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1 Introduction

The concept of Knowledge Externalities has pervasively populated the theo-
retical literature on growth for the last ten years. Innovation is the engine of
growth, has been argued, and externalities from existing knowledge are the ”re-
newable” fuel for this engine. While it is clear how to characterize the source
and the effect of these externalities within the frame of a specific model such as
Aghion and Howitt [1], Jones [13] or Romer [18], it is much less clear how to
measure them in a precise but robust way using the data. First of all it is not
clear that there are data that allow us to directly measure such elusive concept
as knowledge externalities without adding several other assumptions. Knowl-
edge externalities hinge on the diffusion of ideas, a process that leaves no track
in the data. Economists have assumed, in order to estimate these externalities,
that diffusion of ideas depends on proximity in space, in technological special-
ization or in economic development. These are plausible assumptions but each
of them is potentially controversial and should be tested. In particular we do
not have a good measure of the quantitative dependence of knowledge diffusion
on distance or technological proximity. Second, the existence of several effects
stemming from the introduction of new ideas, namely their impact on current
and future productivity of goods and ideas, has further complicated the task.
The goal of this paper is to define clearly, if somewhat narrowly, what knowledge
externalities are and use data on patented innovation, citations across patents
and total factor productivity to measure the strength of these externalities for
141 sub-national regions covering the whole Western Europe and North Amer-
ica.
Knowledge externalities, as all externalities, exist if the social benefit from

ideas is larger than the private returns to their inventors. In an economy of
competing innovators the private return from an idea is the value of the patent
that it entitles to. Therefore we can assume that the whole private contribution
of that idea as enhancer of present and future productivity is captured by the
patent’s value. In a competitive market for innovation the innovators are able to
extract the surplus generated by that innovation. Nevertheless the total social
surplus generated by the new idea includes also the contribution (be it positive
or negative) that the new idea brings to future discovery of other ideas. We can
think of the stock of knowledge as being a state variable and to new patents
as the flow that increases that variable. Three contributions of the new ideas
have to be considered in order to measure their aggregate return1. First, the
private return from a new idea is the benefit due to increased productivity that
the idea generates. Second there is a ”capital gain” from this new idea that is
the fact that future cost of producing ideas can change and therefore the value
of ”new ideas” may vary over time. Third, there may be an externality of new
ideas in the production function of ideas. An increase in the stock of knowledge
may change the productivity of R&D resources in generating new knowledge.
While the first two contributions are fully reflected in the value of the patent,

1We follow here the analysis of Jones and Williams [15]
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the third being an externality, raises the social productivity of the idea above
the value of the patent. Crucially, therefore, externality of knowledge exist if
ideas increase the productivity of R&D in generating new ideas.
Defining knowledge externalities as we do above may seem somewhat narrow.

We assume that there is an efficient market for innovations, that property rights
are well defined and enforced by the patent system. If so, when ideas are used
in the production of goods, their surplus is extracted by the innovator via the
royalties paid on the patent. The only missing market is the one regulating the
use of ideas in generation of ideas: no inventor is compensated for the use of
her idea in some subsequent discovery that uses it. Many economists believe
that externalities from innovation are much more pervasive than that because
not all innovations are codified, those that are codified are often not patented
and those that are patented are not always effectively protected. Therefore
knowledge ”leaks” and it benefits society beyond the private value of the patent.
Some economists ultimately argue that externalities should be inferred from
measures of total factor productivity (for instance recently, Ciccone [3] and
Keller [16] ). Innovation is an important intermediate passage but only when
ideas are transferred into productivity gains we have a link between knowledge
externalities and output per capita. As we share this view we analyze in the
paper the effect of knowledge spillovers on innovation as well as on productivity.
We define externalities as disembodied knowledge spillovers that affect the

productivity of R&D in the generation of new ideas. This definition captures
very important aspects of knowledge externalities and, while not all-inclusive,
it is relevant for at least three reasons. First of all the idea of externalities as
knowledge spillovers in the creation of new knowledge is behind most (if not
all) the theoretical models of endogenous growth, from Romer [18] to Jones [13]
passing through Aghion and Howitt [1] and Grossman and Helpman [7]. The
strength of this externality determines the difference between ”endogenous” and
”semi-endogenous” model of growth. In general it regulates the dynamics of in-
novation in the long run. Second as we limit our analysis to the most advanced
economies (Western Europe and North America) we can assume that the pro-
tection of property rights on innovation is, in these countries, at its best in
the world, minimizing phenomena of imitation and leakages of the patent sys-
tem. Granted that leakages due to insufficient protection of intellectual property
rights may exist in developing countries, we assume that the effect of knowledge
on new ideas is the main source of spillovers in developed countries. Third,
using the above definition of spillovers we are able to use data on patent-to-
patent citations in order to track the direction and intensity of these knowledge
flows. If the determinants of non-codified knowledge diffusion are similar to the
determinants of citations then our analysis can be seen as revealing intensity
and direction of other kinds of knowledge ”leakages” as well.
The goal of this paper is to estimate the external contribution of available

knowledge in generating new knowledge and productivity across regions. Two
distinct pieces should be combined in order to establish if existing ideas have
any (positive or negative) external effect in the creation of new ideas. First only
existing ideas that are actually used by researchers in their process to achieve

3



a new idea can generate an externality. Second, only if the use of these ideas
increases the productivity of researchers in generating new ideas we have such
externality. Previous existing work (with the notable exception of Caballero
and Jaffe [2]) merges or assimilates these two phases. Either some mechanical
assumption is made on the availability of ideas across space (as in Coe and
Helpman [4] and Keller [16] ) so that only a productivity equation is estimated,
or knowledge flows are simply called knowledge externalities without worrying
about their effect on productivity (Jaffe et al.[11] , Jaffe and Trajtenberg [12]).
In this paper we explicitly model and estimate the phase of knowledge diffusion
and utilization in generating new ideas, and the potential impact of this knowl-
edge on the productivity of researchers in generating new ideas or in determining
TFP.
We use data on patenting and TFP organized in a cross section of 141 regions

in Europe and North America in order to estimate the generation of new ideas or
of new productive capacity (TFP) from R&D resources. We use data on citation
across inventions patented in the US between 1975 and 1996 to measure the
intensity of knowledge flows in the world. We find that knowledge flows depend
on several factors and are well represented using a gravity-like equation. Most
importantly geographical and technological proximity and crossing a national
border affect the intensity of diffusion of ideas. On the other hand we also find
that flow-weighted R&D from other regions has small and not significant effect
on the generation of new ideas or in determining regional productivity.
The rest of the paper is organized as follows: Section 2 describes the equa-

tions that models knowledge flows and the production function of ideas. Section
3 defines the alternative measures of regional productivity and describes the ac-
counting method used to calculate them. Section 4 describes the data we use to
measure innovation, productivity, inputs of innovation and the flows of knowl-
edge across regions. Section 5 presents the estimates of the parameters in the
equation that describes knowledge flows and in the equation that describes their
effect on innovation and productivity. Section 6 concludes the paper.

2 The Model

Two pieces are needed in order to analyze knowledge flows and knowledge ex-
ternalities across regions. The first is a function modelling the diffusion of ideas
across regions as function of bilateral regional characteristics. In order to pro-
duce externalities, ideas originated in a region must be available in other regions
as inputs to innovate over the existing knowledge. The second is an innovation
function describing how ideas are generated by researchers using R&D spending
and existing ideas available to that particular region. The description of these
two equations and their estimate occupy the rest of the paper.
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2.1 Diffusion of Ideas

In order to estimate the relative intensity of diffusion of ideas across regions
using cross-sectional data we divide the ideas discovered in each region in two
groups. A group of ideas, discovered earlier (during the 1977-1991 period in
our empirical analysis) that can ”send” flows of knowledge to be used in further
discoveries, and a group of ideas discovered later (1992-1996 in the empirical
analysis) that can ”receive” the flows and use them to generate new ideas. We
can use the citation from the receiving to the sending groups of ideas to infer the
intensity of flows. Clearly the receiving ideas also cite ideas discovered before the
”sending” (1977) and also cite each other. Nevertheless if the flows of knowledge
across regions are stable over time we can infer their relative intensity looking
at the equation described in this section.
We denote with ∆Ar the ideas (new knowledge) generated in region r (for

”receiving”) during the later interval of time (1992-1996). We denote with ∆As
the ideas (new knowledge) generated in region s (for ”sending”) during the
earlier period of time (1977-1991). The intensity of diffusion to region r of the
”average” idea originated in region s is denoted as φ(r, s). This index should
capture the intensity of ideas flows between region s and region r independently
of the total amount of ideas originated in region s and of the total amount of
citations produced by ideas in region r. Defining as σ(s, r) the number of ideas
that flow from s to r the index is defined as follows:

φ(r, s) =
σ(s, r)/

P
s σ(s, r)

∆As/
P
s∆As

(1)

The term in the numerator σ(s, r)/
P
s σ(s, r) captures the share of ideas

coming from region s in the total flows of ideas coming into region r. The term
in the denominator ∆As/

P
s∆As is simply the share of total ”sending” ideas

generated in region s. The intensity of diffusion between region s and region
r measured by φ(r, s) is therefore a relative measure comparable across region-
couples and independent from their size. Keeping the receiving region fixed,
this index measures the relative flows of ideas from each of the sending regions,
relative to the amount of innovation generated in each sending region. A value
of 1 means that region r receives from region s a share of ideas equal to the share
of total ”sending” ideas originating in s. Keeping the sending region fixed the
index measures the relative absorption of ideas across receiving regions. Notice
that the standardization in the numerator implies that we assume equal total
absorptive capacity in each region. This depends from the fact that we cannot
extract from citation any interesting information on the absolute ”absorptive
capacity” of a region. In brief the index φ(r, s) could be considered as the
intensity of diffusion of the representative idea between the two regions. The
index will be larger than one if diffusion of the average idea between the two
regions is stronger than the average diffusion between regions.
Thinking of φ(r, s) as the intensity of a flow of ideas, we are interested in

modelling it as function of bilateral regional characteristics. In particular we
describe it as follows:

5



φ(r, s) = δe−γ1(d1)r,se−γ2(d2)r,se−γ3(d3)r,sef(Charr,s) (2)

