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Abstract 

We show theoretically that the weak transmission of beliefs to actions induces a strong bias in 
basic asset pricing tests. In particular, expected returns can appear to decline in risk when investors 
weakly transmit their payoff expectations into willingness to pay. We experimentally test this 
prediction and find that subjects exhibit an extremely weak transmission of beliefs to actions, 
which generates a negative risk-return relation. We argue that the weak transmission is due to 
cognitive noise and demonstrate that cognitive noise causally affects the risk-return relation. Our 
results highlight the importance of incorporating weak transmission into belief-based asset pricing 
models. 
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1 Introduction

Economists have spent the past several years using surveys to document facts about in-
vestors’ expectations of stock returns. A clear fact that emerges from this literature is that
the subjective expected returns that investors report on surveys systematically depart from
objective expected returns (Greenwood and Shleifer (2014), Adam and Nagel (2022), Nagel
and Xu (2022b)). This fact rejects standard rational expectations models and has motivated
a new class of asset pricing theories aimed at matching both subjective expectations and
realized returns (e.g., Barberis et al. (2015), Hirshleifer et al. (2015), Barberis et al. (2018),
Bordalo et al. (2019), Jin and Sui (2022), Nagel and Xu (2022a)). These models formal-
ize the subjective expectation formation process in a psychologically grounded manner, but
retain the standard assumption that investors fully act on their subjective expectations.

In a parallel strand of research, several authors have highlighted a puzzling disconnect
between measured subjective beliefs and investor actions. Using data from a sample of
wealthy retail investors, Giglio et al. (2021a) document that the sensitivity of equity portfolio
shares to subjective return expectations is an order of magnitude weaker than predicted by
standard frictionless models. This weak transmission of beliefs to actions appears to be
a robust phenomenon that is observed in a variety of other settings (Amromin and Sharpe
(2014), Drerup et al. (2017), Ameriks et al. (2020), Liu and Palmer (2021), Beutel and Weber
(2022)). Even in times of a market crash, when investors arguably pay a lot of attention to
the stock market, actions remain too insensitive to subjective beliefs (Giglio et al. (2021b)).

In this paper, we analyze and experimentally test how the weak transmission of subjective
beliefs to actions affects the basic building blocks of asset pricing. In the theoretical part of
the paper, we show that failing to account for a weak transmission of beliefs to actions can
fundamentally alter the interpretation of the risk-return relationship. Our main theoretical
result is that inference from regressions of subjective expected returns on perceived risk is
severely biased when investors do not fully transmit their beliefs into actions. Intuitively,
when an investor raises her subjective expected payoff, the weak transmission dampens her
associated increase in willingness to pay. The larger increase in expected payoff compared
to willingness to pay leads to an increase in the subjective expected return. The weak
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transmission therefore induces a positive correlation between expected returns and expected
payoffs. Thus, if the econometrician runs a univariate regression of subjective expected
return on perceived risk, there will be an omitted variable bias when subjective expected
payoff correlates with perceived risk. If the link between beliefs and actions is weak enough,
the measured risk-return relation can become negative. Importantly, controlling for the
omitted expected payoff variable will restore the positive risk-return relation.

We test our theoretical predictions across two controlled experiments. We design our first
experiment (Experiment 1) to provide three main advantages that complement data from
surveys. First, we exogenously set the payoff process and control the subject’s information
set; we can then make quantitative statements about how subjective expected returns differ
from objective (statistical) expected returns. Second, we incentivize subjects to price a
one-period dividend strip in a partial equilibrium setting. For each subject, we elicit both
their full distribution of beliefs about next period’s stochastic dividend and their willingness
to pay (WTP) for the dividend. The partial equilibrium aspect allows us to study the
relationship between expectations and valuations at the subject level, without requiring the
subject to be the marginal investor. Third, we back out the implied subjective expected
return from valuations and expectations. This method circumvents common concerns in the
survey literature about respondents not understanding what is meant by “expected returns”
(Cochrane (2011), Cochrane (2017)).

We first test for the weak transmission of subjective payoff expectations to WTP, which
is a necessary assumption for our theoretical predictions. In a frictionless model, a one unit
increase in a subject’s expected payoff generates a one unit increase in her WTP. Our ex-
perimental data strongly depart from this frictionless benchmark: we find that a one unit
increase in expected payoff leads to only a 63% increase in WTP. Importantly, our experi-
mental design shuts down all institutional frictions that can plausibly explain the disconnect
between beliefs and actions in the field – such as costly portfolio monitoring, capital gains
taxes, default retirement contributions, and leverage and short-selling constraints. More-
over, because we ask subjects for their WTP and beliefs on the same experimental screen,
beliefs should be readily accessible which arguably tilts the scales away from finding the
weak transmission effect.
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After establishing the weak pass-through of beliefs to WTP in our experimental setting,
we turn to testing our main predictions about the risk-return relation. When estimating
a simple regression of measured subjective expected returns on perceived risk, we find a
strong negative relationship. This result is striking given that the average subject in our
experiment is risk averse. Our conceptual framework provides an explanation for the negative
relationship between expected returns and perceived risk. By omitting the expected payoff
from the regression, there is a severe downward bias in the risk-return relation. Importantly,
when we add expected payoff to the regression, the risk-return relation flips sign to become
positive. This result suggests that it is important to account for the weak transmission,
especially in simple regressions of returns on risk.

Given the absence of any institutional frictions in our experiment, we argue that a psy-
chological explanation is responsible for the observed weak transmission of beliefs to WTP.
We interpret the weak transmission through the lens of a new agenda in behavioral eco-
nomics which argues that the decision-making process is subject to inherent cognitive noise
(see Woodford (2020) for a review). The noise arises in the investor’s mind due to cognitive
constraints, and it increases with the complexity of the task at hand. Crucially, the noise
leads to systematic decision biases: the investor is aware of this noise, and consequently
shades her decision toward a “default value” that does not vary with the specific problem at
hand (Enke and Graeber (2021)).

For example, when coming up with the valuation for an asset, an investor will naturally
lean on her beliefs about future payoffs. But she may be uncertain about how to arrive at
an appropriate valuation given these beliefs and her risk appetite. As such, she selects a
valuation that is somewhere between the one dictated by her stated beliefs and a default
valuation. The compression of actions towards a default may be interpreted as a rule of
thumb, but it can also be microfounded by Bayesian updating in the presence of cognitive
noise (Gabaix (2019)). For our purposes, the important implication of cognitive noise is that
shading of valuations towards a cognitive default immediately dampens the transmission of
stated beliefs to WTP.

