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I. INTRODUCTION

In this paper, we consider the effeqts of uncertain, or "noisy" loss
distributions in several models of decision making under. uncertainty. In
particular, we examine several models of insurance-purchasing behavior and
insurance-market equilibrium; and we show how the addition of noise can alter
several well-known results.

We model noise as part of a two-stage uncertainly. For example, a
location parameter for a particular loss distribution may be unknown. This
represents one stage in the uncertainty, which we label "noise". However,
even with full information about the loss distribution, we still have a random
draw from that distribution to determine the actual loss; which is our second
stage of uncertainty. If fhe noise is actuarially neutral, it effects a
"riskier" loss distribution, where "riskier" is defined in the sense of
Rothschild and Stiglitz (1970). Noise can be localized, such as facing a loss
distribution that is known for small losses, but uncertain for very large
losses (the so-called "tail" of the loss distribution). Noise can alsoc be
uniform throughout the loss distribution, as is the case if white noise
affects the location parameter.

The paper begins by examining the rational purchase of insurance in the
presence of noise. We determine sufficient conditions for noise to lead to an
increase in insurance coverage in two particular cases. If noise affects only
the loss state of a loss distribution with a two-point support (i.e. loss vs.
no-loss), more insurance is purchased in the presence of noise whenever
marginal utility is convex in wealth. In the second case considered, white
noise affecting the location parameter of the loss distribution, a sufficient

condition for increasing coverage is that marginal utility is not only convex,



but is relatively "more convex" at lower wealth levels. Both of these
conditions are formalized using the degree of absolute prudence, -U'''/fU'"',
developed by Kimball (1990), to measure convexity of marginal utility.

The effects of noisy loss distributions on two well-known models of
insurance market equilibrium in the presence of adverse selection are
considered next: the Rothschild and Stiglitz (1976) type of Nash equilibrium,
and the subsidized equilibrium of Miyazaki (1977). In general, the addition
of noise is seen to lessen the disparity in coverage between good risks and
bad risks that is usually observed in equilibrium, although it does so at a
cost of reduced welfare due to residual noise. The noise also reduces the
likelihood that equilibrium exists in the Rothschild/Stiglitz model.

Finally, we examine a contract design that allows the individual teo
choose a mixture of a fixed-premium contract and a "pooling" arrangement in
which a particular risk pool (often called a "cohort") is either paid a
dividend or assessed an additional premium based on the actual loss
experience within the group. We show how the optimal contract design always
includes full insurance along with some degree of pooling.

The paper is organized as follows. Section II models the insurance-
purchasing decision in the presence of noise. In sections III and IV, we
consider the effects of noise in insurance markets with adverse selection.
Section V examines contract design and section VI contains some concluding

remarks.

II. RATIONAL INSURANCE PURCHASING
Consider a risk-averse individual with preferences represented by the
twice continuously differentiable von Neumann-Morgenstern utility function of
final wealth, U(Y), where U'>0, U"<0. The individual has an initial nonrandom

wealth of W, which is subject to a loss. Let L denote the random loss. To



protect against loss, the individual may purchase insurance against a loss by
specifying the proportion, &, of the loss that is to be indemnified by the
insurance company. We assume that the indemnity itself is noiseless--the
promised indemnity is paid by the insurer following a loss (see Doherty and
Schlesinger (1990)). The premium for this coverage is given by w=qgP, where
P=(1+A)E(L) is the premium for full coverage, &=1. If A=0, the premium is
called "actuarially fair." Noise is added via the introduction of the random
variable A, E(l'L) = 0 YL, where E denotes the expectation operator. Total
damages for a loss are assumed to be L+A, which by construction is riskier
than L in the sense of Rothschild and Stiglitz (1970). We also assume that
the insurance contract bases the indemnity on the realized loss, i.e. the
indemnity is a(L+A). For example, most property insurance is written on a
replacement cost or depreciated replacement cost basis. In this setting, A
might represent the uncertainty associated with an item's replacement cost.
Note that the purchase of insurance also mitigates the effect of noise, and
there is no residual noise if a=1. We consider two particular specifications
of noise.

