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ECONOMIC DYNAMICS WITH LEARNING: NEW STABILITY RESULTS
by George W. Evans and Seppo Honkapohja

1. Introduction

Adaptive learning in dynamic expectations models has been the subject of extensive
research effort in the recent economics literature (for a survey of the topic see Evans and
Honkapohja (1995b) or Sargent (1993)). Much of this research has been devoted to obtaining
stability conditions for convergence of learning dynamics to a rational expectations
equilibrium (REE). For example, Bray and Savin (1986) and Fourgeaud, Gourieroux and Pradel
(1986) provide conditions under which the unique REE is globally stable under learning.
Woodford (1990) shows that for some specifications of the standard overlapping generations
model there will be convergence to the set of statiqnary sunspot equilibria.

Marcet and Sargent (1989a) have shown that convergence results can be obtained for
general linear models, having a unique REE, using the stochastic approximation technique of
Ljung (1977). When a model has multiple REE it is of interest to analyze the local stability
properties of any given REE, and Evans and Hornkapohja (1994a,b, 1995a,b) have shown how
these techniques can be used in a variety of such models.

Most of the convergence results of Marcet and Sargent (1989a,b) and Evans and
Honkapohja (1994a,b, 1995a,b) are based on Theorem 4 of Ljung (1977) which employs a
"projection facility" constraining estimates to remain in a region around the REE. Grandmont
and Laroque (1991) and Grandmont (1994) suggest that this is vital for the stability results
but argue that the assumption of a projection facility is inappropriate for decentralized
markets.] This raises the issue of the precise role of the projection facility and whether
useful general results can be obtained when it is not employed.

To motivate the paper more concretely, we introduce a simple example which we will

IMoreno and Walker (1994) also stress difficulties arising from the use of a projection
facility. Benassy and Blad (1989) discuss related instability results.
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consider at some length later. Suppose that the value of an economic variable of interest ¥
depends on its lagged value, its future expected value and a white noise shock Voo according

to the reduced form model
Ve =By Fay + Yy (1.1)

Here y? +1 denotes the expectation of Ye+1 based on information available at time t, which is
assumed to include current and past values of Yo Provided the roots of Bb2 -b+ 8 =0 are

real, there are two REE solutions of the form

_ %* *
Y =b y +d v, (1.2)

where d* = (I-Bb*)"l. Consider a root b* with |b¥| <1, so that the corresponding REE (1.2) is
asymptotically stationary, and ask whether agents who are not initially endowed with
rational expectations would be able to learn b™ using a statistical learning rule such as
recursive least squares.

Thus, following the earlier literature cited above, we assume that agents believe
that data is being generated by a law of motion of the form (1.2), but that b* is unknown to
them and estimated at each time t from available data using the recursive least squares
_rulez

by = byy ¥ ! Rilyt-z(yt-l " b Ye2)
Ry =Ry + ¢ (Y%Q “Bygihs
Here b, is the least squares estimate of b* and R, is the estimate of the second moment of
Yy It can be readily verified that the standard formula for a least squares estimate of bt
based on a simple regression of Yy on ¥y satisfies these recursive equations.

Under these assumptions the complete dynamic system is as follows: given bt’ agents

2we simplify here by assuming that b[ is constructed using data only through period t-1.
2

make forecasts yf o, B btyt and ¥ is generated by these forecasts and by the exogenous shock
v, according to the model (1.1). The new data point A is then used the following period to
revise the estimate of b* to b, 41 According to the recursive least squares formula.
Continuing in this way, the system evolves over time.

The central question of interest is whether it can be established that I:nt converges
to b* as t - =, so that adaptive agents, following a standard statistical learning rule,
eventually learn to have rational expectations. Following the procedures of Marcet and
Sargent (1989a) and Evans and Honkapohja (1994a) the following results can be shown
(generically). If an appropriate local stability condition at b* is met, and provided the
recursive least squares algorithm is modified to include a suitable Projection Facility,
then b - b* with probability 1.3 If instead the stability condition is not met then b, > b*
with probability 0. It is on this basis that it has been proposed that the local stability
condition (often called the "expectational stability” or E-stability" condition) be used to
classify REE solutions as locally stable or unstable under adaptive learning.

These are very useful results, but the convergence results are obtained at the cost
of a possibly very strong assumption, namely the incorporation of a projection facility.
Briefly (and informally) the projection facility is a technical device which constrains
estimates bt never to leave some prespecified neighborhood of b* even if they would do so
under the unmodified recursive least squares algorithm.4 To obtain the convergence result
the projection facility may need to be a "small" neighborhood of b* in order to prevent
estimates from straying into regions where they would diverge. It is clear that the
projection facility is in general essential to obtaining probability 1 convergence results

in stochastic models with multiple REES. The issue opened by the criticisms of Grandmont and

3Also Rt converges to Ey% as bt converges to b*,
40ne version of the projection facility would reset bt back to some previous value if it

would otherwise leave the specified neighborhood under the al orithm. S
219893) for a full discussion. . == Marce and Sargen

In models with unique REE, e.g. the "cobweb" model studied by Bray and Savin (1986), it is
3 3



Laroque is how critical the projection facility is to obtaining positive results of any kind
in such models.

For a nonstochastic model of the above form Grandmont and Laroque show that there is
an open set of initial conditions near the nonstochastic steady state which lead to local
divergence even when the E-stability condition is met at that solution, wunless a
sufficiently small projection facility is in place. This clearly raises doubts about the
classification criterion above which has been proposed for stochastic versions of the model,
since these rely on the projection facility. Might it even be the case that an REE to which
the system converges almost surely with a projection facility in place becomes wholly
unstable when a projection facility is not employed? Can robust local convergence results be
stated without a projection facility which might. justify the classification scheme in models
with multiple REE?

These are the main issues addressed in this paper. We show that recent results in the
theory of stochastic approximation can be invoked to shed light on the questions. Using
these techniques we show that, in stochastic models, convergence to an equilibrium
satisfying a stability condition does obtain generally, though of course with probability
less than one. The principal contribution of this paper is to state and apply these results
and demonstrate how precise positive convergence results can be obtained, even in models
with multiple equilibria, without resorting to the controversial projection facility.

The main text of this paper describes these principal results in the context of the
conditionally linear state variable dynamics which arise in most of the economics
literature. The assumptions in this case are straightforward to interpret, and our main
focus is to show how they can be applied in dynamic linear expectations models. A companion
paper, Evans and Honkapohja (1996) provides the more general technical results for nonlinear

Markovian setups. A statement of these results is provided in Appendix A-1, where we

i ili i jection facility. However,
le to show global probability 1 convergence without a projection :
gg::i?s: it affordsgtcchnical simplifications, the projection facility has even been invoked

in models with a unique REE. For further discussion see sections 4 and 5 below.

demonstrate that the general Markovian framework covers the conditional linear dynamics set-
up applied in this paper.