In our second experiment (Experiment 2), we manipulate the level of cognitive noise to
assess its impact on the degree of weak transmission and the risk-return relationship. To do
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so, we draw on the finding from Enke and Graeber (2021) that subjects report higher levels
of cognitive uncertainty when decisions are more complex. We argue that it is more complex
to price an asset based on subjective beliefs that are learned from past dividends compared
to objective beliefs that are endowed. We therefore manipulate cognitive noise by varying
whether beliefs are subjective or objective, but we hold constant the beliefs themselves.

We implement the cognitive noise manipulation through a novel design feature. We
endow subjects in Experiment 2 with the beliefs reported by subjects from Experiment 1.
Specifically, each subject in Experiment 2 is endowed with an objective payoff distribution,
and we generate this payoff distribution from the subjective beliefs of a randomly matched
partner in Experiment 1. To help convey the critical design aspect, suppose that after
observing a sequence of dividends, a subject from Experiment 1 reports a distribution of
beliefs denoted by b1 (and her associated WTP given these beliefs). In Experiment 2, there
is no learning and we instead endow the subject with beliefs b1 and ask her to price the asset
conditional on these objective beliefs. Our manipulation is grounded in the hypothesis that
cognitive noise is larger in settings where additional cognitive operations are needed, such
as learning from past data and forming subjective beliefs. By comparing the sensitivity of
WTP to beliefs across experiments, we can assess the causal effect of cognitive noise.

We find that endowing subjects with objective beliefs leads to a striking difference in
pricing behavior: for every unit increase in expected payoff, subjects in Experiment 2 in-
crease their WTP by 87%, compared to 63% in Experiment 1. Because we hold beliefs
constant across experiments, our interpretation is that cognitive noise causally decreases the
sensitivity of actions to beliefs. Moreover, to our knowledge, this is the first piece of evi-
dence indicating that valuation is substantially less sensitive to subjective beliefs compared
to objective beliefs.1

We then test how the greater pass-through of beliefs to actions affects the risk-return
relation. It is worth emphasizing that any change in the risk-return relation that we find
across experiments must be due to the increased transmission since we hold constant all other

1Our finding is similar to, but distinct from, the experimental result in Hartzmark et al. (2021) where
subjects react more strongly to information about goods that they own compared to those that they do not
own. In Hartzmark et al. (2021), the endowment of an asset is randomly varied across treatments. In our
setting, it is the endowment of beliefs that varies across treatments, and we find that WTP reacts more
strongly when beliefs are endowed rather than learned.
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parameters. As predicted by our theory, we find that the slope of the measured risk-return
relation increases significantly compared to Experiment 1. The increased pass-through from
beliefs to actions is so much stronger in Experiment 2 that it flips the sign and restores a
positive risk-return relation – even without controlling for expected payoff.

Our results suggest that cognitive noise is a key source of the disconnect between beliefs
and actions. Because the noise arises inside the investor’s mind, it is distinct from classical
measurement error in surveys. If measurement error was solely responsible for the weak
transmission, we would not expect any change in transmission strength across our two ex-
periments, yet we find a substantial difference. The distinction between the two mechanisms
is important because cognitive noise and measurement error will have different effects on
aggregation, as behavior with cognitive noise depends heavily on a default value which can
differ across investors (Liu and Palmer (2021)).

Overall, our experimental findings provide important guidance for the role of subjective
expectations data in asset pricing. Brunnermeier et al. (2021) point to the need for more
research on the interaction between beliefs and actions to better understand the role of ex-
pectations data for asset pricing. Our work highlights that the weak transmission of reported
beliefs to valuations can arise in a simple environment that is insulated from institutional
frictions, and it can generate a wedge between subjective and objective expected returns.
Relatedly, Nagel and Xu (2022b) document a systematic difference between the cyclical
behavior of subjective and objective expected returns; our framework suggests that weak
transmission may be one potential explanation for this pattern in the data. While survey
data is clearly valuable for unveiling differences in subjective and objective expectations, our
work suggests caution in quantitative modeling approaches that assume agents fully act on
their beliefs. At the same time, adding a weak transmission channel to existing models may
provide an opportunity to further improve quantitative fits.

We also contribute to a burgeoning literature studying the weak transmission of beliefs to
actions in the field. In a related paper, Liu and Palmer (2021) find that the beliefs investors
report on surveys do not contain all the information used in actual investment decisions.
Respondents who are less confident in their beliefs tend to rely on factors – such as past
returns – to a greater extent in their decision making. Our results are wholly consistent with
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these effects, but we additionally provide causal evidence in a controlled setting. Beutel
and Weber (2022) also study the causal effects of survey beliefs on portfolio choices. One
important advantage of our design is that we match the exogenous distribution of beliefs in
Experiment 2 to the endogenously formed distribution of beliefs in Experiment 1. This design
feature enables us to show that the objectivity of beliefs causally affects asset valuations (by
comparing behavior across our two experiments). In a related paper, Andries et al. (2022)
conduct an experimental study in which they vary the signal informativeness about future
returns. When subjects perceive the signal to be less informative, allocations underreact
more severely to beliefs. To the extent that subjects in our experiment perceive subjective
beliefs to be less informative than objective beliefs, our results are consistent with those of
Andries et al. (2022).

Finally, Barberis and Jin (2022) develop a model of investor behavior based on rein-
forcement learning and argue that it can explain a variety of facts about financial markets,
including the disconnect between beliefs and portfolios. Their explanation relies on a “model
free” system of decision-making, which is disconnected from the “model based” system that
generates the beliefs reported by investors. While the psychology is quite different across
models, cognitive noise and reinforcement learning both provide a foundation for the belief-
action disconnect that arises from the investor’s decision process, rather than from external
factors such as measurement error or institutional constraints.

The rest of this paper is organized as follows. Section 2 presents a conceptual framework
that illustrates the impact of the weak transmission of beliefs to WTP on the risk-return
relation. Sections 3 and 4 present the results from Experiment 1 and Experiment 2, respec-
tively. Section 5 discusses how our results relate to field evidence and broader implications
for asset pricing. Section 6 concludes with directions for future work.

