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The Eurozone as an Inflation Target Zone 
 
 

Abstract 
 
In the revised monetary policy strategy of the European Central Bank (ECB), “price stability is 
best maintained by aiming for two per cent inflation over the medium term”, with “symmetric 
commitment” to this target. “Symmetry means that the Governing Council considers negative and 
positive deviations from this target as equally undesirable”. In this article, we therefore analyse 
this policy strategy through a model of inflation target zone, with a central value and symmetric 
upper and lower bounds on inflation, within which the central bank may decide not to intervene, 
provided inflation is expected to fluctuate around the central value. We show that the policy 
benefits guaranteed by a target zone can be dissipated if market agents are uncertain about its 
width. 
JEL-Codes: E310, E420. 
Keywords: European Central Bank, monetary policy strategy, inflation target zones. 
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1. Introduction 
 

 In July 2021 the European Central Bank (ECB) announced the long-awaited revision of 

policy strategy. The relevant documents (ECB 2021a, 2021b) cover a number of issues, 

but the kernel of the revised strategy, namely the operational (re)definition of "price 

stability", can be summarised in two points (ECB 2021a): 

• "the Harmonised Index of Consumer Prices (HICP) remains the appropriate price 

measure for assessing the achievement of the price stability objective" (p. 1), with the 

intention to recalibrate the index with the inclusion of the costs of the owner-occupied 

housing, and to downgrade the weight of the most volatile components such as energy 

prices; 

• "price stability is best maintained by aiming for two per cent inflation over the medium 

term" (p. 2),  with  "symmetric commitment" to this target. "Symmetry means that the 

Governing Council considers negative and positive deviations from this target as equally 

undesirable" (p. 2). 

 The second point introduces the most apparent modification with respect to the 

previous definition of price stability as a year increase of the HICP "below but close to 2%" 

dating back to 2003. In order to provide an appropriate background, Table 1 summarises 

essential statistical evidence of the past record of the Eurozone monthly observations of 

the year rates of change of the HICP  (see also Figure 1 for the frequency distribution). 

 
Table 1. Eurozone monthly observations of the year rates of change of the HICP,  

1999:1-2022:5 

Mean 1.71% 

Min., Max -0.6%, 8.1% 

Variance 1.44 

Obs. < 2% 60.1% 

Obs. <1%, 3%> 75.8% 

Obs. <0.5%, 3.5%> 78.6% 

Source: Elaborations on ECB, Statistic Warehouse, HICP series 

  

 At first glance, an average year inflation of 1.71% seems consistent with the definition 

of  "below but close to 2%". Nonetheless, 60.1% of observations below 2% provide clear 

evidence of a downward bias (see also Figure 1) corresponding, as is well known, to the 

twelve years (2009-21) between the Great recession and the COVID-19 pandemic, when 

inflation remained systematically below 2%. 

 Several commentators have welcomed the new definition, with a clear-cut target value 

of 2%, as an improvement in view of  a more consistent and transparent application of 

inflation targeting as a general framework for monetary policy conduct and 

communication (e.g. Wyplosz, 2021; Demertzis, 2021; Darvas and Martins, 2021, Blot et 
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al., 2021). There remain, however, non-trivial margins of ambiguity, which are being 

brought to the fore by the rapid inflationary evolution of the post-pandemic scenario. 

 
Figure 1. Percent frequency distribution of the Eurozone's monthly observations of the 

yearly rates of change of the HICP, 1999:1-2022:5 

 

Source: Elaborations on ECB, Statistic Warehouse, HICP series 

  

 On the one hand, the new definition of price stability "is now symmetric and it allows 

for temporary overshooting as needed" (Wyplosz, 2021, p. 6).  This interpretation rests 

on the two statements reported above: that upward and downward deviations are equally 

undesirable, and that the 2% target is to be achieved over the medium term, implying that 

deviations will not be corrected immediately. The ECB's non-intervention mode on the 

policy rate (unlike, for instance, the US Federal Reserve and the Bank of England) vis-à-vis  

inflation pointing above the 2% target since the second semester of 2021 may provide a 

ready-made example.1  

 On the other hand, the new strategy "remains vague regarding the margin of tolerance 

and the time allowed for overshoot" (Wyplosz, 2021, p. 6). Indeed, the ECB has not 

announced the width of the tolerance bands (though past experience may suggest a range 

like 1%-3% or 0.5%-3.5%, see Table 1). As a matter of fact, the Governing Council on July 

21, 2022, announced a first increase in the policy rate of 50 basis point, possibly followed 

by further 25-50 basis points later, as "the new staff projections foresee annual inflation 

at 6.8% in 2022, before it is projected to decline to 3.5% in 2023 and 2.1% in 2024 – 

higher than in the March projections"  (ECB, 2022b).  

                                                        
1 This ECB's stance has been motivated, consistently with the first point of the new strategy mentioned 

above, by an assessment of the acceleration of inflation almost entirely due to the "non core" components 

of the HICP, and of the transitory nature of their sharp increase (ECB, 2022a). 
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 According to Demertzis (2021), "the most important feature of a tolerance band 

[around the 2% target] is that it provides a very clear framework for evaluating central 

bank performance" (p. 4), while it  dispenses with identifying the time horizon of 

deviations explicitly. "For as long as inflation is within the tolerance band, then it is also 

at 2% on average" (p. 3). This statement, however, is not warranted, since inflation might 

well remain within a band centred on 2% without averaging to 2%  to the extent that it 

remains above or below most of the time (see Figure 1). As we shall explain later, a specific  

mechanism of reversion to the mean (possibly not reliant on benevolent features of 

shocks) is also necessary.    

 It is widely understood that central banks are reluctant to tying their own hands to a 

sharp numerical definition of tolerance bands of inflation. The ECB itself, at least since the 

outbreak of the pandemic, has increasingly made appeal to "flexibility" as a key element 

in its policymaking process justified by the surge of "radical" uncertainty affecting model-

based projections and by the use of a variety of information inputs. This view revives the 

long-standing rules vs. discretion debate as to whether or not in-flexibility is the right 

attitude in the face of uncertainty (Lohman, 1992).   

