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1 Introduction

Let S be a set of decision situations, and A a set of possible actions that can be taken in

those situations. A behaviour theory is a function
F:85A (1}

ihat associates an action to each possible situation. The set of situations may be e.g.
a class of games, in which case each element of A is a strategy, or S may be a class of
investment problems under uncertainty, in which case the elements of A are amounts
invested.

In economics, the standard approach to constructing behaviour theories is to impose
axioms on the function F that describe intuitive notions of rationality, and then chat-
acterize the set of behaviour theories that satisfy the axioms. Familiar examples are
consumer theory, Bayesian decision theory and game theory, and a commeon theme in all
of them is some form of explicit or implicit maximization hypothesis.

An alternative to the axiomatic approach was suggested by Alchian {1950), Friedman
(1953) and Koopmans (1957), based on the idea of economic survival of the fittest, with
profit maximization as an outcome of competition rather than a premise for it. Koopmans
argued that

If [survival] is the basis for our belief in profit maximization, then we should
postulate that basis itself and not the profit maximization which it implies in
certain circumstances ... Such a change in the basis of economic analysis would
... prevent us, for purposes of explanatory theory, from getting bogged down in
those refinements of profit maximization theory ‘which endow the decision makers
with analytical and computational abilities and assume them to have information-
gathering opportunities such as are unlikely to exist or be applied in current prac-
tice. (Koopmans (1957} pp. 140-141)

A heatiful demonstration of the power of this approach has been given by Latané
{1959), Breiman (1961) and Hakansson {(1971): In a context of investment and capital
accumulation under systematic risk, they show that in the long run, all capital will be
held by those investors who act as if they maximize expected logarithmic utility, period by
period. This result is interesting because it makes no assumptions about the preferences
or motivation of individual agents, and yet produces extremely sharp predictions about
aggregate behaviour. These results have recently been generalized to situations involving
both systematic and idiosyncratic risk by Rebson (1996) in an evolutionary framework.

The recent influx of ideas from biology to economics has had a parallel in computer
science, where it has produced a number of techniques for modelling artificially intelligent

agents of bounded rationality. This toolbox is of great potential value to economists,
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who are concerned with closely related modelling problems. Two examples of successful
ai)i)lications, based on the ?ioneerinﬁ work of Holland S1975?, are Axelrod’s (1987) use of

a genetic algorithm to analyze of evolution of strategies in the finitely repeated prisoners’
dilemma, and Marimon, McGrattan and Sargent’s (1987) study of evolution of a general
medium of exchange in a population of agents modelled as classifier systems.

A recent addition to this toolbox is genetic programming (GP) (Koza 1992), which can
be thought of as a technique for programming computers by natural selection. For our
purposé, cach program is a behaviour rule F; as defined in {1). The genetic programming
algorithm uses a large population of competing rules F; whose behaviour Fi(s) is repeat-
edly computed for randomly selected situations s € § and evaluated to obtain a ranking
of the rules in terms of fitness. Low performing rules are replaced by genetic recombi-
nations of high performing ones, and the process continues until the whole population
converges on some common behaviour rule F, which is then proclaimed the outcome of
the evolutionary process,

The aim if the present paper is to investigate the usefulness of GP as an aid to
studying rational behaviour in settings where the issue of tationality is not clearcut, and
we approach this aim by considering a borderline case: It is a version of the investment
decision problem of Latané (1959), Breiman (1961) and Hakansson (1971), extended to
allow for Knightian (1921} uncertainty, meaning that the agents do not know the relevant
probability distributions,

In Bayesian decision theory, the problem of Knightian uncertainty js dealt with by
supplying the agents with a subjective a priori probability distribution, a likelihood fune-
tion to be used for updating the a priori distribution with respect to new information,
and a von Neumann-Morgenstern utility function which is then maximized given the
available information. The result is a behavour theory which will depend on the parame-
ters of subjective probability distributions, likelihood functions and utility functions. We
show here that GP produces results that are consistent with Bayesian rationality, but
more precise in the sense of leaving fewer parameters undetermined.

We believe that this type of results will be of interest for the following reason: If
GP systematically generates rational behaviour in decision situations where we know
what rationality means, then it is a potentially valuable tool for generating hypotheses
about rational behaviour in situations where the jssue of rationality is less clear—cut, as
in games with more than one Nash-equilibrium.! The setting of investment decisions
under Knightian uncertainty has been chosen because it shares with games the feature
of leaving the agents in confusion about the probabilities they are facing, Whlle still
permitting them to be analysed by conventional methods.

