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Abstract

In a (first price) all-pay auction, bidders simultanecusly
submit bids for an item. All players forfeit their bids, and the
high bidder receives the item. This auction is widelly used in
economics to model rent seeking, R&D races, political
contests, and job promotion tournaments. We fully
characterize equilibrium for this class of games, and show
that the set of equilibria is much larger than has been
recognized in the literature. When there are more than two
players, for instance, we show that even when the auction is
symmetric there exists a continuum of asymmetric
equilibria. Moreover,  for  economically  important
configurations of valuations, there is not revenue
equivalence across the equilibria; asymmetric equilibria imply
higher expected revenues than the symmetric equilibrium.
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1. Introduction

In a (first price) all-pay auction, each bidder (i = 1, 2, ..., n) submits a (non-negative) sealed
bid, x;, for an item valued by player i at v;. All players forfeit their bids, but the high bidder wins the
item. (Ties are broken randomly). When there is complete information, the payoff to player i is given

by

- x, if3 ] such that x, > x,
ulx,.,x) = % - x, ifi ties for high bid with m-1 others m

vi-x ifx>xVjei

The all-pay auction is similar to a standard (winner pay) first-price auction, except that losers must also
pay the auctioneer their bids."'

In an all-pay auction, one can interpret differences in the v;'s as arising from differences in
abilities. To see this, suppose the utility to player i of winning a prize of W by putting forth effort x;
is u} = U,(W) - B, x,, where x; is effort, and B, is the marginal cost to player i of effort. Since behavior
is invariant to affine transformations, we may just as well write the utility function as u;, = /B = v;
- x;, where v, = U(W)/g;. Thus, differences in the v;'s may be due to differences in valuations or
differences in the abilities of players to convert an entry into a prize: players With higher v’s can be
thought of as stronger players.

The all pay auction is widely used in economics because it captures the essential elements of
contests. It has been used to model (1) the lobbying for rents in regulated and trade protected industries
[cf. Moulin (1986 a,b); Hillman and Riley (1989); Hillman and Samet (1987); Hillman (1988) and Baye

etal. (1993)], (2) technological competition and R&D races [cf. Dasgupta (1986)], and (3) a host of other

' The war of attrition is a second-price all pay auction: all players forfeit their bids except the
winner, who pays the second-highest bid. Hendricks et al. (1988) characterize the set of equilibria for
the war of attrition with complete information in continuous time and with general payoff functions.



situations including political campaigns, tournaments and job promotion.? Essentially, these economic
problems boil down to a contest that is an all-pay auction in effort: the player putting forth the greatest
effort wins the prize, while the efforts of other contestants go unrewarded.?

Section II of this paper completely characterizes the set of Nash equilibria in the first price all-pay
auction with complete information. Our characterization shows that for n > 2 the set of equilibria is
larger than recognized in the existing literature, and critically depends on the configurations of player
valuations. We show that with homogeneous valuations (v, = v, = v, .., = v,) there exists a unique
symmetric equilibrium and a continuum of asymmetric equilibria. All of these equilibria are payoff
equivalent, as is the expected sum of the bids (revenue to the auctioneer). When v, > v, = v; 2 v,
= ... 2 v, there is a unique "symmetric equilibrium" (symmetric in the sense that all agents with
identical values use the same strategy), as well as a continuum of asymmetric equilibria. The expected
sum of the bids (revenue to the auctioneer) varies across the continuum of equilibria; there is not
"revenue equivalence.” The case where v, > v, > v, 2 ... = v, is known to have a unique equilibrium
(Hillman and Riley, 1989).*

Our theoretical results have important implications for economic applications of the all-pay

auction. To highlight these implications, Section III reconsiders the regulation game analyzed by

! For instance, in the literature on rent seeking (Tullock, 1980), political campaigns (Snyder, 1989),
job promotions (Rosen, 1986), and commitment (Dixit, 1987), the probability player i wins a contest by
putting forth an effort of x, is modeled as x'/I; x", where ¥ > 0. As y goes to infinity, the player
putting forth the greatest effort is certain to win the contest, and thus the limit of these models is the all-
pay auction. The all-pay auction may also be interpreted as the limit of many games with uncertainty
or incomplete information, including the models of Lazear and Rosen (1981), Nalebuff and Stiglitz
(1983), Weber (1985), and Bull, Schotter and Weigelt (1987). As the incomplete information or
uncertainty vanishes, these models converge to the complete information all-pay auction.

* Many other games with discontinuous payoffs (and in which only mixed-strategy equilibria exist)
have a structure that is isomorphic to the all-pay auction, including Varian (1980), Narasimhan (1988),
Broecker (1990) Raju et al. (1990), Baye and de Vries (1992), Baye, Kovenock and de Vries (1992)
Deneckere et al. (1992), and Dennert (1993). The characterization results presented in this paper are thus
pertinent to a wide body of literatures in economics.