δ is a parameter scaling the overall flow of ideas between two regions. We
can think of it as changing over time but it is constant in our cross-section.
The three exponential functions model the decay of ideas flow with distance
in geographical space (d1)r,s, technological space (d2)r,s and innovation space
(d3)r,sbetween the two regions

2. The exponential functions in (2) can be derived
as the cross-sectional version of a model of diffusion of ideas in time, similar
to the one used in Caballero and Jaffe [2]. In the Appendix A we show the
derivation of the exponential format from a diffusion process. The flow of ideas
also depends on a vector of other bilateral characteristics of the two regions,
Charr,s such as being in the same country, sharing a border, using a common
language.
In order to use equation (1) and equation (2) for the empirical analysis we

establish the following relations between the unobservable variables in (1) and
our observables.
1) We assume that the average ”number of ideas” in a patent, indicated as

βs, might be different across regions. A slightly different (but observationally
equivalent) interpretation of this parameter is that it captures the ”average
quality ” of ideas contained in the patents of a region. Namely regions whose
patents are more ”important” on average, can be thought as having more ideas
per patent or the same amount but better quality of ideas per patent. We call
this parameter, in general, the ”intensity of ideas per patent”. This parameter
may vary over time only according to a factor µ common to all regions. Denoting
with Ps the total number of ”sending” patents granted to region s in 1977-
1992 and with Pr the ”receiving” patents granted to region s in 1992-1996, the
above assumptions are summarized by the following conditions: Ps = ∆As/µβs,
Pr = ∆Ar/βr).
2) We assume that the number of citations from region r to patents from

region s contains information on the flow of ideas between the two regions
according to the following formula: c(r, s) = ψrσ(s, r)ε(r, s).
c(r, s) the total number of citations from patents of region r to patents of

region s. As different regions may have different average absorption capacity
and propensity to cite, we allow for a region-specific term ψr that combines
these two factors. σ(s, r) is the actual flow of ideas between regions. ε(r, s) is
a log-normal random noise due to the fact that not all citations capture the
flow of an ideas as some are added by reviewers. We assume that such noise is
randomly distributed across region couples (i.e. not correlated with σ(s, r)) .
Substituting these definitions into equation (1) and into equation (2) and

using the fact that the total number of citations from region r,
P
s c(s, r) for

the Law of Large numbers can be considered approximately non random and
equal to the number of citing patents Pr times the average number of citation
per patent nr we get the following relation:

2The exact measure for these three types of distances will be made clear in the empirical
section.
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φ(r, s) =
c(r, s)/ε(r, s)P
s c(s, r)βsPs/P

=
c(r, s)/ε(r, s)

nrPr(Psβs)/P
= δe−γ1(d1)r,se−γ2(d2)r,se−γ3(d3)r,sef(Charr,s)

(3)

where P =
P
s Ps. Collecting the observables on the left hand side, taking

logs on both sides of (3) and grouping the constants into one term we have the
following estimable equation:

ln

µ
c(r, s)

PrPs

¶
= a+ln (nr)+ln (βs)−γ1(d1)r,s−γ2(d2)r,s−γ3(d3)r,s+f(Charr,s)+u(r, s)

(4)
Equation (4) can be seen as a generalized Gravity Equation for knowledge

spillovers. It is derived from the framework described above and can be brought
to the data. We comment here on its meaning and main features. The fre-

quency of citation c(r,s)
PrPs

from ideas of region r to ideas of region s depends on a
”citing region” fixed effect, ln (nr) , on a ”cited region” fixed effect, ln (βs) ,on a
sequence of bilateral characteristics (described above) and on u(r, s) = ln ε(r, s)
that is a normally distributed random error. While the cited region fixed effect
can be interpreted as the ”average intensity of ideas” in patents of ”sending”
region s, the citing region fixed effect should be controlled for but has no inter-
esting interpretation. The equation generalizes the concept used in the gravity
equation, popular in trade and migration analysis, that the ”flow” of some vari-
ables between two regions depends on some characteristics of the two regions
and on the ”distance” between them. The Estimating equation (4) allows us to
identify the parameters γ1, γ2 γ3 and the vector f and therefore to estimate
the function φ(r, s) using definition (2). This function captures the diffusion of
ideas between two regions and will be used to construct the stock of used ideas
as innovative input in the receiving region.

2.2 The Innovation function and Knowledge Spillovers

Once we identify the strength of knowledge flows φ(r, s) we can estimate the
impact of these spillovers on the production of new ideas. Assuming that our
regions are on a balanced growth path with common rate of knowledge growth
we can separate the contribution to innovation of private inputs such as scientists
and R&D resources from the external contribution of ideas in the estimation of
the innovation function of a region.
New ideas,∆Ar are generated from scientists and researchers in region r and

from their productivity. Productivity of R&D employees in region r depends on
two main factors: the amount of resources available to them (such as laborato-
ries, research funds, salaries and so on) captured by R&D spending per-worker,
hr and on the stock of ideas available to them in region r. We denote with the
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symbol AAVAr and ∆AAVAr the cumulated stock and the increase in the stock of
ideas available in region r,respectively. Ar and ∆Ar still denote the stock and
the increase of the stock of ideas generated in region r. The knowledge available
in region r is given by the knowledge generated anywhere that flows to region
r , namely: AAVAr =

P
s∈S

φ(r, s)As where φ(r, s) is the intensity in the flow of

ideas described in the previous section. The production function of innovation
is therefore:

∆Ar = f(R&Dr, hr, A
AVA
r ) = f

Ã
R&Dr, hr,

X
s∈S

φ(r, s)As

!
(5)

We assume that regions are on their balance growth path with a common
growth rate of knowledge stock Ar so that: (∆Ar/Ar) = g. We check this
assumption with our data and it turns out to be satisfied. Substituting this
condition into equation (5) and taking a log-linear expression for the innovation
function we have:

ln(∆Ar) = − ln(g) + εRD ln(R&Dr) + εh ln(hr) + εI ln

ÃX
s∈S

φ(r, s)∆As

!
(6)

εRD is the elasticity of innovation to the supply of scientists. εh is the elas-
ticity of innovation to the supply of resources per scientists. εI is the elasticity
of innovation to available ideas. We can construct the available knowledge in
each region using the estimates of φ(r, s) obtained from the previous section
(2.1). Denoting with a hatbthe variable estimates from equation (4) we have:

ln(Pr) = Intercept− ln(bβr) + εRD ln(R&Dr) + εh ln(hr) + (7)

+εI ln

ÃX
s∈S

exp
³
−cγ1(d1)r,s −cγ1(d2)r,s −cγ3(d3)r,s + bf (Charr,s)´ bβsPs

!
+ νr,s

The dependent variable is the count of receiving patents granted in region
r. The term Intercept contains all the uninteresting constants. The term ln(bβr)
controls for the average intensity of ideas per patent in region r. Controlling
for this term is extremely important if the ”intensity” of ideas per patent is
correlated with the total amount of patents generated in a region. ln(R&Dr) is
the log of employed in the R&D sector, ln(hr) is the log of spending in US $
per worker in the R&D sector. The term in brackets is the estimated knowledge
available in region r coming from ideas discovered in the past. It is calculated
as the intensity of flows to region r (the exponential term) times the amount
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of ideas generated in each region bβsPs. Finally νr,s is a zero average random
disturbance that captures other determinants of patenting not included in our
equation.
In our empirical specification we first estimate equation (4) and discuss the

intensity and direction of spillovers. We then use the estimates from that equa-
tion and the observable characteristics of regions to estimate the impact of
these spillovers on innovation in region r by using (7). To avoid the endogeneity
problem due to the fact that the expression in brackets contains Pr itself, we
instrument this variable with a similar one, AAVA−r obtained including all but
region r in the calculation of available ideas for region r. Alternatively we will
use R&D resources as instrument for Pr .

3 Productivity and Knowledge Spillovers

While the most direct measure of new economically useful ideas, defined above
as ∆Ar, is certainly given by the count of patents, economists traditionally
measure technological progress and technological differences using total factor
productivity (TFP). Total factor productivity captures differences in labor pro-
ductivity not due to differences in the use of capital. At some fundamental level,
therefore, innovation has an effect on output per capita only if it is translated
into increases in TFP. We can consider the TFP of a region as an alternative
measure of Ar, that not only captures patented inventions but all innovations
that make production more efficient. Empirically we estimate an equation iden-
tical to (6) where ∆Ar, proportional to Ar is simply measured using regional
TFP. We modify cross-country accounting techniques in order to calculate the
region-specific total factor productivity (ar) and separate it from the country
TFP, (Ac) that is potentially affected by institutional factors. In the following
sections we briefly describe how we obtain two measures of regional TFP: a
narrow and a broad one.

3.1 Cross-Regional Productivity Accounting

We assume a Cobb-Douglas production function at the regional level with con-
stant return to scale so that elasticity of income to labor and capital equal the
share of income going to each of the two factors. Calling α the share of income
going to labor, so that (1−α) will be the share going to capital, we assume their
value to be equal to 0.66 and 0.33 . As we use regional data we may rely on
the within country variation to define total factor productivity, disregarding the
(probably large) differences in total factor productivity across countries due to
institutional and political features of the economies. The cross- regional differ-
ences in TFP can be more appropriately interpreted as differences in the level
of technology used (adopted) there. The disadvantage is that we do not have
data on physical capital at the regional level. We may nevertheless recover the
contribution of regional TFP to production per worker in one of the following
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two ways. We either assume that physical capital moves across regions in order
to equate its real return within a country (narrower definition) or we impose
the same capital labor-ratio across regions of the same country (broader defi-
nition). The first method produces a lower bound of the region-specific TFP
differentials, as it attributes part of the regional production per worker differ-
ences to capital intensity. The second method produces an upper bound of these
differentials as it attributes the whole region-specific differentials in output per
worker to differences in regional TFP. We will perform both decompositions. To
be precise, the first one distinguishes among the following three contributions
to differentials in output per worker: 1) Differences in regional capital intensity
(capital-labor ratios), 2)Differences in country-specific total factor productiv-
ity 3) Differences in region-specific TFP. The second decomposition, on the
other hand, distinguishes among the following contributions 1) Differences in
country-specific TFP 2) Differences in country-specific capital-output ratios 3)
Differences in region-specific TFP.