First, suppose the loss distribution has a two-point support such that
L=0 with probability (1-p) and L=D with probability p, D>0, O<p<l. We further
assume that A is identically zero if L=0, but that A is nondegenerate with

E(A|L)=0 when L=D. Expected utility is given by
(1) EU = (1-p)U(V-ap)+pE{u[v-aP-(1-00) (D+n) ]}.
The first-order condition for maximizing (1) is

(2) dEU/da = -(1-p)PU*(V-aP) + p(D-P)E{U*[v-a-(1-a)(D+A) ]}

+ p Cov{A,u[vV-ap-(1-a) (D+A) ]] = 0.



The second-order condition is easly verified. It is straightforward to verify
that a* = 1 [&*<1] if X = 0 [A>0], which is a well-known result of Mossin
[1968] results to include a noisy loss size.

If A>0, the level of insurance coverage generally can be either higher
or lower with noise than without noise. Note that the addition of noise adds
the third term to right-hand’ side (RHS) of (2). This term is positive for
<1, reflecting the added benefit of insurance's protection against the risk
A. However, noise also affects marginal utility in the second-term. This
effect will also be positive whenever marginal utility is convex. Such
convexity is a sufficient condition for a precautionary savings motive, as
shown by Kimball [1990], and follows for example under nonincreasing absolute
risk aversion. Consequently, U' convex is sufficient to increase the demand
for insurance in the presence of noise.!

As a second case, we consider a more general distribution of L (either
discrete, continuous or mixed) and we assume that A is independent of L, with

E(A)=0.
Expected utility in this case is

(3) EU = E[U[ULGP—(I—G)(L+A)J}.
The first-order condition for maximizing (3) is

(4) dEU/da = - PE[U' ] + E[ (z+a)u'] = 0.

1lf we add the constraint (20, no insurance will be purchased for high encugh A. For expositional ease,
we assume that A is not so high as to preclude the purchase of insurance.



The second-order condition is easily verified, If prices are fair, we have
(5) dEU/da& = Cov [(L+A),U'] = o,

which verifies Mossin's result that full coverage is optimal. Similarly, it
is easy to verify that if A>0, less than full coverage is optimal.?

Once again the optimal level of partial coverage whem A>0 generally can
be higher either with or without noise in the loss distribution. However,
convex marginal utility is not sufficient to resolve the ambiguity in this
setting. Instead, we need to guarantee that marginal utility is more convex
at lower wealth levels, where increased coverage would be a benefit through a
higher net indemnity; and that marginal utility is relatively less convex at
higher wealth levels, where the net effect of increased coverage is a lower
final wealth due to the higher premium. This leads to a relatively higher
subjective valuation of the net benefit (in terms of marginal utility) and
lower valuation of the net cost associated with an increase in coverage when
noise is present. This condition on marginal utility is satisfied whenever
preferences exhibit standard risk aversion, as defined by Kimball (1991).3
Arguments as to why this property is a natural extension of decreasing

absolute risk aversion are given by Kimball (1991).

z‘ru avoid dealing with negative values of L+A, we assume that the support of L has a lower bound exceeding

zero and that the lower bound of the support of A does not exceed this level in absolute value.

Standard risk aversion implies that “any risk that makes a small reduction in wealth more painful also
makes any undesirable, statistically independent risk more painful.® (Kimball 1991, pg. 2]. It is
equivalent to decreasing absolute risk aversion and decreasing absolute prudence, where the latter measure
is -urrrjurt, 1t also implies the weaker property of proper risk aversion, developed by Pratt and
Zeckhauser (1987).



Our main results can be formallized as follows.

Proposition 1: Given a positive premium loading, A>0, a sufficient condition
for mere insurance to be purchased in the presence of noise in the loss
distribution is

( 1) marginal utility convex if noise affects only the loss state in a

two-state model.

(ii) standard risk aversion if the noise is "white noise."

Proof: (see appendix)

III. ADVERSE SELECTION: THE ROTHSCHILD AND STIGLITZ MODEL

In this section, we look at how a noisy loss distribution affects
equilibrium in a competitive insurance market with asymmetric information. 1In
particular, we consider the now classic model of Rothschild and Stiglitz
(1976). Consider a simple two-state world in which a leoss of size D occurs
with probability p and no loss occurs with probability l-p. As in the first
part of section II, we introduce noise only in the loss state, so that the
"noisy loss" is represented by D+A, where E(A)=0. Since adding A to D induces
a mean-preserving spread of the loss distribution, expected utility in the
presence of noise will be lower for every level of insurance, with the
exception of full coverage. This has the effect of making indifference curves
more concave in m-g space as illustrated in Flgute 1. [See Wilson (1977).]

