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Abstract

Precise estimation of the tail shape of forex returns is of
critical importance for proper risk assessment. We improve
upon the efficiency of conventional estimators that rely on a
first order expansion of the tail shape, by using the second
order expansion. Here we advocate a moments estimator for
the second term. The paper uses both Monte Carlo
simulations and the high frequency foreign exchange
recordings collected by the Olsen corporation to illustrate the

| technique.
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1 Outliers, Risk and High Frequency Benefits

To introduce the subject we consider two problems in the analysis of risk. The
board of a pension fund has to decide over the maximum percentage of the
managed funds that can be allocated to the most risky investment categories
(equities, foreign currency, and derivatives). The quotas are a function of
the solvency and liquidity requirements of the pension fund; the fund must
be able to pay out every period. Specifically, the board is concerned about a
single extremely negative return that wipes out so much capital that the fund
becomes illiquid or insolvent. A very similar problem concerns the allocation
of upper limits on open positions to foreign currency dealers by the treasures
of the forex dealing room of an international bank. The trading limits are
a function of the probability p on a single negative return so large that the
solvency of the bank is endangered. These problems can be formulated in a
static or dynamic fashion. In the static version the unconditional distribution
is used and the wealth levels are updated. Accurate assessment of the value
of p requires as much data as possible, because the extremes are rare by their
very nature. The Olsen data set is thus conducive to estimating the values
of p accurately.

Let X; denote the single period return on a risky investment!, and define
the minimum return, Xmin, in a single sample of n periods as

Xm;n=m'in{X1,...,X,,}A (1)

Suppose the management specifies a critical loss level, s < 0, which repre-
sents the maximum loss that can be incurred without running into solvency
problems. A simple way to determine the maximum allowable investment
I, is to take I = s/ (Xmin) assuming that Xgin < 0. In fact this worst
case analysis is implemented by some well known banks. This procedure
is, however, limited and leaves the associated uncertainty rather implicit.
It is limited because the focus is solely on the worst in sample realization,
thereby neglecting the probability that Xn4y < Xnpin . It is like building a
dike to the level of the highest realized flood level, whereas one might want
to safeguard against worse outcomes. And the procedure leaves implicit the
associated probability on outcomes below X,;;. Whereas the management
might want to choose from probability-loss combinations (p, z,) by consid-
ering the trade-off that exists between p and z,. Hence a table of (p, z,)
combinations could enhance the decision process. Moreover, using the low-
est order statistics Xpmin is typically not a very reliable estimate if the true

'Thoughout the paper we develop the theory by assuming that X, are i.i.d. Neverthe-
less, most results survive under the weaker assumptions of stationarity. For the particular
revelevant case of ARCH process, see De Haan, et al. (1989).
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quantile, z,, associated with p = 1/n since this estimator has a very high
variance.

To remedy the two deficiencies of the simple procedure, the management
is asked to explicitly impute a crash probability p on outcomes worse than s.
The level p signifies the insolvency risk the management deems 'acceptable’.
Presumably, this probability is set very low; most likely it is taken to be
p < 1/n , ie. far outside the sample. In this case one has to find ways
to extrapolate the empirical distribution of the minimum order statistic, in
combination with some extra conditions, to construct a list of probability-
quantile combinations (p, z,) such that

Pr{Xmin € z,} =p whenp< l/n. (2)

Once z, is determined, the trading limit I directly follows from I = s/ (z,).

Before we continue with the econometric and data aspects of the prob-
lem, it is useful to point out the relation with the literature. In De Haan
et. al. (1994) the concern about extreme downside risk as formulated above
is related to Roy's (1952) safety first criterion. A full blown portfolio selec-
tion problem for this case is worked out in Jansen et. al. (1994) by using
diversification arguments of Arzac and Bawa (1977).

One might also wonder why the management is just concerned about
a single bad draw, while a series of consecutive smaller negative returns
may add up to the same highly negative result. The reason why this is
of lesser concern, is that during a more gradual decline of the market the
exposure can be reduced in the meantime. If the exposure is reduced, the
loss level is reduced as well, given a certain return level. This is very similar to
the philosophy behind the marking-to-market daily settlement procedure on
futures markets. In this way the clearing house only runs the risk on a party
not being able to meet its margin call for a single day, rather than letting
the losses accumulate until the contract expires. Thus it is straightforward
to implement this static risk of loss approach in a dynamic fashion.