!As shown by Aumann and Brandenburger (1895), it not clear that rational agents will end up in a
Nash equilibrium if the game has more than one of them.



The remainder of the paper is organized as follows: In section 2, we describe the
investment mode!, and in section 3, we give an outline of genetic programming in our

context. Section 4 contains the results, and section 5 concludes.

2 The investment model

Consider an economy operating during time periods { = 1,2...0c, with a set [ :=
{1,...,m} of agents, and two commodities; labour and a perishable consumer good.
Depending on the course of events so far, an agent may own a firm, in which case he is a
capitalist, or he may be an entrepreneur about to start one, or he may neither, in which
case he is a worker. All agents supply one unit of labour in each period, and they prefer
more goods to less.

Let C, denote the set of capitalist—firms when period ¢ begins. Each firm then owns a
prepaid labour contract with one ot more agents, and we denote by w! the total amount
of labour at the disposal of firm i. Each firm produces goods by employing a fraction
&t € [0, 1] of its labour force in a risky technology, which yields either 0 or 2 units of goods
per unit labour input, and using the remaining part 1 - 7} in a riskless technology, which
always yields 1 unit of goods per unit labour input. If we let &; be a stochastic variable
which is +1 in the good state and -1 in the bad state, we may express the uncertain output
gt of firm i in period ¢ as

§ = wi(l + &z)). (2)
If the output of some firm is zero, it goes bankrup! and its owner becomes a worker. A
worker may then choose to spend the next period as an entrepreneur, in which case he
makes a commitment now to start a new firm next period by working full time in it
during that period. The non-bankrupt firms trade their supplies of goods against labour
contracts with the non—entrepreneurs for the next period, which then begins.

Let q: := Tice, ¢) denote the aggregate supply of goods. The aggregate supply of
labour is m — e;, where ¢ is the number of agents who decide in period { to be en-

trepreneurs next period. Assuming perfect competition, the price of goods in terms of

labour is
m = (m - e) /g (3)
and the amount of labour at the disposal of firm ¢ in petiod t + 1 is
Wiy = Mg (4)

Letting B, denote the set of capitalist-firms that go bankrupt in period ¢, and by E, the

set of entrpreneurs, it follows that the set of capitalist-firms in period £ + 1 is

Cl+l = Cj\Bg U Eg (5)
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and that the amount of labour at the disposal of firm ¢ € Cyy, in period t +1 is given by

; (m—egifq ifie C\B,
P = 6
i { 1 ifi € E,. ®

This implies that ;e wi = m for all t, hence wj/m is firm i's share of the total wealth
in the economy at time t.

Let!p: := Pr {g, = 1} denote the probability that the good state obtains in period t.
We assume that the success probabilities P are generated by independent draws from a
uniform probability distribution on [0, 1). The firms however, know neither the success
probabilities nor the probability distribution from which they are drawn. All they observe
is a random number of draws n, from the probability distribution p;, of which g: denotes
the number of good outcomes and b, denotes the number of bad ones.

A behaviour rule for firm i is then a function F{w, g,b), where the investment ratio
7; 1= Fi(w}, g, b)) is the fraction of firm i’s wealth w} which it employs in the risky
technology at time ¢, if it has information (g%, 8)).

The mean behaviour of the population will change over time as a result of (i) changes
in the behaviour rules F; of individual firms, and (ii) changes in the wealth distribution.
Changes in the wealth distribution are determined by (6), while changes in individual
behaviour rules arise through bankruptcy of existing firms, startups of new firms, and
also reorganizations of existing firms. The development of individual behaviour rules
wili be modelled as an evolutionary process by means of a genetic programming (GP}
algorithm that we describe next.

3 The genetic programming algorithm

In order to describe the GP algorithm, we begin with a broad overview and continue
with more detailed descriptions of the basic elements and operations involved. There are
many variants of GP algorithms, see Kinnear (1994} for a recent overview. Here we shall
use a so—alled sfeady-state algorithm with tournament selection, which works along the
following lines:

1. Set t = 6, and generate a population of m firms, each one equipped with an initjal
wealth of 1, and a randomly chosen behaviour rule.

2, Set ¢ :=t+ 1. Randomly select a success probability p, from the interval [0,1], and
generate the information available to each firm. Calculate the investment made by
each firm, and update their wealth using (6).