A second objective of the paper is to provide both local and global results on the
convergence of least squares learning in general multivariate linear economic models. Such
models occur frequently in macroeconomics but they have not been previously examined in the
learning literature. These applications also demonstrate that the framework and the basic
convergence results of this paper can be applied to economic models.

Our first application is a multivariate linear model, with multiple autoregressive
REE. This generalizes the above example by permitting ¥, to be a vector and by including a
vector of exogenous observables which follow a vector autoregresssion. We show how to
identify the condition for an equilibrium to be locally stable under learning.

The second example is a multivariate linear model with a unique rational expectations
solution. The global convergence result for this model generalizes the corresponding results
of Bray and Savin (1986) and Marcet and Sargent (1989a). Heretofore these generalizations

have also only been achieved using (arbitrarily large) projection facilities.

2. The Algorithms and Basic Results.

The basic convergence results are described in this section in the context of an
abstract recursive stochastic algorithm. Subsequent sections show how this framework can be
applied to standard dynamic macroeconomic expectations models. Our results are based on the

analysis of stochastic approximation techniques developed in Benveniste, Métivier and

Priouret (1990).
Consider the algorithm
= 2
O = 8y T o HO XD + o} oo, 1.X). @.n
Here the vector of parameter estimates 8, lies in rd and the observable state vector Xt lies
in le. The assumptions on the stochastic process for Xt are given as (B.1)-(B.3) below.

Intuitively, 8, is a vector of parameters which are being recursively updated, e.g.
5



the parameters of an agent’s forecasting rule. H(e Xt) is a time-homogeneous function

t-1’
which states how 8, is to be updated as a result of the most recent observation of the

system, and ¥ is a sequence of scalar "gain" parameters which specifies the size of the

t
response of 6, to H at time t. The final term pt(s[_l,xt) allows for a second-order time-
varying dependence on the system (this term is sometimes not present). In the context of the
; , ; ; _ _ _ 1
simple example in the introduction, at = (bl'Rt)’ Xt = (yt-l’ yt-2)’ and 7 = to.

Fix an open subset DsERd. We make the following assumptions:

(A1) 7, is a nonstochastic nonincreasing sequence satisfying

7, = +o and 12 < 4w,
t t

(A.2) For any compact subset QcD, there exists Cl' CZ' q; and 9y such that veeQ vt:

1

q
(i) IH(e,x)| = C1(1+Ix| )s

y 9
(ii) Ipt(s,x)l = C2(1+le ).

We remark that the assumption E v, = +w is required to avoid convergence of 8 toa
nonequilibrium point and the assumption ): 1% < +w guarantees elimination of residual
fluctuation in 8, asymptotically. Assumption (A.l) is stronger than necessary. In fact, [ 7
= +w plus the condition z 713 < +w for some p=2 is sufficient. However, most economic
applications in the literature satisfy (A.1). (A.1) is satisfied by 7 = t‘l, the standard
assumption for least squares learning. (A.2) simply says that H and p, are polynomial
bounded in the state variable.

Next, we assume a set of Lipschitz conditions:

(A.3) For any compact subset QcD the function H(e,x) satisfies for all 8,0’«Q, and

X ,x,z,xemk:

(i) |H(B,x1)-H(e,x2)| = Lllxl-x2|,

(ii) |H(e,0)-H(e’,0)| = L,|e-6’],

(iii) |8H(e,x)/ax-8H(e' x)/ax| = L2|e-9'[.
for some constants Ll‘ LZ'

Clearly (A.3) is satisfied if H(e,x) is twice continuously differentiable with
bounded second derivatives on every compact QcD. We will see below that these assumptions
are straightforward to verify for models such as the one presented in the Introduction
above.

We also need assumptions on the stochastic process of the state variable Xt € Rk. In
Appendix 1 we discuss the required assumptions for the convergence result for the general
nonlinear case, where )(t is a Markov process with a transition probability law He(x,A) which
may depend on 8 1 This result is based on certain assumptions which are not particularly
intuitive.

In much of the economic literature it has turned out that Xt in fact follows
conditionally linear dynamics (see Marcet and Sargent (1989a,b), Woodford (1990) and Evans
and Honkapohja (1994b, 1995a,b) among others). For this case the requisite assumptions are

relatively straightforward to state and verify. Consequently we postulate this case here:
B.1 X, = A(Bt-l) XH + B(s,_;) wt-I'

(B.2) Wt is identically and independently distributed with finite absolute moments,

i.e. EIW,|9<o for all q=1,2,3,...

(B.3) For any compact subset QcD,

sup |B(8)| =M and sup |A(®)| =p < 1
0e() 0eQQ



for some matrix norm |.|, and A(e) and B(e) satisfy Lipschitz conditions on Q.'5

We will see that it is also straightforward to verify these assumptions for models
such as the one described in the introductory section.

Convergence of recursive algorithms such as (2.1) can be analyzed using an associated
differential equation

de/dt=h(s(x)). (2.2)
In the general Markovian case the function h(.) is given by
h(e) = [ H(e,y)ry(dy),

where re(.) is the unique invariant probability distribution of the transition probability
law ns(x,A) for each fixed 6. In the linear setup the function h(e) can alternatively be

obtained as follows’:

Lemma: For any e the function

h(e)=lim ,_E(H(e,X (e)),

t
where
X[(e) = A(e) Xt_l(e) + B(e)Wt_l,

is well-defined and h(e) is locally Lipschitz.

Theorem 1 below gives bounds on the probability of convergence or divergence of the
algorithm. It will be seen that convergence is governed by the properties of de/dr=h(e(z)).

Intuitively, for values of t the trajectories 8, of the algorithm are approximated by the

t
time paths of (2.2) at specific points of time t(t), where =(t) = [ ¥
i=0

6 dition on A(e) is somewhat stronger than having the spectral radius r(A(e))<1 for
a;l;h%e%).ll However, note that if r(A(e*))<1 at some 6* then our condition holds in a

;}eighborhood of a*. ) _
Proofs of the Lemma and all subsequent restélts are collected in Appendix 2.