How do we benefit from the magnificent data set made available by Olsen
& Associates? An immediate benefit of the highest frequency data is the
gain in efficiency in constructing the negative outliers. Because

X+ X, X,,_1+Xn}

min{Xl..X2|--~|Xn—laXﬂ} Sm"_l{ 2 e B (3)

the higher frequency data are more informative about the tail shape of the
return distribution. For example, if X; are stable distributed, it follows
from their invariance under convolution that the higher frequency recordings
increase the efficiency of the tail shape estimators. A more detailed analysis
of this claim is available in Dacorogna et. al. (1995).
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A less obvious but rather important gain from this data set is that its
sheer size permits estimation methods which are just not feasible on the typ-
ical size of the more common financial data sets. In order to construct the
probabilities or quantiles from (2) one relies on the limit law for the mini-
mum. The reason is obvious: one does not exactly know which distribution
generates the data. The limit law, however, is only an approximation. In
general the estimates will therefore be biased. In fact, it can be shown that
it is optimal, according to the MSE criterion, to have the bias and variance
vanish at the same rate as n — oo . This rate is a non-linear function of n
and m, where m is the number of lowest order statistics that are used to esti-
mate (2). To determine the optimal number m in the MSE sense, one needs
an estimate of the bias. Estimating the bias is a nontrivial exercise, how-
ever, because the linearity of the estimator defies direct use of a conventional
procedure like the bootstrap, see e.g. Shao and Tu (1995, p. 14).

To salvage this problem Hall (1990) suggested to use subsample boot-
straps. This idea exploits the fact that the bias is nonlinear in the sample
size by comparing bootstrap estimates from subsamples to a full sample es-
timate and then extracting the bias if the subsamples have size n; = n7,
4 < 1. In the comparison the true values cancel, and the bias term from the
full sample estimate can be ignored because it has an order of magnitude
smaller than the bias term from the subsample estimate. From this, the op-
timal m can be estimated. Details of the subsample bootstrap procedure are
given in the next section, or see Hall (1990).

To be able to implement such a procedure one needs to construct boot-
strap subsamples which are magnitudes smaller than the full sample. On the
other hand, because the outliers are rare by their very nature, one needs sub-
samples which are still quite sizable. The pay-off of the Olsen & Associates
data set is, that it allows one to sensibly exploit the subsample bootstrap
method. Conventional financial data sets are just to small for this procedure,
even though they may be large compared to the usual economic data sets.

As of today, Hall's (1990) subsample bootstrap is the only known proce-
dure to determine the optimal number of order statistics m that have to be
taken into account in (2). It was first applied in economics by Dacorogna et.
al. (1995). The method as advocated by Hall, nevertheless, still has one de-
ficiency. It presumes a very particular form of the bias term. The theoretical
innovation of this paper consists in relaxing this assumption by using a more
general form. This does not come without a cost, because it necessitates
estimating an extra parameter 3 which determines the asymptotic behavior
of the second order term of the law in (2) as z = —oo0 . We employ a novel
estimator of J that is consistent. The estimator is based on recent results
from Danielsson et al. (1996). Again, the large size of the data set is crucial
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for obtaining decent estimates of 4 because the estimation relies on being
able to separate the first and second order terms.

2 Extremal Theory

The presentation of the theory will be concise. An excellent reference on
extremal theory is the book by Leadbetter et. el. (1983). Estimation issues
are dealt with in Dacorogna et. al. (1995) and Danielsson et. al. (1996). An
introductory account is given in De Vries (1994). Without loss of generality,
this section considers the problem of the distribution of the maximum order
statistic. We start from the well known fact that forex return distributions
are fat tailed. Focusing on the upper tail by taking — X, the class of
fat tailed distributions is characterized by the regular variation at infinity

property

. 1 - F(tr) e
[T = @

where a > 0, and F (z) is any fat tailed distribution. Under some mild extra
conditions this class admits the following second order expansion for large z:

F(z)~1-az"® [1 + br‘ﬂ] , (9)

wherea > 0,b € R, § > 0. The case 3 = 0 constitutes the expansion F (z) ~
1 —az~®[1 + blogz]. Asisshown in De Haan and Stadtmuller (1992), these
are the only two second order expansions with non-trivial properties; e.g.
a second order term like exp (—z) converges uninterestingly rapidly. Note
that Hall (1990) imposes the more stringent condition of @ = 3. This covers
certain distributions, like part of the stable laws and the Type II extreme
value distribution. But it does not apply to e.g. the Student-t class which
is often used in financial time series analysis. For the Student-t class the
expansion in (5) is valid, though, with o equal to the degrees of freedom,
and f = 2.

Let p > 1/n, but close to 1/n, and t < 1/n, where n is the sample size
and p , t denote exceedance probabilities. The problem is to estimate the
quantile z, by using the empirical counterpart of the in sample quantile z,.
By definition, and using the expansion (5):

p= az;“ [1 + bz;ﬂ] and t2~ar;“ [1 +5I:—B] ()

Division of p by t and rearranging gives

1 -A i
pya [ 1+ bz )
I“”"(t) ([+bz;" L
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Ignore the second order term in (7). Estimate z, from (2) by the descending
order statistic X(m), i6. Xy = . 2 Xmy 2 -+ 2 X(n) for which m/n is
closest to p. Replace p by m/n. (The choice of m is discussed below). The
extreme quantile estimator now reads:

1
% m\a
Ty = Xm) (a) . (8)
This estimator is still conditional on the tail shape parameter c.

The & can be estimated by the Hill procedure as follows. For the largest
in sample quantiles , > z,, say, the second order term in (5) contributes

little. Hence the Pareto distribution
G(zg)=1-az;% z,273 (9)

can be used as a first order approximation to the tail of the true distribution;
recall (4). The maximum likelihood estimator of o conditional on z, > z, is
easily found from the log-density as

1 m—1

(i)
S log 10
o (10)

1 —

@ m-15
where again X(m) is used to approximate z, , and the X{; are the empirical
counterparts of z, . The estimator 1/& is named after Hill.

A generic and long standing problem in the area is the determination
of the number m of extreme values that should be used in the estimation
procedures. Recently Hall (1990) has proposed the solution by means of a
subsample bootstrap. We outline the idea. It is known that the estimators Z,
and 1/& are asymptotically normal, see e.g. Goldie and Smith (1987). From
this the asymptotic mean squared error (AMSE) can be calculated. One can
show that it is optimal, in the AMSE sense, to have the bias and variance
vanish at the same rate. This optimal rate determines the optimal number

of order statistics as
m‘=cn=72§_ﬂ, c>0 (11)

where ¢ depends on the parameters a, b, &, # . For example in case of the
student. t class

=

o
 (F(4) 2\ T a
a(a+f) (f‘(u;ﬂ _‘:)

3 2y 2
-5

Che=
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To determine m* empirically, one might try to minimize bootstrap estimates
of the MSE. This method fails, however, because the estimator 1/é& is log-
linear in the observations. The bootstrap therefore calculates the bias as
essentially zero. This is unfortunate because the bias and variance have to
disappear at the same rate for the AMSE to be minimal. But the bias and
MSE are nonlinear in the sample size. Hall (1990) therefore suggested to
employ subsamples of order n; = n7,v < 1 to calculate bootstrap estimates
of 1/a on these subsamples, and to calculate the mean squared deviation of
the subsample estimates from an initial full sample estimate 1/ag. The ini-
tial estimate of ag is obtained by specifying an arbitrary low threshold level,
say 1% of n, and using (10) to estimate ag. This can be further improved
by iterating on the bootstrap several times. This yields a proper estimate
of the MSE as it comprises both a variance and a bias part. The bias part
is retained in the subsamples bootstrap estimate because the biases of the
initial full sample estimate and the subsample estimate do not cancel. The
former is of small order in comparison to the latter due to the fact that
n; < n. Hence by varying m; the subsample optimal m} can be estimated
by minimizing the subsample MSE. Using (11), the full sample m* is then
found from