3. Breed a number of new firms by replacing the behaviour rules of unfit firms with
genetic recombinations of the behaviour rules of fit firms. Fitness is defined as
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accumulated wealth, and the genetic recombinations consist of a crossover operation

involving two rules, and a mutation operation on one rule.
4. Go to 2 unless t = 1,,,.

A behaviour rule plays two different roles in the GP algorithm: On the one hand, it is
a function which determines the behaviour and fitness of the individual (the phenotype
of the individual), and on the other, it has a tree structure which describes its properties
from the point of view of genetic recombination (the genotype of the individual). Figure
1 illustrates these two ways of looking at the same thing for the rule (g — 1)/(w + b).
The figure also shows the rule expressed in LISP prefix notation, which captures the

tree-structure of algebraic expressions better than the usual infix notation.

Phenotype Genotype LISP notation

€9-1)/(w*b) ¢/ -9 1 wbd)

() (+)
@ O ® O

Figure 1: Alternative representations of behaviour rules

In otder to generate the behaviour rules, evaluate them, and perform the genetic re-
combinations, the genetic algorithm uses a number of basic elements that we describe

next:

Terminal set The terminal set consists of the variables and constants of the problem.

In our case, there are three variables, w, g and b, and a set R of real constants.

Function set These are the primitive functions of the problem, for which we take the
four arithmetic operations {+,—,*,/}.

Fitness cases The family of all investment decision problems S constitutes the set of
fitness cases for the problem. Each such problem is a vector (w, g,b), where w is a

non-negative real number, and where g and b are non-negative integers.

Fitness definition In our context, the fitness of an individual firm is simply its accu-
mulated wealth wi.

Interpreter Thisis a function T which operates on the response values of any behaviour
rule F} in any situation s € S to yield an output I(F(s),s). This quantity is the
experimenter’s interpretation of the action taken by behaviour rule £; in situation
s. In our context, we use the interpreter to constrain the actions to lie in the

interval [0,1] by defining T as I{z, s} := max|0, min(l, z]}.
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Using these elements, one can define the following operations:

Rule initialization The initial population of firms is generated by construct{ng m be-
haviour rules at random. To construct the behaviour rule of an individual firm, one
starts with a randomly selected function and recursively builds a tree where the
root of each subtree is a randomly selected function, and each leaf is a randomly
selected terminal.

Mutation To mutate a rule, one selects one of its subtrees at random and replaces it
by a new subtree that is constructed from scratch in the manner just described.

Crossover To cross two rules, one selects a random subtree in each of them and replaces
the subtree of the first rule by the subtree of the second one. This operation

guarantees that the offspring is a syntactically valid tree.

Breeding To breed a new firm from the existing population of firms, cne proceeds as
follows: '

¢ Randomly select 3 firms from the population and rank them in descending
order according to their fitness.

¢ 1f firm 1 is not bankrupt, then replace the rule of firm 3 by a genetic recombi-
nation of the rules of firms 1 and 2. With high probability the recombination
is a crossover of the rules of firms 1 and 2, and with low probability, it is a
mutation of the rule of firm 1. If firm 1 is bankrupt, we replace the behavieur
rule of firrn 3 by a new rule created from scratch.

» If firrn 3 is bankrupt, the newly bred version of firm 3 is a stertup, in which
case it receives an initial wealth of 1. Otherwise, it is a reorganization, in

which case its initial wealth is left unchanged.

The following table describes the main parameters used by the GP algorithm.

Parameter Value Parameter Value
PopulationSize 2000 MaxNewRuleDepth 5
NumberQfPeriods 100,000 MaxRulelength 100
FunctionSet (+,*,—,/) | BreedingRate 4
TerminalSet (w, 9,5, R) | MutationProbability 0.1
RequiredTerminals (g, b} CrossoverProbability 0.9

The GP algorithm is run with a PopulationSize of 2006 with NumberOfPeriods set
to 100,000. As mentioned earlier, each behaviour rule is is an arithmetic expression

composed of functions from the FunctionSet (-, *,—, /) of arithmetic operations, and of



variahles and constants from the terminals from the TerminalSet (w,g,b,R), where R is
the set {i/100.0 | i € {0,...,100}} of real constants.

When a new behaviour rule is generated from scratch, we repeatedly generate new
candidates until we have found one in which the RequiredTerminals g and b are both
present.?. Fot each candidate, we use uniform probability distributions to first select
between the function set and the terminal set; second between the elements of each set,
and third between each constant, if a random constant ® was selected in step two.