Let 6%<D be an asymptotic stable equilibrium point of this differential equation.
Theorem 1 is stated most naturally and generally using the Lyapunov contour sets of &%,
which we now introduce (but see the Remark following the theorem). It is well known that
there exists a C2 Lyapunov function U(e) on the domain of attraction D of e*, U(e)
satisfies:

(i) U(e™) = 0, U(e)>0 for all 6eD, o+o*.
(ii) U’(@)h(8) <0 for all eeD, a+o™.
(iii) U(8) » w if 8 5 8D or 18] 5 4,
where 8D denotes the boundary of D.
Consider the compact sets defined by the contours of U(s):
K(c) = {o;U(8)=c},

for ¢=0. We can now state the basic result which is:

Theorem 1: Let 6* be an asymptotically stable equilibrium point of the differential
equation de/dtv=h(6(z)). Suppose that assumptions A and B are satisfied on D=int(K(c)) for

some ¢>0. Let P be the probability distribution of (X[,et)

WA with anx and 8, =a. Then

t=n
for any compact QcD there exist constants F and s, depending on Q but not on {-,rt}, such that

vnz0, aeQ, x:
* = s
Py xalf 2 0"} = 1 - FA+1x19Im),

where J(n) is a positive decreasing sequence with limn%oJ(n)=0. J(n) is in fact given by
_ 2 2
I =0+ ) 753 § 7
k=n+1 k=n+1

Remark: Suppose assumptions A and B are satisfied on some compact set NeD with 8 in

its interior. Then there exists an open ball DcN around 8* on which Theorem 1 holds.



The central content of Theorem 1 is that for stable equilibria it is possible to
provide a lower bound for the probability of convergence. Moreover, the bound approaches one
as time goes to infinity. That is, fix the compact neighborhood Q and suppose @ , lies in Q
at some time n where n is large. Then the probability that 8, = 8™ is near 1.

Our treatment emphasizes the primitive assumptions required on the algorithm and
state dynamics to obtain asymptotic convergence results. Theorem 1 and the Corollaries below
can be readily used to analyze properties of learning algorithms in a wide range of economic
models, as illustrated by our applications below. The framework here could also be used to
analyze the models in Marcet and Sargent (1989a). We remark that, despite our dropping of
the projection facility, we do not require their "difficult to verify" assumptions (A.6) and
(A.7.1).

In the appendix we verify that assumptions B are a special case of assumptions C for
the general Markovian case. A companion paper Evans and Honkapohja (1996) provides a proof,
based on the analysis of Benveniste et. al. (1990), of Theorem 1 for the general Markovian
case stated in Appendix 1.

The following two corollaries provide probability statements for the algorithm
starting at the initial time 0. Using the expression for J(n) we immediately have from

Theorem 1:

Corollary 1.1: Suppose rt=EvE, where ?r; satisfies (A.1). Consider initial values @
belonging to some compact domain Q in D. v&6>0 3¢* such that vO <& <£* and aeQ we have
®] > &:
Po,x,a{st »8*=1-3.
Corollary 1.1 is the case of slow adaption. It shows that the probability of
convergence can be made arbitrarily close to one, provided that the adaption rates are
sufficiently low. For general adaption speeds and some auxiliary assumptions one can obtain

convergence with positive probability for initial conditions sufficiently close to the
10

equilibrium:

Corollary 1.2: Assume that e* is locally asymptotically stable for de/dt=h(a(x)).
Assume also the existence of points x* and w* such that (6* x*) is invariant under (2.1) and
(B.1), i.e.

H(e*,x*) = 0, pl(e*,x*) =0,
X* = (- A(e¥) 1Bewr,
and that for all n>0 Prob[[W[-w*lsn} > 0. Then 3p>0 such that for [a-6*| and |x-x*|

sufficiently small we have

PO,x,a{Bt 5 6%} = p.

It is not in general possible to obtain bounds close to one even for the most
favorable initial conditions. The reason is that for small t the algorithm is not well
approximated by the associated differential equation. Sufficiently large random shocks may
displace 8, outside the domain of attraction of the differential equation. (This problem does
not arise in Corollary 1.1, because of slow adaption.)8

Finally, we remark that in the companion paper we show that with these assumptions
one can derive as a corollary a version of Ljung’s (1977) Theorem 4, which gives convergence

with probability 1 when the algorithm is augmented to include a projection facility.

3. Applications to Linear Models
a. A multivariate model

We examine the multivariate model

8For certain setups it is possible to obtain conver i ili initi
j ible gence with probabilit

values sufﬁc:ent[y. near the equilibrium e*, provided the support pof the dji(stl?iitlafnig?lr 01;1 “t;:g

random shock Wt is small enough. See Evans and Honkapohja (1995a). We also remark that for

particular models the neighborhood giving positive probabilit
1.2 can in principle be "large" and need not even be confin
@* of the associated differential equation.

y of convergence in Corollary
ed to the basin of attraction of

11



Vy=w H By toy  Frw +V, (3.1a)
W= oW + €, (3.1b)

where Ye is an nxl vector of endogenous variables, w, is a pxl vector of observable

t
exogenous variables and € is a vector of white noise shocks with bounded absolute moments.
A is an nx1 white noise disturbance, with bounded absolute moments, assumed independent of

W It is assumed that the nxn matrix g is invertible and that the eigenvalues of the pxp
matrix ¢ are inside the unit circle. § is an nxn matrix and « is nxp. Here y‘:_'_l denotes the
(possibly non-rational) expectations of Yes1 formed by agents at time t. This set-up
corresponds to the system considered by McCallum (1983, Appendix).

This model has various REE. We focus here on solutions of the "minimal state
variable" form (see McCallum 1983):

yy=a+tbytcw +dv, (3.2)

wher a, b, ¢, and d are conformable matrices. To determine the values of a, b, c and d we
insert

t
into (3.1a). Equating coefficients with (3.2) yields the matrix equations

Ey,, 1 =a+tby tcew

«a=(-pb-pB)a (3.3a)
b = bb + 5 (3.3b)
¢ = Bbc + Bcp + k. (3.3c)
d = @-go)’ L. (3.3d)

(3.3a), (3.3c) and (3.3d) have a unique solution (generically) given a solution b to
(3.3b).9 Generically, (3.3b) can have up to 2n distinct solutions for b (see Theorem 4 of
Gantmacher (1959, Chapter 8)). McCallum focuses on a specific solution based on a subsidiary
selection criterion. We do not restrict our attention to this choice since our interest is
in providing conditions for the local stability of solutions of the form (3.2) under

adaptive learning.

,9_1;-_()‘:;1-1:;";)"1'1;1-1-1;1 of the solution for ¢, see Horn and Johnson (1991, p. 255).
12

We set up the learning scheme as follows. Define the state vector and parameter

matrix as

zp = (L, y; 1 W
&t = (at, bt’ ct).