2 Conceptual framework

We start by stating the relationship between beliefs and WTP under the frictionless bench-
mark. We then introduce our key assumption of cognitive noise, and derive its implications
for pricing and the measurement of the risk-return relation.
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2.1 Frictionless benchmark

Suppose that an agent can invest in an asset which delivers a stochastic payoff Dt at each
time t. The agent forms beliefs about the payoff’s conditional distribution, where the mean
of this subjective distribution is given by E∗

t [Dt+1]. After forming expectations, and before
the payoff Dt+1 is realized, the agent decides what price Pt she is willing to pay for a claim on
Dt+1.2 The agent’s subjective expected return is therefore given by E∗

t [Rt+1] = E∗
t [Dt+1]/Pt.

We can rewrite this identity as

rt = dt − pt, (1)

where rt = logE∗
t [Rt+1], dt = logE∗

t [Dt+1], and pt = log Pt. Unless otherwise noted, through-
out the rest of this section we use WTP, expected returns, and expected payoffs in logs which
will simplify the predictions that we derive here and test in the next section.

The expected return rt is equivalent to the discount rate that the agent applies to the
payoff dt, in order to generate her WTP, pt. This equivalence is easily seen by rearranging
(1) into pt = dt − rt. We assume that the agent discounts the expected payoff based on her
perceived riskiness of the payoff and her risk preference represented by

rt = γλt, (2)

where γ is the price of risk (e.g., risk aversion) and λt is the quantity of risk implied by
the agent’s subjective beliefs about dt (e.g., conditional volatility).3 Hence, the expected
return rt represents compensation for risk which is a common notion in asset pricing for
undiversifiable risks.4

If the econometrician has data on the investor’s subjective distribution of Dt+1 and her
2One can think of such an asset as a dividend strip. The one-period nature of the asset simplifies the

expectation formation process that subjects in our experiment engage in and is sufficient to convey our main
conceptual insight.

3We assume that the time increment is short enough such that the riskless rate is zero and the discount
rate only represents an instantaneous risk premium. We interpret this assumption as the agent perceiving
the stochastic payoff as an instantaneous gamble with no necessity for time discounting, which will be the
case in our experimental design.

4For instance, Cochrane (2011) considers “discount rate” and “expected return” to be equivalent in his
discussion of time variation in discount rates.
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WTP, pt, then it is straightforward to implement tests of the relation between risk and
expected return shown in (2). That is, the econometrician can measure rt as the difference
between expected payoff and WTP as in (1). The econometrician can then regress the
measured rt on λt, where the latter is also computed based on the investor’s subjective
distribution of Dt+1. For any risk averse agent, there is a positive relationship between risk
and expected return, and the strength of this relationship is governed by the investor’s risk
aversion.

2.2 Insensitive actions

2.2.1 Compression towards a default valuation

We have so far maintained the standard assumption that the investor values the asset by
assessing the expected payoff (from her subjective beliefs) and then applying a discount based
on perceived risk. In particular, her beliefs “pass through” to her WTP in a 1-1 fashion, such
that a one unit increase in her subjective expected payoff generates a one unit increase in
the price she is willing to pay, controlling for perceived risk. Here we relax this assumption
and consider a friction in the transmission of the agent’s reported beliefs to her actions. The
friction is motivated by a recent agenda in behavioral economics which argues that cognitive
noise corrupts the decision-making process and leads to systematic biases (Woodford (2020)).

In particular, define the agent’s true valuation of the asset at time t as p∗
t = dt − γλt,

where dt and λt are the agent’s reported expected payoff and perceived risk, respectively.
The variable p∗

t is the benchmark price that is predicted by a frictionless model: it is the
price the agent arrives at when she has no uncertainty about her beliefs, her risk aversion,
or how to optimally combine these components. Our key assumption is that cognitive noise
prevents the agent from accessing this frictionless valuation due to cognitive and attentional
constraints (Gabaix (2019), Enke and Graeber (2021)). Instead, she only has access to a
noisy cognitive signal p0

t = p∗
t + ϵt = dt − γλt + ϵt, where ϵt is drawn from N(0, σ2

ϵ ). The
investor herself generates the noisy cognitive signal when she is deliberating about what her
true valuation is.

In our setting, cognitive noise may be interpreted as difficulty with the process of valuing
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the asset conditional on beliefs, but it can also reflect uncertainty about valuation inputs
such as beliefs or risk aversion. The agent exhibits less cognitive noise as she becomes
more certain about her expectations. Yet, even when she is completely certain about her
expectations, noise still arises in the decision process that transforms precise expectations
to actions.

Following Gabaix (2019) and Enke and Graeber (2021) we adopt a Bayesian perspective
whereby the agent has a prior over what her true valuation is: p∗

t is drawn from a normal
distribution N(p̄, σ2

p). Here p̄ is a “cognitive default” which represents the average valuation
in a similar class of problems. It is the valuation she would choose before drawing her noisy
cognitive signal. The agent then combines her prior and signal to come up with the posterior
mean, which is the WTP that she reports:

pt = (1 − x)p̄ + xp0
t

= (1 − x)p̄ + xdt − xγλt + xϵt

(3)

where x = σ2
p/(σ2

p +σ2
ϵ ) is the weight she attaches to her noisy signal relative to the cognitive

default. See Appendix B.1 for a derivation. Importantly, a one unit increase in dt now leads
to an increase in pt by only x units.

To help illuminate the mapping between our framework and applications, consider an
investor who is assessing her valuation for the aggregate stock market. If good fundamental
news is released about the market, then the investor updates her beliefs about future cash
flows, which corresponds to an increase in dt in our framework. But it may be very difficult
for the investor to figure out exactly how much this shift in cash flow expectations should
shift her WTP for the stock market. We model this friction as the additive noise term, ϵt.
The investor is aware of this difficulty, and when coming up with her WTP, she therefore
leans on a default price, which could be yesterday’s price or some weighted average price
from the recent past. The default is very likely to depend on an investor’s past experience
with the asset, and thus can differ across investors (Liu and Palmer (2021)). The default
price is represented by p̄ in our framework. If enough investors behave in this manner, then
the price of the stock market will adjust in the right direction, but not by enough.

It is important to point out that Equation (3) implies that WTP will also sluggishly
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respond to perceived risk. In other words, the weak transmission of beliefs to valuation is
not confined to the first moment of the subjective payoff distribution, but also operates over
our assumed measure of perceived risk. This is a testable prediction that we will take to our
experimental data later in the paper.

