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1 Introduction

Craving vengeance is a powerful human motive: when some culprit harms
you or your loved ones, you may choose incur a substantial personal cost to
harm him in return. There can be major economic and social consequences,
positive and negative.

Economic theory has not yet fully come to grips with such motives. In
this paper we propose a general approach to modelling other-regarding prefer-
ences that we call emotional state dependent utility components (ESDUCs),
and use it to investigate vengeance.

A taste for vengeance, the desire to ”get even,” is so much a part of daily
life (and the evening news) that it is easy to miss the evolutionary puzzle.
We shall argue that indulging your taste for vengeance in general reduces
your material payoff or fitness. Absent countervailing forces, the meek (less
vengeful people) should have inherited the earth long ago, because they had
higher fitness. Why then does vengeance persist?

The other title word of our paper is equilibrium. We also propose an
apparently new equilibrium concept, evolutionary perfect Bayes equilibrium
(EPBE), that seems germane in a wide variety of applications. It defines
long run equilibrium (generalizing the equal profit condition of competitive
markets) for games of incomplete information with possible entry, exit and/or
switching among multiple player types. In this paper we use EPBE to show
how vengeance can persist despite its apparent fitness handicap.

Vengeance is closely tied to several vexing issues, methodological and
substantive. To clear the underbrush, we begin with preliminary discus-
sions on the nature of social dilemmas, the meaning of positive and negative
reciprocity, evidence on why both are important to economists, and various
modelling approaches employed so far. Section 3 presents the basic social
dilemma as a simple extensive form game, and shows how vengeful prefer-
ences can dramatically improve equilibrium efficiency. It also spotlights the
evolutionary problem when an individual’s vengefulness cannot be perfectly
known in advance and when behavioral errors are possible. Section 4 derives
three families of perfect Bayes equilibria (PBE), two pooling equilibria and
one separating equilibrium. The PBE are short-run in that the nature and
proportions of different types are fixed. Section 5 examines the long-run in
which the nature and proportions of types can evolve. We define EPBE and
derive a unique EPBE that supports social gains as well as a trivial, inef-
ficient EPBE. Following a concluding discussion, Appendix A collects the
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mathematical details.

2 Preliminaries

An action has has a social dimension when it affects non-actors as well as
the actor. Figure 1 lays out the possibilities in terms of the net material
benefit (x > 0) or cost (x < 0) to the actor, denoted ”Self,” and the net
material benefit (y > 0) or cost (y < 0) to counterparties, denoted ”Other”.
Economists think most often about the mutual gains quadrant I, where ac-
tions simultaneously benefit Self and Other. Such symbiotic actions increase
social efficiency.

Quadrant IV is the well-studied opportunistic region, where Self benefits
at Other’s expense; the biological terms are parasitism and predation. The
flip side is the altruism quadrant II, where Self bears a personal cost in order
to benefit Other. Quadrant III is especially interesting to us. Carlo Cipolla
(1976) refers to actions producing such outcomes as stupidity, but we shall
interpret them as vengeance.

Social dilemmas arise from the fact that evolution directly supports be-
havior that benefits Self, i.e., outcomes x > 0 in quadrants IV (or I) but not
x < 0 in II (or III), while in contrast, efficiency requires outcomes above the
diagonal [x + y = 0].1 Social creatures (such as humans) thrive on devices
that support outcomes in the half-quadrant II+ and discourage outcomes in
IV-. Such devices somehow internalize Other’s costs and benefits.

———–fig 1 about here———–

2.1 Efficiency-enhancing devices

Biologists emphasize the device of genetic relatedness. If Other is related to
Self to degree r > 0, then a positive fraction of Other’s payoffs are inter-
nalized via ”inclusive fitness” (William Hamilton, 1964) and evolution favors
outcomes above the line [x + ry = 0]. For example, the unusual genetics
of insect order hymenoptera produce r up to 3/4 between sisters, so it is
no surprise that most social insects (including ants and bees) belong to this
order and that the workers are sisters. For humans and most other species, r

1More precisely, Self’s iso-fitness curves are the vertical lines x = C while iso-efficiency
curves are diagonal lines x + y = C. The status quo point (0, 0) ensures that C ≥ 0 is
feasible.
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is only 1
2

for full siblings and for parent and child, is 1/8 for first cousins, and
goes to zero exponentially for more distant relations. On average r is rather
small in human interactions, as in the steep dashed line in Figure 1, since we
typically have only a few children but work and live in groups with dozens of
individuals. Clearly non-genetic devices are needed to support human social
behavior.

Economists emphasize devices based on repeated interaction, as in the
”folk theorem” (e.g., Drew Fudenberg and Eric Maskin, 1986). Suppose that
Other returns the benefit (”positive reciprocity”) with probability and delay
together summarized in discount factor δ ∈ [0, 1). Then that fraction of
other’s payoffs are internalized (Robert Trivers, 1971) and evolution favors
behavior producing outcomes above the line [x + δy = 0]. This device can
support a large portion of socially efficient behavior when δ is close to 1,
i.e., when interactions between two individuals are symmetric, predictable,
frequent and ongoing. But humans specialize in exploiting once-off opportu-
nities with a variety of different partners, and here δ is small, as in the same
steep dashed line. Other devices are needed to explain such behavior.

Here we will emphasize devices based on other-regarding preferences. For
example, suppose Self gets a utility increment of ry from his or her action,2

in addition to the material benefit x. Hence Self partially internalizes the
material externality, and undertakes behavior that is above the line [x +
ry = 0]. Friendly preferences, r ∈ [0, 1], thus can explain the same range
of behavior as genetic relatedness and repeated interaction. However, by
itself the friendly preference device is evolutionarily unstable: those with
lower positive r will tend to make more personally advantageous choices,
gain higher material payoff (or fitness), and displace the more friendly types.
Friendly preferences therefore require the support of other devices.

Vengeful preferences rescue friendly preferences. Self’s material incentive
to reduce r disappears when others base their values of r on Self’s previous
behavior and employ r < 0 if Self is insufficiently friendly. Such visits to
quadrant III will reduce the fitness of less friendly behavior and thus boost
friendly behavior. But visits to quadrant III are also costly to the avenger,
so less vengeful preferences seem fitter. What then supports vengeful prefer-
ences: who guards the guardians? This is the central question in the present
paper.

2Rilling et al (2002) present recent physiological evidence for such increments, based
on fMRI brain scans of subjects playing prisoner’s dilemma.
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2.2 Modelling other regarding preferences

Two main approaches can be distinguished in the recent literature. The dis-
tributional preferences approach is exemplified in the Ernst Fehr and Klaus
Schmidt (1999) inequality aversion model, the Gary Bolton and Axel Ock-
enfels (2000) mean preferring model, and the Gary Charness and Matthew
Rabin (2001) social maximin model. These models begin with a standard
selfish utility function and add additional terms capturing self’s response to
how own payoff compares to other’s payoffs. In Fehr-Schmidt, for example,
my utility decreases (increases) linearly in your payoff when your payoff is
above (below) my own.

The other main approach is to model reciprocal preferences directly.
Building on the John Geanakoplos, David Pearce and Ennio Stacchetti (1989)
model of psychological games, Rabin (1993) constructs a model of recipro-
cation for two player normal form games, extended by Martin Dufwenberg
and Georg Kirchsteiger (1998) and Armin Falk and Urs Fischbacher (1998)
to somewhat more general settings. The basic idea is that my preferences
regarding your payoff depends on my beliefs about your intentions, e.g., if I
believe you want to increase my payoff then I want to increase yours. Such
models are intractable except in the simplest settings. David Levine (1998)
improves tractability by replacing beliefs about others’ intentions by esti-
mates of others’ type.