The parameter MaxNewRuleDepth restricts the depth of expression trees generated
from scratch to be at most 5, with equal probabilities of generating rules of depths 2, 3, 4
and 5. MaxRuleLength restricts total number of functions and terminals in any expression
tree to be no greater than 100. In each period, we use a BreedingRate of 4 to generate
4 new behaviour rules by genetic recombination: With MutationProbability 0.1, we do a
mutation, and with CrossoverProbability 0.9, we do a crossover.

To select nodes in an expression tree for crossover or mutation, we use a probability
distribution where the probability of selecting a particular node is proportional to the
number of functions and terminals in the subtree starting at the given node.

We conclude this section with a description of the mechanism used to generate infor-
mation about the success probabilities p;. In each period t, we begin by drawing a success
probability p, from the uniform distribution on [0,1]. Next, we draw 200 realizations of
good and bad outcomes from the probability distribution defined by p;, and arrange them
in a vector which we denote by H, and think of as the marimel amount of information
available at time 1.

In order to generate some information for firm i, we first draw a realization nj of
the random variable & := Int(205/@) — 5, where i-is another random variable which s
uniformly distributed on the interval {1,41], and Int(z) is the nearest integer to z. The
information given to firm ¢ is then the pair (g, bi), which consists of the number of good
and bad outcomes among the first n! elements of the vector H,.

The probability distribution for the amount & of information is shown in figure 2
for the first 20 values of n. As can be seen from the figure, we have chosen to focus
on decision situations where the agents know very little about the unknown success
probabilities. For example, there is some 50 per cent probability that i < 4, and some
10 per cent probability that fi =0, in which case the firms receive no information about
the success probabability p;.

2We use Lhis restriction in order to improve the genetic properties of the initial population somwhat,
but do not impose it on behaviour rules that are generated by crossover and mutation.
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Figure 2: Probability distzibution of #

4 Results

In this section, we report the results of two experiments with the GP algorithm on the
investment problem described in section 2. Two cases wiil be considered: In case 1,
all firms have access to the same information every period, and in case 2 they receive
different amounts of information.

4.1 Case 1: Equal information

A typical example of a long-lived and highly fit behaviour rule from aur experiments
with case 1 is the following:

(+ {/ (-GB) (+0.72 (+ (+ B G) (+ 0.93 0.3)30

(« (+ 0.72
¢/ (-6 B)
(+(/ (-6B) (/ (- GB) (+ G 0.96)))
(» (+B
Ce (v (o (o (5 (+ (/ (-~ 6B (/G 0.43)) 0.81) G) W)
W)+ (+ BB WY
(+ (+BG) (* (~GB) (+G (- W (+ 0.58 0.02)2)))1))
- NN
-8wWy

The behaviour of this rule is completely determined by the first line of the expression.
The rest js identically zero, and hence junk from a behavioural point of view.? The whole

3The long sero term in lines 2-0 is quite useful from the reproductive point of view, however: It
increases the probability that a mutation or crossover will leave line 1 intact and Yield an offspring with
the same behaviour as the highly fit parent.



expression therefore simplifies to
g-b
g+b+1.95
Using the interpreter Z(-} to restrict the response value of the behaviour rule to the
relevant interval [0,1], we obtain the rule F{w,g,b) defined by

_g-b
g+b+1.95

Thete are several interesting features to note about the behaviour of this rule: First, it

F(w, g,b) := max{0, }. (7)

never invests anything in the risky technology unless g > &, i.e. unless there is reason
to believe that the success probability p is greater than 1/2, and hence that the risky
alternative yields a higher expected return than the riskless one. Second, a firm equipped
with this behaviour rule has zero probability of going bankrupt, since it never invests all
its wealth in the risky alternative. And third, it invests the same fraction of its wealth
in the risky alternative independently of its wealth.

These features are all representative for risk averse expected utility maximizers, and
the third one strongly suggests constant relative risk aversion. It is therefore natural to
investigate whether the GP algorithm has rediscovered the theoretical results of Latané
(1959}, Breiman (1961} and Hakansson (1971), that long-run survival in a situation with
systematic risk implies maximization of expected logarithmic utility, period by pericd.

In our model, oneperiod expected logarithmic utility is given by

plog(w(l + )} + (1 — p) log(w(l — z)), (8)

and maximization with respect to x yields the behaviour rule
F*(p) == max{0, (2p — }- (9)

However, since our firms operate under Knightian uncertainty, they do not know p, only
the imperfect signal {g,b}. The results of Latané, Breiman and Hakansson do not cover
this case, but if our firms were indeed Bayesian rational, they would be able to figure
out that the success probabilities p; are drawn from a uniform distribution and that p,
therefore has a Beta distribution with parameters n’ = g+ b+ 2and v =g+ L. A
Bayesian rational agent would then conclude that

= g+1

il = o yove

and substitute E|p] for p in the optimal behaviour rule (9). This yields

- _ g—b
F(g,b)—max{o,g———+b+2}, (10)

which is almost identical to the behaviour rule (7) that was generated by the GP algo-
rithm.