We emphasize that while cognitive noise readily generates a stickiness in actions, in gen-
eral, there are other factors that can also lead to an insensitivity between reported beliefs
and actions. For example, in the field, default contribution rates or capital gains taxes may
lead investors to act less aggressively than is dictated by their beliefs alone. Alternative be-
havioral models based on inattention or memory constraints may also drive a wedge between
reported beliefs and actions. In what follows, the key assumption we rely on is encoded in
Equation (3): agents underreact to their reported beliefs. The microfoundation based on
cognitive noise helps us structure the predictions for our experiment, but the implications
we now present apply more generally in the presence of alternative frictions.

2.2.2 Implications for the risk-return relation

The weak transmission of beliefs to WTP has important implications for the risk-return
relation. The economic interpretation of the measured subjective expected return rt = dt −pt

changes in the case of weak transmission of beliefs to WTP. Plugging WTP from (3) into
the expected return in (1), we obtain

rt = −(1 − x)p̄ + (1 − x)dt + xγλt − xϵt. (4)

The measured subjective expected return with x < 1 no longer depends only on the risk
premium γλt but also on the belief dt.

In the case of weak transmission, the subjective expected return based on the agent’s
reported beliefs differs from her risk-based discount rate. This difference becomes larger
as the transmission becomes weaker (i.e., as x → 0). Intuitively, when the reported payoff
expectation dt increases and pt does not fully respond to the increase, the asset price becomes
relatively “cheaper”. This leads to a higher subjective expected return. Conversely, when
an investor lowers her reported expectation, she prices the asset lower, but not as low as
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under the frictionless benchmark. Thus, the weak transmission induces a positive correlation
between expected payoffs and expected returns. In the frictionless case, equation (4) becomes
r = γλt, and the expected return again corresponds to the risk premium only.

Equation (4) implies that the weak transmission of beliefs to actions gives rise to an
omitted variable bias in tests of the risk-return relation. In particular, suppose that perceived
risk λt and payoff expectation dt are correlated and have an affine relation given by:

dt = α + βλt + ηt, (5)

where α and β are constants and ηt represents variation in dt that is orthogonal to λt.
Plugging (5) into (4), we obtain

rt = −(1 − x)p̄ + (1 − x)α + [(1 − x)β + xγ] λt + (1 − x)ηt − xϵt,

= −(1 − x)p̄ + (1 − x)α +

(1 − x)β − (1 − x)γ︸ ︷︷ ︸
bias

+γ

 λt + (1 − x)ηt − xϵt

(6)

Hence, a univariate regression of r on λ generates a coefficient on risk equal to (1−x)β −
(1 − x)γ + γ. The term (1 − x)β − (1 − x)γ represents the omitted variable bias, which can
have a substantial effect on the estimated risk-return relationship. The strength of the bias
depends on the degree of the weak transmission (x), the loading of expected payoff on risk
(β), and the price of risk (γ).

The coefficient on risk will be biased downward when the following conditions are met: (i)
there is weak transmission (0 < x < 1) (ii) there is a negative correlation between expected
payoff and risk (β < 0), and (iii) the price of risk is positive (γ > 0). For instance, suppose
the asset moves between two states: a bad state with low expected payoffs and high risk,
and a good state with high payoffs and low risk (as will be the case in our experimental
design). When the asset enters the bad state, the expected return rt increases because risk
(λt) is higher (and γ is positive by assumption). But this effect is offset by the negative term
[(1 − x)β − (1 − x)γ], which creates the downward bias in estimation. Fixing β and γ, the
downward bias becomes more severe as the transmission becomes weaker (x → 0).

Figure 1 illustrates the consequences of the weak transmission on the risk-return relation.
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Figure 1. The Impact of the Weak Transmission on the Risk-Return Relation
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Notes: The figure illustrates numerical examples for different values of x. Panel A plots p against d using
equation (3). Panel B plots r against λ using equation (6) where λ-d pairs are based on equation (5) with
η = 0. The parameter values are p̄ = 4.72, γ = 0.0019, β = −0.0068, α = 4.88.

To create this figure, we fix the price of risk γ, the default value p̄, and the parameters which
govern the relation between payoff and risk (α, β). The only parameter we vary is x, which
captures the strength of the transmission of beliefs to WTP.5 When x = 1 (blue solid line),
the reported belief, d, is transmitted 1-1 into the WTP: p is therefore equal to d discounted
by the risk premium, γλ. However, as x decreases, p become less responsive to d (Panel
A). Crucially, the slope of the risk-return relation also decreases as x decreases, despite
holding constant the price and quantity of risk (Panel B). Equation (6) implies that there is
a threshold value for x (equal to β

β−γ
) for which risk and return will exhibit zero correlation

(red dotted line). For any value of x less than this threshold, the risk-return relation flips
sign and becomes negative (e.g., the purple dash-dotted line).

5To create Figure 1, we pick parameter values based on our experimental results. In particular, γ is based
on the coefficient on λt in a regression of pt on dt and λt, and (α, β) are based on a regression of dt on λt.
We set the value of p̄ to the mean log payoff expectation.
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2.3 Predictions

Here we summarize the main implications of our conceptual framework and develop two
testable predictions that we take to the experimental data. Our first prediction is on the
measured risk-return relation in the presence of weak transmission.

Prediction 1. If (i) the transmission of beliefs to willingness to pay is weak and (ii) payoff
expectations and risk are negatively correlated, then regressing expected return on risk will
lead to a downward biased coefficient on risk. The coefficient on risk increases if the payoff
expectation is included as a control in the regression.

Because the amount of bias in the risk-return relation depends on the parameter x, it
follows from our conceptual framework that manipulating x will systematically affect the
risk-return relation. Because one source of weak transmission can be cognitive noise, we
predict that manipulating cognitive noise will systematically affect the risk-return relation.

Prediction 2. If payoff expectations and risk are negatively correlated, then exogenously
decreasing cognitive noise will (i) strengthen the sensitivity of WTP to payoff expectations,
(ii) strengthen the sensitivity of WTP to perceived risk, and (iii) increase the coefficient on
risk in a regression of expected returns on risk.

In the next section, we test these predictions in an experimental setting.

3 Experiment 1

3.1 Experimental design

3.1.1 Experimental setup

The goal of our experiment is to cleanly test for the weak transmission of beliefs to WTP
and its implications for the risk-return relation. Importantly, our design shuts down several
factors that Giglio et al. (2021a) suggest can generate a low sensitivity of portfolios to
beliefs in the field, such as capital gains taxes, default options in retirement plans, and
costly portfolio monitoring. Additionally, and in contrast to standard survey methodologies,
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we incentivize the elicitation of beliefs and expected returns. We also infer the expected
return from a subject’s (i) WTP for the asset and (ii) reported beliefs about the asset payoff.