* In this unique equilibrium, only players one and two actively bid (players 3 through n bid zero with
probability one).

Wenders (1987) and Ellingsen (1991).
II. Characterization of Equilibria

The all-pay auction with complete information does not have a Nash equilibrium in pure
strategies, but does have a Nash equilibrium in mixed-strategies. Accordingly, let Gi(x;) denote the
cumulative distribution function (cdf) representing the equilibrium mixed-strategy of player i. Player i
is said to randomize conrinuously on A< R if he plays a mixed strategy that is atomless (i.e., contains no
mass points) and has a strictly increasing cdf almost everywhere on A.

Our first theorem characterizes equilibrium for the case when m > 2 players have the highest
valuation of the prize. For this case, Hillman and Samet (1987) have shown that there exists a symmetric
equilibrium and a finite number of asymmetric equilibria where some agents with the highest valuation
bid zero with probability one, and claim this exhausts all equilibria. Our Theorem | shows, however,
that there actually exists a continuum of asymmetric equilibria when three or more players have the
highest valuation of the prize. Nonetheless, we show that all of the equilibria imply the same expected

payoff (zero) for each player, and yield the auctioneer the same expected revenue.

Theorem 1: Whenv, = ... =V, > V,,, & ... 2 V,andm = 2:

(A) Ifm = 2, the Nash equilibrium is unique and symmerric. If3 < m's n, there is a unique
symmetric Nash equilibrium, as well as a continuum of asymmetric Nash equilibria. In any equilibrium
players m+1 through n bid zero with probability one, and at least two players randomize continuously
on [0, v,J. Each other player i € {1,...,m} randomizes continuously on (b, v,], where b, = 0 is a free
parameter, and bids O with positive probability if b, > 0. When two or more players randomize
continuously on a common interval, their corresponding cdf’s are identical over that interval.®

(B) In any equilibrium, the expected payoff 1o each player is zero.

(C) All equilibria are revenue equivalent: the expected sum of the bids in any equilibrium equals

* If b; = v,, player i bids 0 with probability one.
¢ Equation 2 below summarizes the algebraic form of the complete set of equilibria.

3



v

The formal proof of Theorem 1 is similar to the proof contained in the Appendix for our Theorem
2 below, and is thus omitted (our 1990 working paper contains a complete proof). However, it is useful
to highlight some of the features of equilibrium, as well as some intuition for the existence of a
continuum of equilibria. The basic issues can be illustrated in the case where m = n = 3, so thatv, =
v, = v, (m v, say). Theorem 1 implies, in this case, that in every equilibrium two players randomize
continuously on the interval [0, v], while the third player randomizes continuously on the interval [b, v]
and concentrates all remaining mass at zero (this mass is (b/v)'?, and is thus zero if b = 0). (Note that
b = 0 is an arbitrary constant). Since two players randomize continuously on [0, v], and any atoms in
the third player’s mixed strategy (player 3's, say) are isolated at 0, the highest bid is positive and unique
with probability one. Furthermore, since zero is contained in the support of all three players’ mixed
strategies and at least two players use mixed strategies that do not put mass at zero, each player earns
an expected payoff of zero.

Given the characterization of the support of each player's mixed strategy, we know that all three
players randomize continuously on [b, v], and hence, all three are capable of generating a winning bid
in the interval [b, v]. Equilibrium requires that, for any bid in [b, v], each player earns an expected
payoff of zero, given the mixed strategies used by the other two players. Threé non-degenerate mixed
strategies over [b, v] are uniquely determined as the solution to three equations that set the expected
payoff of each player i to be zero for bids in [b, v]:

Fori # jki y(x) = Gx)Gu(x) [v-x] - [1 -GX)G(x)] x =0 ¥ x € [b, v].
The solution to this system of equations is symmetric and given by
G, =G, =G, = (x/v)"® forx € [b, v].

The probability player 3 submits a winning bid in the interval [0, b] is zero, since the
characterization of player 3's support requires that (remaining) mass of G,(b) = (b/v)"? be isolated at
0if b > 0. Given G,(b), and the fact that only players | and 2 can submit a winning bid in the interval
[0, b] with positive probability, the mixed strategies for players 1 and 2 must satisfy

Fori # j,3: u(x) = Gx)G,®) [v-x]-[1-Gx)G®)]x =0 vx € b, v].

4

For a given b, the solution to this system of equations is symmetric:
G, = G, = (xV)[G,)]" = (x/V)b/vY'™ for x € [0, b].

These mixed-strategies for players 1 and 2 are sufficiently aggressive on the interval [0, b] to ensure that
player 3 will not find it profitable to deviate by submitting a bid in the open interval (0, b).