It is assumed that at time t agents forecast using the assumed law of motion Yiprg = &{Zt+1 +

_ . e .
LIS where Eth_l = 0. Inserting Yeiq =% + btyt + (C[go)wl into (3.1a) we obtain the

actual law of motion

¥ = T(ﬁ.t)'zt + Wbv,. (3.4
where
T@®)' = [(-8b)  (a+a), (1-6b) 15, (1-pD) (< +pcp)]
and
W(b) = (L - pby’,
for & = (a,b,c), provided I-gb is invertible. For the statement of the Proposition we also

need to define 7(&)=vec(T(8)), where vec denotes the vectorization of a matrix. Let D7 (&)

denote its Jacobian with respect to vec(&) at point &.

In defining the algorithm to update & we use a modification of recursive least

squares. Let (&t’Rt) be defined by
B = Bi + 3 Rilztﬁl(yt-l Tt @.59)
Ry = Ry + 7 Gy - Ry 3-3h)
Note that we have assumed that the estimates ﬁ't are based on data only through period t-1,
even though forecasts use information z.. This is to avoid the complication of having z, and
&l simultancously determined. For (3.5a-b) we make the additional technical assumption
limsuptw (llart_l_])v(l/art) < w, It is easy to show that this holds for ar[=EL"1.
It may be noted that for N = 1/t and appropriate initial conditions the algorithm
reduces to recursive least squares, i.e.
b= Glrg) Gl
For this model we have the following result:

13



Proposition 1: For model (3.1) consider the learning algorithm (3.4) - (3.5) and an
REE &* = (a*,b*,c*) in which all roots of b* lie inside the unit circle. Then assumptions A
and B hold on an open set around &*. If all the eigenvalues of the derivative matrix D7(&¥)
have real parts less than 1, the learning algorithm converges locally to &* in the sense of

Theorem 1.

The condition on the eigenvalues of D7(&*) can be interpreted as an Expectational
Stability condition which has been shown to govern the convergence of some adaptive learning
algorithms in a variety of models (see, for example, our survey Evans and Honkapohja
(1995b)). T(&) can be viewed as a mapping from the "perceived law of motion", parameterized
by &, to the implied "actual law of motion" T(&) that would be induced by those (fixed)
perceptions. Expectational stability is then simply defined as the local stability of &*
under the differential equation d&/dt=T(&)-&, where = is notional time.

The linear dynamic expectations framework (3.1) covers many macroeconomic models. See
McCallum (1983) and its references for a number of specific economic models which fit this
framework. This section has demonstrated the applicability of Theorem 1 to this class of
models, showing how to obtain the local stability conditions for specified solutions and
make positive probability statements, without recourse to a projection facility, about
-convergence from nearby starting points.

We do not formally present instability results in this paper, but it is well-known
that one can show convergence with probability zero to an equilibrium which strictly fails
to meet the stability condition given in our Propo.v,ition.]0 Proposition 1, together with this
instability result, is thus the basis for a classification of the REE solutions in this

class of models as locally stable or unstable under adaptive learning.

10 The relevant technique is to apply Theorem 2 of Ljung (1977). For a closely related

example see Evans and Honkapohja (1994a). i

b. A scalar example

We now specialize (3.1a-b) to a scalar linear model, so that «, B, &, k, ¢ € R with
B#0, 8#0, || <1. This arises in various contexts, see for example the linear-quadratic model
in Marcet and Sargent (1989, example e). Grandmont and Laroque (1991) and Grandmont (1994)

examined the nonstochastic case V=8 y‘:_,_l + & i1 (we discuss this case in Section 3c).

The "minimal state variable" solutions are of the form:

Y * * *
Yy=a +b Yy t ¢ wl+d Vi (3.6)

* .
where b” is a (real) root b of the characteristic equation

2

b ‘B'lb+3'la=0

and c* = k[1-80*+)]'}, a* = o*/(1-8-6b" and d* = (1-8b)]. Note that
b* = [1 +(1-488) /%128,

We will use the notation b: and b* to denote the two solutions in which the positive radical
is added or subtracted, respectively. We assume that neither of the roots is equal to B'l or
B'l-go. With arbitrary values for 8 and & the number of real solutions of form (3.6) can be
0, 1 or 2. We will here restrict attention to the case in which there are two real roots.

The analysis of the learning dynamics proceeds in the same way as in the multivariate
case. The mapping T(&) from the perceived to the actual law of motion takes the form

T(&) = [(ax+Ba)/(1-Bb), 8/(1-Bb), (x+Bec)/(1-ab)]
for & = (a,b,c), provided b#ﬂ'l. The‘ condition for local convergence is that the
eigenvalues of DT(&) have real parts less than 1. This requires that the following local
stability conditions (the "expectational stability” or "E-stability" conditions) be met at
the REE:
sB(1-86"2 < 1, p(1-8b%)! < 1 and ee1ab™y! < 1.

Note that if 0 = ¢ < 1 then the third condition is redundant. To simplify the discussion
below we will make this additional assumption.

Before further considering the issue of stability under learning we remark that in

15



fully specified economic models it is often possible to rule out explosive solutions, with
bl > 1, on the basis of nonnegativity or transversality conditions. We therefore restrict
attention to solutions in which |b*| < 1. The case of "saddlepoint stability", in which one
root is smaller than 1 in magnitude and the other root is larger than 1 in magnitude, is
frequently encountered. In this case there is a unique nonexplosive solution. However, cases
in which both solutions b} and b* are in magnitude less than 1 do also arise.!!

Figure 1 shows the possibilities in terms of the different regions of the (8,8)
parameter space. In region I, defined by |8 + &| < 1, we have the case of saddlepoint
stability: lb_T_l > 1 and |bf| < 1. In this region the REE (3.6) with b* = b’f is E-stable and
therefore locally stable under recursive least squares. In regions II, IIl and IV, both
solutions of the form are nonexplosive, i.e. |b*|" < 1 and |b:_| < 1. In region II the b*
solution is stable under learning (i.e. locally stable under recursive least squares) while
b_’:_ is unstable. In region III b_';'_ is stable under learning while bf is unstable, and in
region IV neither solution is stable under learning. Outside these marked regions either the
roots are complex or both real roots are explosive.

FIGURE 1 HERE

In models with multiple equilibria there can in general be nonconvergent paths under
least-squares learning. Our central result is that one can nonetheless make positive
statements about local convergence, even in models with random shocks, without imposing a
projection facility. If agents’ initial estimates of a, b and ¢ are sufficiently close to
the stable REE values, then with positive probability there will be convergence to this REE.
Furthermore, Corollary 1.1 and Proposition 1.1 imply that, in the case of sufficiently slow
adaption, and with starting points near an E-stable solution of the form (3.6), there will

be convergence to that solution with probability near 1.