We favor a further simplification. Model reciprocal preferences as state
dependent: my attitude towards your payoffs depends on my emotional state,
e.g., friendly or vengeful, and your behavior systematically alters my emo-
tional state. This emotional state dependent other-regarding utility com-
ponent (ESDUC) approach is consistent with the discussion in Joel Sobel
(2000) and is hinted at in some other papers including Charness and Ra-
bin. The approach is quite flexible and tractable, but in general requires
a psychological theory of how emotional states change (van Winden, 2001).
Fortunately a very simple rule will suffice for present purposes: you become
vengeful towards those who betray your trust, and otherwise have standard
selfish preferences.

Empirical evidence is now accumulating that compares the various ap-
proaches. James C. Cox and Daniel Friedman (2002), for example, review
about two dozen very recent papers. Some authors find evidence favoring
the distributional models, but most authors find evidence mainly favoring
state dependent or reciprocal models. Our own reading convinces us to focus
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on state dependent preferences, while noting that distributional preferences
may also play a role.

2.3 Indirect Evolution

Many economists concede that empirical evidence inconsistent with selfish
rationality is very strong, but nevertheless, on theretical grounds, resist mod-
els with other regarding preferences. The problem is that arbitrary behavior
can be rationalized by putting in arbitrary preferences for such behavior, but
such models have no predictive power.

The theoretical justification for selfish rationality is evolutionary, as ex-
emplified in Armin Alchian (1950), Milton Friedman (1953) and Gary Becker
(1962). We believe that our ESDUC model, or any other preference model,
requires the same justification. The model must account for the empiri-
cal data but also must pass the following theoretical test: people with the
hypothesized preferences receive at least as much material payoff (or evolu-
tionary fitness) as people with alternative preferences. Otherwise, the hy-
pothesized preferences would disappear over time, or never appear in the
first place.3

This test is sometimes referred to as indirect evolution (Werner Guth and
Menachem Yaari, 1992) because evolution operates on preference parameters
that determine behavior rather than operating directly on behavior. The idea
goes back at least to Gary Becker (1976) and Paul Rubin and Charles Paul
(1979), and can be seen a many recent papers such as Steffen Huck and Jorg
Oechssler (1999), Jeffrey Ely and Okan Yilankaya (2001), and Larry Samuel-
son and Jeroen Swinkels (2001). Most of these papers focus on positive
reciprocity rather than negative reciprocity, or vengeance.4

3Some behavioral economists disagree, and believe that it is sufficient to write a parsi-
monious model consistent with the data. Sendhil Mullainathan and Richard Thaler (2000),
for example, argue that evolutionary forces are not swift enough to wipe out irrational be-
havior in complex, rapidly changing economies. Our response is that theoretical discipline
is necessary, because many different parsimonious models can be developed to account
for any given set of data. Even though it is relatively slow, genetic evolution operating
in the social environments of our hominid ancestors surely helped shape our emotional
capacities. We would emphasize individual learning and cultural transmission as rapid
evolutionary forces that operate in modern economies.

4Huck and Oechssler is an exception. They study negative reciprocity in a small group
environment where a vengeful person can impair others’ fitness more than his own. The
model presented below considers only large groups where no single person can affect the
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Our task is to show that people whose utility functions contain a vengeful
component will achieve in social interactions at least as much material payoff
as other people whose utility functions contain only their own material payoff.
Equally important, and neglected in most of the indirect evolution work so
far, we want to show that a greater or lesser degree of vengefulness will not
lead to higher material payoffs.5

3 The Underlying Game

The first step in analyzing social preferences is to model explicitly the un-
derlying social dilemma. We use a simple extensive form version of the
prisoner’s dilemma, sometimes known as the Trust game (e.g., Guth and
Hartmut Kliemt, 1994), shown in Panel A of Figure 2. Player 1 (Self) can
opt out (N) and ensure zero payoffs to both players. Alternatively Self can
trust (T) player 2 (Other) to cooperate (C), giving both a unit payoff and
a social gain of 2. However, Other’s payoff is maximized by defecting (D),
increasing his payoff to 2 but reducing Self’s payoff to -1 and the social gain
to 1. (These payoffs are labelled O, C and D in Figure 1.) The basic game
has a unique Nash equilibrium found by backward induction: Self chooses N
because Other would choose D if given the opportunity, and social gains are
zero.

To this underlying game we add a punishment technology and a pun-
ishment motive as shown in Panel B. Self now has the last move and can
inflict harm (payoff loss) h on Other at personal cost ch. The marginal cost
parameter c captures the technological opportunities for punishing others.

———–fig 2 about here———–
Self’s punishment motive is given by state dependent preferences. If

Other chooses D then Self receives a utility bonus of v ln h (but no fitness
bonus) from Other’s harm h. In other states utility is equal to own pay-
off. The motivational parameter v is subject to evolutionary forces and is
intended to capture an individual’s temperament, e.g., his susceptibility to

average fitness.
5Thus we respond to the first challenge raised by Samuelson (2001) in his introduction

to a recent symposium on the evolution of preferences. The point is important here because
most previous models of negative reciprocity are susceptible to unravelling: slightly lesser
degrees of vengefulness have higher fitness. Our PBE and EPBE models also respond to
Samuelson’s other challenge, to consider issues of preference observability.

6



Figure 2: Fitness Payoffs  
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anger. See Robert Frank (1988) for an extended discussion of such traits.
The functional forms for punishment technology and motivation are conve-
nient (we will see shortly that v parameterizes the incurred cost) but are not
necessary for the main results. The results require only that the chosen harm
and incurred cost are increasing in v and have adequate range.

Using the notation ID to indicate the event ”Other chooses D,” we write
Self’s utility function as U = x + vID ln h, that is, own material payoff x
plus the relevant ESDUC. When facing a ”culprit” (ID =1), Self chooses the
reduction h in Other’s payoff so as to maximize U = −1 − ch + v ln h. The
unique solution of the first order condition is h∗ = v/c and the incurred cost
is indeed ch∗ = v. For the moment assume that Other correctly anticipates
this choice. Then we obtain the reduced game in Panel C. For selfish pref-
erences (v = 0) it coincides with the original version in Panel A with unique
Nash equilibrium (N, D) yielding the inefficient outcome (0, 0). For v > c,
however, the transformed game has a unique Nash equilibrium (T, C) yield-
ing the efficient outcome (1, 1). The threat of vengeance rationalizes Other’s
cooperation and Self’s trust.

3.1 Can vengeful preferences evolve?

Vengeance thus may have a pro-social role, but is it viable? Existing lit-
erature on preference evolution suggests an equivocal answer: Yes if Self’s
vengefulness is observable by Others, but No if it is not. To answer the
question properly (Samuelson, 2001), we must consider intermediate cases,
which we refer to as observational noise. To begin, assume Other perceives
Self’s vengeance level as u = v + y when the true vengeance level is v. The
observational error y has scale (e.g., standard deviation) σ ≥ 0. We will
see (perhaps surprisingly) that moderate positive σ can help stabilize a high
level of vengeance.

Behavioral noise is also crucial for the viability of vengeance. Self may
intend to choose N but may twist an ankle and find himself depending on
Other’s cooperative behavior, and Other may intend to choose C but over-
sleeps or gets tied up in traffic. Such considerations can be summarized in a
behavioral noise amplitude or ’tremble rate’ e ≥ 0. Larger values of e would
seem to raise Self’s cost of vengefulness and reduce fitness.

A preliminary viability analysis proceeds as follows. Fix the noise levels
e ≥ 0 and σ ≥ 0 as well as the marginal punishment cost c, and assume that
for a given distribution of v within the population, the choices of Self and
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Other adjust rapidly towards (short run) Nash equilibrium. The task is to
compute Self’s expected fitness or material payoff W (v; σ, e) for each value
of v at the relevant short run equilibrium.

