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I. IHTRODUCTIOH

In this paper, we consider the effects of uncertain, or "noisy" loss

distributions in several models of decision making under· uncertainty. In

particular, we examine several models of insurance-purchasing behavior and

insurance-market equilibrium; and we show how the addition of noise can alter

several well-known results.

We model noise as part of a two-stage uncertainly. For exampl e, a

location parameter for a particular loss distribution may be unknown. This

represents one stage in the uncertainty, which we label "noise". Ho\o/ever,

even with full information about the loss distribution, we still have a random

draw from that distribution to determine the actual loss; which is our second

stage of uncertainty. If the noise is actuarially neutral, it effects a

"riskier" loss distribution, where "riskier" is defined in the sense of

Rothschild and Stiglitz (1970). Noise can be localized, such as facing a loss

distribution that is known for small losses, but uncertain for very large

losses (the so-called "taU" of the loss distribution). Noise can also be

uniform throughout the loss distribution, as is the case if white noise

affects the location parameter.

The paper begins by examining the rational purchase of insurance in the

presence of noise. We determine sufficient conditions for noise to lead to an

increase in insurance coverage in two particular cases. If noise affects only

the loss state of a loss distribution with a two-point support (i.e. loss vs.

no-loss), more insurance is purchased in the presence of noise whenever

marginal utility is convex in wealth. In the second case considered, white

noise affecting the location parameter of the loss distribution, a sufficient

condition for increasing coverage is that marginal utility is not only convex,
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but is relatively "more convex" at 10\ler \lealth levels. Both of these

conditions are formalized usinq the deqree of absolute prudence, -U'" tU",

developed by Kimball (1990), to measure convexity of marqinal utility.

The effects of noisy loss distributions on t\lO \lell-kno\lnmodels of

insurance market equilibrium in the presence of adverse selection are

considered next: the Rothschild and Stiqlitz (1976) type of Nash equilibrium,

and the subsidized equilibriE~ of Miyazaki (1977). In qeneral, the addition

of noise is seen to lessen the disparity in coveraqe bet\leen qood risks and

bad risks that is usually observed in equilibrium, althouqh it does so at a

cost of reduced \lelfare due to residual noise. The noise also reduces the

likelihood that equilibrium exists in the RothschildtStiqlitz model.

Finally, \le examine a contract desiqn that allo\ls the individual to

choose a mixture of a fixed-premium contract and a "poolinq" arranqement in

\lhich a particular risk pool (often called a "cohort") is either paid a

dividend or assessed an additional premium based on the actual loss

experience \lithin the qroup. We sho\lhO\lthe optimal contract desiqn al\lays

includes full insurance alonq \lithsome deqree of poolinq.

The paper is orqanized as follo\ls. Section 11 models the insurance-

purchasinq decision in the presence of noise. In sections 111 and IV, \le

consider the effects of noise in insurance markets \lith adverse selection.

Section V examines contract desiqn and section VI contains some concludinq

remarks.

11. RATIONAL INSURANCE PURCHASING

Consider a risk-averse individual \lith preferences represented by the

t\licecontinuously differentiable von Neumann-Morqenstern utility function of

final \lealth, U(Y), \lhereU'>O, U"cO. The individual has an initial nonrandom

\lealth of W, \lhich is subject to a loss. Let L denote the random loss. To
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protect against loss, the individual may purehase insurance against a loss by

specifying the proportion, CX, of the loss that is to be indemnified by the

insurance company. 'Oe assume that the indemnity itself is noiseless--the

promised indemnity is paid by the insurer following a 106s (see Doherty and

Schlesinger (1990». The premium for this coverage is given by nacxP, where

P-(l+A)E(L) is the premium for full coverage, CX=l. If A=O, the premium is

called "actuarially fair." Noise is added via the introduction of the random

variable A, E(AIL) = 0 VL, where E denotes the expectation operator. Total

damages for a loss are assumed to be L+A, which by construction is riskier

than L in the sense of Rothschild and Stiglitz (1970). 'Oe also assume that

the insurance contract bases the indemnity on the realized loss, Le. the

indemnity is cx(L+A). For example, most property insurance is wr itten on a

replacement cost or depreciated replacement cost basis. In this setting, A

might represent the uncertainty associated wi th an item' s replacement cost.

Note that the purehase of insurance also mitigates the effect of noise, and

there is no residual noise if CX=l. 'Oe consider two particular specifications

of noise.

First, suppose the loss distribution has a two-point support such that

L=O with probability (l-p) and L=D with probability p, D>O, O<p<l. 'Oe further

assume that A is identically zero if L=O, but that A is nondegenerate with

E(AIL)=O when L=D. Expected utility is given by

(1) EU. (l-P)U('O-CXP)+PE[U['O-CXP-(l-CX)(D+A)JJ.