In our design there is a stock that pays a dividend, Dt, in each of 30 periods. There are
five possible values for the dividend: {$60, $85, $115, $135, $150}. This five point distribution
of payoffs is similar to the distribution of returns that Giglio et al. (2021a) use to elicit beliefs
from their survey respondents.6 The conditional distribution of Dt is governed by a two-state
Markov chain. We denote the state in period t by st, which can take on one of two values,
either good or bad. In the bad state, the distribution of dividends is given by:

Pr(Dt|st = bad) ≡ ($60, 0.15; $85, 0.30; $115, 0.40; $135, 0.10; $150, 0.05) (7)

In the good state, the distribution of dividends is given by:

Pr(Dt|st = good) ≡ ($60, 0.05; $85, 0.10; $115, 0.40; $135, 0.30; $150, 0.15). (8)

The distribution in the good state has a higher mean and lower volatility, compared with
the dividend distribution in the bad state. We initialize the state in period 1 to be either
good or bad with equal probability: Pr(s1 = good) = 50%. The states are persistent: the
probability of remaining in the same state from one period to the next is 80%. Therefore,
with 20% probability, the state switches in each period.

Subjects are given all the above information about the model of dividends; however,
they do not observe the identity of the state in each period. As such, subjects face a
learning problem in which they can use data on past dividends to infer the probability that
the current state is good. We choose the above stochastic process for two main reasons.
First, the Markov chain induces substantial time series variation in the expected dividend.
Moreover, the two-state switching process guarantees that the variation does not decline over
time (as would be the case in, say, a model where the probability of switching from one state
to the other is zero). Second, the switching process induces a negative time series correlation
between the conditional expectation and volatility of the payoff. This negative correlation

6Giglio et al. (2021a) elicit a distribution over five different ranges of returns, whereas we elicit a distri-
bution over five different values of the dividend.
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is important because it is one of the necessary conditions for Prediction 1 to obtain.7 To
ease comparability of behavior across subjects, we use the same realized sequence of thirty
dividends for all subjects.

In 8 randomly chosen periods, we elicit a subject’s full distribution of expectations about
next period’s dividend. In the remaining 22 periods, we do not elicit any expectations,
and subjects simply observe the realized dividend.8 Specifically, we ask subjects for the
probability that they attach to each of the five possible dividend outcomes. The ordering
of the buckets (i.e., lowest to highest or highest to lowest) is randomized across subjects,
and we ensure that the probabilities add up to 100%. We also ask subjects to report the
price they are willing to pay for the right to receive next period’s dividend, Dt+1. These two
elicitations enable us to test the relation between subjective payoff expectations and WTP
as well as how the subjective payoff distribution differs from the objective distribution.

Importantly, we incentivize the expectations question and the WTP question. When we
elicit a subject’s distribution of beliefs about next period’s dividend, we pay subjects based
on their accuracy relative to how a Bayesian agent would respond. To see how a Bayesian
agent would respond, we derive the probability that the state is bad, conditional on all past
dividends. We denote this probability as qt = Pr(st = bad|Dt, Dt−1, ..., D1). Conditional on
qt, the distribution of dividends can be computed using the distributions in good and bad

states depicted in equations (7) and (8). Because the stochastic process is Markovian, we
can rewrite the expression for qt as a function of the current period’s realized dividend and
the prior belief:

7The predictions in our conceptual framework rest on the assumption that the subjective expected payoff
dt and the perceived risk λt are negatively correlated (i.e., that β < 0). By definition, it is impossible
to impose this correlation on subjective beliefs. However, we can increase the chance of observing such a
correlation by imposing a negative correlation for a Bayesian agent. In Section 3.2 we confirm that the
subjective expected payoff and perceived risk are indeed negatively correlated.

8We elicit beliefs in the same 8 (randomly chosen) periods for all subjects. See Internet Appendix IA.1
for screenshots of the experiment.
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qt(qt−1, Dt)

= Pr(Dt|st = bad) Pr(st = bad|qt−1)
Pr(Dt|st = bad) Pr(st = bad|qt−1) + Pr(Dt|st = good) Pr(st = good|qt−1)

= Pr(Dt|st = bad)(0.8qt−1 + 0.2(1 − qt−1))
Pr(Dt|st = bad)(0.8qt−1 + 0.2(1 − qt−1)) + Pr(Dt|st = good)(0.2qt−1 + 0.8(1 − qt−1)) ,

(9)

where the expressions Pr(Dt|st = bad) and Pr(Dt|st = good) are defined in equations (7)
and (8) (Frydman et al. (2014)). Given the probability that the stock is in the bad state,
the expected dividend is just a weighted average of the expected dividend in each of the two
states: E[Dt|qt] = qtE[Dt|st = bad] + (1 − qt)E[Dt|st = good]. Similarly, the probability of
each dividend outcome is a weighted average of the probability of that outcome in each of
the two states. For example, for a $60 dividend, Pr(Dt = $60|qt) = qt Pr(Dt = $60|st =
bad) + (1 − qt) Pr(Dt = $60|st = good).

The calculations above establish the Bayesian benchmark, which we use to incentivize
subjects when they report their beliefs. In particular, we randomly pick one of the eight
periods in which we elicit the distribution of beliefs and the WTP, and then pay subjects
based on either the distribution question or the WTP question. If the distribution question
is randomly chosen, then we randomly select one of the outcomes of the distribution and pay
subjects a $3 bonus if their elicited probability estimate is within one percentage point of
the objective probability of that outcome. For each percentage point that subjects deviate
from the Bayesian prediction, we subtract 3 cents.

If instead the WTP question is randomly chosen, we implement a Becker-DeGroot-
Marschak (BDM) mechanism, which is designed so that it is in the subject’s best interest
to report their true WTP. To implement the mechanism, we endow the subject with $210
in experimental wealth, which can be used to purchase the right to next period’s dividend.
After the subject reports their WTP for next period’s dividend, we draw a random price
between $60 and $150. If the price that we draw is equal to or smaller than the WTP,
the subject purchases the one period asset at the randomly drawn price. If the number is
larger than the stated WTP, the subject does not purchase the asset. Subjects receive their
remaining experimental wealth after any profits or losses from purchasing the asset. Each
dollar in the experiment converts to $0.01. Thus, subjects can receive a bonus of up to $3

16



for the WTP question.
While it may be difficult for subjects to implement the Bayesian updating rule in (9),

our tests do not rely on subjects’ ability to accurately compute qt. Importantly, our con-
ceptual framework in Section 2 does not depend on whether beliefs depart from Bayesian
rationality. Indeed, the implications from Section 2 are based on reported beliefs, which
are inherently subjective. At the same time, the Bayesian benchmark is useful not only for
eliciting incentive-compatible beliefs, but also to study any systematic differences between
objective and subjective beliefs. The wedge between subjective and objective beliefs will
turn out to be an an important predictor for the weak transmission across subjects.