In Figure 1, the indifference curve labeled I1 depicts all of the
combinations of premia and coverage that yield expected utility identical to
no coverage when no noise is present. Indifference curves are concave due to
risk aversion. The fair price line in Figure 1 represents the premium

schedule m=xpD. The figure illustrates the well-known result that the cptimal



level of coverage is full coverage (o*=1) when the price is fair, and the
level of expected utility attained is the level assocliated with the insurance
contract E, on the indifference curve labeled Iz.‘

Now suppose we introduce noise in the loss size, D. Following the
purchase of insurance, the residual noise in the final wealth distribution in
the loss state is -(1-oa)A. Thus, if full coverage insurance is purchased
(x=1), there is no residual noise and hence no change in expected utility.
However, for u+1 residual noise leads to a lower expected utility for each
insurance contract. Hence, the indifference curve through E in the presence
of noise lies everywhere below E except at E itself. This is depicted as I’
in Figure 1. Note that contracts along the locus I,' in the presence of noise
Yield same expected utility as contract; along the locus I, in the absence of
noise.

We now suppose that there exist two types of individuals, who differ in
their loss probabilities. The good risks have loss probability Py and the bad
risks probability Py Where p§<ph. Insurers know both probabilities, but
cannot observe the probabilty-type of any particular individual. Both types
of individuals face the same noise. One possible scenario is that people are
actually heterogeneous with regards to their loss sizes. Consumers know their
own loss probability, but know only the average loss size, D, and the
distribution of loss sizes, D+A. If uncorrelated between individuals, this
type of noise is diversifiable by the insurance company, which by the law of
large numbers can treat all losses as worth D (assuming, of course, that the
insurer also believes E(A)=0). However, consumer behavior would be affected

by the noisy loss size. This behavior is taken into account by the insurer.

‘This is easily derived by fixing expected utility and calculating the marginal rate of substitution o for
T. For details using this graphical representation, the reader is referred to Wilson (1977).



We consider first the Nash separating equilibrium of Rothschild and
Stiglitz (1976) for a competitive insurance market. This is illustrated by
the policy pair (B, C) in Figure 2, for the case without noise. In this
equilibrium, the bad risks fully insure at a bad-risk fair price, at contract
B. Insurance at a good-risk fair price is offered only in the limited

quantity, o&_, and thus good risks self select contract C. Bad risks are on

et
indifference curve I, and good risks on I.. We note that, as drawn in Figure
2, the Rothschild/Stiglitz separating equilibrium does exist since the pooled
price line lies everywhere above the good-risk indifference curve, IG;

Now consider the introduction of a noisy loss size. The bad risk
indifference curve through B would shift to I'. Given our discussion of
Figure 1, it is easy to see that a new Rothschild/Stiglitz separating
equilibrium would entail the pair of contracts (B, C') in Figure 2, if the
equilibrium exists. At such an equilibrium, there is less of a .penalty
imposed on the good risks, in that they are allowed to purchase a higher level
of coverage, a.., at a good-risk fair price. However, the noise doés more
harm than good as we show next.

Consider the change in welfare when noise is introduced. The bad risks
retain contract B (which has no residual noise) and so their expected utility
does not change. Consequently, contract C without noise and contract C' with
noise, which are both indifferent to contract B, would yield the same expected

utility to bad-risk individuals. Denoting the premium and coverage changes

between contracts C and C' as An and Ax respectively, this implies

srhis condition requires there be a sufficient proportion of bad risks. If the pooled-risk price line
intersected Ige then it would be possible to offer a single contract that would be preferred by both types
of consumers and would earn an expected profit. In such a case, no equilibrium would exist. See Rothschild
and Stiglitz (1976). We also note that insurance purchases are assumed to be perfectly observable, so that
good-risk individuals cannot make multiple purchases to achieve more coverage. See Hellwig (1988) for a
discussion on relaxing this assumption.



(6)  (1-pp)[U(W-m)-U(W-n—An)] = p (EU[W-m-Am-(l-a-Ax)(D+A)]-U[W-m-(1-a)D]}.