 In light of these considerations, we propose that the ECB's new policy framework may 

conveniently be analysed and assessed as a symmetric inflation target zone. In a target 

zone (TZ), the target variable, which is typically subject to random shocks, is kept within 

a band determined by a "floor" and a "ceiling" with a central value. In a symmetric TZ the 

floor and the ceiling are equally distant from the central value.  

 TZs are generally associated with exchange-rate systems, where they may also be set 

officially, as was the case with the European Monetary System. Less common is the 

association of TZs to monetary policy, though several central banks do make reference to 

range of values of inflation, rather than point values, in their policy communications 

(Castelnuovo et al., 2003; Chung et al., 2020). In Section 2 we begin with an overview of 

the taxonomy of "inflation zone targeting" proposed by Chung et al.    

 Across different uses and meanings, typical of inflation TZs is that the policymaker is 

committed to intervening to keep the target variable within the band when it is expected 

to breach either the floor or the ceiling, but he/she may decide not to intervene as long as 

the variable is expected to fluctuate within the band. The rationale of this policy 

framework is to anchor expectations to the central value of the target variable, while 

granting the policymaker some "slackness" in the face of shocks on the premise that 

systematic intervention is costly.  

 As recalled above, one of the fields where the TZ modelling technique has extensively 

been developed is exchange-rate theory. Key references for our purposes are Krugman 

(1991), Krugman and Rotemberg (1990, 1992), Bertola and Caballero (1992). As far as 
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we know, this technique has not been applied to inflation targeting.2  As will be seen, novel 

insights can be gained beside the available discussions of pros and cons of the inflation 

TZs. 

 In the model we present in Section 3, the target variable is the inflation rate, 

determined by a New-Keynesian Phillips Curve expressed in continuous time, which 

consists of the output gap,  a forward-looking expectation component, and an exogenous 

component (e.g. energy costs) hit by random shocks following a Brownian motion. The 

output gap is determined by a standard New-Keynesian IS function, that is to say a 

negative relationship with the gap between the nominal policy rate controlled by the 

central bank net of expected inflation, and the equilibrium "natural" real interest rate.  

 As is typical in TZ models, the interplay between "the fundamentals" and the 

expectation component of the target variable is key to the functioning of the TZ. To see 

this, we first derive the rule that governs the policy rate in the case of the central bank's 

commitment to keeping inflation on target all the time .  We show that systematic inflation 

targeting would imply a (moving) target value of the policy rate,  determined by inflation 

shocks as well as the expected rate of inflation acceleration, or in other words, by the 

extent to which inflation expectations are de-anchored from the target.  

  This result sets the stage for the key policy issue underlying the adoption of the 

inflation TZ. To the extent that systematic inflation targeting succeeds in anchoring 

inflation expectations, the dynamics of the policy rate reflects the intrinsic volatility of 

prices, which may be transmitted to other policy-relevant variables (the most commonly 

considered being output). Allowing for a tolerance band may limit the transmission of the 

volatility of prices to the policy rate and the rest of the economy. Yet the question is 

whether this arrangement does deliver smoother paths for the policy rate, and does keep 

inflation dynamics centred on the target. A key implication of our model is that the answer 

depends on whether or not market agents are certain about the boundaries of the TZ.  

 After proving in Section 4 that boundaries known with certainty do deliver the desired 

results (the so-called "honeymoon effect" in the TZ literature), in Section 5 we introduce 

uncertainty regarding the boundaries of the TZ, which is the current situation in the 

Eurozone. We then model a scenario in which agents identify an upper bound of inflation 

that is with some probability above or below the  true one held by the central bank. If the 

probability attached to the former case is sufficiently high, and inflation expectations de-

anchor, the inflation process can take a divergent path that actually pushes inflation to 

breach the true upper bound in a self-fulfilling manner (known as "divorce effect" in the 

literature). The central bank should consequently intervene for smaller shocks, and with 

higher policy rate. 

                                                        
2 Della Posta (2018, 2019) and Della Posta and Tamborini (2022) have applied  TZ models to the case of 

speculative attacks on public debt in the Eurozone.  
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 In Section 6 we summarise and conclude with some policy implications. 

 

2. Taxonomy of inflation target zones 

 

 While no central bank has an official inflation TZ, reference to ranges of values around 

a point inflation rate is quite common practice, also known as "thick inflation targeting" 

(Castelnuovo et al., 2003; Chung et al., 2020). This practice may have different 

motivations, for which Chung et al. (2020) provide the following useful taxonomy: (i) 

uncertainty ranges, "that acknowledge uncertainty about inflation outcomes", (ii) 

operational ranges, "that define the scope for intentional deviations of inflation from its 

target"; (iii) indifference ranges, "over which monetary policy will no react to inflation 

deviations" (p. 1). 

 These three motivations share the common notion that inflation is a volatile 

phenomenon which can hardly be pinpointed at its target value all the time, a caveat that 

central banks also wish to communicate to the public. Implicitly, the idea is that no matter 

how great the benefits may be in keeping inflation at bay, there are also costs to be borne 

(ranging from frequent or volatile use of the appropriate instrument(s) to side effects on 

particular sectors of the economy as a whole). 