3.1.1 Narrow TFP definition

Let’s assume that the production function for each region r can be written as a
Cobb-Douglas

Yr = Acar(Lr)
α(Kr)

1−α (8)

where Yr is total output , Lr is total labor input, Kr total capital input,
Ac is the average TFP of country c to which the region belongs and ar is a
region-specific TFP factor such that if ar > 1 the region has larger total factor
productivity than the country as a whole while if ar < 1 then the region has
lower TFP than the country as a whole. Also we assume that

P
r∈c
ln(ar) = 0

which implies that the average log TFP for regions of a country is equal to the
aggregate country’s log TFP. α is the elasticity of output to labor that equals the
income share of labor. In order to decompose total income in the contribution
of each component we assume that within country c the return paid to capital
is the same in each region r due to the mobility of capital. This implies:

∂Yr
∂Kr

= (1− α)Acar(Lr)
α(Kr)

−α = rc (9)

Marginal productivity of capital at the country level is also equal to rc.
Denoting with kc = (Kc/Lc) the capital-labor ratio for the country. Equation
(9) implies that we can write total capital in region r as:

Kr = kca
1
α
r Lr (10)

Substituting Equation (10) into the production function and re-arranging
we obtain the following expression for output per capita in region r :
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Yr
Lr
= Ack

1−α
c a

1
α
r (11)

Defining output per worker yr =
Yr
Lr
and taking log of both sides of expression

we obtain a variation of the classic growth accounting equation:

ln yr − (1− α) ln kc = lnAc +
1

α
lnar (12)

The above notation is helpful to understand how to construct each single
component of the equation. The left hand side is obtained as log GDP per
worker in the region minus the share of capital times the national capital-labor
ratio. To obtain the right hand side we can regress the left hand side on a set
of country dummies (standardizing one to 0) and the residuals will measure the
region-specific TFP term: 1α lnar. Once we calculate these terms we can re-write
the above equation in the following way, that captures exactly the contribution
to regional productivity given by regional capital intensity, national TFP and
region-specific TFP:

ln yr = [(1− α) ln kc +
1− α

α
lnar]| {z }

Regional Capital Contribution

− lnAc| {z }
Country TFP

− lnar|{z}
Narrow Region TFP

(13)

We call this measure of regional TFP the ”narrow” TFP definition.

3.1.2 Broad TFP definition

The second method assumes simply that kc = kr, i.e. that the capital labor ratio
in each region is equal to the average capital labor-ratio of a country. Under
this condition, we simply divide both sides of equation (8) by Lr, we substitute
the condition above and take logs. The decomposition of output per worker
results as follows:

ln yr = [(1− α) ln kc]| {z }
Country Capital Contribution

− lnAc| {z }
Country TFP

− lnar|{z}
Broad Region TFP

(14)

Note the similarity of the above decomposition with equation (12). Now, as
kc is assumed constant within countries, the differentials left after controlling
for country-specific factors, are attributed completely to regional TFP differen-
tials. Compared to the previous method, it is as if the direct effect of TFP and
its indirect effect, caused by larger physical capital in the region, are merged
together. As TFP differences are the cause for the existence of both terms in
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the decomposition (13), it makes sense to consider also this second method. We
call this measure of regional TFP the ”broad” TFP definition. In the imple-
mentation of both of these accounting equations we standardize by the average
output per worker, capital per worker and the average national TFP in the US
to be 1.

4 The Data

Our data on Patented inventions, their Inventors and Citations between them
are taken from the NBER Patent Citation data File described in Jaffe et al. [9].
We choose only patents granted between 1975 and 1996 for which citation data
are available and we organize them across 141 regions3: 51 US states including
D.C., 10 Canadian Provinces and 80 regions in 17 European Countries. The
regions chosen for Europe are the Territorial Units used by Eurostat and denoted
with the name NUTS1. Patents are assigned to the regions of residence of their
first inventor. As the original NBER file contains only the name of the city and
the zip code of the first inventor we mapped each city-zip code into a region with
the help of national Maps and Gazetteers. The location of the first inventor is
highly correlated with the location of the other inventors so that this method
gives a careful representation of the distribution of innovation in Europe and
North America. Moreover the location of the inventor is much more accurate
in order to locate where the invention has been in developed, compared to the
location of the headquarters of the assignee company.
In our estimate of knowledge flows we want to be particularly careful. We

want to measure knowledge diffused to other regions and available there to be
used by others and not track the diffusion of knowledge within a network of
companies, potentially located in different regions. While the first flow may
generate a pure externality the second simply mirrors the existence of large
multinational companies that compensate their department in different regions
for providing and diffusing knowledge. Therefore we do not include in the count
of citations those done between two patents assigned to the same institutions
(university, company or research lab). We call these self-citations and we exclude
them from the count c(r, s)4.
The data on employment in R&D and spending per employee in R&D used

are the average for the 1992-1996 period of the number of R&D employees and
of dollar spent per employee in each region. The averaging over four years allows
us to fill some existing gaps in the regional yearly data and provides a value
which is less affected by year to year fluctuations. For European regions the
data are from the REGIO dataset, for Switzerland data were provided by the
Swiss statistical office, for the U.S. data are from the NSF and for Canada they

3The list of regions and countries they belong to is described in Appendix B
4Interestingly if we estimate the specifications in table 2 including self citations the coeffi-

cient that is mostly affected, increasing by 30%, is the one on the Same Region dummy. This
confirms our idea that those citations may be within company transfer of knowledge rather
than leakages of it. The other coefficients change very little.
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are from Statcan. Data on employment in R&D is the count of people employed
in R&D activities. R&D spending has been converted in current dollars before
averaging over the four years. A detailed description of the Data can be found
in the Data Appendix.

5 Estimation Results

5.1 Diffusion of Ideas

We first estimate the equation of diffusion of the representative idea across
regions. We divide patents into citing patents (granted in the 1992-1996 period)
and cited patents (granted in the 1975-1992). The total count of patents for the
citing region r is denoted as (P9296)r and the total count of patents for the cited
region s is denoted as (P7592)s. To have all non zero observation we add one
citation to all the region-couples5 and one patent to (P9296)r and (P7592)s for
each region. The basic specification that we estimate is like equation (4). We
include citing and cited regions specific effects (Dr,Ds) to capture, respectively,
different propensity to cite/absorb across regions (nr) and different intensity of
ideas of the cited regions’ patents (βs). In the basic specification we include a
linear term in geographical distance, in technological distance and in innovative
intensity distance (more on this below) and three dummies: one for r and s being
the same region (SameR) one for them being in the same country (SameC),
and one for them sharing a border (ShareB). The basic estimating equation is
:

ln

µ
c(r, s) + 1

((P9296)r + 1) ((P7592)r + 1)

¶
= a+Dr +Ds+ (15)

+γ1(d1)r,s + γ2(d2)r,s + γ3(d3)r,s + f1(SameR)r,s + f2(SameC)r,s + f3(ShareB)r,s + ur,s

Before discussing the estimation of this equation, let us describe in greater
detail the three measures of distance d1, d2 and d3 that we include in the re-
gression. (d1)r,s is simply the geographical distance between two regions. It is
measured in thousands of kilometers and calculated as the shortest arc distance
on the earth surface between two regions, choosing as location of each region
the location of its largest metropolitan area. Technological distance (d2)r,s is
a measure of the difference in technological specialization of two regions. This
measure is based on an index of technological proximity first introduced by Jaffe
[10]. This index is calculated as follows: first we divide the patents granted in
each region in six (thirty-six in the more detailed formula) technological groups:

5We also estimate in Table 4 the equation restricted only to strictly positive c(r, s).Results
are very similar to what obtained using all observations.
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Chemical excluding Drugs, Computers and Communications, Drugs and Medi-
cal, Electrical and Electronics, Mechanical, Others. For each region s we con-
struct the vector of shares of patents in each group shs = (shs1, ...shs6). Then
for each citing-cited region couple (r, s) we construct the uncentered correlation
coefficient between vector shr and shs as follows:

ρr,s =

P
i(shsi ∗ shri)pP

i(shsi)
2
P
i(shri)

2
(16)

The uncentered correlation is also the angular distance between the vectors:
two regions with identical specialization have a correlation of one, two with
orthogonal specialization have a correlation of zero. The technological distance
(d3)r,s is equal to 1−ρr,s and is bounded between 0 and 1. Finally the distance
in innovative intensity (d2)r,s measures how far two regions are in technological
advancement, rather than technological specialization. It is the difference in
absolute value of per capita patents granted in the two regions in the 1975-1992
period. A region at the frontier of technological innovation would have a large
value of per capita patents while regions that are technologically lagging behind
have low values of the same variable. This distance may affect the intensity of
spillovers as a region may be more effective in using technology flowing from
another region with similar level of technological advancement rather than from
a region that is much more (or much less) technologically developed.

�
Table�1�

Descriptive�statistics�
�

Variable� Mean� Std.�Deviation� Min�� Max�
Number� of� region� to� region�
citations�without�self-cit.�

75.2� 516.7� 0� 68778�

Number� of� region� to� region�
citations� without� self-cit.,� same�
technological�sub-class�

47.5� 327.4� 0� 29478�

Geographical�Distance
a�

4.44� 3.22� 0� 13.70�
Technological�distance�(36�sectors)� 0.34� 0.19� 0.006� 1�
Innovative�Advancement�Distance

b�
1.38� 1.52� 0� 8.48�

Number�of�patents�in�Cited�region�
(1975-1992)�

6523.2� 12924.6� 1� 96804�

Number�of� Patent� in� citing� region�
(1992-1996)�

21609����� 6523.2� �1�������� 52924�

�
Notes:�Citation�frequencies�are�calculated�omitting�self-citations,�i.e.�citations�between�patents�whose�first�
author�belong�to�the�same�company-institution..��
a:�Thousands�of�Kilometers.�
b:�Difference�in�patent�per�capita.�

�
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Table 1 reports some summary statistics for the data and for the three mea-
sures of distance. Geographical distance range from 0 kilometers, when citing
and cited region are the same one, to almost fourteen thousands Kilometers (be-
tween the US islands of Hawaii and the Greek Islands of Nisia Aigouu-Kriti).
Most of the distances, though, are below 10’000 kilometers, in fact only 2% of
distances is above 10’000 Km Technological distance range from 0.006 to 1, and
innovative advancement distance range from 0 to 8.48. The average number of
region to region citation without self-citation is 47 but the variance is very large
and the distribution very skewed with many couples with few citations and few
couples with a very large number of citations. Our regression results, though,
are very robust to the exclusion of outliers.