Since individuals are identical except for their loss probabilities, the left-
hand side of (6) is easily seen to be strictly greater than the right-hand
side if Py is replaced by Pg- This implies that expectea utility for the
good-risk individuals is higher with less coverage at C and no noise, than at
C' with more coverage at a fair price, but with noise added. Hence, the
addition of noise to the loss size leaves the bad-risk individuals with no
change in utility while lowering expected utility of the good risks.

The addition of noise also affects the existence of a separating
equilibrium. This is easily illustrated using Figure 2 once again. When no
noise is present, then for good-risk individuals, the full coverage contract
labeled F is indifferent to the partial coverage contract C, as drawn in
Figure 2. We also know that contract F will yield the same level of expected
utility to good-risk individuals with or without noise. However, as we have
just shown, contract C' with noise is less preferred than contract C without
noise. Thus, contract C' is less preferred than contract F when noise is
present. Consequently, contract C' must lie to the left of the indifference
curve through contract F in the presence of noise. In particular, the
indifference curve through contract F in the presence of noise, labeled IG' in
Figure 2, defines some contract C" to the right of C' on the good-risk fair
price line. This means that the good-risk indifference curve through C' in
the presence of noise (not drawn in Figure 2) must lie everywhere above I,
In particular, it may lie partly above the pooled-risk price line, in which

case a Rothschild/Stiglitz separating equilibrium would not exist.
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The results of this section are summarized in the following proposition:

Proposition 2: In a two-state Rothschild-and-Stiglitz adverse-selection
model, the addition of noise to the loss size will
( i) decrease the signalling cost to the good-risk individuals in the
sense of allowing them to obtain a higher level of insurance coverage.
( ii) decrease Societal welfare since good-risk individuals are strictly
worse off, while bad-risk individuals are no better off.
(iii) decrease the likelihood of an equilibrium. In particular, noise
will raise the critical (i.e. the minimum) proportioen of bad-risk

individuals needed to ensure the existence of an equilibrium.

IV. ADVERSE SELECTION: THE MIYAZAKI MODEL

The Nash equilibrium concept used by Rothschild and Stiglitz (1976) has
been criticized by Wilsoen (1977), Miyazaki (1977) and others as being "too
myopic" in the sense that each insurance firm assumes that the set of
contracts offered by its rivals is independent of its own actions. Wilson
(1977) assumes that insurance firms will take the reaction of rival firms into
account and will not offer a contract if they cannot make a profit follewing
the elimination of unprofitable, rival-firm contracts from the market place.
In Wilson's model, an equilibrium always exists. Miyazaki (1977) extends
Wilson's equilibrium concept by allowing for subsidies between the good-risk

and bad-risk individuals.®

Miyazaki shows that his equilibrium always exists and is a unique,
separating equilibrium. An example of Miyazaki's equilibrium is illustrated
in Figure 3. The locus of contracts on the curve passing through C, N, E and

D defines a set of good-risk contracts which could be offered by the insurer,

6Mi\«azaki does not consider an insurance market per se, but his model is essily adaptable. See, for
example, Spence (1978).
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together with full insurance to the bad-risk individuals at a subsidized
price, which together earn a zero expected profit and which leave the bad-risk
individuals indifferent between full insu;ance and the good-risk contract.
For example, the potential Rothschild/Stiglitz equilibrium pair (B, C)
satisfies these properties. The policy pair (M, N) represents another such a
set of contracts. For this pair, the bad-risk individuals purchase full-
coverage contract M, which loses money, but the good risks pay a premium
loading, (i.e. a subsidy) to obtain contract N, which earns enough money to
net the insurer a zero overall expected profit. Note also how this pair of
contracts induces consumers to self select the appropriate contract. The bad
risks are indifferent to M and N, while the good risks strictly prefer
contract N. Another such contract "pair" is the pooling contract pair (D, D),
which lies on the pooled-risk price 1line and fully insures everyone. of
course, as drawn, none of the contract pairs illustrated above would support
an equilibrium. The Miyazaki equilibrium occurs at the contract pair (F, E).
With contract E, the good-risk individuals achieve their highest expected
utility (on indifference curve In) among their zero-profit alternatives. At
contract F, the bad-risk individuals can reach indifference curve Ig3. Note
that both good-risk and bad-risk individuals are better off in a Miyazaki
equilibrium than in a Rothschild/Stiglitz equl.].j.brj.um.‘IIr