Thus, for a given b, we have constructed Nash equilibrium mixed-strategies for the three players.
On the interval [b, v], all players randomize continuously according to the three-player symmetric
equilibrium. On the interval [0, b], player 3's mixed strategy concentrates all mass at zero (unless b =
0), while players 1 and 2 randomize continuously according to mixed-strategies that are proportional to
the two-player symmetric equilibrium. But since b is arbitrary, by varying b from 0 to v one generates
a continuum of equilibria, ranging from the unique symmetric equilibrium (when b = 0) to the extremely
asymmetric one in which only players 1 and 2 actively compete (when b = v, player 3 bids zero with
probability one).’

. More generally, Theorem | allows us to explicitly characterize the algebraic form of the family
of equilibrium mixed strategies for the case wherev, = v, = vy;=...= v, > v, = ... 2V, Letv
=V, =V, = v;=,..=v,_. By the theorem, players m+1 through n bid zero with probability one, so
suppose without loss of generality that players i = 1, 2, ..., h, m = h = 2, randomize continuously
over [0,v] with players i = h+1, ..., m randomizing continuously over [b;, v], \:vith byyy = by, < ...
< b, < v. (Theb;'s are arbitrary, and varying the b;’s generates the continuum of equilibria). Players
m+ 1 through n bid zero with probability one. One can easily verify that the following family of cdf’s

are equilibrium strategies for the players:

! For instance, if v, = v, = v, = | and b = 1, then player 3 bids zero with probability one while
players 1 and 2 randomize according to a uniform distribution on [0, 1]. If b = 0, all three players
randomize according to the distribution function x'? on [0, 1]. If b = 1/4, then players one and two
randomize using G, = G, = 2x on [0, 1/4], while player 3 uses G, = 1/2 on [0, 1/4]. All three players
use G, = x'? on the interval [1/4, 1].



1
V xe[b,v]: G = B]'-_l i=1, . m

1 €
V xelb, by,): G = [%]H (L., G’ i=1,.,j
jelh+1,..,m-1)
2)
Gyx) = Gy(b) k=j+l, ., m

e =L
- ¥ xel0, b)) Glx) = f]“‘ 0L, GeN**  i=1 .k

Gg(-t) = Gg(bg) k = h+l, ..., m.

By Theorem 1, these are all the possible equilibrium cdf’s.®

Our next Theorem shows that revenue equivalence breaks down when one "strong" player
competes against several weaker, but equal, players. This case is economically interesting, because in
the literature on regulation (cf. Rogerson, 1982 and Ellingsen, 1991), R&D races (Dasgupta, 1986), or
political contests (cf. Snyder, 1989), one player (often the incumbent) is modeled as having an advantage
over a number of identical challengers. Hillman (1988) uses the case v, > v,' = Vv, ...= V, to model
protectionism, and erroneously claims that only two agents actively participate. Theorem 2 shows,

however, that there actually exists a continuum of equilibria with up to n active participants.’

Theorem 2: When v, > v, = ... =y, >V, = .. 2v,and3 <sm < n:

* The symmetric equilibrium (h = m) is used in Moulin (1986b) and Dasgupta (1986). Somewhat
more general is the case b,,, = vand 2 < h < m, i.e. some agents may be inactive. This is discussed
in Hillman and Samet (1987, p. 72), Hillman (1988, p. 66) and Hillman and Riley (1989, fn. 12).
Hillman and Samet (1987, p. 72) claim there are no other equilibria. Also, Proposition Ic in Hillman
and Riley which claims that at most one active agent bids zero with positive probability is erroneous, as
up to m - 2 active agents can do so.

® This serves as a caveat to the claim by Magee, Brock and Young (1989, p. 217) that two-ness is
a general property of political contests.

(A) There exists a continuum of Nash equilibria. In any equilibrium, player 1 randomizes
continuously on the interval [0, v,] and players m + I through n bid zero with probability one. Each
playeri, i € {2, ..., m}, employs a strategy G, with support contained in [0, v,] that has an atom c,(0)
at 0. The size of the atom may differ across players, but II", _ ; o(0) = (v, - v Each G is
characterized by a number b, = 0, where b, = 0 for at least one | # 1, such that Gi(x) = G(0) = o,0)
VY x € [0, b] and player i randomizes continuously on (b, v,J."° Furthermore, when two or more
players in the set {2, ..., m} randomize continuously on a common interval, their cdf’s are identical on
that interval."

(B) In any equilibrium player one earns an expected payoff of v, - v,, while each of the players
two through n earns an expected payoff of zero.