�
Table�2�

Dependent�Variable:�Citation�Frequency�Between�Regions�
Dep.�Var� I� II� III� IV�
Distance� -0.035*�

(0.002)�
-0.027*�

(0.002)�
-0.045*�

(0.004)�
-0.039*�

(0.003)�
Same�Region� 1.65*�

(0.07)�
1.62*�
(0.07)�

1.58*�
(0.07)�

1.36*�
(0.07)�

Same�Country� 0.23*�
(0.02)�

0.17*�
(0.02)�

0.22*�
(0.02)�

0.21*�
(0.02)�

Region�sharing�Border� 0.38*�

(0.02)�
0.36*�

(0.02)�
0.44*�

(0.02)�
0.30*�

(0.02)�
Tech.�distance-�6�sectors.� -1.16*�

(0.07)�
-1.16*�
(0.07)�

-1.16*�
(0.07)�

�

Tech.�distance-�36�sectors.� � � � -2.00*�

(0.06)�
Distance� in� Innovative�
Advancement�

-0.29*�

(0.01)�
-0.30*�

(0.01)�
-0.29*�

(0.01)�
-0.28*�

(0.01)�
Same�Language� � 0.15*�

(0.01)�
0.14*�

(0.018)�
0.11*�
(0.01)�

Both�NAFTA� � � -0.28*�

(0.04)�
-0.27*�
(0.05)�

Both�EU12� � � 0.04�
(0.023)�

0.04*�
(0.02)�

141� Citing� Region� Fixed�
Effects�

Yes� Yes� Yes� Yes�

141� Citied� Region� Fixed�
Effects�

Yes� Yes� Yes� Yes�

Observations� 19881� 19881� 19881� 19881�
R2� 0.96� 0.96� 0.96� 0.97�

Notes:� Citation� frequencies� are� calculated� omitting� self-citations.� To� all� region-couples� is� added� one�
citation� to� avoid� zeroes.� Heteroskedasticity� Robust� Std� errors� in� parenthesis.� *=� significant� at� 1%�
confidence�level.��

Table 2 presents the estimates of equation (15) using OLS with Heteroskedas-
ticity robust standard errors. Column I is the basic specification that includes
same-region, same-country and sharing-border dummies and 141 citing-region,
141 cited-region dummies. Column II adds a dummy for the same language
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spoken in the two regions, and Column III add a dummy for both region in the
E.U. and a dummy for both regions in NAFTA. Finally Column IV uses the
Technological distance index calculated using 36 sectors rather than 6.
The coefficients of the three measures of distance are extremely precisely es-

timated and very stable across specifications. The effect of geographical distance
on knowledge flow is a decrease of 3-4% per thousand Kilometers travelled. At
five thousands Km about 15-20% less of the initial flow of knowledge arrives.
Moreover being in the same region, in the same country or sharing a border
have each an extremely strong and positive effect on knowledge flows. Two re-
gions in the same country, for instance have about 20% more flows of knowledge
than two regions with the same characteristics but in two different countries. If
the citing and cited regions are the same the intensity of flows is 160% stronger
than for two different regions. Although we are controlling for self-citations such
strong intensity of flows within the same region may be due to some formal or
market mediated relations between inventors who operate near each other. Also
sharing a regional border has an extra effect of 40% on flows. This effect may
be due in part to the arbitrariness of some regional borders that may cut into
some economic units such as metropolitan areas (as New-York and New Jer-
sey). Technological distance has also a very strong effect. Using the index
based on 36 sectors, increasing the technological distance between two regions
of one standard deviation (0.19) implies a fall of almost 40% in knowledge flow
between two regions. Finally also the distance in innovative advancement has a
very strong effect on knowledge flows. Increasing such distance by a standard
deviation (1.52) would reduce flows by 45%.
Less relevant in determining knowledge flows, but still important, are the

other characteristics of sharing the same language (increases flow by 10%) or
belonging to the same custom union. Belonging to the European Union increases
flow between two regions by 4% while belonging to NAFTA seems to have a
negative effect of -27%. This is probably due to the fact that US patents,
other things being equal, tend to cite European patents more than Canadian
patents. The ”generalized gravity equation” does an excellent job in explaining
knowledge flows as evidenced by patent citations. Although we do not want to
overemphasize the meaning of the R2 of our regressions, as we are including 392
dummies, their values is always between 0.97 and 0.98.

5.1.1 Robustness Checks

In spite of controlling for a measure of technological distance and a measure of
”innovative distance” we may still think that part of the effect of geographical
distance on knowledge flows is an artifact due to proximity in sector specializa-
tion. As we want to specify correctly the diffusion of knowledge we check for this
possibility. If two close regions are specialized in similar sub-sectors and similar
sub-sectors cite each other the geographical distance may be picking up this ef-
fect. In Table 3 we estimate the same specifications as done in table 2 but using
only, as citations, those between patents in the same technological sub-category.
Citations across categories are eliminated so that no issue of sector-composition
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can affect the results. This amounts to using only one narrowly defined techno-
logical category and analyze the citations within it and then pool all categories
to estimate common parameters of diffusion within each sector. Remarkably
most of the coefficient are very similar to those in Table 2. The coefficient on
geographic distance, in particular, does not change at all. Even the coefficient
on technological distance, in spite of a decrease in its point estimate, remains
large and significant. This suggests that technological distance is an important
determinant of knowledge flows, even within technological categories and not
only across them.

�
Table�3�

Dependent�Variable:�Within�sub-sector�Citation�Frequency�Between�Regions��
Dep.�Var� I� II� III� IV�
Distance� -0.036*�

(0.002)�
-0.029*�
(0.002)�

-0.046*�
(0.003)�

-0.040*�
(0.003)�

Same�Region� 1.64*�
(0.05)�

1.61*�
(0.05)�

1.57*�
(0.05)�

1.35*�
(0.07)�

Same�Country� 0.21*�

(0.02)�
0.16*�

(0.02)�
0.21*�

(0.02)�
0.20*�

(0.02)�
Region�sharing�Border� 0.38*�

(0.02)�
0.36*�
(0.02)�

0.33*�
(0.02)�

0.30*�
(0.02)�

Tech.�distance-�6�sectors.� -1.12*�
(0.06)�

-1.11*�
(0.06)�

-1.11*�
(0.06)�

�

Tech.�distance-�36�sectors.� � � � -1.94*�
(0.06)�

Distance�in�Innovative�
Advancement�

-0.29�
(0.01)�

-0.30�
(0.01)�

-0.29�
(0.01)�

-0.29*�

(0.01)�
Same�Language� � 013*�

(0.01)�
0.11�
(0.01)�

0.10*�

(0.02)�
Both�NAFTA� � � -0.26*�

(0.05)�
-0.25*�

(0.05)�
Both�EU12� � � 0.02*�

(0.02)�
0.01�

(0.02)�
141�Citing�Region�Fixed�Effects� Yes� Yes� Yes� Yes�
141�Citied�Region�Fixed�Effects� Yes� Yes� Yes� Yes�
Observations� 19881� 19881� 19881� 19881�
R2� 0.96� 0.96� 0.96� 0.965�

�
Notes:� Citation� frequencies� are� calculated� omitting� self-citations� and� counting� only� citations� between�
patents�in�the�same�technological�sub-category.�To�all�region-couples�is�added�one�citation�to�avoid�zeroes.�
Heteroskedasticity�Robust�Std�errors�in�parenthesis.�*=�significant�at�1%�confidence�level.��
�
�

A second check is done in order to make sure that our results do not depend
on the inclusion of region couples with zero citations. In Table 2 we used all
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the regions’ couples to get our estimates, including those couples that had zero
citations (we added one to all cells). In table 4 we check that the results are
robust to the elimination of the zero citations cells. The same specifications
are estimated as in Table 2 (column I and II) or in table 3 (column Ia and IIa)
only using the couples of regions with at least one citation between each other.
Again the estimates are extremely stable and similar to those in table 2 and 3
revealing that the zero-citations region couples do not have any key information
on knowledge flow that is lost considering only the positive citation couples.

Table�4�
Omitting�regions�with�0�citations��

Dep.�Var� I� II� Ia� IIa�
Distance� -0.04*�

(0.003)�
-0.035*�
(0.003)�

-0.04*�

(0.003)�
-0.035*�
(0.003)�

Same�Region� 1.80*�
(0.05)�

1.60*�
(0.06)�

1.77*�
(0.05)�

1.57*�
(0.06)�

Same�Country� 0.18*�
(0.02)�

0.16*�
(0.02)�

0.18*�
(0.02)�

0.17*�
(0.02)�

Region�sharing�Border� 0.33*�
(0.02)�

0.29*�
(0.02)�

0.32*�
(0.02)�

0.29*�
(0.02)�

Tech.�distance-�6�sectors.� -1.76*�
(0.07)�

� -1.76*�
(0.07)�

�

Tech.�distance-�36�sectors.� � -2.15*�
(0.06)�

� -2.19*�
(0.06)�

Same�Language� 0.16*�
(0.02)�

0.16*�
(0.02)�

0.16*�
(0.02)�

0.15*�
(0.02)�

Both�NAFTA� -0.18*�
(0.04)�

-0.17*�
(0.04)�

-0.17*�
(0.04)�

-0.16*�
(0.04)�

Both�EU12� 0.001�
(0.02)�

0.01*�
(0.02)�

0.006�
(0.02)�

0.01*�
(0.02)�

Distance�in�Innovative�
Advancement�

-0.12*�
(0.01)�

-0.12*�
(0.01)�

-0.13*�
(0.01)�

-0.13*�
(0.01)�

141�Citing�Region�Fixed�Effects� Yes� Yes� Yes� Yes�
141�Citied�Region�Fixed�Effects� Yes� Yes� Yes� Yes�
Observations� 14375� 14375� 13483� 13483�
R2� 0.97� 0.97� 0.97� 0.97�

�
Notes:�Citation�frequencies�are�calculated�omitting�self-citations,�i.e.�citations�between�patents�whose�first�
author� belong� to� the� same� company-institution.� I-II� include� all� non-self� citations� Ia-IIa� include� only�
citations�within�same�technological�sub-category.�Region-couples�with�zero�citations�between�them�are�
dropped.�Heteroskedasticity�Robust�Std�errors�in�parenthesis.�*=�significant�at�1%�confidence�level.��
�

5.1.2 Effect of Geographical Distance

The decay of knowledge flows with distance using patent citations has been the
object of important empirical analysis (beginning with Jaffe et al.[11] and con-
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tinuing in more recent work). This dependence of knowledge flows on distance
has been often used to justify the concept of localized spillovers. Moreover it is
interesting to compare how knowledge flows differ from trade flows as distance
increases, now that we have a common frame given by the gravity equation.
In our estimation we were able to separate the effect due to pure geographical
distance from other effects such as technological proximity, crossing a national
border, crossing a linguistic border and so on. We find, therefore, a genuine
distance effect even in the most immaterial of the flows, the one between an
existing idea and a new idea. This is interesting as, given the very low cost of
spreading information one could have assumed no effect of distance on flows of
ideas. Nevertheless as we quantify this effect we realize that knowledge flows
are much less sensitive to distance than trade flows. First of all we explore if it
is appropriate to choose a specification of the decay of knowledge flows that is
linear in distance. This is interesting as the standard trade literature specifies
a decay which is linear in the logarithm of distance. Such specification implies
that flows decay much faster at low than at large distance. If this is true we
would observe a clear convexity of the decay function when we estimate a linear
specification.