 The fact that large and frequent changes in the policy rate may be a disturbance to 

central banks is witnessed by the  literature on the practice of "interest-rate smoothing" 

(e.g. Sack and Wieland, 2000; Lei and Tseng, 2019).  The main negative by-product of the 

policy-rate volatility induced by point inflation targeting arises in the context of "flexible" 

inflation targeting, i.e. when the central bank attaches some value to output stability in 

addition to price stability. A further source of concern relates to financial stability. After 

the earlier consensus that price stability was a necessary and sufficient condition for 

financial stability collapsed with the global financial crisis, central bankers' conventional 

wisdom seems now turned upside down. The ECB  pedagogy about its various asset 

purchases programmes hinges on financial stability as a precondition for price stability 

(Lane, 2020; Schnabel, 2021). By the same token, however, inflation-targeting activism 

may run counter financial stability, triggering "financial fragmentation" as it is now 

dubbed in the ECB vocabulary (Wyplosz, 2021; Schnabel, 2021). 

 Orphanides and Wieland (2000) provide a theoretical foundation for the (revealed) 

central banks' preference "to emphasize containing inflation within a target range rather 

than aiming for a point target" (p. 1352), which they name "zone-quadratic preferences".3 

The result is that "it may be sensible for the policymaker to ignore small deviations of 

                                                        
3 In essence, the authors reformulate the standard quadratic loss function with arguments the deviations 

of inflation and output from the respective targets by introducing a "slack" factor in the inflation deviations 

(equation 15). 
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inflation from its target rather than incur the higher-order costs required to bring 

inflation back to its target" (p. 1363). 

 Considering Chung et al. (2020) comparative analysis of central banks' practices, one 

may conclude that uncertainty ranges are the most common practice, operational ranges 

the least common, with indifference ranges somewhere in between (with a few 

conceptual as well as practical overlaps with uncertainty ranges).  

 In the Orphanides-and-Wieland setup the inflation TZ is a no-intervention area, i.e an 

instance of the Chung et al. indifference ranges. The latter authors examine the pros and 

cons of indifference ranges by means of a simulation calibrated on the US data. The model 

we propose in this paper is in the same line.  

 The main advantage of  our modelling strategy is that it allows for greater analytical 

tractability, clearer identification and discussion of policy implications, and comparison 

with the above-mentioned works. There are, of course, also some drawbacks of which we 

are aware. One is that the well documented evidence of central banks' preference also for 

smooth adjustments may be ill represented by a system where interventions are activated 

in one shot just at the margins of the TZ.4 Another is that a central bank (the ECB in 

particular) may be unwilling to advertise a no-intervention area conveying to the public 

the idea of being passive vis-à-vis the mandate of price stability (yet, as recalled above, 

this happened at the early stage of the post-pandemic inflation runup). Finally, the 

technology of our model does not allow to deal with the quite common motivation for 

inertia due to the temporary nature of the shocks. However, this can be seen as a strength 

as we show that the TZ can be beneficial in controlling inflation even when shocks are not 

temporary.   

  

3. The model 

 

 We define the inflation rate in continuous time π(t) as the rate of change of the (log of) 

the relevant price index p(t) , say the consumer price index (CPI), in the (infinitesimal) 

time unit t, i.e. 

(1) �(�) ≡ ��(�)/�� 

 The CPI motion process is represented by a standard Phillips Curve (PC) consisting of 

an expectation component, denoted by the generic superscript (e), a first "fundamental" 

variable y(t)  (e.g. the log-rate of deviation current output from potential output per unit 

of time), and a second exogenous "fundamental" z(t)  (e.g. the log-rate of deviation of costs 

                                                        
4 Some earlier models of exchange-rate TZs also treated the case of inframarginal interventions (e.g. Bertola 

and Caballero, 1992). We leave this extension for future work.  
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and other relevant variables for price formation from their normal level). The CPI motion 

process is therefore5: 

(2) ��(�) = 
���(�) + 
�(�)�� + �(�)��                 0 < β < 1 

 The fundamental variable z shifts stochastically according to the following driftless 

geometric Brownian motion process:6 

(3) �(�) = ��(�) 

where σ is the instantaneous standard deviation of the Brownian motion W, which is so 

characterized: 

(4) ��(�) = �√��, 

with χ being a random variable  independently, identically and normally distributed, with 

0 mean and variance equal to 1.  

 For notation simplicity we shall drop the time index t. Equation (2) can then be 

reformulated in terms of rates of change per unit of time by dividing by dt, obtaining the 

following motion law of inflation: 

(5) � = 
�� + 
� + �  

 If the central bank has an inflation target, this should be consistent with the steady-

state of the inflation motion law. If the target is positive, say π* > 0,  for π = ��  = π* , since 

E(z) = 0, it follows that  π* = κ(1−β )-1 y*. That is to say, the central bank also has an 

(implicit) target on a nonzero output gap equal to: 

(6) y* = π*(1−β )/κ.7 

 Still following standard macro-models, the central bank can control y by means of the 

nominal interest rate vis-à-vis expected inflation, according to a so-called IS function 

where the rate of deviation of output from the target is negatively correlated with 

deviations of the real value of the policy rate from the value r* which keeps the output gap 

in line with the target, and which for simplicity we assume to be constant: 

(7) � = �∗ − �(� − �� − �∗) 

Therefore, substituting (6) and  (7) into (5), we obtain that inflation is driven by 

(8) � = (1 − 
)�∗ +  (
 + �
)��  − �
(� − �∗) + �      (
 + �
) < 1 

 Let us now express expected inflation in the "accelerationist" form, measuring the 

extent to which the rate of change in the CPI in an instant of time is expected to accelerate, 

decelerate, or remain equal with respect to the current one:  

                                                        
5 Examples are Shone (2002), Chiarella et al. (2009, ch. 1),  

6 Some TZ models consider instead a Brownian motion process with drift (e.g. Krugman and Rotemberg, 

1992; Bertola and Caballero, 1992). In this context, the drift would not add further insights, and we can 

therefore avoid its use here.  
7 Note that y* is larger, the larger the degree of price  stickiness (small κ).  As explained by Woodford (2003, 

ch. 2), the nonzero inflation target generally adopted by central banks is the mirror image of the positive 

output gap that, from the social welfare point of view,  is necessary to achieve in order to compensate for 

the distortions created by the "market frictions" embedded in the parameter κ. 
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(9) �� � ≡ �� − � = ���
� − ��

�  

Using (9) to express ��  , equation (8) can be rewritten as follows: 

(10) � = !(1 − 
)�∗ − �
(� − �∗) + (
 + �
)�� �  + �"(1 − 
 − �
)#$ 

 We can further redefine the variables in order to obtain a simpler specification for 

equation (10): 

(11) � = �∗ − %&̂  +  (�� � + ) , 

with:  

&̂ = � − �∗ 

i* = r* + π* 

% = �
(1 − 
 − �
)#$ 

( ≡ (
 + �
)(1 − 
 − �
)#$ 

) = �(1 − 
 − �
)#$ 

 The  commitment to keeping inflation on target systematically means that at any point 

in time the  inflation process (11) should satisfy  � = �∗. As a consequence, the policy 

rate should match the time-varying target value: 

(12) &̃ = �∗ + +
, �� � + $

, )  

 The target policy rate the central bank should aim at is centred on  �∗ =  �∗ + �∗, also 

known as non-accelerating-inflation rate of interest (NAIRI).8 In fact, this is the rate that 

prevails in quiet states () = 0, �� � = 0). Vis-à-vis inflation shocks, the target interest rate 

should be increased or reduced to offset the shock as well as the expected rate of inflation 

acceleration (deceleration). The more �� � > 0 makes π deviate from �∗, the higher & ̃
should be. The reactivity of the policy rate is governed by the three parameters α, κ, β. 

Note that the reactivity should be stronger the smaller are the policy-rate impact on 

output α (a "flat" IS), and the output impact on inflation κ (a "flat" PC).  

   

4. Introducing the inflation target zone 

 

 Against the previous background,  one possible rationale for a TZ for inflation is that 

the central bank enjoys some margin of "slackness" in steering the policy rate vis-à-vis  

deviations of inflation from its target. As said in Section 2, such a rationale implies that 

complying systematically with the target policy rate (12) is costly to the central bank.  

 As a paradigmatic example, the output-gap equation (7) suggests that, to the extent 

that the central bank is fully compliant with its target policy rate (12), output, too, is 

subject to inflation volatility. In fact, substitution of (12) into (7) yields: 

                                                        
8 It also appears as the "intercept" in the standard formulation of the Taylor Rule. 
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(13) �/ = �∗ − �(+
, − 1)�� � − 0

, )  

which shows that keeping inflation systematically aligned with the  target comes at the 

cost of creating output gaps in inverse proportion to inflation shocks and the acceleration 

(deceleration) rate of inflation expectations.   

 Consideration of the welfare loss due to output volatility leads to the class of reaction 

functions with optimal balancing between inflation and output stabilisation also known 

as "flexible" inflation targeting. As shown by Orphanides and Wieland (2000), however, 

this conventional treatment is not sufficient to obtain an inflation TZ, at least in the sense 

of a no-intervention area. Simply, for any observed inflation shock at any point in time the 

central bank would move the policy rate less than it would do in the pure inflation 

targeting equation (12). 

 According to these authors, for the central bank to set a no-intervention area it should 

be the case that the cost associated to the inflation gaps (� − �∗) exceeds the cost 

associated to the creation of the policy-rate gaps (&̃ − �∗) only beyond a certain 

(symmetric) threshold of shocks |)| ≥ 3. The symmetric TZ is then identified by three 

parameters: its lower bound � , its upper bound �4, and its central value �∗: 

    �4 =  �∗ + 3, � =  �∗ − 3 

where 3 is the symmetric size of the TZ above and below the central value. An example of 

determination of the boundaries of the TZ along these lines is provided in the Appendix 

A.1, with a numerical exemplification in Appendix A.4.9 

  As a point of reference, let us first examine the case in which the central bank ignores 

output gaps as in the policy-rate equation (12), in the no-intervention area sticks to the 

NAIRI i*, and inflation expectations remain static, ��  � = 0.  According  to equation  (11), 

inflation will only deviate from target randomly with the stochastic motion of z: 

(14) � = �∗ + )  

 Given that  7) = 0, it follows that 7� = �∗, which is indeed consistent with the 

hypothesis of anchored (rational) expectations.  

 This relationship is represented by the straight line L in Figure 2, where )̅ is the largest 

shock that can be accommodated in the no-intervention area within the TZ. Clearly )̅ =
 3 , ( ) =  −3). 10 

                                                        
9 It is also shown that  nonzero weight assigned to output-gap loss values is neither necessary nor sufficient 

in order to obtain an inflation TZ. On the other hand, if the central banks does assign a weight to output-gap 

loss values, the result is a higher absolute value |ε| and a lower policy rate in the intervention area as in 

standard flexible inflation targeting. 
10 To the extent that the inflation process has to be controlled by the policy rate, and the TZ has to be 

symmetric, the choice of the width of the bands is constrained by the zero lower bound of the policy rate. 

According to (12), the lower bound of the TZ  should satisfy &̃ ≥ 0. This condition clearly depends on the 

NAIRI i*, i.e. the sum of the equilibrium real interest rate r* and of the inflation target itself. As is well known, 
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Figure 2. The linear (L), honeymoon (H) and divorce (D) inflation patterns in the TZ 

 

 

 

 

 

 

  

 

 

 

 

 

 

 If we now go back to the more general case in which inflation expectations are not 

necessarily anchored, what is the effect of the existence of the TZ?  

 The inflation process (11) in the no-intervention area (&̂ = 0) is a first-order 

differential equation, which has the following general solution (see Appendix A2): 

(15) � = �∗ + ) + 9$:;<= + 9>:;?=   

with @$,> = ±B2/(�D>, �D> = �>(1 − 
 − �
)#$ 

 The parameters A1,2 are indeterminate, and in order to determine them and close the 

model, it is necessary to analyse the behaviour of equation (15) at two determined points. 