11For example, the saddlepoint stable case arises in the linear quadratic market model of
Sargent (1987, Section XIV, 4 and 6). The magnitude of both roots can be less than 1 if
externalities or taxes are introduced into that model as in Sargent (1987, Section XIV.8).
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c. Relationship to the Deterministic Case

Grandmont and Laroque (1991) and Grandmont (1994) (henceforth "GLG") have recently
analysed the scalar nonstochastic case in detail. They present both stability and
instability results, but as is apparent from the title of their joint paper, their emphasis
is on the possible instability of learning dynamics.

Some of their results have analogues in the stochastic case. In particular
Proposition 2, part 2, of Grandmont and Laroque (1991) provides assumptions yielding local
stability for least squares (with finitt memory) in the univariate nonstochastic case.12 Qur
Proposition 1 generalizes this to multivariate stochastic systems. A major contribution of
our paper is precisely to show how it is possible, without the use of an ad hoc projection
facility, to state positive convergence results in stochastic models with multiple
equilibria.

From our perspective, the instability results of Grandmont and Laroque (1991,
Proposition 2, part 1) and Grandmont (1994, Proposition 4.4) reflect the fact that in this
model an REE can be only locally stable: Convergence of &t cannot be expected to occur for
initial values &0 sufficiently far from a stable REE &* However, the instability results of
GLG_, e.g. Grandmont’s "general instability result”, Proposition 4.2, may appear to be more

disquieting than this interpretation indicates. For example, Grandmont (1994, p. 27) writes:

. "...if the ‘projection facility’...is relatively large, and if expectations matter
significantly, then one should get focal instability of the actual dynamics with learning
for an open set of small initial perturbations. Owing to the discontinuity of the
forecasting rule, however, there may also exist here another open set of small initial
perturbations generating local convergence."

Thus the instability results of GLG appear to suggest that any REE in their model will at
best be semistable, since there will be divergence from some nearby initial conditions. How
can one reconcile this with our positive probability results, for example our claim that for

model specifications in region I of Figure 1, the REE solution of the form (3.6) with b* =

12In Grandmont (1994) the relevant Proposition is 4.3, second paragraph.
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b’f is locally stable under adaptive learning, and that for sufficiently low adaption speeds
the probability can be made arbitrarily close to 1?

The key lies in noting that GLG examine a nonstochastic model, and in understanding
that some aspects of the analysis of learning in nonstochastic systems do not carry over in
a natural way to stochastic frameworks. For this discussion we further specialize to the
model (1.1)

Y=Y F ey Ty
in order to facilitate a more direct comparison to GLG.13

A key difference between the stochastic and nonstochastic versions of the model lies
in the REE solutions themselves. Recall that in the stochastic case the minimal state
variable solutions are of the form (1.1) which we repeat here for convenience:

Y = b Yep + d 12 3.7)

Assuming |b| <1, in the stochastic case the stationary solutions are AR(1) processes with a
positive variance and autocorrelation structure

cor(yt,y[_i)=bi- (3.8)

In a local analysis of learning, the initial data should reflect these time series
properties. In contrast, in the nonstochastic case the only stationary solution is ytEO
which carries no information about the serial correlation of the data. The procedure by GLG
of selecting arbitrary initial conditions around 0, which lies behind some of their
instability results, leads to a nonlocal analysis from the stochastic viewpoint. 14

It is worth elaborating on this point. Consider a set of initial data Y.pLY
generated near an REE of the form (3.7). This can be accomplished in several ways, and we
specify two natural procedures. One method to generate data near the REE is to use the REE

(3.7) and add a small white noise measurement error to each data point. A second procedure

would be to generate the initial data using (3.7) but with a small perturbation in the value

13 i have set a=k=0. . B
4 gzgsi{;nnlggﬁgmj‘:e(lggdt) for further discussion of the various senses of local stability and
instability being employed. 8

of b from the REE value.

Suppose agents use least squares on data generated by either of these procedures to
obtain initial parameter estimates for their learning algorithm. Then it is straightforward
to show that the initial estimate of b will be close to the REE value, provided L is
sufficiently large.15 Thus, local analysis of learning for a given REE corresponds to having
initial parameters in a neighborhood of that REE. Furthermore, using the expression for J(0)
with artx(LH)'1 in Theorem 1, it follows that if L is sufficiently large, the probability of
convergence to a stable REE is close to 1.

In contrast, much of the instability analysis of GLG is conducted in an arbitrary
neighborhood of yt=0. As is apparent, the least squares estimate of b is undefined at -
(0,...,0) and it is ill-behaved for many points within a neighborhood of (0,...,0). This is,
of course, an observation which is fully recognized by GLG and which they exploit. However,
we emphasize that "most" points within an neighborhood of (0,...,0) do not constitute data
which are "near" the REE, in the precise sense that for most such points (3.8) does not
approximately hold!6. Even if the variance of A is made arbitrarily small, there is an
essential difference between the data of the stationary REEs in stochastic and nonstochastic
models. Only in stochastic models are the dynamic properties revealed by a stationary
solution. These properties are entirely lost by the stationary nonstochastic REE solution. 17

There is, as GLG point out, a "discontinuity” involved in least squares learning in
this model. However, from the point of view of learning theory the important discontinuity
is at Var(vt)=0. In stochastic models with Var(vt)>0 (or with k=0 and Var(et)>0). the

results of this paper show how to obtain robust positive stability results in a local

I5For the second procedure this follows from the consistency of least squares. For the first
[l)rocedure a small measurement error variance generates a small bias in the estimate.

SFor example, if each point of the initial data was given by the nonstochastic stationary
equilibrium value of O plus a small white noise measurement error, then instead we would
have cor(yt.ytui)=0.

17In the nonstochastic model these dynamic properties would be revealed only on nonstationary
perfect foresight paths.
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analysis of least squares learning with no requirement of a projection facility.18

4. Global Convergence

It is also possible to use results on probability bounds, such as Theorem 1 above, to
obtain global convergence results in models with a unique equilibrium. Theorem 2 below can
be used to extend some of the earlier models in the economics literature. For this result it
is necessary to introduce stronger assumptions than those of Section 2. First, we strengthen

(A.2) and (A.3) to:

(D.1) The functions H(e,x) and p[(ﬁ.x) satisfy for all e,e'emd, and all xi,xz,xele:
(@) [H(o,x))-H(®,x,)| = Ly(1+]8])|x;-%,| (1+]x; [P+ |2, [P,
(i) |H(e,0)-H(e’,0)| = L,|e-8’|,
(iii) |aH(e,x)/ax-aH(e',x)/ax| = L219-9'|(1+|x|92),
(iv) Ip(8.%)1 = Cy(1+[e(1+1x1D,
for some constants Ll’ L2 Py» Py and q.

The analysis in this section is carried out under the hypothesis that the dynamics

for the state variable do not depend on the vector of parameters:

(D.2) The dynamics for Xt satisfy (B.1)-(B.3) and the matrices A and B are

independent of 6.