�
Figure�1:�Decay�of�citation�frequency�with�distance:�different�polynomial�

specifications�
�

distance

�linear �quadratic
�cubic �polynomial

0 12.5

.253257

1.24029

�

Figure 1 represents the comparison of the decay function of knowledge dif-
fusion with distance, when we estimate such a decay as linear, quadratic, cubic
or polynomial in distance. We impose that the linear decay start at 1 (=100%
of the knowledge flow) at distance zero and we plot the decay between zero and
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12.5 thousands of Kilometers. The linear decay shows that the intensity of flows
is reduced by about 50% when we reach the distance of 12’000 Kilometers. The
function does not exhibit any global concavity or convexity so that we do not
gain much using a quadratic or a cubic (dashed lines). Using the polynomial
specification we observe a pattern in which the decay is steeper in the first 2000
Km, then a rather flat portion follows up to 6’000 Km and then a steeper de-
cay up to 10’000 Km flattening out after that. If we believe in the details of
the polynomial representation, we may speculate on how knowledge flows are
more heavily harmed by the initial thousands kilometers and, after that, they
have another significant drop only if we cross the ocean (the average distance
Europe-US is about 6’000 Km, and recall that all our observations are in Europe
and North America). However, such pattern does not dramatically depart from
a linear decay. Overall the linear approximation does not miss much, especially
if we consider that no point estimate is perfectly reliable. Figure 2 shows the
95% confidence band for the linear estimate and we see that this band contains
the point estimate of the polynomial decay for almost the whole range 0-12.5.
All in all the linear decay seem to do a good job in approximating the decrease
of knowledge flow with distance as captured by patent citations.

Figure�2:�Decay�of�citation�frequency�with�distance:�Linear�with�95%�confidence�
band�and�Polynomial.�

�

distance

�linear �upper
�lower �polynomial

0 12.5

.245289

1.24029

�

If we compare the effect of distance on knowledge flows with the effect of
distance on trade, on the other hand, we find that knowledge flows are gen-
uinely much more international. Estimating specification II in table 2 using
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the logarithm of distance (not reported), rather than the level, we can readily
compare the effect of distance on inter-regional knowledge flows with the effect
of distance on inter-regional trade flows, as estimated using Canadian provinces
and US states by McCallum [17] . This is one of the few studies using regional
trade data that controls for a border effect on top of the distance effect and
it is a natural benchmark for our comparison. Our estimate gives a coefficient
of -0.14 (std.err. 0.007) as the elasticity of knowledge flows to distance, while
McCallum estimates an elasticity between distance and trade of -1.3 to-1.5. The
effects of distance on trade flows is ten times stronger than the effect of distance
on knowledge flows. Incidentally also the border effect estimated by McCal-
lum [17](about 3.1) is more than ten times larger than the one we estimate for
knowledge flows (0.23).

5.2 Regions’ Balanced Growth Path

Estimation of Equation (7) is the second task of the paper. That relation
relies on the assumption that knowledge growth across regions is on average in
Balanced Growth Path during the considered period. In this section we test two
important characteristics to make sure that knowledge growth across regions is
on BGP with a common long run rate of growth. This, in turn, ensures that
Equation (7) is well specified. The two conditions are:

1) (Pat9296 ∗ bβ)r = γ(Pat7592 ∗ bβ)r +er
2) The deviations from the BGP relation written above, er, have zero aver-

age, and are not correlated to R&Dr or hr.
The first condition is the formal implication of the assumption that regions

are on BGP growth for their generation of ideas. Assume that Art is the existing
stock of ideas in region r and year t and that g is the common yearly growth
rate of the stock of ideas in BGP for each region r. Then considering three years
such that t0 < t1 < t2 we have, for the generic region i:

Art2 −Art1 = [(1 + g)t2−t1 − 1]Art1 (17)

Art1 −Art0 = [(1 + g)t1−t0 − 1]Art0 (18a)

Art1 = (1 + g)
t1−t0Art0 (19)

Merging the three expressions and considering t0 = 75, t1 = 92, t2 = 96
we obtain (Ar96 −Ar92) = γ (Ar92 −Ar75) where γ = {[(1 + g)4 − 1](1 +
g)17}/[(1 + g)17− 1]. Measuring the change of stock of ideas between two years
as the number of patent granted times the estimated intensity of ideas in each
patent the equation written above yields: (Pat9296 ∗ bβ)r = γ(Pat7592 ∗ bβ)r.
Adding a random disturbance we have the relation under 1).
The second condition ensures that the deviations from BGP, which may be

observed, are zero mean, purely random and not correlated with other deter-
minants of innovation so that the errors urs in equation (7) are uncorrelated
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with the explanatory variables and estimates of the structural parameters are
consistent.

�
Figure�3:�Full�Sample�147�Observations�
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Figure�4:�Without�top�2�Observations�
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Before performing a formal test of condition 1) it is useful to look at Figure
3 and 4. The BGP relation implies that there is a linear relation with zero
intercept between the level of ideas generated in region r during the period 75-
92 (Pat9296 ∗ bβ)r and those generated during the period 92-96 (Pat7592 ∗ bβ)r.
Figures 3 and 4 plot these two variables against each other. Figure 3 incudes
all regions while Figure 4 excludes the top two outliers (California and New
Jersey) that have many more patents than the other regions. The impression
that we get, just from looking at the pictures, is that there exist a very tight
linear relation between the two variables and that the intercept of the regression
line is just about zero. Table 5, confirms that a linear relation between the two
variables explain 95% of the variance of (Pat9296 ∗ bβ)r and confirms that the
intercept of the linear relation is not statistically different from 0 (column I,
with all observations and Column III without outliers). Also, no significant
concavity or convexity, captured by a quadratic and a cubic term, exists in the
relation (Column II and Column IV).

�
Table�5:�Balanced�Growth�Path�relationship�

Dep.�Val�(A_9296)r=(Pat_9296)r* rβ̂ /1000�

� I� II� III� IV�
� All�Observations�

(146�obs)�
Without�top�2�outliers�
(144�obs)�

Constant� -0.18�
(0.14)�

0.33�
(0.17)�

0.15�
(0.08)�

-0.11�
(0.07)�

A_7592� 0.35*�

(0.03)�
0.22*�

(0.10)�
0.36*�
(0.02)�

0.37*�
(0.07)�

(A_7592)
2� � 0.006�

(0.005)�
� 0.001�

(0.008)�
(A_7592)

3� � 0.00006�
(0.00004)�

� 0.00004�
(0.0001)�

R2� 0.95� 0.96� 0.96� 0.96�
�

Table 6 also checks that the residuals er from the regression under 1) have
no correlation with R&Dr and hr. Neither in level (Column I) nor in Logs
(Column II) there exist any significant correlation between the residuals and
those explanatory variables. These checks, therefore, do not reject our assump-
tion that knowledge creation in European and North-American regions has been
on average on a BGP with a common long run growth rate of Ar. Deviations
from this BGP are rather small, and totally random. In particular they are
uncorrelated with regional R&D. As a consequence equation (7) is correctly
specified and the level of knowledge generated in each of these regions in the
period 1992-1996, depended on the R&D inputs and on the spillovers affecting
the ideas generating function.
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Table�6:�Independence�of�Residuals�from�Explanatory�Variables�
�

Dep.�Var/�Regressors:� er� ln(er)�
R&Dr/1000� 0.0023�

(0.0047)�
�

(hr)� 0.074�
(0.47)�

�

ln(R&Dr)� � 0.06�
(0.05)�

ln(hr)� � -0.01�
(0.02)�

Country�Dummies� Yes� Yes�
R2� 0.16� 0.47�
Obs� 146� 146�

�

Notes:�Dep�var:�er=�residuals�from�regression�of�A_9296==(Pat_9296)r*exp( rβ̂ )/1000�on�A_7592=�

=(Pat_7592)r*exp( rβ̂ )/1000in�levels�

ln(er)=�residuals�from�a�regression�as�above�but�in�logs�
�

5.3 Innovation Function

We have established, so far, that knowledge flows across regions depend on sev-
eral bilateral characteristics and notably on distance in geographical, techno-
logical and innovative space. Proving the existence of knowledge flows though,
does not prove the existence of externalities (and in particular of positive ex-
ternalities) of knowledge in generating innovation unless these flows affect the
productivity of researchers in the receiving region. Usage of knowledge origi-
nated in other regions may very well bring, together with contribution for new
ideas, increased standard of novelty, or a reduction in the ”yet unexplored” in-
novation possibilities. These effects may very well generate a zero net effect or
even a negative net effect on the productivity of researchers in generating new
ideas. Therefore, while no priors are imposed by the theory on the sign and
magnitude of εI , we expect that εR&D and εh are positive, as an increase of re-
searchers and of resources should increase their findings of new ideas (patented
ideas).
We estimate the innovation function in (7). First we construct the stock of

available ideas in each region r, AAVAr as
P
s∈S

exp
³
−bγ1(d1)r,s − bγ2(d2)r,s − γ3(d3)r,s + bf(Charr,s)´ bβsPs

. We use the parameter estimates from Table 2 column I in order to calculate
this value. As we have seen those estimates are very robust and precise and
therefore it would not make much of a difference to use the estimates from col-
umn II, III or IV. In estimating the equation we include fixed country-effect
Ci, as the propensity to patent in the US may differ across countries, due to
different costs and we control also for the previously estimated average intensity
of ideas per patent in regions, ln(bβr). Controlling for this variable is important
as there is a strong and significant negative correlation between the intensity of
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ideas per per patent ln(βr) and the patenting intensity ln(Pr) across regions.
Such correlation is represented in Figure 5: regions producing more patents tend
to have lower intensity of ideas in each patent.