The first-order condition for maximizing (1) is

(2) dEU/dCX -(l-p)PU'('O-CXP) + P(D-P)E[U'['O-CX-(l-CX)(D+A)JJ

+ P COV[A,U'['O-CXP-(l-CX)(D+A)JJ = o.
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The second-order cond1t10n 1s easly ver1f1ed. It 1s stra1ghtforvard to ver1fy

that a* = 1 [a*<l] 1f A = 0 [A>O], vh1ch 1s a vell-knovn result of Mossin

[1968] results to 1nclude a n01sy loss s1ze.

If A>O, the level of 1nsurance coverage generally can be e1ther h1gher

or lover v1th n01se than v1thout n01se. Note that the add1t10n of noise adds

the th1rd term to r1ght-hand s1de (RHS) of (2). This term 1s posit1ve for

a<l, reflectinq the added benef1t of 1nsurance's protect10n aga1nst the r1sk

A. Hovever, noise also affects marginal ut1l1ty 1n the second-term. This

effect viII also be pos1t1ve vhenever marg1nal utility 1s convex. Such

convex1ty 1s a suff1c1ent cond1t1on for a precaut10nary sav1nqs mot1ve, as

shovn by K1mball [1990], and follovs for example under non1ncreas1nq absolute

r1sk avers1on. Consequently, U' convex 1s suffic1ent to 1ncrease the demand

for 1nsurance in the presence of noise.'

As a second case, ve cons1der a more qeneral d1str1but10n of L (e1ther

d1screte, cont1nuous or m1xed) and ve assume that A 1s 1ndependent of L, v1th

E(A)=O.

Expected ut111ty 1n th1s case 1s

(3) EU
E[u[w-ap-(l-a)(L+A)JJ.

The f1rst-order cond1t1on for max1m1z1ng (3) 1s

(4) dEU/da O.

1If we adel the constraint a:~O, no insurance will be purchased for high enough A. Far expositional esse,
we aSSLme that A j5 not so high as to preclude the purehase of insurance.
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The second-order condition is easily verified, If prices are fair, we have

(5) dEU/da Cov [(L+A) ,U' ] 0,

which verifies Mossin's result that full coverage is optimal. Similarly, it

is easy to verify that if A>O, less than full coverage is optimal.2

Once again the optimal level of partial coverage when A>O generally can

be higher either with or without noise in the loss distribution. However,

convex marginal utility is not sufficient to resolve the ambiguity in this

setting. Instead. we need to guarantee that marginal utility is more convex

at lower wealth levels, where increased coverage would be a benefit through a

higher net indemnity; and that marginal utility is relatively less convex at

higher wealth levels, where the net effect of increased coverage is a lower

final wealth due to the higher premium. This leads to a relatively higher

subjective valuation of the net benefit (in terms of marginal utility) and

lower valuation of the net cost associated with an increase in coverage when

noise is present. This condition on marginal utility is satisfied whenever

preferences exhibit standard risk aversion, as defined by Kimball (1991).3

Arguments as to why this property is a natural extension of decreasing

absolute risk aversion are given by Kimball (1991).

ZTOavoid deal fog with negative values of l+A, we assune that the support of l has a lower bound exceeding
zero end that the lower bound of the support of A does not exceed this level in absolute value.

3Standard risk. aversion i"'Plies that "any risle that makes a small reduction in wealth more painful also
makes any undesirable, statistically h'ldependent risk. more painful.1I [Kiall 1991, pg. 2]. It is
equivalent to decreasing absolute risk. aversion end decreasing absolute prudence, where the latter measure
1S -U"'/U". It aLso irrplies the weaker property of proper risle aversion, developed by Pratt and
Zeckhauser (1987).
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Our main results ean be formalized as folIows.

Proposition 1: Given a positive premium loading, A>O, a suffieient eondition

for more insuranee to be purehased in the pre·senee of noise in the loss

distribution is

(i) marginal utility eonvex if noise affeets only the loss state in a

two-state model.

(ii) standard risk aversion if the noise is "white noise."