First consider the case σ = e = 0, where v is perfectly observed and
behavior is noiseless. Recall that in this case the short run equilibrium (N,
D) with payoff W = 0 prevails for v < c, and (T, C) with W = 1 prevails for
v > c. Thus W (v; 0, 0) is the unit step function at v = c.

With behavioral but no observational noise, e > 0 = σ, more vengeful
types incur a greater cost when punishment is called for. Figure 3 shows
that now Self’s fitness function slopes downward at approximate rate −e,
the punishment probability. Finally, with observational noise also present,
σ > 0, the sharp step at v = c is smeared out. The underlying calculations
are collected in the Appendix.

———–fig 3 about here———–

4 Perfect Bayesian Equilibrium

Figure 3 shows two local fitness maxima for Self, one at v = 0 and the other
at v = vH > c,when σ and e are both small and positive. The function
W defines a fitness landscape in which evolution pushes the evolving trait v
uphill (Sewall Wright, 1949; Ilan Eshel, 1983; Stuart Kauffman, 1993) along
the fitness gradient. The figure therefore suggests that we will end up with
some fraction x of the Self population with vengeance near vH and the rest,
(1 − x), with vengeance near v = 0. The fractions represent the arbitrary
portions of the population initially above and below the fitness minimum
(near c− σ).

But do we have an equilibrium? Figure 3 assumes that Other always
attends to his perception of Self’s vengeance. However, if the error amplitude
σ is sufficiently large relative to the fraction (1 − x) of non-vengeful types,
then Other might be better off ignoring the perception and always playing
C. (See Donald Wittman, 1989, for an analogous situation in arms control.)
Likewise, if vengeful types are sufficiently rare, Other might be better off
playing D regardless of his perception. These possibilities are formalized
below as pooling equilibria.

To investigate, we write out the game of incomplete information. In doing
so, we replace the error amplitude σ with a probability a that there is an
observational error. This latter formulation is more suitable for the case
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Figure 3: Self’s Fitness, W, as a Function of Vengefulness v 
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where v takes on just two values, and we shall use it in the remainder of the
paper.

———–fig 4 about here———–
Figure 4 shows the game tree when there is observational noise. Nature

chooses Self’s true preference parameter as v = 0 with probability 1− x, or
as v = vH > c with probability x. Nature also independently chooses Other’s
perception as correct (s = 0 for v = 0 and s = 1 for v = 1) with probability
1− a, or incorrect with probability a = Pr[s = 0|v = vH ] = Pr[s = 1|v = 0].
Self knows own preference but not the realized perception, and Other knows
the perception but not the true preference.

Self’s strategy (given her realized preference parameter v) is just the
mixture probability for choosing T; the unconstrained stategy set is [0, 1]
but with behavioral noise e ∈ [0, 1/2), Self’s strategy set is [e, 1− e]. Other’s
strategy is a pair of mixture probabilities for choosing C after observing
respectively s = 0 and s = 1. The behavioral noise constrained strategy set
is [e, 1−e]× [e, 1−e]. The payoffs are as in the reduced Trust game of Figure
2C.

The relevant equilibrium concept is perfect Bayesian equilibrium, PBE
(see e.g., Fudenberg and Tirole, 1991, chapter 8), suitably rephrased to deal
with large populations and explicit behavioral trembles. PBE requires all
players to optimize given beliefs, and requires that beliefs are Bayesian pos-
terior probabilities obtained from observed actions and signals and from prior
information on the type proportions.

We seek a separating PBE in which the vH type of Self tries to Trust (i.e.,
plays T with maximal probability 1 − e) and the v = 0 type tries to play
N (i.e., plays T with minimal probability e), while all Others try to play C
(and do so with probability 1 − e) when the perception is s = 1 and try to
play D when the perception is s = 0. Table 1 writes out the resulting fitness
outcomes and probabilities.

The key conditions for the separating PBE arise from Other’s decision
problem after a noisy perception. Other compares the expectation of the D
payoff 2− v/c to the C payoff 1. This comparison immediately leads to the
rule: try to choose D if E(v|s = 0) ≤ c and C if E(v|s = 1) ≥ c. An s = 0
perception will arise in the separating PBE from a vH type only if she plays
T and Other has an erroneous perception, which happens with probability
x(1 − e)a. The same perception will arise from from a v = 0 type only
if she erroneously plays T and is correctly perceived, which happens with
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probability (1 − x)e(1 − a). It is straightforward to show (see Appendix)
that the critical posterior expectation E(v|s = 0) = c corresponds to prior
probability (or population fraction) xs = 1/(1 + ( a

1−a
)(1−e

e
)(vH−c

c
)). Hence a

necessary condition is x ≤ xs. Using the log odds function L(y) = ln(1−y
y

),

the condition can be written L(x) ≥ L(xs) = −L(a) + L(e) + L(c/vH).

———–table 1 about here———–
Similar reasoning regarding the s = 1 perception gives a lower bound

on x (or an upper bound on L(x).) Slightly simpler reasoning gives bounds
for the pooling equilibria in which Other disregards the signal. The general
result for separating and pooling PBE is as follows.

Proposition 1. Given perceptions with error rate a and choices with
tremble rate e, and given types v = 0 and v = vH > c constituting Self
population fractions (1 − x) and x ∈ (0, 1), assume that 0 < a, e < 1/2 and
α = a + e− 2ae ≤ 1/(2 + vH). Then

• the separating PBE given in Table 1 exists iff L(c/vH)+L(e)−L(a) ≤
L(x) ≤ L(c/vH) + L(e) + L(a);

• the Good Pooling equilibrium exists iff L(x) ≤ L(c/vH)− L(a), and

• the Bad Pooling equilibrium exists iff L(x) ≥ L(c/vH) + L(a).

There is no PBE if L(c/vH)− L(a) < L(x) < L(c/vH) + L(e)− L(a).
A proof appears in the Appendix.
The Proposition extends to the limiting cases of vanishing errors. With no

observational error, a = 0, the separating PBE (as in the earlier discussion
of Figure 4) exists for all x ∈ (0, 1). The inequalities in the Proposition
show that both pooling equilibria disappear as a → 0 or L(a) → ∞. With
no behavioral error, e = 0, the separating equilibrium disappears because
L(c/vH) + L(e) − L(a) ≤ L(x) fails as L(e) → ∞. The intuition is that
Others will ignore their perceptions when (consistent with separating PBE)
unvengeful Selfs never play T; but then unvengeful Selfs’ best response is to
play T (contrary to separating PBE). The pooling equilibria both exist over
ranges that are independent of e.

————–fig 5 and table 2 about here——
A numerical example may help fix ideas. Figure 5 (and Table 2) takes

the marginal punishment cost to be c = 0.5 and the vengeful type to have
preferred punishment expenditure vH = 2.0. It assumes behavioral noise rate
e = 0.05 and observational noise rate a = 0.10. Then for sufficiently small
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Table 1: PBE Probabilities 

 Fitness Payoff Probability 

 Choice   Self, Other Separating  Good Pooling  Bad Pooling 
 

v = vH 
(N,  .)    
(T, C)    
(T, D)    

       0,     0 
       1,     1  
 -(1+v), 2-v/c 

e 
(1 – e)(1 – α) 

(1 – e)α 

e 
(1 – e)2 
(1 – e)e 

1 - e 
e2 

e(1 – e) 

 
v = 0 

(N,  .)   
(T, C)    
(T, D)    

       0,     0 
       1,     1 
      -1,     2 

1 - e 
eα 

e(1 – α) 

e 
(1 – e)2 
(1 – e)e 

1 - e 
e2 

e(1 – e) 

Notes:  
In separating equilibrium, Other tries to play C if s = 1 and D if s = 0.  
Other always tries to play C in Good Pooling, and always tries to play D in Bad Pooling.  
The signal s = 1 with probability a ε (0, ½) when v = 0, and is s = 0 with probability a when v = vH.  
The expression α = a(1 – e) + e(1 – a) = e + a – 2ae represents the probability that Other chooses his less 
preferred action. 
 