With these assumptions we have a result establishing global convergence in algorithms

i i is of learning in stochastic and
18 mark on one other sense in which the analysis o . i
nors’foc;zstic systems is essentially different. The finite memory learning rules studied b);
GLG cannot converge to REE in the presence of random shocks, since the paramctea csitjungtea
will be asymptotically noisy. Only decreasing gain learning rules (with ¥ - ) hav

chance of convergence to REE in a stochastic 2sgstem.

with a unique equilibrium:19

Theorem 2: Under (A.1), (D.1), and (D.2) assume that there exists a unique

d

equilibrium point e*eR" of the associated differential equation de/dt=h(a(z)). Suppose that

there exists a positive C2 function U(e) on IRd with bounded second derivatives satisfying
(i) U’(edh(e) < 0 for ve+e*,
(ii) U(e) = 0 iff e=8*,
(iii) U(e)=a|o|? vo with |0|2p, for some «, py>0.

Then *
the sequence 8, converges PO,x,a a.s. to B*,

Although the assumptions of Theorem 2 are quite strong they are sufficient to provide

a generalization of the global convergence result of Bray and Savin (1986) to multivariate

linear models (see Section 5).

Note that Theorem 2 provides a way for establishing global convergence based on the

Lyapunov function of the associated differential equation. It is unnecessary to add on an

arbitrarily large projection facility as in Marcet and Sargent (1989a) or Evans and

Honkapohja (1995b).

5. An Example of Global Convergence

We consider the multivariate model

Yo = u o+ dy) + Bw, (5.1a)
w, = Bwt—l + Vi (5.1b)
discussed in Evans and Honkapohja (1995b). This generalizes the Bray and Savin (1986) setup.

Here y is an n x 1 endogenous vector, w is an observed P x 1 vector of exogenous variables

and v is a p x 1 vector of white noise shocks. We assume that all eigenvalues of the p x p
1915 appendix 1 we again treat a somewhat more general case, where X

t is a Markov process
independent of 6,

1
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matrix B lie inside the unit circle, so that w, is a stationary process. We also assume that

t
v, and hence Wy has finite moments. y‘: denotes the (in general nonrational) expectation of

yt held by agents at t-1. The parameters p, 4, B and € are conformable and we assume that I-
4 is invertible.

Evans and Honkapohja (1995b) established global convergence to the unique REE of
(5.1). However, they did so using Ljung's Theorem 4 and the analysis required the assumption
of an (arbitrarily large) projection facility. By using the results of the previous section
it is possible to completely dispense with a projection facility and thereby generalize the
univariate iid results of Bray and Savin (1986).

Let zi = (1, wp and & = (a,b). It is easily verified that the model (4.5) has the
unique RE solution

y, =¥z ; +m, (5.2)
where &' = [([-sﬂ)-l,u, (I-A)'IG‘:B] and n, = Gv,. It is assumed that at any moment of time
agents forecast using the assumed law of motion of the form
Ye = g% T p

e ; ;
where E_yn =0. Then y¢ = & ;z, and the actual law is

Y, = T(&t-l)'zt-l + BV, (5.3)
where
T&) = (u + 4a, 4b + €B). 5.4)
For the algorithm we spccify20
b =4y T 7 R;lzt-l(yt - b7y (5.52)
R =Ry + 7 (% - Ry (5.56)

i i i i i nly a finite number of
For some t the matrix Rt may not be invertible. Since this happens only - h
ili i i e in equation (5.5a) on these
times with probability one, Ri can be given an arbitrary valu q (
occasions (for example, the last invertible value).

20 Again we make the additional technical assumption limsup,  (1/y, | )-(1/7) < o
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Note that here we allow the estimates at t to depend on Ve since agents form their

forecasts at t-1. The result is:

Proposition 2: Assume that the eigenvalues of 4 - I have negative real parts. Suppose

that the agents use the learning algorithm (5.3) - (5.5). Then &, converges a.s. to & for

any initial values.

A model covered by this section is the multivariate version of the Muth market model.

For example, Guesnerie (1992, section III.B) considers a specification with two interrelated

markets.

6. Conclusions

This paper has applied new methods for analyzing the local stability of learning to
stochastic dynamic economic models where multiple equilibria may be present. The combination
of multiplicity and random shocks makes local analysis particularly challenging because of
the possibility of these shocks moving the state of the system by large amounts. We have
shown how to derive local stability conditions and obtain local convergence results without
the addition of a “projection facility" which a priori constrains estimates to remain in a
neighborhood of some particular solution. Our results, giving positive or near 1 probability
of convergence from nearby starting points for solutions satisfying a stability condition,
provide precise content to the notion of local stability under learning. In combination with
known results giving probability of 0 convergence for REE which fail the stability
condition, these results can be used to classify REE as locally stable or unstable under
adaptive learning.

In the case of a unique REE these methods also provide a means of establishing global
convergence (without a projection facility) based on the study of the associated

differential equation. This contrasts favorably with previous techniques for establishing
23



global stability and permits the generalization of earlier results.

Finally we remark that, in the case of multiple equilibria, non-local results may be
obtainable on the basis of Corollary 1.2 which established a neighborhood of positive
probability of convergence. The set of initial conditions from which the system can reach
this neighborhood in finite time with positive probability could itself be large. For

particular models this set could be examined by numerical methods.
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Appendix 1: Recursive Algorithms with a Markovian State Vector

Here we generalize the treatment in the text by allowing the state vector in the
algorithm to be a Markov process with possible dependence on the vector of parameters. Such
a generalization is valuable, since some economic models require a setup that goes beyond
the conditionally linear dynamics used in the text (see Evans and Honkapohja (1996), Kuan
and White (1994), and Lettau and Uhlig (1993) for uses of nonlinear state variable
dynamics). Moreover, the linear case is most naturally proved using the more general
Markovian framework, see Proposition A.1 below. The result is due to Benveniste, Métivier
and Priouret (1990)21, but we follow the companion paper Evans and Honkapohja (1996) and
provide assumptions directly on the algorithm and the Markov state process.

Let the algorithm be

= 2
O = Opp + o HOL XY + 7y pyley 1 X)),

t-1°
where 8, € R4 is the vector of parameter estimates and Xt € |Rk is the observable state
vector following a Markov process with a transition probability law N, (x,A) which may depend
on 61, i, Prob[X,eAlo 4 X, 1=, (X, .A) for Borel sets Ack¥. Thus (X,0),, is a
Markov process.

As in the text we fix an open subset Dgn?d and maintain assumptions (A.1) - (A.3).