 The first is given by the value of the function at ) = 0, which should match the central 

value of the TZ, i.e. π  = π*, and therefore  

(16) 9$ + 9> = 0 

 Setting  A1 = A, A2 = − A, and  λ1 = λ, λ2 = −λ, it is possible to reformulate (15) as follows: 

(17) � = �∗ + ) + 9(:E= − :#E= ) 

 The second point is given by the value of the function as inflation approaches the upper 

bound of the TZ. The key contribution of the TZ literature in this respect is that the result 

depends on the central bank's commitment to "defending" the TZ (Krugman, 1991; 

Bertola and Caballero, 1992). In case of perfect commitment of intervention at the upper 

bound, it has been shown that the expectation component of the target variable is curbed 

so that, at the intervention point, the inflation process is "smoothly pasted" with the upper 

bound and is "reflected" within the TZ − determining the so-called "honeymoon effect". 

                                                        
the growing concern among central banks with the zero lower bound is traced back to the evidence of r* 

falling in negative territory (Lane, 2020). We shall not deal with this problem explicitly. 

π 

) 0 

�4 

π* 

� 

)̅  )̅F  

L 

)̅G  

H 

D 
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 Let  )̅F  > 0 be the value of )  at the instant inflation hits the upper bound of the TZ.  

"Smooth pasting" obtains with �()̅F), as given by (17), being tangent to the upper bound 

of the TZ, i.e. 

   
�H
�= |=4I = 1 + @9 J:E=4 I + :#E=4IK = 0  

which yields 

(18) 9∗ = −!@ J:E=4 I + :#E=4 IK"#$<0 

 Then A* < 0, (or A1 < 0, A2 > 0) is a sufficient condition to obtain the typical within-the-

band S shaped function of the target variable found in the TZ literature, labelled H in 

Figure 2. See also Appendix A.4 and Figure 4 for a numerical simulation. 

 The creation of the inflation TZ brings some valuable effects. The first is that, even in 

the presence of some de-anchoring of expectations after a shock, and the central bank not 

intervening but at the upper bound, the dynamic path of inflation is curbed with respect 

to the linear path L. In fact, each point along the function H indicates that for the 

corresponding shock of size  ) inflation increases less than along L. The reason lies in the 

expectation component embodied in the function H which, thanks to the anticipation of 

the central bank's marginal intervention, decelerates and "pulls  inflation down". This 

effect is stronger, the closer inflation is to the upper bound (Krugman, 1991; Bertola and 

Caballero, 1992). The second beneficial effect is that, as a consequence, the central bank 

can also accommodate a larger shock before intervening. This "honeymoon effect" is 

measured by the difference ()̅F − ))L .11 Finally, the upper bound operates as a "reflecting 

barrier", meaning that the inflation process is reflected towards the interior of the band.  

 We can conclude that, under these conditions, the main shortcomings pointed out in 

current discussions of inflation TZs, such as larger, on average, deviations from target, de-

anchoring and self-confirming fluctuations in expectations (e.g. Castelnuovo et al., 2003; 

Chung et al., 2020) do not materialise, whilst the opposite benefits are obtained. These 

benefits, however, depend on the honeymoon climate, fundamentally that agents know 

the boundaries of the TZ with certainty and believe that the central bank will intervene.  

 

5. Uncertainty about the boundaries of the target zone 

  

 As shown above, key to the well functioning of TZs is agents' certainty about  the 

boundaries and the central bank's willingness/ability to "defend" the TZ, i.e. to intervene  

to keep the target variable within the boundaries.    

                                                        
11 Quantitatively, this effect is larger when the parameter λ  is smaller (see Appendix A.4). A smaller value 

of λ obtains for a larger value of β, the impact of expectations on inflation. Indeed, if expectations work to 

"pull inflation down" it is beneficial to have a large β. This is just a different viewpoint on the role of 

anchored expectations, and the general belief that a larger value of β in estimations of the Phillips Curve is 

welcomed as a sign of stability (e.g. Blanchard et al., 2015).  
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 Two main sources of uncertainty may be distinguished, at least in theory. One is that 

the upper and lower bounds are common knowledge, but nonzero probability may be 

assigned to the central bank's unwillingness/inability to intervene.12 In the case of excess 

inflation, the necessary increase of the interest rate may be deemed too costly regardless 

the formal commitment of the central bank. Note that a high upper bound makes the 

intervention less likely but at the same time more costly, since the increase in the policy 

rate should be larger at the intervention point. Another source of uncertainty arises if the 

width of the TZ is not announced by the central bank. This is indeed the present situation 

with the ECB.  

 To study the behaviour of the system at the upper bound of the inflation process (17), 

we shall follow the solution method of TZ "realignments" presented by Bertola and 

Caballero (1992).13 This is based on an arbitrage argument, which lends itself to 

manageable treatment of either case of uncertainty.  

  As a first step of analysis we consider the case that agents do not know the boundaries 

of the TZ with certainty, assuming that they hold the same probabilistic belief which 

includes the true upper bound �4. Given a stochastic shock   ), with probability p agents 

believe that inflation will be allowed to run above �4 by say the amount ∆u. This event, 

therefore, is virtually equivalent to moving up to the centre of a higher TZ ∈ [�4 , �4 + 2∆u]. 

With complementary probability (1-p), inflation will not be allowed to increase, and the 

central bank's intervention is such that inflation will remain at  �4 or move below by say 

the amount ∆d to the centre of the band ∈ [�4− 2∆d, �4 ]. A noteworthy case occurs for ∆d =  

ε , i.e. if agents believe that inflation will return to π* at the centre of the TZ. The probability 

distribution (p; 1-p) can be interpreted as a measure of uncertainty about the exact value 

of �4.14 It plays a crucial role in the dynamic evolution of the system by conditioning the 

sign of the parameter A  in the inflation process (17). 