 
Figure 5: PBE Illustration 
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Table 2: PBE Calculations 

 Separating Equilibrium Good Pooling Equilibrium 
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proportions of the vengeful type (L(x) ≥ 3.30 or x ≤ 0.036) we have a
Bad Pooling equilibrium: both types of Self try to opt out and Other tries
to defect regardless of signal. For an overlapping range of vengeful type
proportions (L(x) ∈ [1.85, 6.24] or x ∈ [0.002, 0.136]) we have the separating
equilibrium. No separating or pooling PBE exists for higher values of x until
we reach x = 0.75 after which point we have the Good Pooling equilibrium.

5 Evolutionary Perfect Bayesian Equilibrium

The numerical example spotlights an evolutionary problem. In the separating
PBE, the vengeful type has higher fitness (0.418) than the unvengeful type
(-0.036). Therefore, by the basic principle of evolution, the fraction x of
vengeful types should increase. But the separating PBE disappears when
x gets above 13.6%. On the other hand, when x is large enough, we have
a different equilibrium, the good pooling one. Here the unvengeful type is
fitter (0.855) than the vengeful type (0.760), so x should decrease until it falls
below 75% and the good pooling equilibrium disappears. Neither equilibrium
seems stable.

The evolutionary problem is not due to an unfortunate parameter choice
in the numerical example. In the separating PBE, the vengeful type al-
ways achieves positive fitness; otherwise she would not try to play T. The
unvengeful type achieves negative fitness in this equilibrium because, with
observational error rate a < 1/2, the payoff -1 is more frequent than +1.
(See Table 2 for the general fitness expressions.) Hence evolutionary forces
will increase x in the separating PBE. In the good pooling PBE, the vengeful
type always has lower fitness because of the extra cost (1− e)vHe of reacting
to Other’s trembles, so evolutionary forces will decrease x. But no PBE ex-
ists in the intermediate region, so it seems that evolution undermines perfect
Bayesian equilibrium.

5.1 Equal Fitness Principle

The problem is not due just to the peculiarities of our noisy trust game.
Games of incomplete information generally have multiple types, and numer-
ous mechanisms tend to increase the prevalence of high payoff types relative
to low payoff types. For example, in an industry where firms with high qual-
ity products compete with those with low quality, one expects the market
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share of the less profitable type of firms to decrease over time because they
expand less rapidly or exit, or switch types. As another example, a type
of worker with lower full compensation (earnings, benefits and perks net of
effort cost and opportunity cost) should become less prevalent due to earlier
retirements, lower accession rates, etc.

The point is that payoffs should be equalized across surviving types in
long run equilibrium. We have no quarrel with PBE (or refinements such as
sequential equilibrium) as a short run equilibrium concept, but in the long
run the types and their relative prevalence should adjust so that only those
types with highest payoff remain. This is precisely the ”survival of the fittest”
principle of evolutionary theory. It is also precisely the textbook distinction
between short run and long run competitive equilibrium. To formalize it (in
English for the time being, to avoid heavy notation not needed later), we
propose the following general definition for games of incomplete information.

Definition. An evolutionary perfect Bayesian equilibrium (EPBE) is a
PBE distribution over extensive form game strategy profiles such that in each
population the strategies in the support of the distribution achieve equal and
maximal expected fitness.

Several remarks are in order before applying the definition to the noisy
reduced trust game.

• The original evolutionary equilibrium concept (Maynard Smith and
Price, 1973) is evolutionary stable strategies (ESS); it applies to sym-
metric bimatrix games. EBPE is a generalization to games of incom-
plete information. EPBE, like ESS, is a static equilibrium concept that
leaves implicit the evolutionary dynamics.

• EPBE appears to be new. There is already a literature on evolution in
games of incomplete information, but it allows an arbitrary distribution
of types that generally have different fitnesses. For example, N

..
oldeke

and Samuelson (1997) and Jacobsen et al (2001) fix the proportions
of two seller types (high quality and low quality) and model the evo-
lution of buyer beliefs regarding costly signals sent by the sellers. It
seems to us that such analysis applies to short or perhaps medium run
equilibrium before the more profitable types can increase their market
share.

• We regard EPBE as an appropriate concept for long run equilibrium
whenever (a) material payoffs such as income or evolutionary fitness can
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be compared across types, and (b) adjustment mechanisms can affect
existing types and their prevalence. Earlier definitions of evolutionary
equilibrium might be interpreted as long run equilibria when the types
are determined by last minute circumstance, and evolutionary selection
applies to complete type-contingent strategies rather than to the types
themselves. For example, an animal might find itself at different points
of its life to be the large or small type, or the owner or intruder type.
However, the contingent type interpretation is hard to justify in most
applications we have seen, including the seller signaling game and our
reduced trust game.

• Appealing features of EPBE are that it endogenizes crucial variables
and selects among multiple equilibria. One often has a multiplicity of
PBE that depend rather sensitively on arbitrary exogenous specifica-
tions of the types and their distribution. As we will illustrate shortly,
EPBE can greatly reduce the equilibrium set while endogenizing the
distribution over types.

5.2 New Ingredients for the Model

Returning to the reduced trust game, one soon notices that the Bad Pooling
PBE evolves to the x = 0 extreme, which is a trivial EPBE. That is, when
vengeful types are so rare that Other always tries to play D, then all types of
Self try to play N. Now the less vengeful types are more fit, and the vengeful
types become extinct, i.e., x → 0. In equilibrium, the Self population consists
entirely of v = 0 type Selfs who all try to play N, and the Other population
always tries to play D regardless of signal. This is still a Bad Pooling PBE,
and from Table 1 the payoffs are −e(1 − 2e) < 0 for Self and e(2 − e) > 0
for Other. The strategy profile distributions in both the Self population and
the Other population have support on a single point, so it is easy to check
the equal and maximal expected fitness property that ensures EPBE.

Can there be another EPBE that supports mutual gains? We have seen
that the separating and good pooling PBE are evolutionarily unstable, but
thinking about their long run fate suggests a promising hybrid. Suppose that
a fraction q of the Other population tries to play DC (i.e., D if s = 0 and C
if s = 1) while the other (1− q) of them tries to play CC (i.e., C regardless
of perception). The fraction q must be such that unvengeful and vengeful
Selfs achieve equal payoff, and the fraction x of vengeful Selfs must be such
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Figure 6: Fitness W as a Function of Vengefulness v 
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that Others achieve the same fitness with DC as with CC. The intuition can
be seen in Figure 6: by mixing the fitness landscape in panel A with that
in panel B, we might hope to get the landscape in panel C with equal local
(and global) maxima at v = 0 and vH .

———–fig 6 about here———–
What strategy profiles should we look for? As before, Other’s strategy

set is {Pr[C|s = 0] ∈ [e, 1− e]} × {Pr[C|s = 1] ∈ [e, 1− e]}, and now we are
hypothesizing a distribution with support in this set consisting of the two
points (1− e, 1− e) (corresponding to CC) and (e, 1− e) (corresponding to
DC) of respective mass (1− q) and q.

The matter is more complicated for Self. In the simple mix of equilibria
in Figure 6, some unvengeful Selfs try to play T expecting C and a positive
payoff, while the rest try to play N expecting D and a negative payoff. This
is incoherent because the unvengeful Selfs who expect C are no more likely
than those who expect D to match up with the Others who play CC. In
equilibrium, unvengeful Selfs must either all try to play T, or all try to play
N, or all must be indifferent. It can be shown that indifference is possible
only if Self’s fitness is 0, and in evolutionary equilibrium the vengeful type
would also have fitness zero. Likewise, all unvengeful Selfs try to play N only
when their fitness is negative. Since we are interested in mutual gains, we
seek an evolutionary equilibrium with positive fitness and therefore where all
unvengeful as well as vengeful Selfs try to play T. That is, the equilibrium
strategy we seek involves Pr[T ] = 1− e for both types of Self.