Before stating the alternative assumptions concerning state dynamics, we introduce
the following notation and definitions. For any function f(e,x) denote by f9 the mapping x -
f(e,x). If f(e,x) is differentiable in x we denote by f'(e,x) its derivative with respect to

k_mk we define

X. Also, for any function g:R

l8(xy) - g(x,)]
2 jxl S Xy |(1 + |x1|p + rx2|p)

= Sy
[ng xi#g

and introduce the function space Li(p) = {g| [g]p < w}.

The assumptions on the Markov process for the state variable Xt are:

21We hereafter refer to this book as BMP.
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(C.1) For any compact QcD and any q>0 there exists Hq(Q) < w such that vn, xele,

aeIRd:

By all@eQuksn)(l + X, 4|} s w@a + [x]9.

Here I(A) and Ex,a(') denote, respectively, the indicator function of any set A and the
conditional expected value given initial conditions X0=x and 8p=a. (C.1) states in essence
that the conditional moments of Xn, provided 8y remains in Q, are uniformly bounded in e and
the bounds are polynomial in the initial state x.22

In addition, let ng(x,A) = ProbH[Xt +neA|Xt=x] denote the transition probability
measure n steps ahead for a Markov process Xt with fixed 1-step ahead transition probability

ne(x,A). Now assume for any compact QcD:
(C.2) vn,6, and m=0 3K: J'(1+gy|m)ng(x,dy) = K(1+|x| ™).

(C.3) For some p>0 there exist Kl’ Kz, q and P <1 such that for all functions g e
Li(p), n=0, xl’XZERk’ 0,0’eQ:
@ 1 [sMEexydy) - [eOIMxy.dy)1 =
Kyelel, %)%y 11+ 1%, (P+1%,1P),
(i) | [)maee.dy) - [enf.xan)| = KylelJo-0'| 1+ [x] D).

(C.4) For some p>0 and for all differentiable functions g with g’€Li(p) there exists
K3(g’) such that vn=0, xl,xzeRk, 0,0’<Q:
| [s0mgex;.dy) - [e0IMgxy.dy) - [eg.(xp.dy) + [g0IMG. (x| =
Ka(8")pp|0-0° (1+ x| 2+ %, | B

for constants p2<1 and q, independent of g

22This assumption on the moments and assumption (A.1) on the sequence of gains can be relaxed
at the cost of substantial additional technical detail, see BMP, Chapter 3 of Part II.
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With the assumptions A and C replacing A and B Theorem 1 holds as before. See the
companion paper, Evans and Honkapohja (1995c), for a complete exposition and proof.
Proposition A.1 below shows that assumptions (B.1)-(B.3) in the text are a special case of

(C.1)-(C.4).

Finally, we remark that Theorem 2 on global convergence also holds in the case of

Markovian state dynamics X[ verifying:

(D.2°) The transition probability law M(x,dy) of the Markov process for Xt is

independent of e and satisfies:

(i) ¥n,m=0 3K: j(lﬂy[m)n“(x,dy) = K(1+|x|™,

(ii) For vp=0 3K1 and p<1 such that for all functions g < Li(p), n=0, xi,xzeRk:
|jg(y)n"(x1,dy)-jg(y)n“(xz,dy):sxp“lglplx]-lem:xl P+ 1x, 1),

Appendix 2: Proofs of results.

Proof of Lemma: By the martingale convergence theorem assumptions (B.2) and (B.3) imply the
existence of the limiting random variable Vm(s) = limn_)W Vn (almost surely and in Lp) for
any given o, where
V= Ty AX@BEW,
(Clearly, Vn is bounded given the assumptions B.) By symmetry it is seen that for all n Vn
has the same distribution as n-th stage
_ n-k

U, =Jg—; A (©)B(@)W,, (al)
of the process in (B.1). The probability measure of Vm is the invariant measure of Xt(e). By
symmetry we have for any continuous function g satisfying |g(x)|=C(1+ |x[q) and any initial x

n _ n

E(g(A (e)x + U) = E(g(A (e)x + V) (a2)

n VR n ; ;
A"(8)x > 0 implies Ilmn_m]i‘l(g(A @)x + Un)=E(g(Vm)). Using (A.2i) we have that h(e) is well-
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o

defined.

The Lipschitz property is proved as follows. First note that (A.3) clearly implies

that
|H(e,x)-H(e',x)|sL2|e-e'|(1+th) and
IH(e,x)-H(e",x")I=1H(e,x)-H(s’,x)| + | H(8,x")-H(8’,x") |
sCl le-8” | (1+ Ix|)+C21x~x‘ Iz
Therefore,

|EH(0,X (6))-EH(® X (0")|=
El H(G,Xt(a))-H(B’,Xt(e‘)) |=
E[C,l16-0'I(1+1X(0)1)+C, X (0)-X (0")1] =
C,le-e’IE(1+1X(6)1)+C,EIX(0)-X (@)1
In the last expression lim E(1+|Xt(6)|) is bounded by a constant. Since A(e) and B(e) are
assumed Lipschitz (see (B.2)) we also have that
lim E IX[(e)-Xt(e’)I = Kle-8’]

for some constant K. Hence h(e) is Lipschitz.

To establish Theorem 1 of the text we show that Assumptions B of the text imply the

assumptions C for the case of general Markovian state dynamics, Appendix 1.
Proposition A.1: If (B.1) - (B.3) hold, then Xt satisfies (C.1) - (C.4) for any p>0.

Proof of Proposition A.l: We develop here the main steps, but refer to BMP for some

lengthy details. First, it may be shown that process Un(e), defined in (al), satisfies
= - " =K*|e - @'| for all p and some constants K, K* (see BMP
||Un(e)np s K and 1U_(e) - U (8" b= [ |
pp-266-26T).
Next we note that (B.3) implies |A™)|<p™. (C.1) is then immediate from (B.2) and

. . m
(B.3). (C.2) follows at once from applying equation (a2) to the function g(y)=1+]y| and
28

using the bounds in (B.2) and (B.3).
We easily obtain (C.3)(i) from the definition of [g]p using the inequality
|Elg(A"@)x; + U (@) - g((A"6)x, + U (0))]] =
[g]pm“(e)p X%y [E[1 + [A%e)x, + U (0P + |ANe)x, + U (8)|P).
To prove (C.3)(ii) we note that
|Ele(A"@)x + U @) - g((A"@)x + U (0))]] =
[g]pE{[|An(9)AAn(9‘)f x| +|U,(8)-U (")) [1+ |An(9)x+Un(9)|p+ |An(9')x+Un(e’) P13
to which we apply Cauchy-Schwarz inequality. Using (B.2) and (B.3) the resulting second term
is polynomially bounded in |x|. The resulting first term is is simply I|A™e)-Ae")||x| +
rUn(e) - Un(e’)| lly. In the beginning of the proof it was noted that Url satisfies a Lipschitz
condition. Since A(e) is assumed also to satisfy a Lipschitz condition and |An(9)|$pn the
whole expression is bounded by an expression of the form Cfe-a’|(1+|x|q) which proves
C(3)(i).
We omit the proof of (C.4): for the lengthy details see BMP, p.269 (we remark that
K3(g')=Np(g’) in BMP’s notation).