Proof: (see appendix)

111. ADVERSE SELECTION: THE ROTHSCHILD AND STIGLITZ MODEL

In this seetion, we look at how a noisy loss distribution affeets

equilibrium in a eompetitive insuranee market with asymmetrie information. In

partieular, we eonsider the now elassie model of Rothsehild and Stiglitz

(1976). Consider a simple two-state world in whieh a loss of size D oeeurs

with probability p and no loss oeeurs with probability I-p. As in the first

part of seetion 11, we introduee noise only in the loss state, so that the

"noisy loss" is represented by D+A, where E(A)=O. Sinee adding A to D induees

a mean-preserving spread of the loss distribution, expeeted utility in the

presenee of noise will be lower for every level of insuranee, with the

exeeption of full eoverage. This has the effeet of making indifferenee eurves

more eoneave in n-a spaee as illustrated in Figure 1. [See Wilson (1977).J

In Figure 1, the indifferenee eurve labeled I, depiets all of the

eombinations of premia and eoverage that yield expeeted utility identieal to

no eoverage when no noise is present. Indifferenee eurves are eoneave due to

risk aversion. The fair priee line in Figure represents the premium

sehedule nEapD. The figure illustrates the well-known result that the optimal
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level of coverage is full coverage (0:*=1) when the price is fair, and the

level of expected utility attained is the level associated with the insurance

contract E, on the indifference curve labeled 12.4

Now suppose we introduce noise in the loss size, D. Following the

purchase of insurance, the residual noise in the final wealth distribution in

the loss state is -(l-O:)A. Thus, if full coverage insurance is purchased

(0:=1). there is no resißual noise and hence no change in expected util1ty.

However, for 0:4=1residual noise !.eads to a lower expected utility for each

insurance contract. Hence, the indifference curve through E in the presence

of noise lies everywhere below E except at E itself. This is depicted as 12'

in Figure 1. Note that contracts along the locus 12' in the presence of noise

yield same expected utility as contracts along the locus 12 in the absence of

noise.

We now suppose that there exist two types of individuals, who differ in

their loss probabilities. The good risks have loss probability Pg and the bad

risks probabil1ty Pb' where Insurers know both probabllities, but

cannot observe the probabilty-type of any particular individual. Both types

of individuals face the same noise. One possible scenario is that people are

actually heterogeneous with regards to their loss sizes. Consumers know their

own loss probability, but know only the average loss size, D, and the

distribution of loss sizes, D+A. If uncorrelated between individuals, this

type of noise is diversifiable by the insurance company, which by the law of

large numbers can treat alllosses as worth D (assuming, of course, that the

insurer also believes E(A)=O). However, consumer behavior would be affected

by the noisy loss size. This behavior is taken into account by the insurer.

~This is easfly derived by fixing expected util fty and calculating the marginal rate of substitution ,cx. for
1t. For details using this graphical representation, the reader is referred to \lil50n (1977).
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We consider first the Nash separatinq equilibrium of Rothschild and

Stiqlitz (1976) for a competitive insurance market. This is illustrated by

the policy pair (B, C) in Fiqure 2, for the case ••ithout noise. In this

equilibrium, the bad risks fully insure at a bad-risk fair pric~, at contract

B. Insurance at a qood-risk fair price is offered only in the limited

quantity, IXc' and thus qood risks self select contract C. Bad risks are on

indifference curve IB and qo~d risks on IG' We note that, as dra••n in Fiqure

2, the RothschildjStiqlitz separatinq equilibrium does exist since the pooled

price line lies every••here above the qood-risk indifference curve, IG.5

No•• consider the introduction of a noisy 1055 size. The bad risk

indifference curve throuqh B ••ould shift to IB'. Giyen our discussion of

Fiqure 1, it is easy to see that a ne•• RothschildjStiqlitz separatinq

equilibrium ••ould entail the pair of contracts (B, C') in Fiqure 2, if the

equilibrium exists. At such an equilibrium, there is less of a penalty

imposed on the qood risks, in that they are allo••ed to purchase a hiqher level

of coveraqe, IXc" at a qood-risk fair price.

harm than qood as ••e sho••next.

Ho••ever, the noise does more

Consider the chanqe in ••elfare ••hen noise is introduced. The bad risks

retain contract B (••hich has no residual noise) and so their expected utility

does not chanqe. Consequently, contract C ••ithout noise and contract C' ••ith

nOise, ••hich are both indifferent to contract B, ••ould yield the same expected

utility to bad-risk individuals. Denotinq the premium and coveraqe chanqes

bet••een contracts C and C' as ~n and ~IX respectively, this implies

5'This cordition requires there be 8 sufficient proportion of bad rislcs. If the pooled·risk price line

intersected IG, then it would be possibLe to offer 8 single contraet that would be preferred by both types
of consl.I'Oers and would earn an expected profit. In such 8 ease, no equi 1ibriun would exist. See Rothschi ld
end Stigl itz (1976). lJe also note that insurance purehases are assuned to be perfectly observable, so that
good·rislc. individuals cannot make O'IJltiple purehases to achieve more caverage. See Hellwig (1988) tor 8

discussion on relaxing this aS5l1f1Jtion.
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Pb(Eu[w-n-dn-(l-a-da)(D+A))-U[W-n-(l-a)D)).