Now we face a more fundamental complication: the value of vH is no
longer exogenous. The idea is that social and perhaps genetic forces shape
Self’s emotional response to violation of trust. In EPBE vH maximizes fitness
in an appropriate space of types, which we shall take to be [0, vmax]. Here vmax

is finite but large enough not to be a binding constraint in our analysis; see
Friedman and Singh (1999) for a discussion that supports this assumption.
In general one considers a distribution or measure over the space of types,
but the EPBE distribution that we seek consists of an atom of mass x at
some vH ∈ (0, vmax) with the remaining mass (1− x) at v = 0.

Finally, it no longer makes sense to regard the observational error ampli-
tude a as constant. Extremely vengeful types should be easier than slightly
vengeful types to distinguish from v = 0 types. Accordingly, we assume a per-
ception technology a = A(v) for the symmetric6 probability of misperceiving

6Error symmetry is assumed for simplicity throughout the paper. Separate functions
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Self’s true type. We assume that A(v) is a smooth, positive and decreasing
function, with A(v) → 0 as v → ∞ and A(0) = 1/2. Thus the types cannot
be distinguished in the limit as the vengeful type becomes completely un-
vengeful, and can be distinguished perfectly in the limit as the vengefulness
becomes extreme.

Concrete results require a parametric form for the perception technology
A. Our choice is a simple Gaussian function with precision parameter k > 0,

A(v) = 0.5 exp(−kv2), A′ = −2kva. (1)

5.3 Results

We seek a hybrid EPBE that supports mutual gains in the noisy reduced
trust game. It will be characterized by values (vH , a, q, x) with the following
properties. First, a = A(vH) is the endogenous observational error rate
between 0 and 1/2. Second, the preference parameter vH > c maximizes
Self’s expected fitness given the exogenous tremble rate e, the endogenous
signal error amplitude a, and Other’s equilibrium attention probability q,
i.e.,

vH = arg max
v∈[c,vmax]

{EqW
S(v|A(v), e)}. (2)

W S is the maximal fitness Self can attain in the behavioral noise constrained
strategy set [e, 1 − e], and we seek an equilibrium where it is attained at
(1 − e), i.e., Self tries to play T. The restriction v ∈ [c, vmax] reflects the
inefficacy of positive v less than c.

Third, applying the equal fitness principle to Self, the value of q must
allow the unvengeful type to achieve the same (maximal) expected fitness as
the vengeful type,

EqW
S(0|A(0), e) = EqW

S(vH |A(vH), e). (3)

Finally, applying the equal fitness principle to Other, the fraction x of venge-
ful Selfs must allow Others who attend the signal to receive the same expected
fitness as those who do not,

ExW
O((1− e, 1− e)|a, e) = ExW

O((e, 1− e)|a, e). (4)

for type I and type II error rates would complicate the analysis but as far as we can see
would not change our main conclusions. Equal behavioral error rates for Self and Other
are assumed for the same reason.
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Figure 7: Feasible Region of e and k 
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Here WO denotes Other’s fitness for the given strategy, usually abbreviated
CC or DC. The principle also implies that WO will be no higher for the
unused strategies DD and CD.

The main result is that such efficient equilibria do exist and are unique
over a wide range of the exogenous parameters. For example, the equilibrium
exists for any choice of the precision parameter k ∈ (0.1, 0.6), the tremble
rate e ∈ (0, .1) and the marginal punishment cost c ∈ (0, 1).

———–Figure 7 about here———–

Proposition 2 establishes a larger feasible domain, shown in Figure 7. It is
based on the following considerations. The parameter k is bounded above by
the point k̄ ≈ 0.612 where the second order condition for Self’s fitness holds
with equality. (By comparison, in the unit Normal distribution k = 0.5.) A
finite value of vmax defines a lower bound; for example v < vmax = 10 implies
k > 0.028. Figure 7 shows that the upper bound ê(k) for the tremble rate
increases from about 10% to about 20% as k goes from about 0.1 to 0.6.
The equilibrium exists over the entire natural range (0,1) of the marginal
punishment cost parameter c. Higher values of c (for which Self’s fitness
reduction is larger than Other’s) can tighten the upper bound on k due to
the constraint vH > c. For example, when c = 2.0 the upper bound is near
k = 0.3.

Proposition 2. Given marginal punishment cost c ∈ (0, 1), behavioral
error rate e ∈ (0, ê(k)), and signal technology (1) with precision parameter
k ∈ (0, 0.6), there is a unique hybrid EPBE whose characteristics (vH , a, q, x)
depend smoothly on the exogenous parameters. There is also the trivial (Bad
Pooling) EPBE with proportion x = 0 of vengeful types.

The proof again appears in the Appendix. It is constructive, and pro-
ceeds by writing explicitly three equations corresponding to the three EPBE
necessary conditions listed above, solving them in terms of the exogenous
parameters, and checking that no side conditions are violated for the given
ranges of exogenous parameters. It turns out that the equilibrium values vH

and a depend on k but are independent of e and c, while q is independent of
c, and x is independent of e.

———–Figure 8 about here———–
The comparative statics are given by the four functions vH = v∗(k),

a = a∗(k), q = q∗(e, k) and x = x∗(c, k), graphed in Figure 8. While proving
Proposition 2, the Appendix also shows that v∗(k) decreases in k, that is,
the equilibrium level of vengeance always goes down as the precision of the
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Figure 8: Comparative Statics Graphs 
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Graph of a(k) 
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Graph of q*(0.05, k) 
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Graph of x*(0.5, k) 
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Graph of q*(e, 0.2) 
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Graph of x*(c, 0.2) 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.2 0.4 0.6 0.8 1.0 1.2

 
 

 



observation goes up. Perhaps surprisingly, a∗ is increasing in k, that is, the
equilibrium observational error rate goes up as the precision increases. It
turns out that the indirect effect via v∗(k) dominates the direct effect of k.

How about the equilibrium rate at which Other attends to perceptions,
q∗? It increases in the tremble rate e as a consequence of the Self’s indifference
condition (3), and it turns out to decrease in the precision of perceptions,
k. Finally, the equilibrium fraction x∗ of vengeful Selfs increases in the cost
of punishment c as a consequence of the Other’s indifference condition (4).
However, the precision parameter k can have either a positive or negative
effect on x∗ depending on the level of c.

6 Discussion

We may summarize our work as follows. Economists need to come to grips
with human motives such as vengeance. Since vengeance generally reduces
own material payoff or fitness, the persistence of such motives is an evolution-
ary puzzle. We therefore construct a model in which a taste for vengeance
survives in a long run evolutionary equilibrium.

Our model incorporates such tastes as what we call ESDUCs, or emotional
state dependent utility components. The existence of ESDUCs is the proxi-
mate answer to the question of why individuals may want to harm (or help)
others. However, the deeper questions of why certain ESDUCs exist and how
they survive requires an analysis of their indirect fitness consequences. As
noted in the introduction, this is called the indirect evolutionary approach.
Studying vengeance is just one (interesting and complicated) application of
the indirect evolutionary approach.