(C) There is not revenue equivalence. In particular, the expected sum of the bids is

V. V.
Y Ex = ;‘f"z * [1 - v_:}E‘I' @

where Ex, varies across the continuum of equilibria, is minimized when symmetric players use symmetric
strategies, and is maximized when only one of the players 2 through m is active (i.e., submit positive bids
with positive probability).

This theorem, which is proved in the Appendix, allows us to construct the family of equilibrium
mixed-strategies for the case where v, > v, = ... = v, > Vo, 2 ... 2 V,. Bythe theorem, players
m+ 1 through n bid zero with probability one, so suppose without loss of generality that of the players
{2, ..., m}playersi=2,..,h,h =2 randomize continuously over (0, v;], with players i=h+1,..,
m randomizing continuously over (b;, v,], (where b; = v, implies cr(0) = 1) withby,; S b, = ... =

b, < v,. (Again, the b’s are arbitrary, and varying the b;’s generates the continuum of equilibria).

© Ifb, = v, o(0) = L.
i Equation 4 below summarizes the algebraic form of the complete set of equilibria.
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Players m+ 1 through n bid zero with probability one. In light of Theorem 2, the family of cdfs below

constitute the entire set of Nash equilibrium strategies:

R g
V xelb, v, G - [l"—v‘ﬂll i=2, .. m
1
2-m
G, = x| MM wl,
Yol M
YV, =V, + -1
V xelb,b,,,): G = [ e ];-. 01, GV fie B
1
j€(h+1,..., m-1)
G,(x) = Gy(b) k =j+1, .., m )
V=V, + —l
6@ = [ - ]“ (1, Geen’™
2l Y
v, -V, + '_—l'
¥ x€[0,b,,,): Gx) = |12 ]' "1 ,., Gi&N™! i=2.,h
l.
G, = G,(b) k=htl,nm
v vy x| —1
G = o {—I_] T, Ge*
Y2 Y

In addition to the multiplicity of equilibria, the key implication of Theorem 2 is part C: expected
revenue varies across the continuum of equilibria. Note that the theorem states that expected revenue is
maximized in the equilibrium that maximizes the expected bid of the player with the highest valuation.
Given the form of the mixed strategies in equation (4), this occurs in the asymmetric equilibrium where
player | and exactly one other player submit a positive bid with positive probability.”?

To complete the characterization, we need the following result originally formulated by Hillman

(1988) and Hillman and Riley (1989) (a rigorous proof is contained in our 1990 CentER working paper):

Theorem 3 (Hillman and Riley): Ifv, > v, > v, = ... = v,, the Nash equilibrium is unique. In
equilibrium, player 1 randomizes continuously on [0, v,J. Player 2 randomizes continuously on (0,v,],
placing an atom of size «,(0) = (v, - v,)/v, at zero. Players 3 through n bid zero with probability one.

Player 1's equilibrium payoff is u; = v, - v,, while players 2 through n earn payoffs of zero.

The algebraic form of the equilibrium mixed strategies for the case when v, > v, > v, = ...
= v, are as follows. Players 3 through n bid zero with probabibility one. Players one and two
randomize according to G,(x) = x/v, and G,(x) = (v, - v, + x)/ v, for x € [0,v,].

III. A Concluding Example ’

We conclude with an example that highlights our results in the context of the regulatory contest
discussed by Wenders (1987) and Ellingsen (1991)."” Suppose M = 2 potential producers compete for
the monopoly right to run a public utility. They face opposition from a consumer organization. The

regulatory body decides to reward the organization which exerts the highest effort in the lobbying

process, If this turns out to be one of the producers, the monopoly solution is implemented. If the

2 Milgrom (1981) and Bikhchandani and Riley (1991) examine a similar issue in standard (winner
pay) auctions, and find the opposite result often holds for classes of standard auctions: symmetric
strategies may yield higher expected revenues.

B Of course, there are numerous other applications, as noted in the introduction. For example, the
following analysis is analogous to the case of an incumbent versus a number of potential entrants as
discussed in Rogerson (1982) and Dasgupta (1986).
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consumer organization wins, the marginal cost pricing solution is implemented.

If the consumer group wins, it earns a payoff equal to the sum of the would-be monopoly profits
(call this amount "T" for "Tullock square") and the would-be deadweight loss (H, for "Harberger
triangle™). If one of the producers wins, it earns the monopoly profits, T. Thus v, = T + H and
v, = v, = ... = v, , = T. By Theorem 2A, there exists a continuum of equilibria to this game, and

by 2C the equilibria are not revenue equivalent. In particular, the expected revenue to the regulator is

v. v,
EZx‘=71v1+(l——2]Erl= Lis + HE:,. &)
1

v T+H T+H
Since Ex, varies depending upon which equilibrium is played, when the regulator receives the lobbying
expenditures as "bribes” she is not indifferent to the equilibrium that is played. By Theorem 2C, Ex, is
maximized when only one of the firms participates in the lobbying process.' The selfish regulator does
best in the equilibrium where only the consumer group and one of the M firms engage in lobbying.