2
. . n \ 20+a
m* = m; (nl) ; (12)
But this requires knowledge of the exponent 283/ (28 + «). Hall (1990) then
argues that § = a is a plausible restriction because several known distribu-
tions satisfy this condition. But, examples like the Student-t, where « is the
degrees of freedom, and 8 = 2, show that this restriction needs not hold in
models that are relevant for modelling of asset returns. Thus the restriction
# = o makes the bootstrap procedure non robust. This leaves the whole
subsample bootstrap endeavor in an awkward position, because it appears
that the problem of not knowing m* has been replaced by the problem of not
knowing . We have to face the problem of estimating §°.

In Danfelsson et. al. (1996) it is argued that the estimation of the tail
parameter (3 of the second order term in the expansion (5) is not straightfor-
ward. Nevertheless, they develop a nonlinear estimator which is consistent.
The procedure is as follows. The first step is to obtain an estimate of m]
through the subsample bootstrap procedure of Hall (1990). It is easily seen

2A referee gave us the interesting suggestion that the exponent 2/(2 + a/f) might be
estimated from calculating an m; from a second bootstrap on an even further reduced
subsample size nz < ny <7, and using mj/mj to estimate the exponent. We leave for
future research to investigate how the further sample size reduction affects the efficiency,
and how this procedure compares with the method used in this paper.
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from the arguments in Goldie and Smith (1987) that this yields a consistent
estimate of m] (as n — oo ) regardless of whether f = a or not. In the
second and third steps consistent estimates of « and 3 are obtained from
the subsamples. The estimates for 1/c is given in (10), where in theory
m = m; — 1 so that m — co and (m/n)zﬂ/(25+") — 0 as n — 00. By using
less order statistics than m] , 1/& is consistent, see Hall (1982, th. 2). To
introduce the estimator for 3, step 3, we need the empirical log-moments.
The j-th empirical log-moment is defined as follows:

) 1 m-1| K J
) = —— 3 |log 1| . 13)
m m—1 3 [OEX(m) (
Note that (10) is the special case of (13) with j = 1 . Define A to be the
statistic:
H(1) — /,(2) f9.5 (1)
_ m mt (2 _ (14)
ﬁ1(3)/3ﬁ;(2] — m) /4m ()

Danielsson et. al. (1996) propose the following estimator for G
B=a(Va-1). (15)

Here & is the inverse of 1/é& from the second step. In computing the ", j =

1,2,3,4 where in theory m = m;} + 1 is taken. Note that there is a difference

between the (Y used here and 1/& from the previous step®. It signifies

that m/n — 0, while (m/n)w’f(m"“} — oo . With these rates, elementary

integration shows, after linearizing the ratio, m"/jmU-1 | that as n = o0
mi) 1

g .
P1|m [W — ;] (%)u = ‘—bﬂa’j42 (C‘! "'.B)AJ %

It is then easy to show that as m/n — 0 while (m/n)*/8*e) _, o6

] a+ B\’
pl1mA=( % ) (16)

and hence the estimator 3 in (15). Lastly, these subsample estimates for a
and [ are used in (12) to convert m] to m*, and to estimate a by (10) taking
m = m*. By being able to estimate § and to break away from the restriction
B = a in (5) and (12), the estimation procedure gains in robustness. The
next section evaluates this estimator by means of a Monte Carlo experiment
and it is applied to the Olsen & Associates data set.

IIn the results presented in this paper we set m = m".
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3 The Value of Large Data Sets

In this section we first provide a simulation study that evaluates the Hill
estimator 1/& from (10), the second order index estimator 3 in (15), and the
quantile estimator &, in (8) with the iterated subsample bootstrap procedure.
Finally, we apply these methods to the Olsen data set.

