:

Vτ =
∫ T

t
E [U [(1− s)πV + s dV ]] e−rτ (ξ−t) dξ (54)

with the fixed boundary conditions

Vτ (0, t) =
∫ T

t
E [U(τ dV (0))] e−rτ (ξ−t) dξ (55)

Vτ (P, T ) = 0. (56)

The post-tax partial differential equation for the option value reads

∂Fτ

∂t
+

1

2
σ2P 2∂2Fτ

∂P 2
+ αP

∂Fτ

∂P
− rτ Fτ + U(πτ

F ) = 0 (57)

5Notice that πF = 0 and U(0) = 0.
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with the fixed boundary conditions

Fτ (0, t) =
∫ T

t
E [U(τ dF (0))] e−rτ (ξ−t) dξ (58)

Fτ (P, T ) = 0 (59)

and the free boundary conditions

Fτ (P
∗
τ , t)

!
= Vτ (P

∗
τ , t) + U(−Ieff

0 ). (60)

∂Fτ (P
∗
τ , t)

∂P
!
=

∂Vτ (P
∗
τ , t)

∂P
. (61)

Although these investment problems are not analytically tractable, it is possible to de-

rive neutral tax systems by comparing the pre-tax and post-tax problems rather than

their solutions. Of course, this neutrality condition is only sufficient but not necessary.

The technique is used under risk neutrality in Niemann (1999). Identical solutions may

be achieved by different problems whereas identical problems necessarily yield identical

solutions. The investment problems under consideration are identical if the pre-tax and

post-tax partial differential equations and boundary conditions are equivalent.

We will look at the free boundary conditions first. The value matching and smooth pasting

conditions before and after taxes are equivalent if all values - measured in utility units -

undergo a linear transformation:

Fτ = c F

Vτ = c V

U(−Ieff
0 ) = c U(−I0)

0 < c = const. (62)

Then:

F (P ∗t) = V (P ∗, t) + U(−I0)

⇔ c F (P ∗, t) = c [V (P ∗, t) + U(−I0)]

⇔ Fτ (P
∗, t) = Vτ (P

∗, t) + U(−Ieff
0 ), (63)

and therefore:
∂F (P ∗, t)

∂P
=

∂V (P ∗, t)

∂P
⇔ ∂Fτ (P

∗, t)

∂P
=

∂Vτ (P
∗, t)

∂P
. (64)

We will now analyze in detail which conditions cause a linear transformation in utility.

Proportionality of disutility from the initial outlay before taxes U(−I0) and after taxes
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U(−Ieff
0 ) can be achieved by granting a utility-dependent immediate write-off. If the

constant of proportionality c is given by tax law, the immediate write-off Di can be

computed using the relationship Ieff
0 = (1− τ Di) I0:

U(−Ieff
0 )

!
= c U(−I0)

−Ieff
0 = U−1 [c U(−I0)]

1− τ Di =
−U−1 [c U(−I0)]

I0

Di =
1

τ
+

U−1 [c U(−I0)]

τ I0

. (65)

As far as the proportionality of pre-tax and after-tax project values is concerned, the

non-separability of cash flow- and depreciation-related utility components does not allow

the computation of neutral depreciation deductions in present value terms. Thus, it is

necessary to derive a neutral depreciation schedule. Instead of directly equating Vτ (P, t)

and c V (P, t), we will use a condition that is sufficient for proportionality of pre-tax and

after-tax project values, i.e., proportionality of their time derivatives given the terminal

conditions Vτ (P, T ) = V (P, T ) = 0:

dVτ (P, t)

dt
!
= c

dV (P, t)

dt
∀ t

rτ Vτ − U(πτ
V ) = c [r V − U(πV )]

U [(1− τ)πV + τ dV ] = c U(πV )− γ τ r c V

(1− τ)πV + τ dV = U−1 [c U(πV )− γ τ r c V ]

dV =
U−1 [c U(πV )− γ τ r c V ]

τ
− 1− τ

τ
πV . (66)

This depreciation schedule for the investment project implies proportionality of pre-tax

and post-tax project values. Additionally, option values before and after taxes are pro-

portional if the partial differential equations that determine their values are equivalent.