Since individua1s are identica1 except for their 1055 probabilities, the left

hand side of (6) is easily seen to be strictly qreater than the riqht-hand

side if Pb is replaced by Pg' This implies that expected utility for the

qood-risk individuals is hiqher with less coveraqe at C and no noise, than at

C' with more coveraqe at a fair price, but with noise added. Hence, the

addition of noise to the 1055 size leaves the bad-risk individuals with no

chanqe in utility while lowerinq expected uti1ity of the qood risks.

The addition of noise also affects the existence of a separatinq

equilibrium. This is easily illustrated usinq Fiqure 2 once aqain. When no

noise is present, then for qood-risk individuals, the fu11 coveraqe contract

labeled F is indifferent to the partial coveraqe contract C, as drawn in

Fiqure 2. We also know that contract F will yield the same level of expected

utility to qood-risk individuals with or without noise. However, as we have

just shown, contract C' with noise is less preferred than contract C without

noise.

present.

Thus, contract C' is less preferred than contract F when noise is

Consequently, contract C' must lie to the left of the indifference

curve throuqh contract F in the presence of noise. In particular, the

indifference curve throuqh contract F in the presence of noise, labeled IG' in

Fiqure 2, defines some contract C" to the riqht of C' on the qood-risk fair

price line. This means that the qood-risk indifference curve throuqh C' in

the presence of noise (not drawn in Fiqure 2) must lie everywhere above IG"

In particular, it may lie partly above the pooled-risk price line, in which

case a RothschildjStiqlitz separatinq equilibrium would not exist.
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The results of this section are summarized in the followinq proposition:

Proposition 2: In a two-state Rothschild-and-Stiglitz adverse-selection

model, the addition of noise to the 1055 size will

i) decrease the signalling cost to the good-risk individuals in the

sense of allowing them to obtain a higher level of insurance coverage.

( ii) decrease Societal welfare since good-risk individuals are strictly

worse off, while bad-rJsk lndlvlduals are no better off.

(iil) decrease the likellhood of an equillbrium. In partlcular, nolse

will raise the critical (1.e. the minimum) proportion of

lndividuals needed to ensure the existence of an equilibrium.

IV. ADVERSE SELECTION: THE MIYAZAKI MODEL

bad-risk

The Nash equilibrium concept used by Rothschild and Stiqlitz (1976) has

been criticized by Wilson (1977). Miyazaki (1977) and others as beinq "too

myopie" in the sense that each insurance firm assumes that the set of

contracts offered by its rivals is independent of its own actions. Wilson

(1977) assumes that insurance firms will take the reaction of riyal firms into

account and will not offer a contract if they cannot make a profit followinq

the elimination of unprofitable, riyal-firm contracts from the market place.

In Wilson's model, an equilibrium always exists. Miyazaki (1977) extends

Wilson's equilibrium concept by allowinq for subsidies between the qood-risk

and bad-risk individuals.6

Miyazaki shows that his equilibrium always exists and is a unique,

separatinq equilibrium. An example of Miyazaki's equilibrium is illustrated

in Fiqure 3. The locus of contracts on the curve passinq throuqh C, N, E and

D defines a set of qood-risk contracts which could be offered by the insurer,

°HiyaZ8ki does not consider an insurance market ~ .§!, but his model is easi ly adaptable. See, for
exa""le, Spanee (1978).
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together ",i th full insuranee to the bad-r isk indi viduals at a subsidized

priee, ",hieh together earn a zero expeeted profit and ",hieh leave the bad-risk

individuals indifferent bet",een full insuranee and the good-risk eontraet.

For example, the potential RothsehildjStiglitz equilibrium pair (B, C)

satisfies these properties. The poliey pair (M, N) represents another such a

set of eontraets. For this pair, the bad-r isk indi viduals purehase full-

eoverage eontraet M, ",hieh loses money, but the good risks pay a premium

loading, (i. e. a subsidy) to obtain eontraet N, ",hieh earns enough money to

net the insurer a zero overall expeeted profit. Note also ho", this pair of

eontraets induees eonsumers to self seleet the appropriate eontraet. The bad

risks are indifferent to M and N, ",hile the good risks strietly prefer

eontraet N. Another such eontraet "pair" is the pooling eontraet pair (D, D),

",hieh lies on the pooled-risk priee Une and fully insures everyone. Of

course, as dra",n, none of the eontraet pairs illustrated above would support

an equilibrium. The Miyazaki equilibrium oeeurs at the eontraet pair (F, E).