3.1 Simulation Study

The distributions chosen for the Monte Carlo study were Student-t, Extreme
value type II, i.e. F'(z) = exp(—z~), and ARCH(1). The Student-t was
simulated with respectively degrees of freedom 1,5, and 11 and the Extreme
value distribution was simulated with respectively degrees of freedom 1 and
11. For both of these distributions the degrees of freedom equals the tail
index. We also simulated from an ARCH(1) process, by using normal in-
novations, an intercept of 0.1 in the variance equation and autoregressive
coefficients with values 0.7 and 0.3, respectively. These values correspond
to a theoretical tail index of an ARCH process with values 3.17 and 8.36
respectively. The second order limit expansion (5) of the stationary ARCH
distribution is not known, but they are known for the Student-t and Extreme
value distributions. The theoretical # value for the Student-t is § = 2 and for
the Extreme value it is # = a. On the basis of this second order expansion,
the optimal m* can be calculated by (11). The parameters of the Monte
Carlo experiment are given in Table (1). The number of observations was set
at 20,000 and each experiment was repeated 250 times. The results from the
Monte Carlo experiments are reported in Tables (2 - 4) and box plots of the
o estimates are reported in Figures (1-3). The box plot shows the median of
the data set, surrounded by a box that spans the center half of the data set,
i.e. from the lower to the upper quartile. The whiskers extend 1.5 times the
inter-quartile range, with the values outside the whiskers denoted as outliers.

In some samples the A statistic from (14) turned out to be negative.
This is inherent to the usage of a moments based procedure. When A < 0
(15) makes no sense. Given the stochastic nature of 8, negative ’s when
0 < A < 1 are plausible, and we use all cases where the 3’s are negavive as
long as A was positive.

In Table (2) we report details of the bootstrap procedure for the Student-
t(s) simulation. Standard errors are in parenthesis. The first iteration is
obtained by specifying the initial threshold level arbitrarily at mg = 1%. The
estimate of ap clearly improves with the iterations, as can be seen in column
1. At the first iteration the value is 4.05 but it increases to 4.66 in the fourth
iteration, however the standard error increases as well. These results are
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fairly typical, in that the estimates of the tail index improve with iterations,
but the standard error increases as well. The reason must be that at m* the
bias and standard error are inversely related. In our experience, no further
improvement can be expected beyond the fourth iterations in most cases.
We report the bootstrap tail index, ai, in column four, and the second order
term, §,, in the fifth column. We see that both of those estimates improve
with iterations and are getting closer to their theoretical values. Only about
80 A's out of 100 are positive.

The final result of the simulation is reported in Table (3). The tail index
estimate & is 4.66 which has to be compared to the true value of 5. Our
procedure predicts a value for the maximum order statistic in a sample of
20,000 as 11.4, which is close to the theoretical value. We regard this result
as being close for the following reason. From the simulations the average
value of the maximum order statistic, Xmax, was 12.97 with standard error
3.65. The maximum order statistic is a simple estimate of z,/,. But due
to its large variance, it is clear that the extreme value method provides a
considerable improvement. The out-of-sample prediction for the maximum
order statistic on an imaginary sample of size 60,000 is 14.68, compared with
a theoretical value of 17.01.

Table (4) reports summary results from simulations of several distribu-
tions. We generated 250 samples of size 20,000 for each distribution, and
applied our procedure to the estimation of the tail index, & and the out-of-
sample quantiles, 3, for an imaginary sample of size 60,000. The a estimates
for the Student-t improve with lower a, the thicker the tail the better the es-
timates. In the case of the extreme value distribution, our method does quite
well in estimating the tail index. For the ARCH distribution, we also find that
the thicker the tail the better our method performs. For the ARCH(a=3.17) we
get an estimate of 3.13, but for ARCH,—g 36) the estimate is only 6.74. The
quantile forecasts for an imaginary sample of 60,000, §sn, or three times the
original sample size, are in all cases close to the theoretical values, g3,. How-
ever, the standard error and root mean squared error are high, especially for
the thick tailed data sets, the Student-1(1) and extreme(1l). The theoretical
quantiles are not known for the ARCH distribution.