If F solves the homogeneous partial differential equation

∂F

∂t
+

1

2
σ2P 2∂2F

∂P 2
+ αP

∂F

∂P
− r F = 0, (67)

so does Fτ = c F , i.e.:

∂Fτ

∂t
+

1

2
σ2P 2∂2Fτ

∂P 2
+ αP

∂Fτ

∂P
− r Fτ = 0. (68)

A depreciation schedule for the option to invest that implies the equivalence of eqns (57)

and (68) causes proportionality of the option values before and after taxes if the boundary
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conditions required for uniqueness are also equivalent. The partial differential equations

match if:

−r Fτ = −rτ Fτ + U(πτ
F )

(rτ − r) Fτ = U(πτ
F )

−γ τ r Fτ = U(τ dF )

dF =
1

τ
U−1 (−γ τ r Fτ ) =

1

τ
U−1 (−γ τ r c F ) . (69)

Here, it becomes obvious that depreciation allowances on the option to invest are necessary

to ensure the sufficient neutrality condition can be met - at least when the interest rate

is subject to tax. The neutral depreciation schedules for the investment project and the

option to invest are preference-dependent. Typically, it is not possible to eliminate the

utility function U and its inverse U−1 from dV , dF and Di. Since different investors are

characterized by different utility functions, neutral taxation cannot refer to an objective

tax base. To guarantee certainty of the law, recommendations for tax reforms should not

be deduced from these results. Nevertheless, the results may indicate the possible impact

of a tax reform on taxpayers’ behavior.

4.2.2 Contingent claims analysis

Integrating taxes into CCA principally permits using the model from risk neutrality as

long as the RADR’s risk premium is included solely in α. The results from risk neutral-

ity can be transferred to risk aversion. In this specific scenario, the critical investment

threshold is given by:

P ∗ =
λτ

λτ − 1

δ

1− τ
(I0 − τD) . (70)

Results concerning tax neutrality derived under risk neutrality hold under these assump-

tions, too. Otherwise, taxes have to be taken into account when deriving the RADR,

e.g. by employing a post-tax CAPM. If interest payments are subject to tax, the pre-

tax RADR is not simply supposed to be reduced by the tax rate to receive the after-tax

RADR. Therefore, the integration of taxes in CCA under risk aversion requires an ap-

propriate capital market equilibrium model which includes taxation, options and their

interdependences in a dynamic context.

The CAPM-RADR in a real option approach depends on the stochastic process P and

herewith on the present value of the investment object as well as the risk associated with

the option to invest. Thus, endogenizing the risk premium, the RADR itself becomes

20



stochastic. The interdependence of the stochastic underlying asset, CAPM-RADR, op-

tion value and herewith the dynamic investment rule, call for a sophisticated capital

market equilibrium model, which takes account of all these complex dynamic interac-

tions. With respect to taxation, dividend policy might play an important role. Taxation

that discriminates between retained earnings and dividend payments influences δ, too.

On the one hand, the dividend rate depends directly on the underlying tax system, on

the other hand it is influenced indirectly by taxation via the post-tax RADR.

An extended CAPM suitable for CCA under risk aversion in general has to take these as-

pects into account. Whereas the standard-CAPM has been extended for taxation [cf. e.g.

Brennan (1970), Litzenberger and Ramaswamy (1979), pp. 165-173], a modified multi-

period-CAPM that is necessary for long-term real investment still has to be developed.

As could be shown in the pre-tax model, generating a hedge portfolio does not create a

scenario that complies with “pure” risk neutrality in general. Not only the problem of

an appropriate post-tax RADR is unsolved, but missing a consistent pre-tax model as a

reference system, there is no yardstick for investigations concerning taxational effects on

investment behavior. In analogy with section 4.2.1, expanding the analysis on investment

projects with a finite economic life and on stochastic and time-dependent depreciation

allowances requires the solution of a free-boundary problem with a partial differential

equation making analytical solutions unlikely for this scenario.