3.1.2 Experimental procedures

We recruit 300 subjects from the online data collection platform, Prolific. The sample
size and exclusion criteria are pre-registered on Aspredicted.org.9 Subjects received $2 for
completing the experiment, in addition to their bonus payment. The average completion
time of the experiment was approximately 13 minutes, and the average earnings were $4.39,
including the $2 participation fee.

3.2 Experimental results

3.2.1 Summary statistics

Our experiment with 300 subjects produces a panel dataset with 2,400 total observations
(8 elicitations per subject). Table 1 provides summary statistics of the dataset where E∗

denotes expectations under subjects’ reported beliefs and Eb denotes the Bayesian expecta-
tion. Because all subjects face the same sequence of payoffs (dividends), the time series of
the Bayesian distribution is identical across subjects.

Table 1 reveals that subjects are quite accurate about the expected payoff on average,
but there are sizeable deviations from the Bayesian benchmark. The average deviation

9See https://aspredicted.org/6Z4_RLQ for the pre-registration document. After analyzing the data, the
emphasis of our analysis changed to the weak transmission of beliefs to actions. We believe that including
the initial pre-registration here is important for transparency, particularly about sample size and exclusion
criteria. See Appendix D for additional pre-registered analyses. Our analyses in Experiment 1 provide crucial
motivation for the design of Experiment 2, which we also pre-register; details are provided in Section 4.
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Table 1
Summary Statistics

Mean p25 p50 p75 SD Min Max

Subjective expected payoff E∗[D] 112.60 105.5 113.00 120.50 12.04 65.00 150.00
Deviation from Bayesian E∗[D]/Eb[D] 1.01 0.96 1.02 1.08 0.10 0.59 1.32
Willingness to pay P 95.15 80.00 95.70 110.00 20.88 60.00 150.00
Subjective expected return E∗[R] = E∗[D]/P 1.23 1.04 1.19 1.38 0.27 0.52 2.23
Perceived volatility Vol∗[D] 23.64 21.36 24.81 27.22 6.05 0.00 39.69
Bayesian volatility Volb[D] 25.37 24.70 25.73 26.02 0.84 23.96 26.07

Notes: This table presents summary statistics for the main variables in our sample. The sample consists
of 300 subjects, each elicited at 8 elicitation periods, yielding 2,400 observations. E∗[D] is the subjective
expected payoff, defined as the mean of a subject’s reported dividend distribution. Eb[D] is the Bayesian
expected payoff, defined as the mean of the Bayesian dividend distribution. P is the subject’s reported
willingness to pay for next period’s dividend. Perceived volatility, Vol∗[D], is the volatility of a subject’s
reported dividend distribution. Bayesian volatility, Volb[D], is the volatility of the Bayesian distribution.

from the Bayesian expectation, which we compute as E∗[D]/Eb[D], is 1.01, where a value
of 1.00 corresponds to no deviation from Bayesian expectations. The prices that subjects
are willing to pay are, on average, lower than expected payoffs, which is consistent with risk
aversion among our subjects. Thus, on average, subjective expected returns are greater than
1. Because we elicit subjects’ beliefs about the entire payoff distribution, we can measure
perceived risk as the volatility of the elicited distribution. While the average and median
perceived volatility are close to the Bayesian benchmark, perceived risk exhibits a lot more
variation.

For all subsequent empirical analyses, we transform WTP and expectations to logs in
order to be consistent with the conceptual framework in Section 2. In particular, p denotes
log P , d denotes logE∗[D], λ denotes Vol∗[D], and r denotes logE∗[R]. In addition, most of
our analyses in the following sections focus on the within-subject time series relation between
variables. Appendix E shows that there is also significant time-invariant variation in beliefs
and WTP across subjects, a finding that is consistent with the field evidence in Giglio et al.
(2021a).
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3.2.2 Pricing results

We begin by testing the underlying assumption of our theory from Section 2, namely, the
existence of weak transmission of beliefs to actions. Because our theory is about pricing
and beliefs at the individual level, we allow for heterogeneity in parameters across subjects
when conducting our empirical tests. We assume that the default WTP (p̄), price of risk (γ),
degree of weak transmission (x), and the loading of payoff expectations on perceived risk (β)
are fixed within subjects – but can vary across subjects. In particular, all of our empirical
results are based on mixed effects regressions with random slopes and a random intercept.

Table 2
Willingness to Pay, Subjective Expected Payoffs, and Perceived Risk

p (1) (2)

d 0.634∗∗∗ 0.610∗∗∗

(0.049) (0.050)
λ −0.195∗∗∗

(0.073)

Observations 2,400 2,400

Notes: This table presents results from mixed effects regressions of WTP (p) on subjective expected payoffs
(d) and perceived volatility (λ). These regressions include a random effect for d and λ, as well as for the
intercept. Standard errors are clustered at the subject level and displayed in parentheses below the coefficient
estimates. The coefficients and standard errors for λ are multiplied by 100. ∗, ∗∗, and ∗∗∗ indicate statistical
significance at the 10%, 5%, and 1% levels, respectively.

Column 1 of Table 2 reports that the sensitivity of WTP to payoff expectations is 0.634,
which is significantly below one. Figure 2 illustrates this result by showing that the best
fitting line is much shallower than the 45-degree line. Of course, our univariate regression of
pt on dt has an omitted variable, namely, risk. In Appendix B.2, we show that the omission
of λt biases the estimate of x upward whenever (i) the price of risk is positive (e.g., subjects
are risk averse) and (ii) the correlation between payoff expectations dt and perceived risk λt

is negative.10 It follows that our underreaction result is robust to alternative measures of
perceived risk besides volatility, since omitting the appropriate measure of risk will lead to

10By design, the correlation between payoff expectations and volatility is negative for a Bayesian investor.
Figure A.1 demonstrates that this negative correlation is also present in the subjective beliefs data.
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Figure 2. Willingness to Pay and Subjective Expected Payoffs
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Notes: This figure is a binned scatter plot of willingness to pay (p) and subjective expected payoffs (d)
controlling for subject fixed effects. The sample size is 2,400 and the number of subjects is 300. The upper
line is the 45-degree line.

an upward bias in the sensitivity of WTP to expected payoff. We show in Column 2 that
the responsiveness of WTP to beliefs remains significantly below one after controlling for
our assumed measure of risk, namely, conditional volatility. The specification in Column (2)
also confirms that subjects demand compensation for risk (γ > 0), as they are willing to pay
less when risk is higher, holding the payoff expectation constant.