3.2 Olsen Data Set

The Olsen data set comprises one year of data on three forex contracts: Yen-
DM, Yen/USD, and DM/USD. The Olsen company continuously tapes bit
and ask quotes; here we use logarithmic middle price quotes. These data are
first automatically filtered by the Olsen company in order to remove data
processing and transmission errors; a description of the type of data set is
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given in Muller et. al. (1990). The filtered data were turned into standard
return data as follows. Single second return data were created by taking
the log difference between two consecutive quotes and dividing by the time
difference in seconds. The few quotes that occurred in the same second, were
artificially assumed to have happened in two consecutive seconds. Because
several authors argue that the data on a higher frequency than 10 minutes
behave differently from data with a frequency of 10 minutes or less, we also
constructed 10 minute return data. This was done by dividing the time axis
into equal slices of 10 minute intervals. The data were the searched to see
whether a new record was entered in an interval one minute surrounding the
endpoints of the 10 minute intervals. If some were found, the quote closest
to the exact endpoint was used to construct the 10 minute return. If no
new record was entered within the one minute interval, linear interpolation
was used to construct an artificial 10 minute return. Recalling the inequality
in (3), linear interpolation seems an innocuous procedure for our purposes.
The construction of the 10 minute return data corresponds to the procedure
followed by the Olsen company. Descriptive statistics are given in Table (5).

The large size of the Olsen data set makes it especially conducive to
the bootstrap technique. The subsample size is 10% of the data series, or
5256 for the 10 minute data. The ap was initially estimated by using 1%
of the highest order statistics, and through iteration this threshold level was
improved. Because we are interested in large changes in the exchange rate
in either direction, we analyzed the properties of both lower and upper tails
of the returns. The estimation results can be found in Table (6). The tail
index estimates for either exchange rate hover around 4 at the 10 minute
aggregation level but are close to 3 at the 1 second frequency. These values are
in line wit previous work that used much lower frequency data and concluded
that the fourth unconditional moment is probably just unbounded, i.e. a <
4. Most of the empirical parametric work on the conditional distribution
which proceeds by estimating an ARCH process also comes to the same
conclusion. Comparing the left tail index with the right tail index, the tail
shapes appear to be very similar, suggesting tail symmetry. We see that for
the most frequently traded contract, DM-USD, the tail index appears almost
constant under aggregation, while this not the case for the Yen-USD or the
Yen-DM contracts. This may be due to the infrequent trading phenomenon,
linear aggregation may have removed too many extremes, thereby artificially
thinning the tail of the 10 minute data.

We notice that in every case there is a change from the initial tail index,
ap, to the final estimate, c. In most cases this difference is not large, except
for the 10 minute Yen-DM data, where the difference is 1.28. This indicates
that the threshold level may not matter much in many cases, but in other it
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can lead us astray. The threshold level is in every case considerably lower than
the initial level of 1%. The iterative subsample bootstrap estimates of the
second order tail shape parameter § vary considerably, and the distribution
of f# appears to be bi-modal. It indicates the difficulty of estimating second
order term parameters of an Taylor expansion of a distribution at infinity.

The quantile forecasts are presented in Table (7). We only present results
for the 10 minute aggregated data, the results for the 1 second data are
similar. For each final estimate of o we estimate quantiles, z,, associated
with different probabilities, t. The probabilities are reported as a function
of the sample size, i.e. t = (kn)~'. We have observations on the empirical
distribution function for & < 1. However our procedure is developed for out
of sample forecasts, and since the second order term increases the bias as we
move into the sample the quantile forecasts perform worse for k£ = 0.95 than
for £ = 1.0, or at the largest order statistic.

Concentrating on the DM-USD contract, we see that the probability of
about 1.1% increase in the exchange rate during a single episode of 10 minutes
is about one per year, and we would expect 1.5% upward increase in the
exchange during a single 10 minute interval once every three years. From
the vantage point of risk management, it is of interest to compare these
numbers with those of the Yen contracts. It appears that the Yen contracts,
and especially the Yen-DM contact, is less risky than the DM-Dollar contact.
displaying less extravagant down and up movements.