Our answer to the evolutionary puzzle proceeds in three stages. First,
we construct a simple but representative situation in which ESDUCs mat-
ter, viz., an extended version of the Trust game. Second, we derive a per-
fect Bayesian Equilibrium, and characterize conditions under which pooling
and/or separating equilibria exist. We note that fitnesses of different types
of individuals (venegeful or not) are not equalized in the PBE, leaving room
for evolutionary pressures to operate. The third stage, therefore, is to in-
troduce a new long run equilibrium concept called evolutionary PBE, which
allows adjustment in the proportion of vengeful types, as well as the intensity
of their vengefulness. We characterize the EPBE for a nontrivial range of
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parameter values.
At least three important issues remain. First, is the interesting EPBE

dynamically stable? The answer may depend the specific form of adjustment
dynamics. We have in mind gradient dynamics for continuous variables (like
vengeance parameter v) and monotone dynamics for discrete variables (like
the strategies C and D, or N and T) because these are standard in the bi-
ological literature (Eshel, 1983) and evolutionary games literature (Weibull,
1995). Our current conjecture is that, for a wide range of the basic param-
eters k (the signal precision parameter), e (the tremble or behavioral noise
amplitude) and c (the marginal punishment cost),

• the trivial (and inefficient) EPBE will have an open basin of attraction
and so will be the long-run fate of situations where most Selfs initially
are not very vengeful and most Others try to play D, at least when
they perceive s = 0.

• The hybrid EPBE (which reaps a major portion of the potential mutual
gains) will have a one dimensional stable manifold and a two dimen-
sional center manifold with a large basin of attraction.

A second issue springs from the trivial EPBE: how can one get a critical
mass to escape from the trivial EPBE? Or more simply, in the context of
the simple game in Figure 2, how can one get v > c starting from v =
0? Friedman and Singh (2001) suggests a possible answer to this threshold
problem. Subthreshold v < c is not adaptive in a large population, but in
small groups one can show that it works together with the discount factor
δ to increase fitness. Thus positive values of v could get started in smaller
groups and eventually become advantageous in larger groups.

Third, one should consider endogenizing the other parameters. Keeping
punishment technology c constant (or doing comparative exercises) seems to
make sense. The tremble rate parameter e trades off trivially against the
endogenous probability q that Other attends to the signal, as can be seen
from equations (8) and (5). However, there is every reason to take seriously
the evolution of perception technology. A mutant Self with true vengeance
parameter v = 0 who could somehow mimic the vengeful type would receive
a major fitness boost. Friedman and Singh (2001) refers to this possibility
as the Viceroy problem, a reference to Monarch butterflies that correspond
to vengeful types and their mimics known as Viceroys. That paper sketches
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an elaborate solution to the problem that involves interactions within and
across small groups.

Eventually the theoretical work presented here should be applied to sub-
stantive problems in social science, and then must grapple with several addi-
tional issues. For example, we did not distinguish between genetic evolution
and social evolution; their time scales and transmission mechanisms generally
are quite distinct. We also considered only a single form of social interaction,
the trust game, while in reality people play many different social games. Of
course, our methods apply directly to any stable mix of games, and compar-
ative statics apply to one-time shifts in the mix.7 Continuing shifts in the
mix of games played evidently require a truly dynamic analysis.

The present paper focused on two ideas, each of which we believe has
widespread applicability independent of the other. Emotional state depen-
dent utility components (ESDUCs) offer a tractable and flexible modelling
approach to other-regarding preferences that is capable of dealing with many
of the leading issues in behavioral economics. In particular, the vengeful com-
ponents emphasized in the present paper may be the key ingredient in models
giving new insights into ”irrational” conflicts ranging from employment re-
lations to international struggles. Friendly components may enter models
providing insight into behavior within the family, teams, charitable giving,
etc.

Our emphasis has been a discipline on such other regarding components:
they must directly or indirectly bring evolutionary fitness. This theoretical
discipline, together with the empirical discipline already favored by behav-
ioral economists, should help to sharpen behavioral models.

The second idea is evolutionary perfect Bayesian equilibrium (EPBE). We
wrote a general verbal definition and worked it out explicitly for a particular
(and not especially simple) game of incomplete information. We believe that
EPBE is an appropriate characterization of long run behavior when there
are multiple ”types” and some opportunity for entry, exit and/or switching
among types. Many games of incomplete information could be reconsidered
in this light.

7A caveat. A point equilibrium in the original mix defines the initial state following a
shift (due perhaps to a regime change). If this initial state lies in the basin of attraction
for the corresponding equilibrium for the new mix, then the overall change is described by
comparative statics parallel to those accompanying Proposition 2. However, the compara-
tive statics are misleading if the shift is large enough to put the initial state in a different
basin of attraction.
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7 Appendix A. Mathematical Details.

7.1 Preliminary computation of Self’s fitness.

Figure 3 indicates that Self’s fitness has a local maximum at v = 0, a global
minimum near c−σ and a global maximum near c−σ. An argument support-
ing this conclusion is as follows. Let e ≥ 0 be the behavioral noise amplitude
as in the text. Assume that it is small, in particular that e < 1/(2 + vmax),
where vmax is a finite upper bound on the vengeance parameter. To define the
observational noise amplitude σ ≥ 0, begin with a continuous random vari-
able z located at zero (i.e., mean=mode=median=0) and otherwise arbitrary
density function h(z) and cdf H(z). For example, z could have a uniform
or a Normal distribution. Other perceives not Self’s true vengefulness v but
rather a noisy version u = v + σz.

Key to the analysis is the probability P (v) that Other will try to play D
against Self with true parameter v, or equivalently, that c will exceed Other’s
posterior expectation of v. Computation is straightforward when Other has
a uniform prior distribution for v. In this case, Other’s posterior expectation
of v is simply u and so P (v) = Pr[u < c|v] ≡ Pr[σz < c − v] = H( c−v

σ
).

Then P ′(v) = −σ−1h( c−v
σ

) < 0; its minimum is attained at −σ−1h(0) when
v = c. Hence the inverse Mills ratio P (v)/|P ′(v)| attains a positive minimum
of approximately σ/(2h(0)) near v = c. When Other has prior on v with
positive density in the relevant neighborhood but otherwise arbitrary, the
computation is much messier. It still can be shown that P (v)/|P ′(v)| attains
a positive minimum of approximately κσ near v = c. (Now κ depends on the
prior density as well as on h.) The approximations hold exactly in the limit
as σ → 0.

The preceding computation helps characterize the fitness function W S(v|σ, e).
The probability that Other will actually play D (not just try) is α(v) =
e + (1 − 2e)P (v), and so Self will achieve fitness β(v) = 1 − (2 + v)α(v) if
she actually plays T and fitness 0 otherwise. Self will try to play N when
β(v) < 0 and will try to play T when β(v) ≥ 0. Thus

W S(v|σ, e) = eβ(v) if β(v) < 0,

= (1− e)β(v) otherwise.

When σ is small, P (0) ≈ 1 and β(0) ≈ −(1 − 2e) < 0, while for
v moderately above c, P (v) ≈ 0 and β(v) ≈ 1 − (2 + v)e > 0. Suppose
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that β has two regular critical points, one near c − σ and the other near
c + σ. Since β′(0) = −(1 − e) < 0 we see that β and W S slope downward
from 0 to the first critical point, upward between the critical points, and
downward beyond the second critical point. It follows that β is zero only
at one point between the two critical points, and hence W S indeed has the
shape indicated in Figure 3.

Thus it remains only to verify the critical points. They are given by the
first order condition (FOC) 0 = β′ = 2α + (2 + v)α′. After straightforward
algebraic manipulation the FOC can be rewritten as P (v)/|P ′(v)| = v/2 +
(1 − 3e)/(1 − 2e). The Right Hand Side (RHS) of this last expression has
slope +1/2 and v = 0 intercept a bit below 1. As noted above, the LHS (the
inverse Mills ratio) has a unique minimum near c and (since P ′ → 0 as v
moves away from c in either direction) and increases without bound on either
side. The minimum value is of order σ so for σ sufficiently small there are
exactly two regular solutions to the FOC and the verification is complete.

Figure 3 graphs W S using the indicated values of e and σ, a uniform prior
and the unit triangular density function for z.