In order to investigate the robustness of this result, we did 20 runs wi.th the .GP
a.‘l;ot'lthm] and collected data that describe the behaviour of each population. Since

there is a steady inflow of new firms into the popuiation with a variety of behaviour rules
that for the most part only survive for a small number of periods, we have included in
our statistical measures only those who have survived for 500 periods or mare. For every
period ¢ and run r, the mean behaviour of the population at information state (g,b) is
defined as
Frilg,0) == (1/wee) 3w} Fy (w)0r9,8), (11)
fEVre
where for each time ¢ and run r, V,, is the set of firms that have survived for at least 500
periods, F}, is the behaviour rule of firm 4, w, is its wealth, and wey = Tiew, Wi
We next define the total mean square deviation from optimal behaviour in period ¢
of run r as
. - . . . . . 2
TMS(r, ) := (/) 37 wl, [Fihe, i1y ) — F(g0083)] (12)
1€Vt
where F* is the optimal behaviour as defined defined in (10, (g, b%,) is the information
faced by firm i about the unknown success probability p,,.
Figure 3 depicts the development of the standard deviation from optimal behaviour,
calculated for every 500th period as the square root of the mean of TMS(r,t), taken
across the last 500 periods and across all 20 rounds.

0.22
0.20 1

[=]
—
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concopomo:
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‘WMM

0 10 20 30 40 50 60 70 80 S0 100
1000 periods

Deviation from optimal

SRERESRER

Figure 3: Standard deviation from optimal behaviour across all rounds over intervals of
300 periods (Equal information)

The figure shows that the deviation from optimal behaviour is reduced to its minkmum
during the first 30.000 periods. From then on, it fluctuates within the range 0.02 to 0.04,
with an occasional peak. These peaks occur when some behaviour rule with low risk
aversion hits a strike of good luck and becomes the all-dominating firm of its population
for a limited number of periods.

10



It turns out that on average across all rounds, only some 30 per cent of the total
deviation from optimal behaviour is due to deviation by the mean behaviour of the
population from the optimal behaviour. The remaining T0 per cent is unsystematic
variation due to deviation by individual firms from the mean behaviour of the population.
This is illustrated in figure 4, which depicts the total deviation from optimal behaviour

and its variance decomposition over the last 25.000 periods for each of the 20 runs.
. Devitiondueto | |
™ Mean behaviour ® Individual variation l

t 2 567 8 91011121314151617 181920

' Run number

optimal behaviour

Deviation from

Figure 4: Variance decomposition of the total deviation from optimal behaviour for

individual runs over last 25.000 periods (Equal information)

Apparently, the aggregate behaviour of the population is quite close to the optimal
one for most runs. To see if there were any systematic differences, we calculated for every
500th period ¢ in every round r, the mean behaviour of the population at information
state (g,b), for a set of information states such that the optimal investment ratio is
1/3. As can be seen from (10), this is the case when g = 2b + 1. Figure 5 shows the
mean behaviour of the population for a set of such information states across all runs over
the last 25.000 periods, together with a 90 per confidence band. The confidence band
is caleulated for each (g,b) using the mean behaviour of each run over the last 25.000
periods as one observation, which yields a total of 20 observations.

As can be seen from the figure, the largest deviations from the optimal behaviour
occur for small amounts of information. This is somewhat contrary to what one might
expect apriori, since the firms have more experience with low-information states than
with high-information states. The figure shows that the firms tend to be a little too bold
when they only have a small amount of information, and a bit too careful when they have
more, as compared to the optimal investment ratio, which is 1/3 for each information
state in figure 5.

This type of behaviour is exactly the opposite of the uncerfainty averse behaviour
found by Elisberg (1961) and others in experiments with human decision makers: Real
people tend to prefer known probability distribution to unknown ones, while our artifi-
cial agents seem to have the opposite preference. As can be seen from the figure, this
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Figure 5: Mean behaviour over last 25.000 periods with 90 per cent confidence band for
information states (g,b) such that F*(g,b) = 1/3. (Equal information)

deviation from the Bayesian rational behaviour is not statistically significant in the data
set considered here. However, the phenomenon seems to be quite robust across many
different data sets and with differents variants of the GP algorithm, as long as the agents
have equal information, and it is therefore natural to look for possible explanations.