4 Conclusion

In this paper we study the improvement of conventional tail index and quan-
tile estimator by incorporating an estimate of the second order term of the
tail expansion. The moment estimator advocated here appears to be effective
when it is most needed, i.e., when the tail index estimate is heavily biased.
There is logic behind this result. If the tail index estimate is very precise,
then the first order expansion of the tail shape suffices. In other words, the
second order term contributes little, and is therefore difficult to estimate.
Turning to the Olsen data set, the second order estimates indicated that
the number of order statistics to be used in estimating the tail index should
be lower than the initial 1%. Nevertheless, the tail index values were hardly
affected, and are in line with previous work. On the one hand this may seem
surprising given that the 10 minute and especially the 1 second data contain
so much extra noise over and above the noise that is absent in the more
conventional and lower frequency data sets. This noise is e.g. caused by the
idiosyncracies of the individual trader, and makes these highest frequency
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data unfit for addressing several economic issues. But for the analysis of
extremes this extra noise does not appear to be a devastating vice.

On the other hand, we have the result that the tail index is invariant
under convolution, Feller (1971, VIIL.8). This result is complementary to the
central limit theorem. An appropriately rescaled sum of n i.i.d. Student-t
variates with 3 d.f. is over a wide range approximately normal distributed.
But this does not hold for the tail shape of this sum; the tail shape remains
as it was. Formally, the sum of two regularly varying random numbers with
tail index o, is again regularly varying with index a.

The quantile estimator seemed to perform well, in the sense that the Eifn
estimates are close to the empirical quantile at ¢t = 1/n. On the other hand,
the empirical quantile is not a particularly reliable estimator of T1i/n, and
not to much should be made out of this proximity. The usefulness of the
quantile estimator lies in the fact that it can generate out of sample (P, Q)
combinations. For risk management this means that the trade-off which
exists between crash probabilities and a threshold return is quantified.
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A Computational Procedures

A.1 Monte Carlo Experiments

The Monte Carlo experiments were implemented in C++, using the NAG
library for random number generation. Several thick tailed distributions were
chosen with a range of @ and  values. The same general parameters were
used in the simulation and estimation, see Table (1). Of these parameters
the most important are the number of observations, n and the number of
simulations, S. For each distribution we generated S independent samples
with n observations each, and estimate several parameters. The results from
applying the iterative bootstrap procedure to the Student-t(s are presented
in Table (2), and the final results for the Student-t(s) are presented in Table
(3). Due to space limitations we leave out detailed results for the other
distributions, and only report the alpha and quantile forecast estimates in
Table (4) for a sample of size 3n. The true value is not known for the ARCH
process. Other values of interest are the initial o estimates, the bootstrap
optimal number of order statistics, the 3 estimate, and the number of order
statistics used in the estimation of &. A box plot is used to show the range
of the a estimates for each distribution. See Figures (1 - 3).

A.2 Estimation with the Olson Data Set

We used the Olsen forex data set to estimate the tail index and forecast
quantiles. The quotes were transformed into returns by using the difference
in log averages of bids and asks. We transformed the data into ten minute
and one second intervals. Summary statistics for the transformed data are
reported in Table (5).

We applied our procedure to each data set, and present the results in
Table (6). Results were obtained for both the lower and upper tails of the
sample data. We only report the initial tail index estimate, o , the bootstrap
estimate of 3,, the optimal number of order statistics, m*, and the final tail
index estimate, a.

We used the extreme quantile estimator (8) to obtain quantile forecasts
for a range of probabilities, for the 10 minute data set. See Table (7). The
results for the 1 second data set are similar and can be obtained from the
authors. The probabilities are represented as a multiple of the sample size,
n. The number k indicates that we will forecast the expected maxima in a
sample of size k- n. We know the empirical quantile when k£ < 1 and report
those numbers.
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B Tables
Number of Observations n 20,000
Number of Simulations § 250
Subsample ny 2000
Number Subsamples NS 100
Initial m value my 200
Bootstrap Iterations BI 4

Table 1: Parameters of Monte Carlo Experiment

Iteration ¢ m, m* a By # A >0 Exponent A
1 405 39.07 8l34 390 0.99 80.74 0.31 2.09
(0.28) (13.56) (35.60) (0.32) (0.73)  (6.70) (0.11)  (17.46)

2 4.41 31.00 66.55 4.15 1.13 79.14 0.33 —3.66
(0.54) (17.29) (42.71) (0.51) (0.69)  (6.46) (0.12)  (64.11)

3 4.58 29.43 62.63 4.23 1.18 78.37 0.33 1.27
(0.76) (16.30) (39.48) (0.61) (0.72) (6.73) (0.12) (1.49)