 Given the shock  )̅ , whereby inflation would reach the true  �4  along the linear function 

L in Figure 2,  in order to exclude unbounded speculative profits (losses) on the goods 

market, the actual level of inflation has to be equal to the expected one resulting from the 

probabilities assigned to the two different events (∆u, ∆d). As we show in Appendix A.2, 

the value of A consistent with the above no-arbitrage condition is: 

(19) 9 = !�ΔN − (1 − �)�� "O:;=4 − :#E=4 P#$
    

                                                        
12 A reference model for this case in the exchange-rate TZs was proposed by Krugman and Rotemberg 

(1990) for central banks being short of reserves, i.e. being unable to intervene, when the exchange rate is 

under attack at the upper bound of the TZ. 
13 The behaviour of the system at the lower bound is analogous and symmetric. 
14 Alternatively, if �4 were common knowledge, p would measure the distrust in the central banks' 

commitment to unconditional inflation stabilisation at �4 . 
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  Since the denominator is always positive, the sign of A depends on the value of p in the 

numerator, namely: 

(20) 9 Q
R 0 iff � Q

R  UV
UWXUV ≡ � ∗    

 We denote by p* the critical level of p such that A = 0, yielding the linear case of the  

function L in Figure 2.  The thrust of the result is that the inflation process may still display 

a honeymoon effect (concavity) if p < p* and A < 0. However, if p > p*, i. e. the market belief 

is tilted towards an upper bound higher than �4, then A > 0, and the ensuing function, 

labelled D in Figure 2,  becomes convex, bending above and to the left of the linear L. The 

consequence is that for any stochastic shock ),  the actual level of inflation on the D 

function is greater than that on the L function. This scenario has been dubbed "divorce" in 

the TZ literature.  

 The intuition is that as inflation increases, the belief of larger tolerance accelerates 

inflation expectations, which "push up" inflation in a self-fulfilling process. Consequently, 

if �4 is in fact the true upper bound, the central bank is forced to intervene for smaller 

shocks and with higher interest rate (see (12) with �� � > 0)   This "divorce effect" is 

measured by the difference ()̅G − ))L .15 A numerical simulation is provided in Appendix 

A.4 and Figure 6. 

 The critical p* in turn depends on inflation behaviour expected at �4. If inflation is 

expected to move up or down by the same amount, then p* = 1/2.16 The more inflation is 

expected to move up, ∆u > ∆d, the more p* is reduced, meaning that also the chances of 

intervention at �4 should be higher (p lower) in order to keep the system on the linear 

track.   

 Therefore, whereas the inflation TZ may add beneficial flexibility to inflation targeting, 

uncertainty about the boundaries of the TZ may turn out to be detrimental if the belief 

takes hold that the upper bound is higher than the one the central bank has in mind. 

 The difference between honeymoon and divorce can further be appreciated by means 

of  Figure 7, which reproduces the first hundred draws from a Monte Carlo simulation of 

the inflation process in the honeymoon scenario of Figure 4 vis-à-vis the divorce scenario 

of Figure 6 (with probability of realignment of 60%), in response to the same set of shocks 

(see Appendix A.4 for details). The noteworthy results are two. First, the inflation process 

in the honeymoon scenario (solid line) always remain within the boundaries declared by 

the central bank (2% ± 1.5%), whereas in the divorce scenario (dotted line) we observe 

                                                        
15 The divorce effect is worse (it increases in absolute value) when the parameter λ is lower (see Appendix 

A.4). Hence, while a low λ enhances the honeymoon effect (see footnote 11), it worsens the divorce effect. 

As a matter of fact, if a low λ is due to a high β,  a strong impact of expectations on inflation becomes  harmful 

when they de-anchor and work to "push inflation up".  
16  Bertola and Caballero (1992) assume the probability of a symmetric upward or downward jump. See 

also Della Posta (2018) 
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recurrent violations of the boundaries after relatively larger shocks. Consequently, the 

observed mean, standard deviation and average square gap (from 2%) of the inflation 

process are lower in the honeymoon  scenario than in the divorce scenario. 

 

5. Concluding remarks 

 

 We examined the ECB's new definition of price stability in terms of an inflation TZ 

centred on the target value of 2% with allowance for symmetric tolerance bands above 

and below the target. This new policy framework implies that the systematic use of the 

policy rate to keep inflation on target vis-à-vis random shocks to prices is costly to the 

central bank, but it also entails the central bank's commitment to intervening on the policy 

rate (at least) at the margins of the TZ in order to keep inflation within the TZ and on 

target on average. 

 We showed that the most important policy implication is that the TZ may or may not 

deliver the desired results depending on the degree by which market agents are certain 

about the boundaries of the TZ. If this condition holds, the honeymoon effect takes place, 

the dynamic path of inflation after a shock is curbed so that the central bank can also 

accommodate larger shocks before intervening. The main shortcomings pointed out in 

current discussions of inflation TZs, such as larger, on average, deviations from target, de-

anchoring and self-confirming fluctuations in expectations, only arise in the case of 

uncertainty about the true boundaries of the TZ. 

 Thus, while it may be tempting for the central bank to add further flexibility to the TZ 

by leaving its boundaries undetermined, the opposite divorce effect may occur if the belief 

takes hold that the upper bound is higher than the one the central bank has in mind. 

Inflation would accelerate towards the upper bound and the central bank would be forced 

to intervene for smaller shocks and with higher policy rate. In consideration of the past 

decade's persistence of low inflation, we wish to point out that these remarks equally 

apply for inflation shocks below target. 

 It may be argued that the central bank "communicates" the true boundaries of the TZ 

at the very moment when it starts intervening. This case may be matter of further 

investigation in a model where market agents hold heterogeneous beliefs and learn about 

the true boundaries over time. Yet, our intuition is that the central bank's formal 

communication remains important in a "forward guidance" spirit, so that agents are 

informed in advance about the macroeconomic scenario conditional on which the central 

bank is ready to intervene. 