If we now introduce noise in the loss size, indifference curves will
become more concave, as discussed earlier. The zero-profit set of contracts
for the good-risk individuals will now be those on the locus containing C', N'
and D, as illustrated in Figure 4. Thus, for example, (M, N') will replace

(M, N) as a zero-profit pair. Of course the pair (M, N) still earns zero

7\& should mention that the locus of zero-profit separating contracts for the good risks, CNED, need not be
convex. If the most prefered good-risk contract is not unique, equilibrium will occur at the most prefered
good-risk contract with the lowest subsidy. See Miyazaki (1977, p. 411).
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expected profit, but it does not induce self-selection. Note that N and N'
are the same distance above the good-risk fair price line, indicating the same
subsidy. When the bad-risk individuals receive contract M and noise |is
present, the good-risk individuals are offered a zero-profit chqice along Inz'
rather than Isz‘ Thus, the good risks can purchase a higher level of
coverage, which in turn implies that a lower subsidy per unit of coverage is
needed to cover the had-ris% losses. As drawn, the Miyazaki equilibrium in
the presence of a nolsy loss size entails a good-risk contract along the locus
of contracts drawn containing C', N' and D. The following results are

obtained (proofs in the appendix):

Proposition 3: In a Miyazaki equilibrium in the presence of noise:
(i) the good risks are strictly worse off than without noise,

(ii) the bad risks are no better off than without noise.

Proposition 4: The subsidy paid by the good risks per unit of coverage in
a Miyazaki equilibrium is lower in the presence of loss-size nolise.

Thus, we see subsidy results and welfare results similar to those
occurring in the Rothschild/Stiglitz model, except that bad risks might be

adversely affected by noise in the Miyazaki model.

V. CONTRACT DESIGN
It has been shown that mutual insurance companies in which policyowners
can share in the aggregate loss experience of the risk pool, are preferred in
insurance markets where individual loss exposures are correlated.a In this

section, we decompose an individual's risk of loss into two components: one

Ysee Marshall (1974), Doherty and Dionne (1989) and Smith and Stutzer (1990). We also note that there are

several types of real-world participating contracts, some of which differ in their timing of premiums,
dividends and assessments. In our static model, the timing of premiums, assessments and dividends is
irrelevant. The important feature is that the final premium is based upon the pooled loss experience, which
is not known at the time the insurance-purchasing decision is made.
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independent of other individuals' loss distributions and the other identical
for all individuals. This enables us to use our results on noise (from
Proposition 1) in addressing the issue of coqtract design.

The type of contract we have in mind is one in which the insurer charges
a premium based on loss expectations. However, if the aggregate loss within a
risk pool is lower [higher] than predicted, policyholders are paid a dividend
[charged an extra premium assessment]. Such contracts, which are called
"participating contracts," are relatively routine for mutual insurance
companies and alsco exist for some stock companies. Admittedly, many contracts
will have limits on dividends and/or assessments. For example, a contract
paying only dividends but not charging assessments is essentially a
participating policy issued jointly with a call option whose payoff equals the
assessment. Also, an imperfect proxy for a participating policy can be
assembled by purchasing insurance from a stock insurance company that pays
shareholder dividends and simultaneously buying shares of the company's stock;
"imperfect" due to the influence of factors other than underwriting profit on
the insurer's stock dividends, and due to the fact that even the underwriting
profit itself depends on multiple books of business. Although limitations on
dividends and/or assessments as well as proxy contracts are interesting, they
are beyond our scope here and we will assume no limitations on policy
participation.

Consider a risk class with n seemingly homogeneous individuals.”? Each
individual faces the same loss distribution with the same noise. The full-

coverage premium, which is random ex ante, is given by

(7) P = (1-B)(1+X)E(L) + BS

glNoise might cause a heterogeneocus group to seem homogeneous.
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where
B = weight on participation component and

S = E(L;+A;)/n = average pooled loss.