7.2 Proof of Proposition 1

Proposition 1. Given perceptions with error rate a and choices with tremble
rate e, and given types v = 0 and v = vH > c constituting respectively Self
population fractions (1 − x) and x ∈ (0, 1), assume that 0 < a, e < 1/2 and
α = a + e − 2ae ≤ 1/(2 + vH). Then the separating PBE given in Table
1 exists iff L(c/vH) + L(e) − L(a) ≤ L(x) ≤ L(c/vH) + L(e) + L(a); the
Good Pooling equilibrium exists iff L(x) ≤ L(c/vH) − L(a), and the Bad
Pooling equilibrium exists iff L(x) ≥ L(c/vH) + L(a).There is no PBE if
L(c/vH)− L(a) < L(x) < L(c/vH) + L(e)− L(a).

Proof. Recall from the text that Other is indifferent between C and D iff
E(v|s) = c, and suppose first that Other observes s = 0. Then (using the
probabilities noted in the text) c = E(v|s = 0) = vH Pr[v = vH |s = 0] + 0 =
vH [x(1 − e)a/(x(1 − e)a+ (1 − x)e(1 − a))]. Solving for x we obtain xs =

1/(1 + ( a
1−a

)(1−e
e

)(vH−c
c

)), which can be written 1−xs

xs = ( a
1−a

)(1−e
e

)(1−c/vH

c/vH
).

Recall L(y) = ln(1−y
y

), so ln( y
1−y

) = −L(y). Hence Other is indifferent after

seeing s = 0 when L(xs) = −L(a) + L(e) + L(c/vH), and prefers D when the
prior odds L(x) that v = vH are longer.

Other will see s = 1 when v = vH with probability x(1 − e)(1 − a)
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and with probability (1 − x)ea when v = 0. Similar algebra shows that
L(x) ≤ L(c/vH) + L(e) + L(a) motivates Other to play C in this case. This
verifies Other’s part of the separating PBE.

Given that Other will try to play C iff s = 1, Self with v = vH will face
D with probability α = (1 − e)a + e(1 − a) = a + e − 2ae when playing T;
a simple calculation shows that Self’s expected payoff is nonnegative (and
therefore she will try to play T) as long as α ≤ 1/(2 + v). Self with v = 0
will face D with probability 1− α when playing T; and she will avoid doing
so as long as α ≤ 1/(2 + v) = 1/2, a redundant condition. This completes
the separating PBE verification.

If Other finds it worthwhile to ignore the s = 0 signal because unvengeful
types are quite rare, then those types will also try to play T. In the posterior
probability calculation the expression (1 − x)e(1 − a) thus is replaced by
(1− x)(1− e)(1− a) and the 1− e factors cancel. Calculations a bit simpler
than those in the first part of the proof show that Other wants to play C
even when s = 0 iff L(x) ≤ L(c/vH) − L(a). The condition ensuring that
Self indeed wants to play T is the same as before taking a = 0, so it holds a
fortiori. This completes the Good Pooling PBE verification.

If Other finds it worthwhile to ignore the s = 1 signal because vengeful
types are quite rare, then those types will also try to play N. In the poste-
rior probability calculation the factors involving e again drop out, and the
condition L(x) ≥ L(c/vH) + L(a) ensures that Other prefers to play D even
when s = 1. The condition e < 1/2 ensures that both types of Self prefer to
play N when Other always tries to play D. This completes the Bad Pooling
PBE verification.

Finally, if L(c/vH) − L(a) < L(x) then Other prefers to play D when
s = 0 and both types of Self try to play T. Hence unvengeful types’ best
response in this case is to try to play N. However, if unvengeful types try to
play N, then Other’s best response is to play C even when s = 0 as long as
L(x) < L(c/vH) + L(e) − L(a). Hence when both inequalities hold no PBE
can exist. �

7.3 Proof of Proposition 2, and comparative statics

For convenience, the derivations of comparative statics are also included in
the proof of the proposition. The proposition defines a parameter domain
using the following functions: R(k) = (kv(2 + v) − 1

2
) exp(−kv2), B(k) =

1
(2+v)(1+a/R(k))

and ê(k) = min{B(k), R(k)/(1 + 2R(k)}. These are functions
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of the exogenous parameter k because in equilibrium v and a are specific
functions (derived below) of k only.

Proposition 2. Given marginal punishment cost c ∈ (0, 1), behavioral
error rate e ∈ (0, ê(k)), and signal technology (1) with precision parameter
k ∈ (0, 0.6), there is a unique hybrid EPBE whose characteristics (vH , a, q, x)
depend smoothly on the exogenous parameters. There is also the trivial (Bad
Pooling) EPBE with proportion x = 0 of vengeful types.

Proof. Begin with the trivial case. Suppose there are indeed only un-
vengeful type Selfs. Then Other maximizes expected fitness by trying to
play D irrespective of the signal. Self then maximizes expected fitness by
trying to play N. Thus the strategy profile is a PBE. In this PBE, vengeful
type Selfs will have lower fitness because of the extra cost they incur when
inadvertently playing T; and Other lowers own fitness by trying to play C.
Thus both populations have only a single type present and that type achieves
maximal fitness, so the the strategy profile is indeed an EPBE.

We now construct the desired hybrid EPBE. The first and most labori-
ous step is to derive the equilibrium value of vH for a given k. Using the
probabilities in Table 1, one sees that vengeful types trying to play T attain
fitness EqW

S(v) = (1− e)[q(1− α− (1 + v)α) + (1− q)((1− e)− (1 + v)e)]
= (1− e)[1− (2 + v)e− qa(2 + v)(1− 2e)]. The first order condition (FOC)
0 = dEqW

S/dv for the maximization problem (2) simplifies slightly to 0 =
−e− qA′(2 + v)(1− 2e)− qa(1− 2e) or, separating variables,

[
e

1− 2e
]q−1 = −(2 + v)A′ − a. (5)

The second order condition is (2 + v)A′′ + 2A′ ≥ 0. Substituting in the A′

expressions from (1), the FOC is

[
e

1− 2e
]q−1 = [2kv(2 + v)− 1]a = (kv(2 + v)− 1

2
) exp(−kv2) (6)

and the SOC is

kv3 + 2kv2 − 3

2
v − 1 ≥ 0. (7)

The EPBE condition (3) says that vengeful and unvengeful type Selfs
coexist in the EPBE because they have equal fitness. Recall that EqW

S(v)
= (1 − e)[1 − (2 + v)e − qa(2 + v)(1 − 2e)]. Recall also that we are looking
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for an EPBE in which even the unvengeful try to play T, so EqW
S(0) =

(1−e)[q(α−(1−α)) + (1−q)((1−e)−e)] = (1−e)[1−2e−q(2−2a−4e+4ae)].
Thus (3) reduces to ve = q[2(1− 2α)− av(1− 2e)] = q(1− 2e)[2− a(4 + v)].
Separating variables again, we obtain

[
e

1− 2e
]q−1 = (2− a(4 + v))/v. (8)

Note that (6) and (8) have the same left hand side. Equating the right
hand sides, we get 2kv(2 + v)a− a = (2− 4a)/v − a or

kv3 + 2kv2 + 2 = 2 exp(kv2) = 1/a. (9)

This equation holds trivially for v = 0 and a = 1/2, but we now show
that it also implicitly defines a candidate equilibrium level of vengefulness
v∗(k) > 0.

Lemma 1. Equation (9) has a unique positive solution v∗(k) for any
positive k. The solution v∗(k) decreases in k over the range where the second
order condition (7) is valid.

Proof of Lemma. At v = 0 both sides of (9) are equal to 2, and have
equal slopes of 0. The LHS has slope 4kv(1 + 3

4
v) and the RHS has slope

4kv exp(kv2) = 4kv(1 + kv2 + ...). For small positive v (up to approximately
v = 3

4k
) the LHS has steeper slope but the reverse is true for larger v (indeed,

the slope ratio tends towards ∞). Hence RHS = LHS at some v ≈ 3
4k

(with
this approximation being better for larger k and smaller v), so (9) indeed has
a unique positive solution v∗(k) for any positive k.