Some insight can be gained by studying how the firms’ uncertainty attitude changes
over time. To this end, we study their uncertainty attitude at information state (g.0) =
(1,0), by comparing F(1,0) to F(3,1), where F is the mean behaviour of the population.
If F(1,0) — F(3,1) is positive, zero or negative, then F is said to be uncertainty prone,
uncertainty neutral, and uncertainty averse, respectively.

Figure 6 depicts the development of F(1,0) — F(3,1), calculated across all 20 runs,
and across 20 sets of periods of 5.000 periods each. The dotted lines represent a 90 per
cent confidence band calculated for each set of periods using the mean behaviour of each
run over the last 5,000 periods as one observation, which yields a total of 20 observations.

F(LO-F(3,1)
[ =4
g

0 10 20 30 40 50 60 70 80 90 100
1006 periods

Figure 6: Mean uncertainty attitute F(1,0) — F(3,1) across all runs for sets of 5.000
periods. (Equal information)

12



The figure shows that the firms are extremely uncertainty prone during the first
10.000 periods or so of each run. However, there is considerable variation across runs
until uncertainty neutral firms begin take over during the next 10.000 periods. During the
last 75.000 periods, the initial uncertainty proneness has largely disappeared. Most likely,
however, the initial uncertainty proneness is still represented in the genes of the behaviour
rules in later periods, even if it does not necessarily affect their actual behaviour.®. As
long as this genetic material is present in the population, it will continue to produce
some behaviour rules which may be responsible for the weak tendency to uncertainty
proneness in later periods.

Of course, this raises the question of why the firms are so uncertainty prone in the
early periods. To see why, we listed for each run the most fit behaviour rule in periods
{5500,6000, ... ,15000}, and looked for common characteristics of these 200 rules. As it
turned out, more than half of them had an arithmetic structure identical to one of the
following

g—b g—»h g-—b
720 Flgh=T—  Flgb =", 13

where k is one of the constants in R, i.e. a real number between 0 and 1. Tn our sample

Fl(ga b) =

of 200 most fit rules, the constant k was typically in the neighbourhood of 0.5 for rules
of type Fa, and close to 1 for rules of type F3. Note that all rules of these types are
uncertainty prone, in the sense defined earlier.

The reason why these 3 types of rules are so dominant initially, is that their ratio of
efficiency to complexity is very high: The numerator ¢ — b is a precise signal of when
it is profitable to invest in the risky alternative, and the role of the denominator is to
determine how much to invest. Since the whole expression is so small, there is a fairly
small mumber of such expressions, and therefore they have a fairly high probability of
being generated from scratch or by genetic recombination.

Nevertheless, there are a number of other behaviour rules with this structure, and the
question remains why none of them are represented in our sample of most fit rules.

With our sets of functions and terminals, there is a total of 34 distinct behaviour
rules with a numerator of g — b and a denominator consisting of 3 or fewer functions and
terminals. They are listed in table 1, along with sets of values for the parameters ¢ and
b for which the rules face a positive risk of bankruptcy.®

The table shows that among the 34 alternatives, there are only 4 rules that never
face a risk of going bankrupt. Of these 4 rules, number 10 is identically equal to -1, and

hence is completely useless, since it never invests anything in the risky alternative, no

*The behaviour rule with the large zero term on page 8 illustrates how this might occur.

5The routine for evaluating behaviour rule expressions uses an extended real number algorithm in
order to avoid system crashes as a result of ¢.g. division by zero. For example, z/0 = sign(x) - oo and
0/0 = —o0.
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Rule | Behaviour Bankruptcy || Rule | Behaviour Bankruptcy

1 | {g—b)/ig+g) | Never 16 | (g—b)f(g*g) |1=g>b

2 |{g—=b)/(g+b) |g>b=0 17 |(g-b)/(g*b) [g>b=0

3 |(g—8/(g+k) | Never 18 | (g—5)/(gk) | g>b/(1l—k)
4 {g—b)/ib+b) | g>3b 19 [(g=08)/(b*b) {g>b+b

5 [(g—8)/(b+k)[g>2%+k 20 | (g—b)/{bxk) | g>b(1+k)
6 (g—b)/(k+k)|g>2k+b 21 {g—b)/(kxk)|g>b