Figure�5:�Intensity�of�ideas�and�Patenting�intensity�across�regions�
�
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Controlling for ln(βr) reduces the variability of innovation in response to its
inputs. The exact estimated specification is:

ln(Pr) = Ci + c ln(bβr) + εRD ln(R&Dr) + εh ln(hr) + (20)

+εI lnA
AVA
r + ur,s

Table 7 reports the estimates of the coefficients of equation (20). The estima-
tion method is Instrumental Variables , with Heteroskedasticity robust standard
errors. In column I and II the variable

AAVA−r =
X
s 6=r

exp
³
−bγ1(d1)r,s − bγ2(d2)r,s − γ3(d3)r,s + bf(Charr,s)´ bβsPs
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is used as instrument for AAVAr , where we have omitted the contribution of
knowledge generated in region r itself to avoid endogeneity. In column III and
IV the variable

R&DSAVAr =
X
s 6=r

exp
³
−bγ1(d1)r,s − bγ2(d2)r,s − γ3(d3)r,s +

bf(Charr,s)´ (R&D∗h)s
is used as instrument, as our model predicts that resources in R&D are the
main exogenous determinant of innovation in a region. In both cases the instru-
ment does not include the dependent variable in its calculation and therefore
it corrects for the upward bias of the OLS estimation. Column I and III in-
clude R&Dr and hr as separate inputs. Interestingly, though, the elasticity of
innovation are not significantly different between these two inputs and we may
consider total R&D spending ( R&Dr* hr) as a single factor. Doing so (column
II and IV) we obtain a more precise estimate of the elasticity of innovation to
this factor. The estimate of such elasticity is around 0.8 with a standard error
of 0.07. An increase of R&D resources of 1% increases the generation of new
ideas by 0.8% in the long run. Unluckily and differently from the estimates of
εRD and εh the externality εI is not estimated precisely. Its standard error is in
fact between 0.4 and 0.5. Nevertheless the point estimate is never significantly
different from 0 and in column III and IV it is even negative (−0.5). All in all
the evidence point towards large returns of R&D resources in innovation and
no positive externalities of knowledge in generating new ideas. In particular if
we consider the estimates of column I and II the point estimate of εI is around
0.1 with standard error of 0.4. We may consider these estimates as potentially
biased upward due to the endogeneity of knowledge in the neighboring regions.
If we instrument Ps with (R&D ∗ h)s then we obtain a much smaller and neg-
ative estimate (-0.5) of εI (column III and IV) still non significantly different
from 0. It is possible that a positive ”spillover” of available knowledge is (more
than) offset by a negative effect due to increased standard for local innovation
brought in the region by the diffusion of outside ideas. Similarly the knowledge
and use of existing ideas may very well reduce the space of ”unexplored” ideas,
making innovation more difficult.
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Table�7:�the�production�function�of�innovation�
Dep.�Variable� )_ln( 9296Pat �

�
Dep.�Var:� )9296_ln(Pat � I� II� III� IV�

rDR )&ln( � 0.87*�

(0.12)�
� 0.93*�

(0.13)�
�

rh)ln( � 0.65*�

(0.17)�
� 0.71*�

(0.18)�
�

rhDR )*&ln( � � 0.76*�

(0.067)�
� 0.83*�

(0.07)�
AVA

rA � 0.11�
(0.43)�

0.12�
(0.41)�

-0.55�
(0.50)�

-0.59�
(0.52)�

rβ̂ � -0.56*�

(0.14)�
-0.55*�

(0.11)�
-0.66*�

(0.12)�
-0.66�
(0.13)�

Country�Dummies� Yes� Yes� Yes� Yes�
Observations� 141� 141� 141� 141�
R2� 0.92� 0.92� 0.91� �

Notes:�Method�of�estimate:�IV�with�robust�std�error.�Instruments�in�I,�II:� 






 ∆∑
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5.4 Instrumental Variables: Value of a Patent

Our estimates of the effect of R&D on innovation could be biased up by the
presence of some unobservable regional factors , that attract R&D while also
increasing its returns in terms of innovation. In order to address this issue we
consider a proxy for the value of a patent that varies across regions. If we knew
how much a patent were worth in a region, we could explicitly model the fact
that researchers are attracted to regions in which patents are more valuable
because their expected returns are higher. Moreover if the market value of a
patent is independent from the productivity of R&D we could use such variable
as an instrument for R&D in regions .
In order to do this, we turn to the idea that a patent is more valuable the

largest is the potential market for innovation in the region where it is discovered.
Different regions have different market potentials for innovations, depending on
their location and their connections with the other markets. The amount of
trade of a region with the rest of the world could reveal the market for the region.
More interestingly, though, we have a revealed measure of the potential market
for patented goods. This measure is the extent to which patent protection
is pursued by resident of a country in other countries. If a patent is protected
only on the domestic market it is because the inventors believe that small profits
would come by trading the good abroad and therefore it is not worth seeking
protection there. On the contrary a patent that is vastly protected reveals
the intention of its inventors to protect foreign market and profit on them via
trade. Seeking international patenting in other countries reveals what regions
the inventor considers as potential markets for the new goods invented there.
We use data available from WIPO on patents applied for and granted in
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each of our 19 countries to inventors residing in each of them for the period
1993-1996. Identifying the patent protection in a country as the sign that an
invention is targeting that country as a market, allows us to estimate the effect
of country characteristics and distance on the potential demand for innovations
coming from each country. This allows us to calculate the market potential for
innovation in each of our regions. We use this measure of market potential as
instrument for regional R&D.
Here we briefly describe how we use the data on cross-country patenting

to infer the market potential for innovation in each region. Let’s assume that
the number πij of patents granted in country j to residents of country i is a
good proxy of the market for new goods that inventions from country i have
in country j (in relative terms). We refer to πij as the market for innovation
generated in country i coming from country j.This seems reasonable as patent
protection is a way of ensuring market for new goods.
It is useful to think of the market πij as depending on country j and country

i characteristics and on bilateral characteristics affecting the relative intensity
of patenting from a country into another. The bilateral characteristic that we
use are geographical distance (distij) and a same-country dummy (SameCij).
If we think of πij as the share of total world patents that are granted by

country j to residents of country i we can decompose that value as follows:

πij = (Πi,all)(Πall,j)(e
−δdistij )(efSameCij )εij (21)

Πi,all is the share of total patents in the world granted to inventors resident
of country i, Πall,j is the share of of total patents in the world granted by the
patent office of country j. e−δdistij is an exponential function in the geographical
distance between i and j, efSameCij is the effect of patenting in the same country
where the inventor is resident and εij is a positive multiplicative random factor
distributed as a lognormal that captures all the other bilateral determinants of
πij orthogonal to the regressors. As we observe πij and distij and SameCij we
may use a simple regression to perform the above decomposition. Taking logs
of both sides of equation (21) we have:

ln(πij) = Ci +Cj − δ(distij) + f(SameCij) + uij (22)

where Ciand Cj are country specific effects and capture the origin and desti-
nation country effects (ln(Πi,all), ln(Πall,j)). distij is the geographical distance
between the two regions and SameCij is a dummy which is equal to one if the
inventor’s country and the granting country are the same. uij = ln(εij) is a zero
mean normally distributed error. Once we have used OLS to estimate equation
(22) we can construct the predicted share πsi,rj which measure the innovation
generated in region si of country i and demanded in region rj of country j..While
the parameter Ci depends on how innovative is country i the parameters Cj , δ
and f depend only on where inventions are patented and how the distance and
national borders affect this marketing decisions. They are therefore variables

28



that capture the market potential of a region. Let’s call shmarrj the share of
region rj in the market for innovation of country j. Also we denote with a hatb
the OLS estimates of our parameters. The predicted potential demand coming
from region rj for innovation invented in si would be:

bπsi,rj = (shmarrj bΠall,j) exp(−bδdistsi,rj + bfSameCsirj ) (23)

In our implementation we measure shmarrj as the share of GDP of country
j produced in region rj Therefore the total market potential for innovation
produced in region si would be:

Pot1si =
X
rj

X
j

bπsi,rj (24)

Alternatively, using a region’s gross product as proxy for the demand for
new goods (rather than shmarrj bΠall,j ) we can define an alternative measure of
demand from region rj for innovation invented in si : bpsi,rj = exp(−bδdistsi,rj +bfSameCsirj )Yrj . The total market potential for region si would be:

Pot2si =
X
rj

X
j

bpsi,rj (25)

Both constructs use the geographic position of each region and the inter-
country pattern of demand for innovations, revealed by international patenting,
to evaluate the main determinant of patent’s value, which is the market potential
that a patent has in region si once invented.

�
Table�7b:�Instrumenting�R&D�with�Mkt�potential��

Dep.�Variable� )_ln( 9296Pat �
�

Dep.�Var:� )9296_ln(Pat � I� II� III� IV� V� VI�

rhDR )*&ln( � 0.77*�

(0.04)�
0.79*�

(0.05)�
0.77*�

(0.26)�
0.99*�

(0.19)�
0.80*�

(0.27)�
1.01*�

(0.19)�
AVA
rA � � -0.52�

(0.41)�
� -0.79�

(0.59)�
� -0.72�

(0.56)�

rβ̂ � -0.57*�
(0.10)�

-0.52*�

(0.11)�
-0.58*�
(0.22)�

-0.57*�

(0.24)�
-0.55*�

(0.22)�
-0.54*�

(0.23)�
Country�Dummies� Yes� Yes� Yes� Yes� Yes� Yes�
Observations� 141� 141� 141� 141� 141� 141�
R2� 0.92� � 0.92� 0.89� 0.91� 0.89�
Notes:�Method�of�estimate:�Column�I�and�II�OLS,�Column�III�and�IV,�Instrumental�variable�with�robust�std�
error.�Instrumenting�ln(R&D*h)r�and�AAVA

r�with�Pot1�and�Pot1AVA�.�Column�V�and�VI�use�Pot2�and�
Pot2AVA�as�instrumental�variables.�

�
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Table 7b reports the results of estimating equation (20) using Pot1si or

Pot2si and its transform PotnAVA =
P
s6=r

P
s6=r

exp
³
−bγ1(d1)r,s − bγ2(d2)r,s − γ3(d3)r,s + bf(Charr,s)´Potn

to instruments for total R&D and for AAVAr .We report the innovation equation
without the spillover term estimated using OLS and IV with Pot1si and Pot2si
(columns I,II and V). As the instruments are not very good (explain about 10%
of the independent variable variation) the std. errors increase substantially, but
the point estimates do not change much. No evidence of any significant bias
on the effect of R&D on innovation emerges from these estimates. Similarly,
when we introduce the spillover term lnAAVAr its effect is still negative and
insignificantly different from 0 using OLS or instrumental variables. This check
re-assures us on the previous estimates of the impact of R&D on innovation and
of the R&D externalities.