 In this paper we concentrated on uncertainty about the true value of the boundaries of 

the TZ, while pointing out that uncertainty may also concern whether the announced 
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boundaries are indeed "defendable" by the central bank.  A few  considerations on this 

case, too, are in order in light of our model of "realignments". 

 In the exchange-rate TZ literature, the typical event is when the central bank should 

defend the currency against a speculative attack at the upper bound of the TZ and finds 

itself short of reserves. In the case of excess inflation there seems to be no limits for the 

central bank to raise the policy rate as much as necessary once the margin of tolerance, 

up to which the cost of inflation does not exceed the cost of higher interest rates, has been 

exhausted (different is the situation of falling inflation owing to the zero lower bound of 

the policy rate). Nonetheless, unforeseen contingencies may upset the ex-ante 

comparative cost calculations on which the upper bound of inflation has been based. An 

example may be provided by the type of post-pandemic, war-time, imported cost-push 

inflation that is being experienced in Europe more than elsewhere (ECB, 2022c; Bonatti 

and Tamborini, 2022; Blanchard and Pisani-Ferry, 2022).17  The cost of intervention may 

become substantially higher than in ordinary times.  In cases like this, an upward 

realignment of the TZ may thus be warranted, perhaps temporarily, either by will of the 

central bank or under the market pressure of the divorce effect shown by our model.  It is 

to be evaluated which alternative is better, and further study will be  necessary, though 

our intuition is for the former, for the same motivation of transparency of the boundaries 

of the TZ put forward above. 
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Appendix 

 

A.1. An example of determination of the boundaries of the TZ 

 As in Orphanides and Wieland (2000), assume that the central bank's loss function 

associated to inflation gaps L(π, π*, θ) is parametrised on an indifference threshold θ.  A 

simple specification of this function may be: 

(A1)   Y(�, �∗, Z) = (� − �∗)> − Z 

Therefore, according to the inflation process (11), the loss associated to any deviation ε 

from target is given by 

(A2)   Y(�, �∗, Z) = 3> − Z 

   Let the loss associated to output gaps be given by the canonical quadratic function 

(A3)   Y(�, �∗) = [(� − �∗)> 

where [ is the relative weight assigned to output gaps. Given the output-gap equation in 

case of policy intervention (13), we can write: 

(A4)   Y(�, �∗) = [(− 0
, 3)> 

 In this policy setup, there may exist a symmetric range of deviations of inflation from 

target within which Y(�, �∗, Z) < Y(�, �∗) , i.e. the inflation-gap loss value due to no-

intervention is lower than the output-gap loss value due to intervention (Orphanides and 

Wieland, 2000, p.1364). The solution of the condition Y(�, �∗, Z) = Y(�, �∗) yields the 

boundaries of the TZ, the values |ε| of the symmetric deviations of inflation from target 

within which the central bank opts for no-intervention.  The solution is the following: 

(A5)  3 = ±%\ ]
,?#^0?                    ω < γ 2/α2 

 Clearly, for θ = 0 the TZ collapses to zero.  By contrast, the central bank maintains a TZ 

even for zero weight assigned to output gaps (ω = 0), i.e.  

(A6)    3 = ±√Z 

 Note, therefore, that nonzero weight assigned to the output-gap loss value is neither 

necessary nor sufficient in order to obtain a TZ. On the other hand, if the central bank does 

assign nonzero weight to the output-gap loss value, the result is a higher absolute value 

|ε| and a lower policy rate in the intervention area as in standard flexible inflation 

targeting.18 

 

 

                                                        
18 The model can easily be extended to include an indifference threshold also for output-gap losses, e.g. 

  Y(�, �∗) = [((� − �∗)> − _) 

The solution of the boundaries of the TZ becomes: 

  3 = ±%\ ]#`^
,?#^0?  

Therefore, provided that ω satisfies the sign condition for |ε| to be real-valued, in general the presence of φ 

may still yield  |ε| ≠ 0, except in the particular case of ω = θ/φ 
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A.2. The general solution of the TZ model 

 In order to solve the inflation equation (11) in the no-intervention area (& ̂ = 0), i.e. 

(A7)  � = �∗ +  (�� � + ) , 

let us assume a generic functional form for  �: 

(A8)  � = a()) 

 We can now use this equation to calculate the expected variation of inflation. In order 

to do this, let us expand the equation in a Taylor-type series, by calculating Ito’s 

differential:  

(A9)    ��()) = ab())�) +  $
> a′′())(�))> 

From equations (1) to (4) in the text, it turns out that 7(�)) = 0 and 7(�))> = �D>�� . We 

obtain, then, Ito’s Lemma:  

(A10)   
d(�He)

� = $
> abb())�D> 

By replacing (A10) into (A7) we have:  

(A11)  � = a()) = �∗ + ) + (!$
> abb())�D>" 

This is a differential equation of the second order whose generic solution is of the class 

(Bertola and Caballero, 1992, p.522): 

(A12)  � = �∗ + ) + 9$:;<= + 9>:;?= . 

where @$,> = ±B2/(�D> are the two roots of the characteristic equation. 

 Setting  A1 = A, A2 = − A, and  λ1 = λ, λ2 = −λ, we obtain  

(A13)  � = �∗ + ) + 9(:E= − :#E=) 

which is equation (17) in the text. 

 

A.3. Uncertainty 

 To deal with uncertainty about the boundaries of the TZ we apply the Bertola and 

Caballero (1992) methodology of  TZ "realignments".  