It turns out that the expected social waste due to lobbying also depends on which equilibrium is
played. Suppose that only a proportion X, 0 < X < 1, of the lobbying expenditures is socially wasteful
(see, e.g., Fudenberg and Tirole, 1977; Brooks and Heydra 1990, and Dougan, 1991). Expected social
waste, W, equals the expected deadweight loss plus a fraction X of the expected lobbying expenditures.

If P, is the probability the consumer group wins, then the expected social waste is

W=(1-P)H + AEY_x, . (6)

4 As an example, consider the three player case with v, = 2, and v, = v; = 1. In the most
asymmetric equilibrium, player 3 bids zero with probability one, while G, = x and G, = (1+x)/2 on
{0,1]. In this equilibrium, Ex, = 1/2, and by equation (5), ZEx; = 3/4. In the "symmetric equilibrium”,
player one randomizes with G,(x) = x[(1+x)/2]"?, while players two and three use G, = G; =
[(1+x)/2]'"2. In this case,

Y Ex=[5 -2/213 ,
which is less than 3/4, as of course it must be by Theorem 2C.
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Using equation (5) and the fact' that Ex, = P,v, + v, - v|, this can be written as
W= AT + (1-Nmi= (T - E [5] ) @
H+T Lt

1f A = 1 (all of the lobbying is socially wasteful) the expected social waste is T. Notice that this result
is independent of which equilibrium is played.'® In contrast, when 0 < A < 1 the expected social waste
is a decreasing function of Ex,, which in turn depends on which equilibrium is played. By Theorem 2C,
it follows that the more symmetric the bidding strategies of the producers, the greater the expected social
waste, W. This holds irrespective of A, except when lobbying is completely wasteful (in which case, A
= 1 and hence W = T). When X € [0, 1), different equilibria imply different expected social wastes,

and society prefers fewer firms lobbying for monopoly rights to more.

'S Theorem 2B implies that, in equilibrium, Eu, = P,v, - Ex; = v, - v,.

' Ellingsen (Proposition 1) considers the case where X = 1 and a finite number of possible
equilibria. Equation 7, however, reveals that Ellingsen’s result is valid across the entire continuum of
other equilibria.
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Appendix: Proof of Theorem 2
Proof of 2A and 2B: The proof of parts A and B of Theorem 2 are contained in the following
lemmas. Before proceeding, note that if §; and § are the upper and lower bounds of the support of player
i's mixed strategy, then ¥ i, v; = § = 5 = 0. Also, recall that o(x) is the mass placed at x by player
i's mixed strategy.
The first lemma is used in Lemma 2 to show that the lower bound of the support of each player’s

mixed strategy is zero.

Lemma 1: If 3isuchthatg 2 § and e(s) = 0, then 5, = 0 and G; (0) = Iim,Ift

Gfx). If, in
addition, o(s) = 0, then G; (0) = Gi(s).
Proof; Let u(x;, G,) denote j's payoff to bidding x; when strategies G; are employed by the other n-1
players. Now u(g;, G;) = - < 0 for 5 > 0. Since the same holds for u(x;, G,) for x; < g, and also
for x; = g if o; (5) = 0, the claim follows. O

Lemma2; s =0Vi.
Proof; Clearly, v; = 5 = 0V i, so it is sufficient to show that no player employs a mixed strategy that
has a support with a strictly positive lower bound. By way of contradiction, suppose S = {i | 5 > 0}
is nonempty, i.e., § > 0 for at least one i.

If S consists of a single player i, thens; > §; = 0V j # i. In this case, if a(s;) = 0, Lemma

1 implies that G(0) = Gy(s) v j = i, which in turn implies that u(s;, GJ) < lim,_,, u(x;, GJ. This
contradicts the hypothesis that g, > 0. If o; () > 0, then v j # i, 4(s) = 0, s0G,(0) = Iimw‘ G(x)

leads to a similar contradiction.

If S contains more than one player, then an argument similar to that just made implies §; = §; >
0 Vi, j € S. At least one player i € S must employ a mixed strategy with oi(s) = 0, for otherwise any
j € S could gain by increasing § by a small ¢ > 0 (unless 5; = v;, in which case j has incentive to
reduce the bid v; to 0). But this means that there exist i, j € S such that § = 5 > 0 and (3) = 0,
a contradiction to Lemma 1.