Implicitly differentiate (9) to get

v∗′(k) = −[v3 + 2v2 − 2v2 exp(kv2)]/[3kv2 + 4kv − 4kv exp(kv2)]. (10)

Use (9) to substitute for the exponential term and rearrange to obtain

−kv∗′(k)/v = [kv2 + 2kv − 1]/[2kv2 + 4kv − 3]. (11)

The RHS of (11) is [g + 1
2
]/[2g] for g(k) = kv2 +2kv− 3

2
. Rewrite the second

order condition (7) as g ≥ 1/v, and since v > 0, we have g > 0. Hence the
RHS of (11) is positive. Since v and k are also positive, we conclude from
(11) that v∗′(k) < 0 when the SOC holds.�

We now show that the SOC (7) holds over the indicated range of k and
is independent of the other exogenous parameters.
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Lemma 2. Let v = v∗(k) and g(k) = kv2+2kv− 3
2
, and define S(k) ≡ vg.

Then the equation S(k) = 1 has a unique solution k = k̄ ≈ 0.612, and the
second order condition (7) holds as an equality iff k = k̄, and holds as a strict
inequality iff k ∈ (0, k̄).

Proof of Lemma. Write (7) as S(k) ≥ 1. We first show that S strictly
decreases in an open set U containing S−1[1,∞). By direct computation we
get S ′(k) = v3 + 2v2 + (v′)(3kv2 + 4kv − 3

2
). Use (11) and simplify to write

the RHS in the form [vM ]/[2kg], where v and k are positive and g is positive
in U . The messy factor reduces to M = −[(kv2 + 1

2
)g + 3

4
], which is strictly

negative in U . Hence S indeed strictly decreases in U .
Use v = O(1/k) from the proof of Lemma 1 to conclude that S → ∞

as k → 0 and S → 0 as k → ∞. Hence by the intermediate value theorem
there is some k ≥ ε > 0 such that S(k) = 1; let k̄ be the smallest such k. We
have S ′(k̄) < 0 and by the definition of U and continuity we have S ′(k) < 0
∀k > k̄ s.t. S(k) ≥ 1− ε. It follows that S is strictly bounded above by 1− ε
on (k + δ,∞). Therefore k̄ is the unique solution to S(k) = 1 and the SOC
fails for k > k̄. Numerical solutions give k̄ ≈ 0.612. �

Equations (6), (8) and (9) together with Lemmas 1 and 2 show that vH =
v∗(k) and v = 0 indeed both maximize Self’s fitness, and that vH = v∗(k)
has the indicated comparative statics. The remaining steps in the proof
are to find corresponding values of a, q and x, and to verify that all EPBE
conditions and comparative statics hold. The perceptual error probability
is simply a = a∗(k) ≡ A(v∗(k)). The text asserted that a increases in the
precision parameter k. To verify, insert v∗(k) into A(v) = 0.5 exp(−kv2) and
differentiate to get da∗

dk
= −(2kvv′+v2)A. Use (11) to get 2kvv′+v2 = v2/(3−

4kv − 2kv2) = −v2/(2g) < 0. Hence da∗

dk
> 0 and the second comparative

statics result is verified.
Next, obtain Self’s mixing probability q from the left hand side of either

(6) or (8). Use the right hand side of (6) with v = v∗(k) to get the desired
function of k only, R(k) ≡ (kv(2 + v) − 1

2
) exp(−kv2). R(k) has the same

sign as 2kv2 + 4kv − 1 = 2g + 2, which is positive over (0, k̄]. It therefore
makes sense to rewrite (6) as

q = q∗(e, k) ≡ e

(1− 2e)R(k)
. (12)

Note that the condition 0 < e < min{1/2, R(k)/(1 + 2R(k)} ensures that
0 < q < 1. It is obvious from (12) that q∗(e, k) is increasing in e. To show that

q∗(e, k) is decreasing in k, use (12) to write q∗ = e
(1−2e)

exp(kv2)
4(1+g)

, differentiate
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and simplify using (11). Eventually one obtains ∂q∗/∂k = ve
(1−2e)

exp(kv2)
8g(1+g)

[1 −
vg−2g]. All factors are positive except [1−vg−2g], which is negative because
vg > 1 by the SOC and 2g > 0, so indeed ∂q∗/∂k < 0.

Self’s mixing probability x comes from the condition (4), which says that
Others who attend the signal (strategy DC) coexist in EPBE with those
that do not (strategy CC). Using Table 1 and simplifying, one finds that

1
1−e

ExW
O(DC) = 2−α+x(−1+2α− v

c
α) while 1

1−e
ExW

O(CC) = 1+e−x(v
c
e).

Equating these expressions, substituting α = a + e − 2ae and solving for x
one obtains

x =
1− a

1 + (vH

c
− 2)a

. (13)

Conditions already imposed, viz., vH > c > 0 and 0 < a < 1/2, ensure
that 0 < x < 1. Since a and vH are independent of c, inspection of (13)
reveals that x is increasing in c. Simulations show that x can be increasing
or decreasing in k, depending on the value of c.

To verify that (vH , a, q, x) defined by (9), a = A(v∗(k)), (12) and (13)
constitutes the desired hybrid EPBE, we first need to confirm that vengeful
Selfs (and a fortiori unvengeful Selfs) prefer T. With the tremble rate e < 1/2,
an equivalent condition is that EqW

S(v) is positive, i.e., 1 ≥ (2+v)e+qa(2+
v)(1−2e) or 1/(2+ vH) ≥ e+ qa(1−2e). Note that the last inequality is the
same as the corresponding condition in PBE except that α = e + a(1 − 2e)
is replaced by an expression using qa instead of a. Hence the inequality is
easier to satisfy than the PBE condition. Using (12), the right side of the
inequality can be written e+ea(1−2e)/(1−2e)R(k) = e(1+a/R(k)). Thus
a necessary condition for the good hybrid EPBE is

e ≤ 1

(2 + v)(1 + a/R(k))
≡ B(k). (14)

Note that the positivity of v and a/R(k) ensure that B(k) < 1/2. Combining
(14) and the inequality following (12) we obtain a sharp bound on the tremble
rate,

0 < e < min{B(k), R(k)/(1 + 2R(k)} ≡ ê(k). (15)

(It turns out that ê(k) = B(k) for 0 < k < k̄.)
The rest of the proof is routine. Since the first order condition (6) has

a unique solution in positive v, that solution vH = v∗(k) indeed solves the
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maximization problem (2) whenever the second order condition (7) holds.
We have already verified that the restrictions of k ensure that the second
order condition is satisfied, indicated that c can be specified so that v > c,
checked that x and q are well defined, and have built in the equal fitness
condition for unvengeful and vengeful Selfs.

The only remaining chore is to verify that the unused strategies DD (al-
ways defect) and CD (perverse separating) do not increase Other’s fitness.
Using Table 1 and simplifying, one finds that 1

1−e
ExW

O(DD) = 2−e+x(−1+
e)v

c
, so CC brings higher fitness as long as 0 < −(1 − 2e) + x(1 − 2e)v

c
,i.e.,

as long as c < xv = X(k)–this tightens the bounds on c, but since x ap-
proaches 1 as c approaches v, the effect is inconsequential. Since v∗(k) > 1
when k = 0.6, the restriction c ∈ (0, 1) is easily sufficient for this final con-
dition. Finally, comparing 1

1−e
ExW

O(CD) to 1
1−e

ExW
O(DC) term by term

from Table 1, one sees that DC dominates as long as α < 1/2 and c < v. �
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