With eontraet E, the good-risk individuals aehieve their highest expeeted

utility (on indifferenee eurve IG) among their zero-profit alternatives. At

eontraet F, the bad-risk individuals ean reaeh indifferenee eurve 183' Note

that both good-risk and bad-risk individuals are better off in a Miyazaki

equilibrium than in a RothsehildjStiglitz equilibrium.7

If we now introduee noise in the loss size, indifferenee eurves will

beeome more eoneave, as diseussed earlier. The zero-profit set of eontraets

for the good-risk individuals will now be those on the loeus eontaining C', N'

and D, as illustrated in Figure 4. Thus, for example, (M, N') ",ill replaee

(M, N) as a zero-profit pair. Of course the pair (M, N) still earns zero

7we should mention that the locus of zeroaprofit separating contracts for the 9000 risks, CNED,need not be
convex. J1 the most prefered gOod-risk contraet is not unique, equilibriun will occur st the most prefered
good-risk contract with the lowest subsidy. See Miyazaki (1977, p. 411>.
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expected profit, but it does not induce self-selection. Note that N and N'

are the same distance above the qood-risk fair price line, indicatinq the same

subsidy. When the bad-risk individuals receive contract M and noise is

present, the qood-risk individuals are offered a zero-profit choice alonq Isz'

rather than IBZ' Thus, the qood risks can purchase a hiqher level of

coveraqe, which in turn implies that a lower subsidy per unit of coveraqe is

needed to cover the bad-risk losses. As drawn, the Miyazaki equilibrium in

the presence of a noisy loss size entails a qood-risk contract alonq the locus

of contracts drawn containinq C', N' and D.

obtained (proofs in the appendix):

The followinq results are

Proposition 3: In a Mlyazakl equlllbrlum ln the presence of nolse:

(i) the good rlsks are strlctly worse off than wlthout nolse,

(11) the bad rlsks are no better off than wlthout nolse.

Proposition 4: The subsldy pald by the good rlsks per unlt of coverage ln

a Mlyazakl equlilbrium is lower ln the presence of loss-size nolse.

Thus, we see subsidy results and welfare results similar to those

occurrinq in the Rothschild/Stiqlitz model, except that bad risks miqht be

adversely affected by noise in the Miyazaki model.

V. CONTRACT DESIGN

It has been shown that mutual insurance companies in which policyowners

can share in the aqqreqate loss experience of the risk pool, are preferred in

insurance markets where individual loss exposures are correlated.8 In this

section, we decompose an individual's risk of loss into two components: one

8See Harshall (1974), Doherty and Diome (1989) and Smith and Stutzer (1990). lIe also note that there are

several types of real-world participating contracts, seme of which differ in their timing of premiuns,
dividends and assessments. In our static model, the timing of premiuns, assessments end dividends is

irrelevanL The irrportant feature is that the final premhß is based upon the pooled loss experience, which
15 not known at the time the insurance-purchasing decision is made.
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independent of other individuals' loss distributions and the other identical

for all individuals. This enables us to use our results on noise (from

Proposition 1) in addressinq the issue of contract desiqn.

The type of contract we have in mind is one in which t~e insurer charqes

a premium based on loss expectations. However, if the aqqreqate loss within a

risk pool is lower [hiqher] than predicted, policyholders are paid a dividend

[charqed an extra premi_um assessment]. Such contracts, which are called

"participatinq contracts," are relatively routine for mutual insurance

companies and also exist for some stock companies. Admittedly, many contracts

will have limits on dividends and/or assessments. For example, a contract

payinq only dividends but not charqinq assessments is essentially a

participatinq policy issued jointly with a call option whose payoff equals the

assessment. Also, an imperfect proxy for a participatinq policy can be

assembled by purchasinq insurance from a stock insurance company that pays

shareholder dividends and simultaneously buyinq shares of the company's stock;

"imperfect" due to the influence of factors other than underwritinq profit on

the insurer's stock dividends, and due to the fact that even the underwritinq

profit itself depends on multiple books of business. Althouqh limitations on

dividends and/or assessments as weIl as proxy contracts are interestinq, they

are beyond our scope here and we will assume no limitations on policy

participation.

Consider a risk class with n seeminqly homoqeneous individuals.9 Each

individual faces the same loss distribution with the same noise.

coveraqe premium, which is random ex ante, is qiven by

(7) P. (l-ß)(l+A)E(L) + ßS

9'Nohe might cause a heterogeneous group to seem homogeneous.

The full-
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where

ß a weight on participation component and

S ••I:(Li+Ai)In •• average pooled loss.