The individual choosing coverage level & pays a(1+A)E(L) up front and has an
assessment of aB[S-E(L)] after S is realized (where a negative assessment
denotes a dividend). As before, A is the premium loading and E(A1}=0 for
each individual, i. We assume that the L; are independent and identically
distributed.'® The weight is restricted, 0SB<1. When B=0, we have a standard
fixed-premium contract and when =1 we have full participation. We assume
that the risk pool is wvery large; in the limit ns=ee,

To illustrate the importance of the noise variable A, consider liability
insurance; From their loss records, insurers may be able to estimate the loss
distributions for a given class of policyholders and make this information
public. However, settled claims will have been made against 1liability
standards that prevailed in the past. There remains the ever present prospect
that the liability rules against which new claims are resolved may change
through new precedents or new legislation. There is 1likely to be much
uncertainty in estimating the effects of the changing 1liability rules.
Moreover, the effect of any rule changes is common over groups of
policyholders. For example, a legal precedent which extends the common law
liability will apply to all subsequent suits in the same jurisdiction, unless
overruled by a higher court. In effect, the noise factors, A's, are

positively correlated across policyholders. This feature has been seen as

TUFor simplicity, we assume that the premium loading is zero for the participating component, 5. We only
need to assume that the fixed-premium loading exceeds the loading on S to obtain similar results. [f the
noise risk has a price in a competitive market, we would expect the loading to be lower for the contractual
form in which the consumer bears some of the noise risk.
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central to the recent liability insurance crisis (see Priest (1987), Doherty,
Kleindorfer and Kunreuther (1990) and Winter (1988)).

We consider the case where there is a perfect positive correlation
between the individual noise terms. In particular, individuals are truly
homogeneous with random loss Li+ai’ where a;=a; for all individuals i and j,
but where a; is not known with certainty. Rather, a; is known to be generated
by the random variable A. In a large risk pool, the average risk associated
with the L; will vanish but the risk associated with the noise A will remain.
The average pooled loss is SsE(L)+A.

In this setting, the full insurance premium as given in (7) is P =
[14(1-B)X]E(L)+BA. Note that if we restrict B=0, we revert to the standard
model with noise, from section II, with a*=1 if A=0 and a*<l if Ai>0. More

generally, final wealth can be written as

(8) Y = W - al1+(1-B)AIE(L) - (1-a)L - [1-(1-8)a]A.

First-order conditions for expected-utility-maximizing choices of o and B are

(9) 3EU/3a = -[1+(1-B)X]E(L)E(U") + E[(L+(1-B)A)U"]

= Cov(L,U")-(1-B)[AE(L)E(U’)-Cov(A,U’)] = 0.

and

(10) BEU/8B = alE(L)E(U’) - aE(AU’) = a[XE(L)E(U’) - Cov(A,U’)] = 0.

If the fixed-premium component of the contract is fair, k=0, then it is
straightforward to show that (a*=1, B*=0) is the optimal (&, B) pair. Since
the fixed-premium contract has a zero loading, there is no advantage to

combining the fixed premium with the participating component. Indeed, by
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setting B*=0, the individual eliminates the average noise risk completely and
is left with the certain final wealth, Y = W-E(L).

However, in an efficient market, it is reasonable to assume that the
market will not reward an insurer for holding a diversifiable r}sk, the L;:
but it will assess a risk loading for bearing the risk of the correlated noise
terms. Hence, the insurer will charge a risk loading, A>0, on the portion of
the insurance contract for which it bears the noise risk. If x>0, then B*>0.
To see this, set B=0 and solve for the optimal level of coverage in this
setting, o*. Given the first-order condition for the 1level of coverage,
equation (9), and the results of section II (i.e. a*<l), we must have
Cov(L,U')>0 and hence AE(L)E(U')-Cov(A,U')>0. But this implies 9EU/8B>0 and B
should increase. However, if we now allow B to increase to its optimal level,
then from (10) either 3EU/8B=0; or 9EU/8B>0 and B*=1 as a constrained optimum.
In either case, substituting this result back into equation (9) obtains
9EU/8a=Cov(L,U’)=0; which implies that o*=1. We have, therefore, established

the following result:

Proposition 5: For a large homogeneous risk class (n==) with pe}fect
positive correlation of the individual noise, the optimal joint coverage level
and premium weight satisfy:

( i) &*=1 (full coverage)

(ii) PB*=0 if k=0 and B#*>0 if A>0.

Given the results of Proposition 5, final wealth in equation (9) is Y=W-
E(L)-[(1-B)AE(L)+BA]. We can interpret the results of Proposition 5 by
considering the effect on the two risky variables the individual faces, Li
and A. If the individual were to buy full coverage and set f=1, the risk Li

would be eliminated at a fair price (replaced with E(L)), but the risk of A
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would remain. However, by adjusting B, the individual has a control for the
risk in A.