Remark on the Proof of Theorem 1: In view of Proposition A.1 it suffices to prove

that Theorem 1 holds with assumptions A of section 2 and C of Appendix 1. We prove this

result in the companion paper, Evans and Honkapohja (1996).

Proof of Corollary 1.1: Immediate from Theorem 1.

Proof of Corollary 1.2: Fix compact Q < D. Using Theorem 1 there is n such that

P {etee*} = q > 0. Substituting recursively in the algorithm it follows that 8 = Z(eo,
n,x,a n

WO""’W» ,XO) is a continuous function, because H and Py are continuous. Furthermore,
n-1

Z(e* w*, ..., w* x*)=0. There exists ¢ >0suchthate D for |90~e*| <Z, |Wi-w*| <¢g,i=1,...,n,
n
and IXO-x*| <¢. Because of the assumption of positive density, this event has a positive
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e

probability. The conclusion follows.

oof of Proposition 1: In order to write the algorithm (3.5) in the form (2.1) we

set St-l = Rt and define X; = (l’yi-l’WE'y{-Z’WE-l’vi-I) and 6, as a vector composed of the
elements of &t and St' Note that zi = (l,yt_l,w[) is a function of Xt. Equation (3.5a) forms

directly a component of function H(e,X) in (2.1), while (3.5b) can be written in the form

S =S .+ a@z-S, )+ 20 g (a3)
t = 1 T OTRE S rl"’t t“t " Ot

t
which defines implicitly the remaining part of H(e,X) of form (2.1) with pt(st-l' z[) =
¥

In order to define domain D of the algorithm let &* be a fixed point of T(&), and
assume that the eigenvalues of b* are strictly inside the unit circle, where &% =(a* b*,c*).
Define zt(&)’=(1,y£_1(&),w£), where we have yt_l(&) = T(&)'zt_l(&). Then zt(&) is a
stationary process for all & sufficiently near &*. Let Mz(&)=E(zt(&)zt(&)'), and note that
§* = E[zt(&*)zt(&*)’] is positive definite. Next choose an open set ]5 around (&*,S*) so that
for all (&,3) e ﬁ:

(i) &* is the unique fixed point of T,

(ii) for some £>0 det(S) =z € > 0,

(iii) (I-gb) is invertible, and

(iv) the roots of b are bounded strictly inside the unit circle.

With this construction it is straightforward to show that conditions (A.1) - (A.3)

hold.23 To verify conditions (B.1)-(B.3) we note that the system for the state vector Xt is

of form (B.1) with

23 For verification of (A.2ii) note that (rHl-yt)/y% = 1/7[+1-1/‘Jt which is bounded.
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0 0 0 000
1 Tattp) Tyey ) T (& P 000
R A I R A
& 0 0 1 000
0 0 0 000
1 0 o0
0 W(b,_;) 0
and B(o ;) = 8 8 6 ,
0 0 0
0 1 0

where T(&)‘=(’I‘a(&),Tb(&).TC(&)). Condition (B.2) then holds by the assumption of iid shocks
with bounded moments. (B.3) is also satisfied, provided the neighborhood 6 around the point
(&*,S*) is made sufficiently small, since the nonzero eigenvalues of A(8) are the
eigenvalues of ¢ and Tb(&).

In the associated differential equation de/dr=h(s) the right-hand side can be written
the form

hy.8)"= M, ()(T(®)-0)
hg(6,5) = Mz(&) - S.

If D7(&*) has all eigenvalues with real parts less than 1, then it can be shown (Marcet and
Sargent 1989a, Proposition 3) that the associated differential equation is locally
asymptotically stable at (&*, S*). Using Proposition 1 in section 2 one may choose D =

> A
int(K(c)) so small that D < D, and the conclusion follows.

Proof of Theorem 2: (Remarks) The essence of the argument is to show that the

sequence 6 is bounded a.s. We omit the proof of Theorem 2 which follows step by step the
proof of Theorem 17 of BMP, p.239 with the following modifications. First, (D.1) and (D.2)
imply that the conclusions of Theorem 7 of BMP, p.265 are satisfied which in turn yields
conditions (1.9.1)-(1.9.6) of BMP, p.239 with A=1. Second, when BMP apply their Proposition

7 one can use our Theorem 1.
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Proof of Proposition 2: Mimicing the proof of Proposition 1, our algorithm is given

by (5.3), (5.4), (5.5a) with Rt replaced by S and writing (5.5b) in the form (a3) with

t-1°
the new definitions of & , z and y given above. For global analysis it is necessary to
introduce a modified algorithm, since the covariance matrix St could fail to be invertible.
This modified algorithm will coincide with the original one after a finite (random) time.

Consider first (a3). It satisfies the conditions for Theorem 2 with the associated
differential equation

h.z(S) =M, -8, (ad)

where MZ = lirnt_m E(thi) which under our assumptions is positive definite. The
corresponding Lyapunov function is U(S)=||S-lei2. Thus S[ converges a.s. to Mz from any
starting point.

Introduce a neighborhood ¥ of Mz such that S'1 exists whenever Se¥. It is possible to
construct a bounded regular function u(S) from the space of (p+1)x(p+1) matrices to the

subspace of positive definite matrices and such that u(S)=S'1

on #. The modified algorithm
is obtained by replacing (5.5a) with
b =8y 7 WS 7 (T® )% + Y - 817"

The assumptions (D.1) and (D.2) are easily verified. The associated differential

equation takes the form
de/d1:=(hl(&,S). h2(S)).

where hl(&,S) = u(S)Mz[(J-I)(&’-&’)]’ and h’Z(S) given by (a4). This differential equation is
globally asymptotically stable, since the eigenvalues of 4-I have negative real parts.
Moreover, stability is exponential. It follows (see Hahn 1967) that there exists a C2
Lyapunov function W(e) satisfies W(g) = oc|9|2. Finally, to ensure a Lyapunov function U(8)
with bounded second derivatives we set U(e) = y(W(8)), where the transformation y satisfies

w(0)=0, ¢'()>0, limtw¢(t)=+w, and is such that the derivatives of y tend to zero

sufficiently rapidly at infinity. With U(e) the remaining requirements of Theorem 2 are
32

clearly satisfied.
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