The individual choosing coverage level a pays a(l+A)E(L) up front and has an

assessment of aß[S-E(L)] after S is realized (where a negative assessment

denotes a dividend). As before, A is the premium loading and E(Ai)=O for

each individual, i. We assume that the Li are independent and identically

distributed.10 The weight is restricted, O~ß~l. When ß=O, we have a standard

fixed-premium contract and when ß=l we have full participation.

that the risk pool is very large; in the limit n=~.

We assume

To illustrate the importance of the noise variable A, consider liability

insurance. From their loss records, insurers may be able to estimate the loss

distributions for a given class of policyholders and make this information

public. However, settled claims will have been made against liability

standards that prevailed in the past. There remains the ever present prospect

that the liability rules against which new claims are resolved may change

through new precedents or new legislation. There is likely to be much

uncertainty in estimating the effects of the changing liability rules.

Moreover, the effect of any rule changes is common over groups of

policyholders. For example, a legal precedent which extends the common law

liability will apply to all subsequent suits in the same jurisdiction, unless

overruled by a higher court. In effect, -the noise factors, A's, are

positively correlated across policyholders. This feature has been seen as

mFor sirrplicity, we assLI'ne that the premiun loading 1S zero tor the participating c~nent, s. \Je only
need to asslIne that the fixed·prerniun loading exceeds the loading on S to abtsin similar resultSe If the

neise risk. has a price in a cc::xr.,etitive mark.et, we would expect the loading to be lower for the contractual
form in which the conSlßer bears seme of the naise risk..
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central to the recent liability insurance crisis (see Priest (1987), Doherty,

Kleindorfer and Kunreuther (1990) and Winter (1988)).

We consider the case where there is aperfeet positive eorrelation

between the individual noise terms. In partieular, ind.Lviduals are truly

homogeneous with random loss Lj+aj, where aj=aj for all individuals i and j,

but where aj is not known with eertainty. Rather, aj is known to be generated

by the random variable!. In a large risk pool, the average risk assoeiated

with the Lj will vanish but the risk assoeiated with the noise A will remain.

The average pooled loss is SBE(L)+A.

In this setting, the full insuranee premium as given in (7) is P =

[l+(l-ß)A]E(L)+ßA. Note that if we restriet ß=O, we revert to the standard

model with noise, from seetion 11, with 0:*=1 if A=O and 0:*<1 if A>O. More

generally, final wealth ean be written as

(8) Y & W - O:[l+(l-ß)A]E(L) - (l-O:)L - [l-(l-ß)O:]A.

First-order eonditions for expeeted-utility-maximizing ehoiees of 0: and ß are

-[l+(l-ß)A]E(L)E(U') + E[(L+(l-ß)A)U']

Cov(L,U')-(l-ß)[AE(L)E(U')-Cov(A,U')] = O.

and

O:AE(L)E(U') - O:E(AU') O:[AE(L)E(U') - Cov(A,U')] O.

If the fixed-premium eomponent of the eontraet is fair, A=O, then it is

straightforward to show that (0:*=1. ß*=O) is the optimal (0:, ß) pair. Sinee

the fixed-premium eontraet has a zero loading, there is no advantage to

eombining the fixed premium with the partieipating eomponent. Indeed, by
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setting ß"=O, the individual eliminates the average noise risk completely and

is left ~ith the certain final ~ealth, Y = W-E(L).

Ho~ever, in an efficient market, it is reasonable to assume that the

market ~ill not re~ard an insurer for holding a diversifiable risk, the Li;

but it ~ill assess a risk loading for bearing the risk of the correlated noise

terms. Hence, the insurer ~ill charge a risk loading, A>O, on the portion of

the insurance contract for ~hich it bears the noise risk. If A>O, then ß">O.

To see this, set ß=O and solve for the optimal level of coverage in this

setting, IX". Given the first-order condition for the level of coverage,

equation (9), and the results of section 11 (i.e. IX"<l) , ~e must have

Cov(L,U'»O and hence AE(L)E(U')-Cov(A,U'»O. But this implies aEU/aß>O and ß

should increase. Ho~ever, if ~e no~ allo~ ß to increase to its optimal level,

then from (10) either aEU/aß=O; or aEU/aß>O and ß"=l as a constrained optimum.

In either case, substituting this result back into equation (9) obtains

aEu/aIX=Cov(L,U')=O; ~hich implies that IX"=l. We have, therefore, established

the follo~ing result:

Proposition 5: For a large homogeneous risk class (n=~) with perfeet

positive correlation of the individual noise, the optimal joint coverage level

and premium weight satisfy:

(i) IX"=l (full coverage)

(ii) ß*=O if A=O and ß*>O if A>O.