The premium weight in the above setting affects final wealth through an
additive term, B[AE(L)-A]. It thus becomes clear that B*=0 when A=0 and B*>0
when A>0. If the riskiness of A, in the sense of Rothschild and Stiglitz
(1970), were to decrease, B* would rise if A>0. Indeed, if left
unconstrained, B* — e as the risk vanishes. On the other hand, if the level
of noise increases (i.e. a riskier A), then B* will fall. O0f course, when
beta is constrained not to exceed one, it is possible that B* remains at one

for changes in the noise level. More formally,

Corollary: If 0<f*<l for a given noise distribution A, then an increase

[decrease] in the level of noise will cause B* to fall [rise].

¥I. CONCLUDING REMARKS

This paper has examined several effects of noisy loss distributions in
an insurance market. Noise in the size of a loss, in a simple two-state
model, was shown to increase the demand for insurance if consumers were
"prudent.” For more general loss distributions, the condition of standard
risk aversion was seen to be sufficient to conclude that noise in the loss
distribution increases the level of insurance coverage.

For competitive insurance markets with adverse selection, noisy loss
distributions were seen to be have an impact on market eguilibrium. In the
Rothschild and Stiglitz (1976) equilibrium model, noise was shown to enable
the good risks to purchase more coverage, to decrease overall welfare, and to
lessen the likelihood of an equilibrium's existence. For a Miyazaki (1977)
type of equilibrium, in which the good risks subsidize the bad risks, the rate

of the subsidy was shown to be lower; but with an accompanying decrease in
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overall welfare. Of course, several other equilibrium concepts are possible
as are other types of asymmetry of information. Noisy loss distributions will
clearly affect equilibria in these markets, althqugh such effects are beyond
our scope in this paper.

Finally, we examined contract design in the presence of noise. The
contract examined allowed for a mixture of a fixed premium and a
dividend/assesment component. Even if a large risk pool can reduce the
average risk of loss, noise risk remains a significant concern if the
individual noise levels are correlated with one another. For the case
examined, full coverage was always optimal and the individual adjusted the
level of dividend participation to control the overall noise level.

Naturally, the consequences of noisy loss distributions extend well
beyond those examined here. Given the pervasive effects of noise in the
models considered in this paper, we hope that including the consequences of
noisy loss distributions in other settings will lead to more robust models of

insurance-purchasing behavior.

APPENDIX
Proof of Propositiom 1:
Since (i) was shown in the text, we provide here a proof of (ii).

Define the derived utility function, V, as follows

(A1) V(X;a) = EU[X-(1-ax)A], T

vhere X is some deterministic level of wealth. As in Kimball (1990), define
the precautionary premium for the random wvariable (l1-a)A when initial wealth

is X as ¥(X,(1-a)A), where ¥ satisfies

(a2) V/(X;a) = dv/dX = U’ (X-¥).
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Now,
(a3) V' (X;a) = (1-d¥/dX)U"(X-¥).
Since prudence implies ¥>0 and decreasing prudence implies

d¥/dX<0, we obtain the following inequalities:

-V (X) -u"(x-¥) -ur(X)
(A4) — > T > e

¥/ (I) U’ (x-¥) U’ (x)
where the second inequality follows from decreasing absolute risk aversion.
Consequently, V is a more risk-averse function than U. This implies the

existence of an increasing, concave function g (g’>0, g"<0) such that V(X) =

glu(x)] V¥x.

Now, the first-order condition (6) can be written as,

(A5) dEU/dax = -PE(U’)+E[LU’J+E[AU’] = [(-P+L)V’(X)dF(L)+Cov(A,U’) = 0

where X = W-aP-(l-a)L. If there is no noise, A=0, then the first-order

condition reduces to I(—P+L)U’(I)dF(L) = 0, which is assumed satisfied at a*.
Now, since utility can be altered via an affine transformation, we can

assume without losing generality that E[V’(X)] = Ig'[U(X)]U'(X)dF(L) =

E[U’(X)]. Consequently,
[(—P+L)v’(x)dF(L) = J-Pewyg’ LU0 JU7 (X)aF(L) - E(-P+L)E(g’U’)+Cov(L,g’U’).
The first term in this last expression equals -Cov(L,U’) when a=a* by the

first-order condition in the noiseless case and our assumption that

E(g’U’)=E(U’). Now Cov(L,U’), Cov(L,g’U’) and Cov(A,U’) are zero when o*=1
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and positive when a*<l. Since g is concave, we also have in the case where
a*<1 that Cov(L,g’U’)>Cov(L,U’). Since a@*<l when A>0, it follows from (A5)
that dEU/do>0 when evaluated at a* with noise. Thus the optimal level, a**,
should be higher. .