Thus, we conclude thatg, = 0 foralli. O

15



The next lemma shows that, in any mixed-strategy equilibrium, each player 2 through n must
employ a strategy that places an atom at 0, while player | cannot employ a strategy that places an atom
at 0. This, in conjunction with Lemma 2, implies that players 2 through n earn equilibrium expected
payoffs, u;’, of zero.
Lemma 3: (@) e (0) = 0;
®)vizl, «0) > 0.
©@ui=0vis=l.
Proof: (a) Since player i would never use a strategy that puts mass on (v;, ) (setting the bid equal to
zero strictly dominates such a strategy), player 1 clearly has no incentive to use a strategy that puts mass
in the interval, (v,, v;]. Hence, ¥ i, §; < v, < v,, which guarantees that player 1 must have an
equilibrium payoff uj of at least v, - v; > 0. This, and the fact that not all players can use mixed
strategies that have an atom at 0, implies that player 1's mixed strategy cannot place an atom at 0. (b)
From part (a), u; > 0 in every neighborhood above 0, so player 1 must outbid every other player with
a probability that is bounded away from zero. Thus, every player but player 1 must use a strategy that
has an atom at 0. (c) Since player 1's mixed strategy does not have an atom at 0, it follows from part
Mb)thatvi = 1, u; =10, G) = 0.0
We have now established that zero is the lower bound of the support of ehch player's equilibrium
mixed strategy, that all players but player 1 must employ equilibrium strategies that contain an atom at
0, and that the equilibrium payoffs for players {2, 3,..., n} are zero. The next lemma establishes that
at least two players have v, as the upper bound of the support of their mixed strategies.
Lemma 4: § < v, V i, with strict equality for at least two players,
Proof; From the proof of Lemma 3, §; < v, ¥ i. By way of contradiction, suppose §; < v, for all i.
By bidding above § = max,{§,} by an arbitrarily small amount, player 2 can earn arbitrarily close to v, -
§ > 0 = u,, which contradicts Lemma 3. Thus, §; = v, for at least one i. Another player j # i must
also have § = v,, for otherwise player i could gain by reducing §; by asmall ¢ > 0. 0O

The next five lemmas provide the rough characterization of the equilibrium strategies of players

{2, 3,..., n} stated in Theorem 2A. For notational convenience, we define A(x) = IL ,; G{(x), Au(x)
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m IL . i G(x), and Ag,(x) = IT; . iy Gy(x).

Lemma 5;: Forall J€ {1,2,...,n}, G; contains no atoms in the half open interval (0,v,].
Proof; Suppose one of the cdf's, say G;, has an atom at x; € (0,v,]. Lemma 2 implies that v x € (0,
val, A;G; > 0, and hence A;G; has an upward jump at x,, ¥ j # i. This follows directly from the
monotonicity of the cdf’s. For x; < v, this implies that player j can gain by transferring mass from an
e-neighborhood below x; to some & neighborhood above x;,. At x; = v; it pays for j to transfer mass from
an e-neighborhood below x; to zero. Thus, there would be an e-neighborhood below x; in which no other
player’s mixed strategy puts mass. But then it is not an equilibrium strategy for player i to put mass at
x;. O

Define Bi(x) = (v; - xDA;(x) - x;(1 - A{(x)) = viA(X) - x;.

Lemma 6; B;(x) is constant and equal to uj at the points of increase of G, on (0,v,] ¥ i. Bi(x;)
< uj if x; is not a point of increase of G; on (0,v,].
Proof; By Lemma 5 there are no atoms in (0,v,]. Thus, B;(x) is the expected payoff to player i from
bidding x; € (0,v,]. If x, is a point of increase of G, player i must make his equilibrium payoff at x;.
a

Lemma7: ¥x € (0,v,], 3i,, i, suchthatve > 0: Gi(x + €)-Gy(x-€) > 0,i =i, i,. O

Proof; Immediate.

Lemma8:; 5 =0Vvi > m.
Proof: Without loss of generality assume § ,, = max;,.{s;}. Suppose 5.,, # 0. Then there exists
an interval (s,,; - €, §,,,] in which G,,,, increases and in which B, ,(x) = w,, =0="v,,, An.(x)
-X. Thus, Vu,; = X/An,,(x) YxE (5., -€, §,.,]. FromLemma 7, Vx€ (5, V,] 3i€(2, ..., m} such
that G, is increasing at x. Since there are no atoms in (S,,,, v,], for each x€ (5, V,] there is a player

i€{2, ..., m} such that v, = x/A;(x). This implies that for any x > §

m+l?

but arbitrarily close to §

m+l?
there exists an i€{2, ..., m} such that A(x) = IL,; Gi(x) > IL,; GiGL.) > uns Ganlau) =

An.(5,.,), a contradiction to the fact that v,,, < v;. Thus, E‘ml

= 0.
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Lemma 8 demonstrates that when n > m, players m+ 1 through n bid zero with probability one.
We now proceed to characterize the equilibrium strategies of players 1 through m.