Given the results of Proposition 5, final ~ealth in equation (9) is Y=W-

E(L)-[(l-ß)AE(L)+ßA]. We can interpret the results of Proposition 5 by

considering the effect on the t~o risky variables the individual faces, L.I

and A. If the individual ~ere to buy full coverage and set ß=l, the risk L.
1

~ould be eliminated at a fair price (replaced ~ith E(L», but the risk of A
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However. by adjusting ß. the individual has a control for the

risk in A.

The premium weight in the above setting affects final wealth through an

additive term. ß[AE(L)-A]. It thus becomes clear that ß*=O when A=O and ß*>O

when A>O. If the riskiness of A. in the sense of Rothschild and Stiglitz

(1970). were to decrease. ß* would rise if A>O. Indeed. if left

unconstrained. ß* ~ ~ as the risk vanishes. On the other hand, if the level

of noise increases (Le. a riskier A). then ß* will fall. Of course, when

beta is constrained not to exceed one, it is possible that ß* remains at one

for changes in the noise level. More formally,

Corollary: If O<ß*<1 for a givell noise distribution A, then an increase

[decrease] in the level of noise will cause ß* to fall [rise].

VI. CONCLUDING REMARKS

This paper has examined several effects of noisy loss distributions in

an insurance market. Noise in the size of a loss. in a simple two-state

model, was shown to increase the demand for insurance if consumers were

flprudent.tI For more general loss distributions, the condition of standard

risk aversion was seen to be sufficient to conclude that noise in the loss

distribution increases the level of insurance coveraqe.

For competitive insurance markets with adverse selection. noisy loss

distributions were seen to be have an impact on market equilibrium. In the

Rothschild and Stiglitz (1976) equilibrium model. noise was shown to enable

the good risks to purchase more coveraqe, to decrease overall welfare, and to

lessen the likelihood of an equilibrium's existence. For a Miyazaki (1977)

type of equilibrium. in which the qood risks subsidize the bad risks, the rate

of the subsidy was shown to be lower; but with an accompanyinq decrease in
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Of course, several other equilibrium concepts are possible

as are other types of asymmetry of information. Noisy loss distributions 'Will

clearly affect equilibria in these markets, although such effects are beyond

our scope in this paper.

Finally, 'We examined contract design in the presence of noise. The

contract examined allo'Wed for a mixture of a fixed premium and a

dividendjassesment component. Even if a large r isk pool can reduce the

average risk of loss, noise risk remains a significant concern if the

individual noise levels are correlated 'With one another. For the case

examined, full coverage 'Was al'Ways optimal and the individual adjusted the

level of dividend participation to control the overall noise level.

Naturally, the consequences of noisy loss distributions extend 'Well

beyond those examined here. Gi ven the pervasi ve effects of noise in the

models considered in this paper, 'We hope that including the consequences of

noisy loss distributions in other settings 'Will lead to more robust models of

insurance-purchasing behavior.

APPENDIX

Proof of Proposition 1:

Since (i) 'Was sho'Wn in the text, 'We provide here a proof of (ii).

Define the derived utility function, V, as follo'Ws

(Al) V( X ;ex) EU[X-(l-ex)A] ,

'Where X is some deterministic level of 'Wealth. As in Kimball (1990), define

the precautionary premium for the random variable (l-ex)A 'When initial 'Wealth

is X as ~(X,(l-ex)A), 'Where ~ satisfies

(A2) V' (X;ex) '" dVjdX " U' (X-~).
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Now,

(A3) V" (X ;ex) (l-d'/dX)U"(X-').

Sinee prudenee implies '>0 and deereasinq prudenee implies

d'/dX<O, we obtain the followinq inequalities:

(M) -V"(X)

v' (X)
> -U"(X-')

U'(X-')
>

-U"(X)

U' (X)

where the seeond inequality follows from deereasinq absolute risk aversion.

Consequently, V is a more risk-averse funetion than U. This implies the

existenee of an inereasinq, eoneave funetion q (q'>O, q"<O) sueh that V(X) =

q[U(X)] VX.

Now, the first-order eondition (6) ean be written as,

(A5) dEU/dex = -PE(U')+E[LU']+E[AU'] = I(-p+L)V'(X)dF(L)+cov(A,U') = °

where X " w-exP-(l-ex)L. If there is no noise, AiiO, then the first-order

eondition reduees to I(-p+L)U'(X)dF(L) = 0, whieh is assumed satisfied at ex*.

Now, sinee utility ean be altered via an affine transformation, we ean

assume without losinq qenerality that E[V'(X)]

E[U'(X)]. Consequently,

I(-p+L)V'(X)dF(L) = I(-p+L)q'[U(X)]U'(X)dF(L)

Iq'[U(X)]U'(X)dF(L)

E(-P+L)E(q'U')+Cov(L,q'U').