Q.E.D.

Before proving Proposition 3, we first establish the following lemmata.

Lemma 1: Let X represent "an insurance contract without noise and Y a
contract with noise such that both X and Y have the same premium. Then X”GY
if and only if X=g¥Y ,where “”i" represents indifference for type-i

individuals.

Proof: Since X and Y have the same premium, both types of individuals are
indifferent to these contracts in the no-loss state. Therefore, X”iY for i=B
or G implies we must also have indifference in the loss state. Since both

typeﬁ have identical preferences, the lemma follows.
Q.E.D.

Lemma 2: Let X be a contract without noise on the good-risk set of
subsidizing contracts for the Miyazaki model; i.e. X is a contract along the
CD locus in Figure 4. Let Y be a contract with noise along the set of
subsidizing contracts with noise; locus C’D in Figure 4. Then X”BY if and

only if X and Y generate identical expected profit for good-risk individuals.

Proof: Trivial since X and Y generate an identical bad-risk subsidy.

Q.E.D
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Note that Lemma 2 implies that bad risks are indifferent to contracts along CD
and C’D which lie on lines parallel to the good-risk fair price line (in

Figure 4).

Proof of Proposition 3:

(i) Suppose not. Let E’ denote the equilibrium good-risk contract
with noise. Then E’ZGE, where "2" denotes "is weakly preferred.“. Define
contract J without noise such that J has the same premium as E’ and E’“GJ.
Also, define contract H without noise such that H is on the Miyazaki good-risk
contract locus, CD in Figure 4, and E’”BH. This is illustrated in Figure 5
which replicates part of Figure 4. To avoid clutter, axes and price lines are
not drawn in Figure 5. Note that H lies "southwest" of E’ by Lemma 2.

Now E'”BJ by Lemma 1. Therefore, for the two contracts without noise, H
and J, we have H"EJ. However, it 1is easy to show that the bad-risk
indifference curve through J without noise is steeper than the good-risk curve
I Hence J is strictly preferred to H by the bad risks--a contradiction!
Therefore, the good risks are strictly worse off.

(ii) Let E represent the good-risk Miyazaki-equilibrium contract
without noise and let E’ denote the contract with noise on C’D such that
E’~4E. Now choose contracts K without noise on CD and K’ with noise on C’D
such that K entails a premium increase over E and K"EK. Thus, segments KK’
and EE’ are parallel to the good-risk fair-price 1line by Lemma 2. An
illustration is provided in Figure 6. We claim K'<hE'. If this holds the
good-risk equilibrium contract with ncise must lie southwest of E’ on the C’'D
locus and, consequently, the bad risks cannot be better off in equilibrium.

To prove our claim, let A1 denote the change in utility in the no-loss
state for a switch from contract E to contract K. Clearly A|(0 due to the

higher premium. Let AZ denote the corresponding utility change in the loss
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state, A,>0. Similarly, let A,” and A,” denote utility changes for a switch
from E/ to K’ with noise, where Az’ takes expectations over A. Applying Lemma

2, we obtain
(18) (1-py) (4&y - A7) + p, (B, - 4,7) = 0.

Since the premium, n, is higher at E’ than at E, it follows from the concavity

of utility that (A;-4,”)>0. Consequently,
(13) (1-py) (&) - A7) + p, (B; - 8,7) >0
or equivalently

(20) (1~Dg)&1 + pgh; > (1—pg)A1' + Py 37

The inequality in (20) indicates that the change in expected utility for the
good risks from E to K without noise exceeds the corresponding change from E’
to K' wifh noise. But from the optimality of E for the good risks without
noise, the left-hand side of (20) must be strictly negative. Consequently,
(20) implies that K’<GE’. Our claim and, hence, the Proposition follow.
Q.E.D.

Proof of Proposition 4:

Since the optimum good-risk contract lies southwest of E’ in Figure 6,
its slope when joined to the origin is less than that of E. The conclusion

follows.

Q.E.D.
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