7 |(g-blg-9)|g>b 22 |(g-b)/(9/9) [g>b

8 [(g-b)/{g—b) |g>b 2B | {g-b)/(g/b) [g>8/(b-1)
9 [{g—-b)f(g-FK)|g>b=0 24 | (g-b)/{g/k) | Never

10 | (g-b)/(b~g) | Never 25 | (g-b)/(blg} |g>b

I [ (g—8)/(b-8) g>b % | (g~-b)/(b/b) |g>b

12 {{g—8)/(b—k) |g>2—k 27 1 {g—b)/(b/k) |g>b(1+1/k)
13 |(g-b)/(k—g) |b>g=0 28 [{(g-b)/(kig) |g>b

14 [(g-b)/(k—-Db) |g>b=0 20 [(g—b)/(k/b) lg>b>1

15 |(g=b/(k—K)|g>b 30 | (g-b)/(k/k) |g>b

3 | {g-8)/g g>b=1( 33 |(g-b)/k g>b

32 | (g—-Db)/b g>2 3 1 {g-b) g>b

Table 1: Simple behaviour rules with conditions for positive risk of bankruptcy

matter how profitable it is do do so. The remaining 3 rules are exactly the ones that
were represented by more than 50 per cent in our sample of most fit behaviour rules.
We therefore conclude that the reason why these three rules tend to dominate the
populations early on, is a combination of simplicity, efficiency and zero bankruptcy risk,
and that the uncertainty proneness which we observe in the early periods is just a by
product of the evolutionary pressure which selects in favour of behaviour rules with these
three features. However, this uncertainty proneness does impose a cost in terms of lost
profits on the firms that host them, and in later periods they are replaced by firms
with more rational behaviour rules. These firms not only behave in a manner which is
consistent with expected utility maximization » they also act as if they were familiar with
Bayesian statistics, despite the fact that they have no way of understanding the nature
of the investment problem and no apparatus for estimating the relevant parameters of
the unknown probability distributions. In the next section, we investigate whether this
result carries over to a situation where the firms receive different amounts of information.
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4.2 Case 2: Unqual information

We now consider the case where the firms still face the same success probability distri-
bution in each period, but in contrast to the previous case, they no longer receive the
same information abont it. Recall that differences in information always imply differ-
ences in amotnts of information, since two firms can only have different information if
one of them has seen everything the other one has seen, plus some additional draws from
the probability distribution p. In any case, it implies that different agents will typically
have different opinions about the profitability of the risky investment alternative. This
introduces an element of unsystematic risk, and one would therefore expect the firms to
develop less risk averse behaviour in this case, as compared to the situation with equal
information.®

To test this hypothesis, we ran another 20 experiments with the same GP-algorithm as
before, except for drawing a seperate information state (g, b}) for each firm, as described
earlier. Again, we want to compare the evolved behaviour with the behaviour rule F*
defined in (10), which was shown to be the long-run survivor in the equal information
case, as predicted by Bayesian decision theory. In the present case, however, there is no
longer any apriori reason for believing that the behaviour rule '~ is still optimal, and we

shall therefore refer to it as the E-optimal behaviour rule.

0 |
L |

Figure 7: Mean behaviour over last 25.000 periods with 90 per cent confidence band for
information states {g,b) such that F*{g,b) = 1/3. (Unequal information)

Figure 7 displays the mean behaviour over the last 25.000 periods across all 20 runs,
for our test set of information states (g,b) for which the E-optimal behaviour is 1/3. 1t
is comparable to figure 5 of the previous subsection. As can be seen from the figure, the
hypothesis that the mean behaviour is generated by the E-optimal behaviour rule can be

%Since expected growth is maximal for risk neutral investors, then if the population is infinite and
there is only idiosyncratic risk, the population will be dominated by tisk neutral investots in the long
run. See Robson {1996) for an analysia of the finite population version of this resull.
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rejected. Except for the low information state (g,b) = (1,0), actual investment ratios are

si niﬁcanﬂ] higher than the E—orimal investment ratio of 1/3, as was to be expected

from the introduction of asymmetric informatjon,

Note however, that the firms tend to be less willing to invest in the risky alternative
at low information states than at high ones. This is the opposite behaviour of what we
got in the equal information case, hence it seems that the introductjon of asymmetric
information has caused a switch from uncertainty proneness to uncertainty aversion.