The first term in this last expression equals -Cov(L,U') when ex=ex* by the

first-order eondition in the noiseless ease and our assumption that

E(q'U')=E(U'). Now Cov(L,U'), Cov(L,q'U') and Cov(A,U') are zero when ex*=l
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and positive when ~*<1. Since q is concave, we also have in the case where

~*<1 that Cov(L,q'U'»Cov(L,U'). Since ~*<1 when A>O, it fo110ws from (A5)

that dEU/d~>O when eva1uated at a* with noise. Thus the optimal level, ~**,

should be hiqher.

Q.E.D.

Before provinq Proposition 3, we first estab1ish the followinq lemmata.

Lemma 1: Let X represent --an insurance contract without noise and Y a

contract with noise such that both X and Y have the same premium.

if and only if X-sY

individuals.

,where ,,- "i represents indifference for type-i

Proof: Since X and Y have the same premium, both types of individuals are

indifferent to these contracts in the no-loss state. Therefore, X-jY for i=B

or G implies we must also have indifference in the 10ss state.

types have identical preferences, the lemma follows.

Since both

Q.E.D.

Lemma 2: Let X be a contract without noise on the good-risk set of

subsidizing contracts for the Miyazaki model; i.e. X is a contract along the

CD locus in Figure 4. Let Y be a contract with noise along the set of

subsidizing contracts with noise; locus C'D in Figure 4. Then X-sY if and

only if X and Y generate identical expected profit for good-risk individuals.

Proof: Trivial since X and Y qenerate an identical bad-risk subsidy.

Q.E.D
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Note that Lemma 2 implies that bad risks are indifferent to contracts along CD

and C'D ;rhich lie on lines parallel to the good-risk fair price line (in

Figure 4).

Proof of Proposition 3:

(i) Suppose not. Let E' denote the equilibrium good-risk contract

;rith noise. Then E'~GE, ;rhere "~" denotes "is ;reakly preferred." Define

contract J ;ri thout nOise such that J has the same premium as E' and E' -GJ.

Also, define contract H ;rithoutnoise such that H is on the Miyazaki good-risk

contract locus, CD in Figure 4, and E'-sH. This is illustrated in Figure 5

;rhich replicates part of Figure 4. To avoid clutter, axes and price lines are

not dra;rnin Figure 5. Note that H lies "south;rest"of E' by Lemma 2.

No;r E'-sJ by Lemma 1. Therefore, for the t;rocontracts ;rithout noise, H

and J, ;re have H-sJ. Ho;rever, it is easy to sho;r that the bad-risk

indifference curve through J ;rithoutnoise is steeper than the good-risk curve

IG' Hence J is strictly preferred to H by the bad risks--a contradiction!

Therefore, the qood risks are strictly ;rorse off.

(ii) Let E represent the good-risk Miyazaki-equilibrium contract

;rithout noise and let E' denote the contract ;rith noise on C'D such that

E'-sE. No;r choose contracts K ;rithout noise on CD and K' ;rith noise on C'D

such that K entails a premium increase over E and K'-sK. Thus, segments KK'

and EE' are parallel to the good-risk fair-price line by Lemma 2. An

illustration is provided in Figure 6. We claim K'<GE' . If this holds the

good-risk equilibrium contract ;rithnoise must lie south;restof E' on the C'D

locus and, consequently, the bad risks cannot be better off in equilibrium.

To prove our claim, let A, denote the change in utility in the no-loss

state for a s;ritch from contract E to contract K. Clearly A,<O due to the

higher premium. Let Az denote the corresponding utility change in the loss
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state, ßz>O. Similarly, let ß,' and ßZ' denote utility chanqes for a svitch

from E' to K' vith noise, vhere ßZ' takes expectations over A. Applyinq Lemma

2, ve obtain

Since the premium, n, is hiqher at E' than at E, it follovs from the concavity

of utility that (ß,-ß,'»O. Consequently,

or equivalently

The inequality in (20) indicates that the chanqe in expected utility for the

qood risks from E to K vithout noise exceeds the correspondinq chanqe from E'

to K' vith noise. But from the optimal1ty of E for the qood risks vithout

nOise, the left-hand side of (20) must be strictly neqative. Consequently,

(20) implies that K'<GE'. Our claim and, hence, the Proposition follov.

Q.E.D.

Proof of Proposition 4:

Since the optimum qood-risk contract lies southvest of E' in Fiqure 6,

its slope vhen joined to the oriqin is less than that of E. The conclusion

follovs.

Q.E.D.
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