Lemma 9; Suppose x € (0,v,] is a point of increase in G; and G; for i,j € {2,3,...m}. Then
G, = Gjatx.
Proof; By Lemmas 3c and 6, Bi(x) = B;(x) = 0, which may be written as (v, - X)Gj(x)Ay(x) - x[1 -
Gj(x)A;(x)] = 0. This implies that Gj(x)Ay(x) = x/v, = Gi(x)A;(x). Division by A; = A; > 0 gives
Gi(x) = G(x). O

Lemma 10; If G, i € {2, ... m} is strictly increasing on some open subset (a,b), where 0 <
a < b < v, then G; is strictly increasing on the entire interval, (a,v,]. Furthermore, at least one of
players {2, ..., m} randomizes continuously on the interval (0, v,}.
Proof; Suppose to the contrary that G; were constant on (b,c), b < ¢ < v,. Then from Lemma 5, G,(b)
= Gj(c). By Lemma 7, there exists an € > 0 such that on the interval (b, b+¢) there exist at least two
players, h and k, with strictly increasing cdf’s over the interval. At least one of these players, say h,
must be an element of {2, ..., m}. Since the mixed strategies contain no atoms in the interval (0,v,),
from Lemma 9 Gy(b) = G;(b) > 0. But from Lemmas 3c and 6, B;(b) = B,(b) = B(x) ¥ x € (b,
b+e). Hence, Bi(x) < B,(x) V x € (b, b+¢), since such values of x do not lie in i’s support. But this
implies that Ai(x) < A,(x), and hence G,(x) < Gi(x), a contradiction to the fact that G,(b) = G,(b), G,
is increasing on (b, b+¢), and G; is constant on (b, b+¢). The second statement follows from the first
part of Lemma 10 and from Lemmas 4 and 7. O

Lemma 10 thus shows that, in equilibrium, at least one of the players {2, 3,..., m} randomizes
continuously on (0, v,]. Notice that, by Lemma 3, the mixed strategies of each of the players {2, 3,...,
m} contain an atom at 0 but, by Lemma 5, no player’s mixed strategy places an atom in the half-open
interval (0, v,]. Lemma 10 thus implies that if G,, i € {2, 3,..., m} is increasing over any interval (a,
b), 0 < a < b < v, then G; must be strictly increasing on the interval (a, v,]. Hence, any gap in the
support of player i’s mixed strategy must be of the form (0, b] for some b, > 0. Furthermore, from
Lemma 9, for any point of increase x € (0, v,] of G, and G;, i,j € {2, 3,..., m}, these distribution

functions must take identical values.
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In order to provide the complete characterization of the equilibrium distributions provided in
Equation (4) of the text, we need to say more about player 1's equilibrium strategy and payoffs. We
continue with

Lemma 11; (a) 5, = v,. Furthermore, for every bid 0 < x < v, in the support of G,,

Gi(x) < Gi(x), i € {2, ..., m}.
®) Uy = v, - v,
Proof; (a) From Lemma 10, at least one j € {2, 3,..., m} randomizes continuously on (0,v,]. Without
loss of generality suppose player two is such a player. From Lemma 3, player 1's mixed strategy does
not have an atom at 0, and from Lemma 5, no player's mixed strategy has an atom in (0,v,]. Thus, there
exists some point x € (0,v,) at which G,(x) is increasing. At any such point, B,(x) 2 v, - v,, since the
right-hand-side represents what player 1 can obtain by bidding v, with probability one. Rearranging this
expression we obtain A (x) = (v, - v, + x)/v,. From Lemmas 3 and 6, A,(x) = x/v,. Subtracting A,
from A, gives
Ax) - A(x) < [(vy - x)(1 - vy/vllv, <0,

where the strict right-hand inequality follows from the assumption that v, > x and v, > v,. Thus, at
any point of increase of G, in (0,v,), A, > A,. This directly implies that G, >' G, for any such point.
But since G, has support [0,v,] and G, has no atoms, this implies 5, = v,. Furthermore, since for any
other player i € {2, ..., m} and for any x € [0,v,], G,(x) < Gi(x), we have the second claim. (b) Part
(a), together with Lemma 6, implies that player 1’s equilibrium payoff is u} = v, - v,. O

This completes the proof to part B of Theorem 2. To complete the proof to part A we must
show:

Lemma 12; (a) Player 1 randomizes continuously on support [0,v,].