In order to check the robustness of this result, we did another 40 rung with the GP-
algorithm. In 20 of them, we used a PopulationSize of 1000 and a BreedingRate of 2, and
in the remaining 20, we used a PopulationSize of 4000 and a BreedingRate of 8. We then
pooled all 60 runs and removed those 10 per cent that had the largest total deviation
from E-optimal behaviour across the last 25.000 periods.

r1000 | r2000 | r4000
Mean 0.358 | 0.361 | 0.362
Median . 0.351 | 0.352 | 0.358
Standard Deviation || 0.035 | 0.030 { 0.017
Minimum 0.306 | 0.329 ! 0.344
Maximum 0.449 | 0.441 | 0.401
Count 19 16 19

Table 2: Summary statistics for 3 subsets of experimental data

Summary statistics for the three subsets of observations are given in table 2, based on
the same data as figure 7. Each observation in each of the 3 data subsets consists of the
mean behaviour for the population across the last 25.000 periods on average across the
10 cases in our test set of information states for which the E-optimal behaviour is 1/3.
The main difference between them is that the sample variance decreases with increasing
population size, which shows that the predictive power of the GP-algorithm impraves
with the size of the population.

Figure 8 shows the mean behaviour across all 54 runs on our test set of information
states. As can be seen, the tendency to uncertainty aversion is no longer present in the
extended data set. The mean investment ratio is almost constant across all 10 test cases,
and hence consistent with Bayesian rationality. Moreover, the common investment ratio
is approximately 10 per cent higher than the investment ratio of the E-optimal behaviour
tule, which, as already mentioned, is consistent with the introduction of unsystematic

risk.



Figure 8: Mean behaviour over last 25.000 periods with 90 per cent confidence band for
information states (g,b) such that F*(g,b) = 1/3. (54 runs with unequal information}

4.3 Methodological issues

We believe these results show that Genetic programming can be a useful tool for studying
the evolutionary basis for Bayesian rationality. Although GP does not preduce theorems,
the approach has a number of interesting features that we would like to summarize at
this point.

Observe first that GP yields results at the same level of generality as a conventional
analysis based on profit or utility maximization. In both cases, the outcome of the
analysis is a function F which associates an action F(s) to each possible decision situation
s € 5§ in which the decision maker might find himself. In a conventional analysis, the
function F would be derived from the first-order conditions of one or more maximization
problems, while in GP, it is a result of evolution, but the structure of the results from
the two approaches is identical.

A key aspect of the approach is that individual agents are modelled as rigid rule
followers who do not change their behaviour over time, except through bankruptcy or
reorganization. As in the evolutionary game theory of Maynard Smith {1982), all change
in behaviour takes place at the level of the population, but GP differs from evolutionary
game theory by not requiring the modeller to specify all possible behaviour rules explicitly
ex ante. In GP, new behaviour rules emerge as a result of random recombinations of
behaviour rules that have been successful in the past, somewhat like Schumpeter’s {1942}
view of innovation.

The third point we would like to mention is that the behaviour rules produced by
GP are the result of learning by example, and generalization to the whole space of
decision situations from experience with a finite number of situations. Since the process
of learning and knowledge generalization takes place at the level of the population, GP
differs from other models of knowledge generalization, e.g. case based reasoning (Gilboa
and Schmeidler 1995), where the focus is on the learning process of the individual agent.
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5 Conclusion

fie PUTPOSE Of LIS paper has deen fo mveshgai;e iLe use“u ness oP aenetic programming

as a tool for generating hypotheses about rational behaviour in situations where the issue
of rationality is not clear—cut. To this end, we have tested it on the borderline case of
Knightian uncertainty, where the agents do not know the true probability distributions
or how they are generated.

We have shown that when the agents have symmetric information, the algorithm
systematically generates behaviour which is Bayesian rational, despite the fact that the
artificial agents do not solve maximization problems and have no apparatus for estimating
the relevant parameters of the unknown probability distributions.

When we complicate matters by considering asymmetric information, the evolved
behaviour becomes less risk averse, which is consistent with the unsystematic risk that
is produced by the information asymmetry. Moreover, the behaviour is still consistent
with Bayesian rationality, in the sense of being insensitive to changes in the amount of
information that yield the same expected value for the unknown probability distributions. _

Our interest in Knightean uncertainty is motivated by the fact that this setting is
similar to game-playing situations in that the agents do not know what probability dis-
tributions they are up against, especially in games with more than one Nash-equilibrium.
This is an area where the issue of rationality is still open, and where there is a need for
alternatives to the existing models. It is therefore a natural topic for further research to
study rational behaviour in games, using the same technique that was shown to generate
rational behaviour under Knightean uncertainty.
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