5 Comparison of the approaches

The main motivational factors for employing real option approaches instead of traditional

models of capital budgeting under uncertainty are the introduction of managerial flexibil-

ity in light of irreversibility and the possibility to abstract from individual risk preferences.

Both approaches succeed in integrating flexibility under irreversibility. With respect to

the abstraction from individual risk preference functions unter risk aversion, each method

reveals its specific limitations. As could be shown, implementing taxation does not evoke

any difficulties under risk neutrality. Both approaches yield identical critical thresholds

and herewith equivalent investment rules under the given set of assumptions.

Since DP employs an exogeneously given discount rate, this method necessarily neglects

information from market data in case of risk aversion. Therefore, it is not possible to

distinguish between unsystematic and systematic risk. In contrast to risk neutrality,

diversification is highly relevant under risk aversion because it allows the elimination of
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unsystematic risk. Evaluation herewith is supposed to focus on systematic risk which is

ignored by DP. By assuming an exogeneous RADR, risk averse investors exclude relevant

information from capital budgeting. Finally, these limitations do not suffice to reject DP

under risk aversion. An alternative is the application of the investor’s utility function as

shown in chapter 4. Although this procedure requires restrictive assumptions and limits

the analysis to specific classes of utility functions, investors are enabled to gain important

support for investment decisions since an explicit investment threshold can be derived at

least in the tax-free case.

On the other hand, in CCA all coefficients are either known or observable or can be esti-

mated on the basis of market data [cf. Cox and Ross (1976), pp. 145-146]. CCA’s RADR

has to be derived from capital market equilibrium whenever a risk premium is included

in δ. Only the risk-free market rate is assumed exogeneous. Applying the CAPM in

CCA comprises severe restrictions as described in chapter 4. A critical assumption of

CCA is the spanning property concerning the underlying cash flows that requires com-

plete markets for risky assets. This implies perfect positive correlation of the cash flow

from the investment project and its duplicate. Even if the underlying asset is not quoted

on exchange markets6, the existence of futures markets and the use of securities instead

of real assets to construct a duplicating portfolio reduce this problem to an acceptable

minimum. DP does not rely on such strict requirements concerning capital market prop-

erties. Whenever a specific risk is not traded one may refer to individual estimations of

risk. Thus, the objective function can be interpreted as a utility function with a constant

discount factor.

Applying real option approaches, either DP or CCA, investment neutrality of a cash flow

tax and a tax equivalent to the taxation of true economic profits, can be proved under

risk neutrality [cf. Niemann (1999)]. Uncertainty and irreversibility do not violate the

neutrality property of such tax systems. In contrast, under risk aversion, proving a tax

system’s neutrality requires further assumptions concerning the project’s life, its cash

flows and depreciation allowances in case of DP and the distribution of the risk premium

among the growth parameter α and the dividend rate δ in CCA.

6In cases of commodities the underlying asset is often quoted.
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6 Concluding remarks

The real option approach is an important extension of traditional capital budgeting meth-

ods. It covers uncertainty and managerial flexibility in case of irreversibility and allows

the integration of taxes in calculus. Thus, significant improvements of investment deci-

sions become possible. Both approaches, DP and CCA, lead to equivalent results for a

risk neutral investor under the given set of assumptions. Further, it could be shown for

risk averse investors that a comparison of the pre-tax and post-tax decision problems is

limited to a rather restrictive set of assumptions. DP and CCA face different limitations

under taxation and risk aversion and lose their equivalence.

Although investment decisions under risk aversion supported by the real option approach

cannot be attributed to a single, all-embracing investment rule, DP and CCA significantly

expand the field of application of investment models to real investment compared with

traditional models of capital budgeting. In order to find more general solutions, future

research has to answer several questions concerning an appropriate RADR and on a

suitable reference system for tax effects on investment behavior.
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