) IO™ ;a0 = (v, - va)iv,.
Proof: (a) We know that 5, = v, and 5, = 0. Suppose there is a gap (a,b) in which Gy(x) is constant,
0<a<b<v, ByLemmas6, 7, and 8, we know that at x = a there are at least two players i,k €

{2, ... m} such that A((x) = A,(x) = x/v;. Atx = b this holds as well. In addition, since a and b are
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in the support of G,, A\(x) = (v, - v, + x)/v,, x = a,b. Thus we have
(A1) G,(x)G(x)Agy(x) = x/v,, x = ab
(A2) Gi(x)Gy(x)Ayy(x) = (v, -v, + X)lv;,, x =a,b.
Since G,(a) = G,(b) by assumption, and by Lemma 9 G,(x) = G,(x) for x € [a,b], equation Al implies
[Gu(@)Ax(2))/[Gy(b)Ay, (b)] = aib,
while equation A2 implies
[[G@PAu @GP Au®)] = (v, - v + a)/(v, - v, + b).

Combining these gives G,(a) = G,(b)[b(@ + a)/a(® + b)), where © m v, -v, > 0. Since b/a > (b
+ ©)/(a + 8), this implies G,(a) > G,(b), which contradicts the fact that b > a. Thus, player 1's
mixed strategy distributes positive mass to every open interval in.[O, v,]. This, along with Lemmas 3a
and 5, implies that player 1’s mixed strategy contains no atoms and has a strictly increasing cdf on its
support, [0, v,]. Part (b) follows from part (a), Lemma 6, and Lemma 11b. O

We now know that in any equilibrium: (1) player 1 earns an expected payoff of v, - v,, while all
other players earn expected payoffs of zero; (2) player 1's mixed strategy contains no atoms or gaps in
its support, and thus G, is strictly increasing on its support, [0, v,]; (3) players m+ 1 through n bid zero
with probability one; and (4) all other players j€ {2, ... m} play a mixed-strategy that has an atom at zero
and a strictly increasing cdf on some interval of the form (bj, v.], where b ='0 for all j, with strict
equality for at least one j. Lemma 9 guarantees that in subintervals of (0, v,] where the mixed strategies
of any subset of the players {2, 3, ..., m} apply a positive mass, the players have the same value of their
cdf’s. The system of equations given by Bi(x) = uf for i € {1, 2, ..., m} in Lemma 6 thus determines
the equilibrium mixed-strategies, G,(x), for any given nonnegative vector (b,, bs, ..., by) for which at
least one b; = 0. These are given in equation (4) in the text. Recursive application of Lemma 9 for
given b;'s implies that these constitute all the equilibria.

Proof of 2C: Theorem 1 in Baye, Kovenock and De Vries (1993) establishes that, in any Nash
equilibrium, EEx; = (vy/v))v, + (I - v,/v))Ex,. Hence it is sufficient to establish that (a) Ex, is
maximized in an equilibrium in which all but one of players 2 through m bid zero with probability one,

and (b) Ex, is minimized when players 2 through m play symmetric strategies. Our proof makes use of
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the fact that if cdf F stochastically dominates cdf G, then Eg[x] > Eg[x].

(@) By Lemma 10, in any equilibrium at least one of the players 2, 3, ... m, randomizes
continuously on the interval (0,v,]. Suppose player i is such a player. By Lemma 6, B(x) =0 Vv x
€ (0,vy]. Isolating the cdf of player 1, G,, in the expression for A, yields G,(x) = [x/(v, .., G;(x)].
Hence, across all equilibria, G,(x) is minimized for each x € (0,v,], when the denominator is maximized
(note that every equilibrium must have an i € {2, ... m} randomizing continuously over (0,v,]). This
implies that G(x) is minimized when II;,.,; Gj(x) = 1 (that is, in the equilibrium where only players 1
and i actively bid.) But this means that G, in this asymmetric equilibrium stochastically dominates the
corresponding G,’s that arise in the other equilibria, which implies Ex, is maximized in this equilibrium.

() Similarly, suppose player i € {2, ..., m} randomizes continuously on (0,v,]. Then G,(x)
is maximized for each x € [0,v,] across equilibria when IT,,; Gi(x) is minimized. By Lemma 12, in
any equilibrium player 1 randomizes continuously over (0,v,]. This implies by Lemma 6 that in any
equilibrium A\(x) = (v; - v; + x)lv;, ¥ x € (0,v,]. Since A (x) = IL,,Gj(x) is constant across
equilibria, IL,.,;G;(x) is minimized in an equilibrium in which G(x) is maximized. But by Lemmas 5,
9, and 10, in any equilibrium and for every j€{2, ..., m}, j # i, G(x) < G,(x) ¥ x € [0,v;]. Hence
maximizing G,(x) across equilibria requires maximizing the minimum of the G,(x)'s, k € {2, ... m}.
Since for each x € (0,v,], A,(x) is constant across equilibria, this is done by setting G,(x) = Gy(x) for

all k,j € {2, ..., m} on [0,v,]. O
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