Having established that x < 1, which is a necessary assumption for our predictions, we
now turn to testing Prediction 1. Recall that this prediction states that if x < 1 and if payoff
expectations and risk are negatively correlated, then regressing expected return on risk will
lead to a downward biased coefficient on risk. Specifically, Equation (6) shows that the slope
coefficient from regressing expected return on risk is given by (1 − x)β − (1 − x)γ + γ, where
(1 − x)β − (1 − x)γ is the omitted variable bias. We have already shown that x < 1 and
β < 0, which implies there should be a downward bias in the estimated risk-return relation.
If this bias is strong enough, it can flip the sign of the relationship from positive to negative.
Our data reveal that the bias is substantial: Column 1 of Table 3 shows that there is a
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negative relationship between expected return and risk. Figure 3 illustrates the negative
correlation.11 This result may initially appear puzzling in light of our earlier finding that
subjects exhibit a lower valuation for the asset as perceived risk increases (Column 2 of Table
2). Our conceptual framework resolves the puzzle by showing that the negative relationship
is caused by an omitted variable problem, which derives from the weak transmission of beliefs
to WTP.

It is worth spelling out the intuition in more detail for how the econometrician can
detect a negative risk-return relationship among a population of risk averse subjects. The
reason is that when a risk averse subject’s beliefs are not fully transmitted into her WTP,
the measured subjective expected return rt = dt − pt no longer depends only on the risk
premium; it also depends on the payoff expectation, as illustrated in equation (4). In other
words, the subjective expected return based on reported beliefs is no longer equal to the
more economically meaningful discount rate that represents risk compensation. Importantly,
we can restore the positive risk-return relation by controlling for payoff expectations in a
regression of expected return on risk. Column 2 of Table 3 shows that the sign of the
coefficient on risk flips from negative to positive when adding a control for subjects’ reported
expected payoffs. In sum, our results are consistent with Prediction 1.

We have thus shown that even when subjects are risk averse, the weak transmission of
beliefs to WTP can create the illusion that risk premia implied by subjective expected returns
are declining in risk. This phenomenon arises because subjective expected returns no longer
represent only the discount rate which rises in bad times, but also the payoff expectation
which declines in bad times. If the latter force dominates – which can occur with sufficient
cognitive noise – the subjective expected returns will become procyclical, which is wholly
consistent with our data.

3.2.3 Subjective vs. objective expected returns

So far we have focused on analyzing the link between subjective expected returns and per-
ceived risk. What do our results imply for the link between objective expected returns and

11Appendix D shows that the risk-return relationship remains qualitatively unchanged when using the
subjective probability for the lowest possible payoff ($60) as the perceived risk measure.
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Table 3
Subjective Expected Returns, Subjective Expected Payoffs, and Perceived Risk

r (1) (2)

d 0.390∗∗∗

(0.050)
λ −0.173∗∗ 0.195∗∗∗

(0.078) (0.073)

Observations 2,400 2,400

Notes: This table presents results from mixed effects regressions of subjective expected returns (r) on
subjective expected payoffs (d) and perceived volatility (λ). These regressions include a random effect for
d and λ, as well as for the intercept. Standard errors are clustered at the subject level and displayed in
parentheses below the coefficient estimates. The coefficients and standard errors for λ are multiplied by 100.
∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

risk? What would an econometrician who observes WTP and expectations from realized
payoffs infer from our data? To investigate these questions we first define the objective
expected return as

rb
t = db

t − pt

= (dt − pt)︸ ︷︷ ︸
rt

−(dt − db
t).

(10)

where db is the log Bayesian expectation of the payoff. An econometrician can compute db,
like we did, using the sequence of payoff realizations. Combining the subject’s WTP with
the Bayesian payoff expectation gives us rb. The Bayesian expected return is conceptually
similar to measures of objective expected returns in asset pricing computed using predictive
regressions or Bayesian estimation.

Equation (10) shows that the difference between the objective and subjective expected
returns, r and rb, is driven by the departures of subjective payoff expectations from the
Bayesian benchmark, namely, the difference between d and db. This immediately implies
that the difference in the sensitivity of the objective and subjective expected return to risk
depends on the relation between d − db and risk. In Appendix Figure A.2, we show that
d − db is steeply declining in perceived risk with a coefficient of -0.0056 (p < 0.01). While
the departure is centered around zero, subjects are too pessimistic in times of high perceived
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Figure 3. Subjective Expected Returns and Perceived Risk

.1
.1

5
.2

.2
5

Lo
g 

ex
pe

ct
ed

 r
et

ur
n,

 r

10 20 30 40
Volatility, λ

Notes: This figure is a binned scatter plot of the subjective expected return (r) and perceived risk (λ)
controlling for subject fixed effects. The sample size is 2,400 and the number of subjects is 300.

volatility and too optimistic in times of low perceived volatility. This suggests an overall
overreaction in expectation formation.

The strong relationship between d − db and risk also suggests that objective expected
returns have a higher sensitivity to perceived risk compared to their subjective counterparts.
The reason is that objective expected returns can be rewritten as subjective expected returns
minus d − db (see Equation (10)). Since the term d − db strongly varies with risk, objective
expected returns are especially sensitive to risk. Indeed, the coefficient of objective expected
returns on risk is 0.005 (p < 0.01), which is larger in magnitude than the coefficient of sub-
jective expected returns on risk shown in Column 1 of Table 3. Perhaps more strikingly, the
coefficient for objective expected returns is positive (see Appendix Figure A.3 for a visual-
ization). Therefore, an econometrician using predicted payoffs to form objective expected
returns would identify a completely different risk-return relation compared to the one using
elicited subjective expected returns and risk.