5.5 Cross-Regional Accounting

The source of data used to perform cross-region accounting are several and de-
scribed in detail in the appendix. In general, data on gross regional product and
total regional employment are from the REGIO dataset for E.U. countries, from
the national statistical offices for Norway and Switzerland, from the Bureau of
Economic Analysis for US states and from CANSIM for Canadian Provinces.
For each region we take the average value for the 1991-1996 period, in order
to smooth any effect from business cycle fluctuations. The Capital-Labor ratio
at the country level is taken from Hall and Jones [8] and is relative to year
1988. The share of labor is assumed to be the same across regions and equal
to 0.66. This section documents that the variation of region-specific total fac-
tor productivity explains a substantial part of the differences in regional labor
productivity. Differences across regions within countries are as important as dif-
ferences across countries in explaining productivity differentials in Europe-North
America. This can be seen in Figure 6 and 7 that decompose the cross-regional
variation of ln(yr), between a cross-country component (figure on top) and a
cross-region within country component (figure on the bottom). As we can see
just eye-balling the figures, and it is also revealed by the R2 of the regressions,
each component explains about one half of the total variance.
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Figure�6�
Cross�regional�variation�of�output�per�worker�(1991-1996)�

�explained�by�within�country�variation��
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Figure�7�
Cross�regional�variation�of�output�per�worker�(1991-1996)��

explained�by�cross�country�variation��
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More formally we perform the accounting exercise described in section 3.1
where we standardize the average output per worker, the average capital per
worker and the average country TFP of the US to be equal to 1 (therefore their
log is 0). We rank regions according to their output per worker (average current
$ 1991-1996) from the most productive (Bruxelles) to the least (Portugal). The
contribution of each component (capital-labor ratio, country TFP and region
TFP) to the differences in output per worker for each region, using the ”Narrow”
and the ”Broad” regional TFP definition can be requested from the author.
In Table 8 (a)-(b) we simply report the decomposition into components of the
differences in productivity between the Top and the Bottom regions. On average
between 17% and 48% of the differences in output of region in the top10 group
versus region in the bottom 10 group are explained by regional TFP when we
use the narrow definition. The percentage increase to 24-73% when we use the
broad definition. By all means differences in regional factor productivity are
very relevant in explaining differences in output per worker. Considering them
as a measure of differences in technological advancement across regions we use
them to estimate the impact of R&D and of knowledge spillovers.

Table�8�
(a)�

Cross-region�Accounting�using�the�Narrow�definition�of�regional�TFP��
(1991-1996�averages,�141�Regions)�

�

� ∆�ln�(kregio)� ∆�ln�(TFPcountry)� ∆�ln�(TFPregio)�∆�ln�(y)�
%�explained�by�
∆ln(TFPregio)�

Top-Bottom� 0.42� 0.90� 0.25� 1.57� 17%�
Top2-Bottom2� 0.38� 0.52� 0.43� 1.34� 32%�
Top5-Bottom5� 0.54� 0.01� 0.51� 1.05� 48%�
Top10-Bottom10� 0.37� 0.10� 0.25� 0.72� 35%�
�

(b)�
Cross-region�Accounting�using�the�Broad�definition�of�regional�TFP��

(1991-1996�averages,�141�Regions)�
�

� ∆�ln�(kcountry)� ∆�ln�(TFPcountry)� ∆�ln�(TFPregio)�∆�ln�(y)�
%�explained�by�
∆ln(TFPregio)�

Top-Bottom� 0.30� 0.90� 0.38� 1.57� 24%�
Top2-Bottom2� 0.17� 0.52� 0.66� 1.34� 49%�
Top5-Bottom5� 0.28� 0.01� 0.77� 1.06� 73%�
Top10-Bottom10� 0.24� 0.10� 0.38� 0.72� 52%�

�

5.6 Productivity Function

Having determined the productivity differentials across regions, due to region
specific technological level ar we consider the long-run relation between produc-
tivity resources spent in R&D and knowledge spillovers. In particular, assuming
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that ar captures the relative level of technological advancement that results from
codified and implicit innovation, patented and not patented inventions we es-
timate the same relation between ar and its determinants as we did above for
innovation measured by patents. We still assume that the structure of knowledge
flows revealed by citations is informative on flows of knowledge across regions.
As the TFP measures productivity ”per worker” we also divide the R&D total
resources used in the region by total employment. We estimate the following
equation:

ln(ar) = Ci + εRD ln(
R&Dr ∗ hr
Empr

) + (26)

+εI lna
AVA
−r + ur,s

where aAVA−r =
P
s6=r

exp
³
−bγ1(d1)r,s − bγ2(d2)r,s − γ3(d3)r,s + bf(Charr,s)´ as

is the stock of knowledge available to region r through the flows from other
regions. We estimate the equation using OLS with robust standard errors and
using IV where we instrument the variable aAVA−r using the variable defined
above R&DSAVA−r .

Table�9:�R&D,�Knowledge�spillovers�and�Productivity��
�

Dep.�Var:� )ln( 9296a � I� II� III�� IV�� V(iv)� VI(iv)�

rEmp

hDR
)

*&
ln( �

0.067*�

(0.01)�
0.10*�

(0.01)�
0.064*�

(0.01)�
0.098*�

(0.01)�
0.065�
(0.01)�

0.098*�

(0.015)�

)ln( AVA
ra− � � � -0.024�

(0.022)�
-0.03�
(0.03)�

-0.031�
(0.026)�

-0.048�
(0.040)�

)&ln( AVA
rDSR − � -0.03�

(0.03)�
-0.05�
(0.04)�

� � � �

Observations� 141� 141� 141� 141� 141� 141�
R2� 0.23� 0.23� 0.22� 0.22� 0.23� 0.23�
Notes:�Column�I-IV�estimated�using�OLS�with�With-Robust�std�errors.�Column�V�and�VI��estimated�using�

instrumental�variables�with�roust�std�error.�Instrument:� )&ln( AVA
rDSR − .�Column�I,�III�and�V�use�the�

narrow�definition�of�regional�TFP,�column�II,IV�and�VI�use�the�broad�definition.�

Table 9 reports the estimates of equation (26). First of all let’s notice that
the elasticity of regional TFP to local R&D resources spent is between 0.065 and
0.10 estimated rather precisely in any specification I-VI. In general the effect
is magnified when we consider the effect of R&D on broadly defined regional
TFP (column II, IV and VI). This is natural, as that measure attributes also
part of the regional differences due to capital intensity, to differences in pro-
ductivity. The elasticity of R&D spending on broadly defined productivity is
approximately 0.10 while the effect on narrowly defined productivity is 0.065.
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In both cases the standard error is close to 0.01. These estimates can be com-
pared with those in Coe and Helpman [4] and with those in Keller [16]. Both
works estimate this elasticity using the time-series variation of R&D and total
factor productivity at the country level. Coe and Helpman using the long-run
cointegrating relation find a number between 0.078 and 0.097, very close to the
effect we estimate on broad TFP. As Coe and Helpman use the long-run cointe-
grating relation among variables we think they are using the same information
as we are. Keller, who estimates this elasticity using sector-country yearly data
finds a value somewhat lower between 0.04 and 0.055. This can be due to the
shorter time horizon (yearly data) of his analysis. Our results, though, contrast
with the Coe-Helpman and Keller analysis and confirm our previous finding
in the estimates of externalities from knowledge flows. The variable captur-
ing available knowledge from other regions, either measured as ln(aAVA−r ) or as
ln(R&DSAVA−r ) does not have any positive and significant effect. In any speci-
fication the elasticity of regional productivity to available ideas is never larger
than −0.03, with standard error of about 0.03. The standard error of the esti-
mate is now sufficiently small to allow us to rule out any effect externality larger
than 1-2% on the regional productivity.
Again, this seems to be evidence that no significant and positive effects on

productivity are carried by these knowledge flows that capture the exchange of
ideas at the frontier of technological advancement.