 Let us first consider that the inflation process can be reformulated in the form �(a, c) 

where f is the value of the fundamental variable and  f refers to the central value of the 

current TZ. Accordingly,  (A13) can be rewritten as 

(A14)   �(a, f) = a + 9(:;(g#h) − :#E(g#h)) 

 Considering now the upper bound of the TZ, we have to examine what happens when 

the process ) realises the highest level )̅ that determines linearly, in the absence of any 

expectation effect, the largest acceptable inflation rate �4 by the central bank (see function 

L in Figure 2). In terms of (A14) we have: 

(A15)  �O)̅, �∗P = �4 + 9O:;(HL#H∗) − :#E(HL#H∗)P = �∗ + )̅ + 9O:;=4 − :#E=4 P 



20 

 

 Under uncertainty about the true upper bound of the central bank, a no-arbitrage 

argument provides the closing equation. Let agents believe that,  

• with probability �,  the central bank will let inflation grow further above �4 by say the 

amount ∆u, at to the centre of a higher band ∈ [�4 , �4 + 2∆u] 

• with probability 1 − p, inflation will remain at  �4 or move below by say the amount ∆d to 

the centre of the band ∈ [�4− 2∆d, �4 ]. 

 Therefore, when the inflation process hits �4 the following no-arbitrage condition 

should hold: 

(A16)   �O)̅, �∗P = ��(�4 + �i, �4 + �i) + (1 − �)�(�4 − ��, �4 − ��), 

 That is to say: 

(A17) �∗ + )̅ + 9O:;=4 − :#E=4 P = �j�∗ + O)̅ + �iPk + (1 − �)j�∗ + O)̅ − ��Pk 

from which it follows that: 

(A18) 9 = !�ΔN − (1 − �)�� "O:;=4 − :#E=4 P#$
   

which is equation (19) in the text. 

 

A.4. Numerical simulation 

 The parameters that govern the inflation process, and the chosen empirical values 

referred to the Eurozone, are the following: 

•  β  = coefficient of expected inflation in the Phillips Curve = 0.5: Amberger and Fendel 

(2017), Montoya and Doehring (2011) 

•  κ = coefficient of the output gap in the Phillips Curve = 0.3: Amberger and Fendel 

(2017), Riggi and Venditti (2014),   Oinonen and Paloviita (2014) 

•  α = coefficient of the interest-rate gap in the IS function = 0.2: Smets and Wouters 

(2003),  Laubach and Williams (2003), Garnier and Wilhelmsen (2005) 

•  �D> = variance of the inflation process = 1.44: Table 1 in the text 

•  ε = width of TZ = ± 1.5: Table 1 in the text 

 With these data, and zero weight on output-gap losses, the indifference threshold 

towards inflation-gap losses introduced in A.1 above is θ = 2.25. Figure 3 displays the plot 

of the corresponding inflation-gap loss function (A2). 

 If output-gap losses, too, have a nonzero weight as in equation (A4), the width of the 

TZ, i.e. the value of |ε| such that Y(�, �∗, Z) < Y(�, �∗)  increases. With  ω  = 0.5, the 

boundaries are ε = ± 1.81, and with ω  = 1 (i.e. the same as inflation-gap losses), the 

boundaries widen up to  ε = ± 2.5. 
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Figure 3. The boundaries of the TZ 

 

 Figure 4 shows the inflation process in the honeymoon scenario, where A = -0.091, λ = 

0.962, )̅F= 2.52, and )̅ = 1.5. The honeymoon effect ()̅F − )̅) , the "extra shock" that the 

central bank can accommodate in the no-intervention area, is therefore 2.52 – 1.5 = 1.01. 

Figure 5 shows the inverse relationship between  )̅F  and λ. A low λ (e.g. high impact of 

expectations on inflation β ) enhances the honeymoon effect. 

 
Figure 4. The honeymoon effect 

 
Figure 5. The relationship between  )̅F and λ  
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  Figure 6 shows the divorce scenario due to uncertainty about the true value of the 

boundaries of the TZ. It represents the case where agents assign probability (1 − p = 40%) 

to the true boundaries [0.5%, 3.5%] and probability p = 60% that they are [3.5%, 6.5%]. 

In terms of the general treatment in the text, as the inflation process hits the true upper 

bound, agents assign 60% probability to inflation being allowed to increase further by ∆u 

= 1.5, and 40% probability  that it will revert to the target of 2%, i.e. ∆d = 1.5. Hence this 

is the case of symmetric "realignment" as in Bertola and Caballero (1992), so that the 

critical probability p* which yields A = 0 (the linear process L) is 50% (see equation (20) 

in the text). Since p > p* , A becomes positive, equal to 0.075, and the inflation process 

becomes convex bending to the left of the linear path L. The point of intervention of the 

central bank is when )̅G =1.2. 

 
Figure 6. The divorce effect with 60% probability of "realignment" 

 
The shaded area represents the "realigned" TZ. The dotted function is given by 100% probability of 

"realignment" 

 

 The divorce effect is measured by  ()̅G − )̅) = −0.3, namely the anticipation of 

intervention due to uncertainty. It increases with the probability assigned to the 

"realignment" to the higher TZ, as is shown by the 100%-probability dotted line. For a 

given probability, )̅G   decreases with the parameter λ , i.e. the divorce effect increases. 

Therefore, while a low λ enhances the honeymoon effect, it worsens the divorce effect. 

 The difference between honeymoon and divorce can further be appreciated by means 

of  Figure 7. It reproduces the first hundred draws from a Monte Carlo simulation of the 

inflation process in honeymoon scenario of Figure 4 vis-à-vis the divorce scenario of 

Figure 6 (with probability of realignment of 60%), in response to the same set of shocks 

extracted from a Normal distribution with zero mean and variance 1.44 (standard 

deviation 1.2). The sample mean is 0.26 with standard deviation 1.13. With honeymoon 

the inflation process displays a sample mean of 2.18 with standard deviation 0.81 (smaller 

than the standard deviation of shocks), and an average square gap (from 2%) of 0.69%.  
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With divorce, the sample mean rises to 2.32, the standard deviation to 1.4, and the average 

square gap to 2.06%. 

 
 Figure 7. Monte Carlo simulation of the inflation processes in Figures 5 and 6 
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