4 4.66 29.73 64.67 4.21 1.20 79.08 0.34 1.54
(0.94) (17.15) (46.00) (0.59) (0.71)  (6.53) (0.11) (3.72)

true value 5 26 T2 5 2 100 .44 1.96

Table 2: Iterative Bootstrap, Student-t(5)

P M Kemx  On om A A>0 #A>0 4
mean 466 64.67 1297 114 1468 042 223  72%  0.85
se.  (.94) (46.00) (3.65) (1.53) (2.51) (14.78) (9.53) 4.55
RMSE (1.00] [46.49] [4.05] [1.55] [3.42] [14.84] [9.50] 468
TRUE 5 72 1118 1118 17.01 196  1.96 2

Table 3: Results, Student-t(5)
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Distribution Tail Index True Quantile Estimation
function of @ & s.e. RMSE g G3n s.e RMSE
t(1) 101 (05  [05] 19099 19146 (5738)  [5726]
t(5) 466 (94)  [L00 1701 1468 (2.51)  [3.42]
t(11) 7.24 (1.52) [4.06 6.71 7.20 (.81) [-95)
Extreme (1) 1.00 (.06) (.06 50000 62831 (19882) [20043]
Extreme (11)  11.01  (.65) (65 272 272 (.09) [.09]
ARCH (3.17)  3.13 (.55) (55 397 (.99)
ARCH (8.36)  6.74 (1.27)  (2.06] 80 (.10)

Table 4: Tail Index and Quantile Foreacasting for Simulated Data
data set Aggregation T Mean Variance Min Max
Yen-DM 10 Minute 52558 —5.13e—6 2.66e—7 —.00678 0.00663
Yen-DM 1 Second 158482 —-9.88¢ —9 7.55e— 11 —.00062 0.00047
Yen-USD 10 Minute 52558 —2.36e—6 3.09¢—7 -—.00842 .010718
Yen-USD 1 Second 567758 ~3.03¢—8 1.39e—9 -—.00185 .001432
DM-USD 10 Minute 52558 2.78e—6 3.13e—7 —.00693 .008626
DM-USD 1 Second 1466945 —1.36e —8 1.42¢e—9 —.00099 .001373

Table 5: Sample Statistics for the Olson Dataset
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Lower Tail Upper Tail
DM-USD
data set 10 Minute 1 Second k Observed Forecast Observed Forecast
Yen-DM Tails Tails 0.95 .0009 .0012 .0009 .0010
Upper Lower Upper Lower 1.0 .0069 .0086 .0086 ,Olgg
G2 3.66 3.56 2.59 2.41 1.5 .0095 .01
ay 3.72 3.60 2.53 2.39 2.0 gigg 8133
By 55 .36 .56 27 gg o o
m* 91 78 679 686 . : TS :
o : 4.2 2. : i
Yen-USD = 1'1['2?15 2 ’I?:ils i k Observed Forecast Observed Forecast
e“‘ 0.95 .0005 .0012 .0008 0011
Uppes Eawer” “Ugger — Lower 1.0 .0084 0087 0107 0105
&g 3.03 3.08 2.85 2.81 1-5 : -0096 - .0118
a 2.89 3.14 2.83 2.79 2-0 '0103 >0128
8 2 1 283 219 25 0108 0136
m* 112 64 2906 2780 3'0 0112 o144
o 3.51 4.40 2.89 2.90 ! 4 e
DM-USD lals tails k Observed Forecast Observed Forecast
Uaper kope  tppe | e 0.95 0008 0012 0008 0013
= = 322 3 1.0 .0068 0074 0066 0062
a 3.28 3.14 3.23 3.24 L5 0082 W6
‘g-l._ 3.28 0.23 37 .23 20 0087 0071
m* 251 114 3055 2075 25 0092 0075
& 3.37 3.93 3.44 3.54 3.0 0096 0077

Jable ¢ ResaleshimheOlken Datst Table 7: Quantile Forecasting. 10 Minute Aggregation
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Figure 3. Box Plots for Alpha Simulation Estimates, ARCH
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