6 Conclusions

The present study analyzes the process of knowledge diffusion and knowledge
externalities as evidenced by the data on TFP, patent creation and patent ci-
tations. While diffusion of ideas is needed in order to have externalities of
knowledge there is no reason to believe that simply by measuring the intensity
and scope of this knowledge diffusion, we have a measure of knowledge external-
ities. In order to have positive externalities, in fact, we need that existing ideas
affect positively the productivity of scientists in generating new ideas. Several
doubts have already been raised by the literature in analyzing innovation over
time (Griliches [6]) that knowledge externalities are positive, as there seems to
be evidence that productivity of R&D in innovation has decreased over time.
Diffusion of new ideas, in fact, brings not only ”new inspiration” to researchers
but also increased standard for innovation, and it reduces the unexplored terri-
tories of human knowledge. These effects may offset the positive spillovers. Our
study finds that there are very important positive and negative determinants
of knowledge diffusion: regions farther away from each other, in different coun-
tries, specialized in different sectors and speaking different languages exhibit
much lower flows of knowledge than close, similar regions in the same country.
Nevertheless these flows do not bring significant knowledge externalities neither
when we consider the innovation generating function, nor when we consider the
more commonly used measures of total factor productivity.
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A Diffusion Processes Generating a Negative Ex-
ponential

The process of diffusion of ideas in space and over time can be described, in
general, with a function which describes what is the contribution available at
time t1 in location r of an idea, generated in location s at time t0. Such a
contribution is a function of the non-obsolete knowledge incorporated into the
idea and of the probability of researchers in location s to have incurred in the
idea. In general it takes the form:

eψ(r, s, t0, t1) = eδe−ρ(At1−At0)f [(t1 − t0), d(r, s)] (27)

The term e−ρ(At1−At0) captures the part of the idea which is non obsolete
yet, assuming that obsolescence depends on the number of new ideas invented
between t0 and t1. The term f [(t1 − t0), d(r, s)] expresses the fact that the
probability of having seen the idea depends on the time elapsed since the in-
vention took place and on the distance between the location. First notice that
one we choose t1and t0 equal for all the observation (cross section) the termeδe−ρ(At1−At0) is just a common constant for all the observations. As for the
function f two different assumptions give a negative exponential:

1) Assume that all ideas travel in space at the same speed v so that distance
travelled in the period of time T is: d = vT. Assume also that v is large enough
that the maximum world distance T can be travelled in the interval (t1 − t0)
namely: v (t1 − t0) > T. Under perfect diffusion ideas invented anywhere in
the world at time t0 are available anywhere else in the world at time t1. As-
sume nevertheless that there are some ”frictions” to the diffusions of ideas, and
these frictions take the form of random events that arrest the propagation of an
idea (bad luck, interruptions in the communications, distractions of attention).
These events happen with a Poisson distribution at rate λ per unit of time.
Therefore the probability that they happen and stop the idea from reaching a
location is larger for farther than for closer locations. In particular the probabil-
ity that an idea has travelled distance d(r, s) before such interruption happens

is: e−λ
d(r,s)
v .Such is the probability to have the idea available in location s at

time t1. Substituting the function into (27), and collecting into a constant all
the parameters and the functions of t0, t1,we get:

ψ(r, s) = δe−
λ
v d(r,s) (28)

which has the same form as 2 in the text, including geographical distance
only.

2) Assume that ideas travel at speed vi different for each idea i. Assume that
the speed of ideas are distributed as a negative exponential function with PDF
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equal to λe−λvi , where λ is the average speed of diffusion, but the shape of the
distribution captures the fact that there are more ”slow” than ”fast” travelling
ideas. In this case the probability of an idea having reached region r at distance

d(r, s) is equal to the probability of the speed of that idea being at least d(r,s)t1−t0
and therefore e−λ

d(r,s)
t1−t0 . collecting constant terms, we have:

ψ(r, s) = δ0e−
λ

t1−t0 d(r,s) (29)

which has the form of equation 2 in the text.

B List of Regions

Austria: OSTOSTERREICH, SUDOSTERREICH, WESTOSTERREICH
Belgium: BRUXELLES, VLAAMS GEWEST, REGIONE WALLONNE
Canada (Provinces): NEWFOUNDLAND, PRINCE EDWARDS ISLAND,

NOVA SCOTIA, NEW BRUNSWICH, QUEBECK, ONTARIO, MANITOBA,
SASKATCHEWAN, ALBERTA, BRITISH COLUMBIA.
Denmark: DENMARK
Finland: FINLAND
France: ILE DE FRANCE, BASSIN PARISIENNE, NORD-PAS DE CALAIS,

ESTE, OUESTE, SUD-OUEST, CENTRE-EST, MEDITERRANEE.
Germany: BADEN-WURTENBERG, BAYERN, BERLIN, BRANDEN-

BURG, BREMEN, HAMBURG, HESSEN, MECKLENBURG-VORPOMMEM,
NIEDERSACHSEN, NORDRHINE-WESTFALIA, RHEINLAND-PFALZ, SAAR-
LAND, SACHSEN, DESSA, SCHLESWIG-HOLSTEIN, TURINGEN.
Greece: VORAIA ELLADA, KENTRIKI ELLADA, ATTIKI, NISIA AIGAIOU,

KRITI.
Ireland: IRELAND
Italy: NORD OVEST, LOMBARDIA, NORD-EST, EMILIA ROMAGNA,

CENTRO, LAZIO, ABRUZZO-MOLISE, CAMPANIA, SUD, SICILIA, SARDEGNA.
Luxemburg: LUXEMBURG
Norway: NORWAY
Portugal: PORTUGAL
Spain: NOROESTE, NORESTE, COMUNIDADDEMADRID, CENTRO,

ESTE, SUR, CANARIAS.
Sweden: SWEDEN
Switzerland: REGIONE LEMANIQUE, ESPACEMITTELAND, NORTH-

WESTSCHWEITZ, ZURICH, OSTCHWEITZ, ZENTRALSCWEITZ, TICINO.
United Kingdom: NORTH, YORKSHIRE AND THE HUMBER, EAST

MIDLANDS, EAST ANGLIA, SOUTHEAST, SOUTHWEST, WEST MID-
LANDS, NORTH WEST, WALES, SCOTLAND, NORTHERN IRELAND.
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USA (States): ALABAMA, ALASKA, ARIZONA, ARKANSAS, CAL-
IFORNIA, COLORADO, CONNECTICUT, DELAWARE, D.C., FLORIDA,
GEORGIA, HAWAII, IDAHO, ILLINOIS, INDIANA, IOWA, KANSAS, KEN-
TUCKY, LOUISIANA, MAINE, MARYLAND, MASSACHUSSETS, MICHI-
GAN, MINNESOTA, MISSISSIPI, MISSOURI, MONTANA, NEBRASKA, NEVADA,
NEW HAMPSHIRE, NEW JERSEY, NEW MEXICO, NEW YORK, NORTH
CAROLINA, DAKOTA, OHIO, OKLAHOMA, OREGON, PENNSYLVANIA,
RHODE ISLAND, SOUTH CAROLINA, SOUTH DAKOTA, TENNESSEE,
TEXAS, UTAH, VERMONT, VIRGINIA, WASHINGTON,WEST VIRGINIA,
WISCONSIN, WYOMING.

C Data Appendix

C.1 R&D Expenditure Data (1992-1996)

• Europe:
Main Source for Data on R&D1992-1996: Eurostat Regio Database

(http://europa.eu.int/comm/eurostat)

As there were some missing values for some regions we interpolated existing
values or we imputed regional values using the share of national R&D in the
region from a previous year applied to the national Figure for the year. The
following is the detailed description of the interpolated and imputed data:

Austria : linear interpolation for 1992, imputed for 1994,1995.
Belgium: linear interpolation for 1992 country total, imputed for 1993
Denmark: imputed for 1994-95.
Germany: imputed for 1992-94-95.
Greece: imputed for 1995.
Spain: imputed for 1995.
France: imputed for 1995.
Italy: imputed for 1992-94-95
The Netherlands: imputed for 92-95.
Portugal: linear interpolations for 93,94.
Sweden: linear interpolations for 92,94.
U.K. Inputed for 1992.
Switzerland used regional GDP shares to get regional values 92-95 where

total R&D Expenditure had been obtained from the Swiss Statistical Office.

• U.S.A.:
Main Source: National Science Foundation/Division of Science Resources

Studies, Survey of Industrial Research and Development: 1998.
Missing values for 1992 and 1994 were obtained through linear interpolation.
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Other Interpolations due to ’NA’:
1991:Colorado, Kansas and North Dakota, 1989 and 1991: Idaho, Mis-

souri, Maine, Montana, New Hampshire, West Virginia and Vermont.
For Delaware the growth rate between 1993 and 1994 was applied to

get 1992 value.

• Canada:
Main Source: The document Cat No. 88F0006XIB01001” Estimates of

Canadian Research and Development Expenditures(GERD), Canada, 1989 to
2000, and by Province 1989 to 1998.” obtained from www.statcan.org.

Exchange rates:
http://www.oanda.com/convert/fxhistory

C.2 R&D Employment Data (1992-1996)

• Europe:
Main Source for Data on R&D1992-1996: Eurostat Regio Database
(http://europa.eu.int/comm/eurostat)
Missing values were treated in the same way as done for R&D Spending:

Austria: linear interpolation for 1992, imputed for 1994-95.
Belgium: linear interpolation for 1992-93 country total, imputed 1992-

93 regional values.
Denmark: linear interpolation for 1994.
Germany: linear interpolation for 1992, imputed regional values for

1992-94.
Greece: linear interpolation for 1992, imputed values for 1994-95.
Italy: Imputed values for 1992-93.
Portugal: Linear interpolations for 1993-94.
Sweden: Linear interpolations for 1992-94.
U.K.: Imputed regional values for 1992, used 92-93 growth rates to

impute 1994-95 values.
Switzerland: used regional GDP shares to impute regional values 1992-

95 where total R&D Employment had been obtained from the Swiss Statistical
Office.

• U.S.A.:
The data on employment by state have been obtained using the share of

Scientists and Engineers by state in total employment from the Census 1991,
and applying them to the total employment in 1992-1996.

• Canada:
Values for provinces in 1992-94 were interpolated using the share of each

province in 1995 multiplied by the total employment in R&D for that year.
Value for 1995 was obtained from www.statcan.org.
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C.3 GDP Data (1992-1996)

• Europe:

Main Source: Eurostat Regio CD 1999.
(The data for London is missing for 90-92)
Norway: Statistics Norway at
http://www.ssb.no/english/subjects/09/01/nos c614 en/
Switzerland: file Swiss cantonal income 90 99 from Swiss Statistics- Swiss

Federal Statistical Office-
(http://www.statistik.admin.ch/eindex.htm)

• U.S.A.:

Bureau of Economic Analysis website, regional statistics section
http://www.bea.doc.gov/bea/regional/spi/

• Canada:

CANSIM database at www.statcan.org

• Exchange Rates:
http://www.oanda.com/convert/fxhistory

C.4 Population and Employment Data (1992-1996)

• Europe:

Main Source: Eurostat Region CD 1999. Demographic Statistics section.
(London is missing for all years)
Norway: Statistics Norway at
http://www.ssb.no/english/subjects/02/nos c607 en/tab/t-105.html
Switzerland: file Swiss cantonal income 90 99 from Swiss Statistics- Swiss

Federal Statistical Office-
(http://www.statistik.admin.ch/eindex.htm)

• U.S.A.:

Bureau of Economic Analysis website, regional statistics section
http://www.bea.doc.gov/bea/regional/spi/

• Canada:
CANSIM database at www.statcan.org
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