The intuition behind this stark contrast can be summarized as follows. In our experiment,
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when subjects perceive high volatility, they generally also expect a low payoff (one can think
of this as subjects perceiving the state to be bad). In these situations, subjects lower their
WTP both due to lower expected payoffs and higher discounts (Table 2). These effects
are jointly stronger than the decline in the objective payoff expectation. Another way to
interpret this result is that WTP fluctuates more strongly than Bayesian payoff expectations,
despite the weak transmission of beliefs to WTP. As a result, the objective expected return
increases with risk. These experimental results are qualitatively consistent with Nagel and
Xu (2022b), who document countercyclical objective expected returns across several asset
classes, but a lack of cyclicality in subjective expected returns.

To summarize, our controlled experimental setting generates data in which objective
expected returns are higher and subjective expected returns are lower in bad times. The
behavior of subjective expected returns is grounded in the weak transmission of beliefs to
WTP. The differential sensitivity of objective vs. subjective expected returns to risk is driven
by the systematic departures of subjective expectations from the Bayesian benchmark.

3.2.4 Objectivity of beliefs and the transmission of beliefs to willingness to pay

Earlier we highlighted that one advantage of our conceptual framework is that all empirical
tests can be conducted regardless of whether beliefs are rational, where rational beliefs are
defined as the beliefs of a Bayesian learner. Here, we test whether subjects whose subjective
beliefs are closer to the objective Bayesian beliefs also act on their beliefs more aggressively.

Referring back to our summary statistics in Table 1, one salient fact is that the average
deviation of subjective payoff expectations from Bayesian expectations is small. This can
be seen more clearly in Figure 4, which plots a histogram and kernel density of subject-
level average expectations. The density is roughly centered at the true mean, but there
is substantial heterogeneity. A large number of subjects are pessimists who expect payoffs
below the objective expectation; there are also many subjects who are optimists and expect
payoffs above the objective expectation.

We now examine, for each subject, whether the transmission of beliefs to WTP depends
on how far their beliefs are from the objective benchmark. We conjecture that subjects
whose beliefs are better calibrated will also be more confident in their beliefs. Given past
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Figure 4. Subject-level Average Expected Payoff
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Notes: This figure plots the histogram and kernel density of the average expected payoff E∗[D] at the subject-
level. Each observation is the average expected payoff of a subject across the eight elicitations. The vertical
red line corresponds to the average objective (Bayesian) expectation. The sample size is 300.

work demonstrating that more confident investors exhibit a stronger sensitivity to beliefs,
we hypothesize that subjects with better calibrated beliefs are more sensitive to these beliefs
in their pricing (Giglio et al. (2021a)). We emphasize that precise control of the dividend
process is key to conducting a test of this hypothesis. It would be difficult to implement
such a test in the field where neither the investor nor the econometrician has access to the
true data generating process of dividends.

To begin, for each subject we compute a measure of how well calibrated their beliefs are
using the absolute error summed across the eight elicitation periods. In particular, for each
subject s, we compute: calibration errors = ∑8

t=1 |dst − db
t | where ds is the subjective payoff

for subject s and db is the Bayesian expectation. The median calibration error across all 300
subjects is 0.552. We define those subjects who are below the median – and thus exhibit
beliefs that are relatively close to the objective benchmark – as calibrated. Those subjects
who are above the median are defined as miscalibrated.

We then estimate the sensitivity of WTP to beliefs for each of the two subsamples. The
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Table 4
Transmission of Beliefs for Calibrated and Miscalibrated Subjects

Sample: Calibrated Miscalibrated Difference
p (1) (2) (1) - (2)

d 1.068∗∗∗ 0.506∗∗∗ 0.562∗∗∗

(0.075) (0.054) (0.092)

Observations 1,200 1,200 2,400

Notes: This table presents results from mixed effects regressions of willingness to pay (p) on subjective
expected payoffs (d) separately for calibrated (first column) and miscalibrated (second column) subjects.
The difference in coefficients is reported in the third column. These regressions include a random effect for
d as well as for the intercept. Standard errors are clustered at the subject level and displayed in parentheses
below the coefficient estimates. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels,
respectively.

first column of Table 4 shows that for the calibrated subsample, the coefficient of WTP
on expected payoff is almost exactly 1. By contrast, in the second column we see that the
coefficient magnitude is cut in half for the miscalibrated subsample. The third column shows
that the difference is indeed statistically significant at the 1% level. Thus, our results are
consistent with the conjecture that subjects who form beliefs that are closer to the objective
benchmark also transmit these beliefs to their WTP in a stronger fashion. We emphasize that
the results in Table 4 only provide correlational evidence that beliefs closer to the objective
benchmark are transmitted more strongly into prices. In the next section, we discuss an
experiment that provides a causal test.

4 Experiment 2

In this section, we exogenously manipulate cognitive noise and measure the impact on the
transmission of beliefs to WTP. In particular, we test whether we can increase the transmis-
sion strength to the extent that the measured risk-return relationship becomes positive.
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4.1 Experimental design

Recall that in Experiment 1, subjects face a learning problem in which realized dividends
can be used to form Bayesian beliefs about the next period dividend. While subjects are
endowed with all information about the data generating process, implementing the optimal
Bayesian updating scheme is complex. Thus, subjects may be cognitively uncertain about
their own expectations, and we hypothesize that this cognitive uncertainty dampens the
transmission of beliefs to WTP.

In order to test this hypothesis, we conduct a second experiment in which we endow
subjects with objective beliefs about the next period dividend. Subjects do not need to
learn because we explicitly provide them with the true payoff distribution. Our manipula-
tion is meant to reduce cognitive noise which, in turn, should increase the strength of the
transmission of beliefs to WTP.

Perhaps the most natural experimental design would involve simply endowing subjects
with the Bayesian beliefs from Experiment 1. An issue however, is that the WTP elicited
in such a design would be based on beliefs that differ from the subjective beliefs reported
by subjects in Experiment 1. Any difference in behavior could thus be due to differences in
beliefs, rather than a difference in the objectivity of those beliefs. Thus, we would not be
able to identify cognitive noise as a channel through which WTP becomes more responsive
to beliefs.

To sidestep this concern, we design an experiment in which we recruit a new set of 300
subjects, and each subject is uniquely matched to a subject from Experiment 1. The new
subject in Experiment 2 inherits the beliefs reported by her matched partner. That is, the
subjective beliefs reported by the subject in Experiment 1 become the objective beliefs for the
subject in Experiment 2. Subjects in Experiment 2 are not told anything about the source
of such beliefs, or even about the existence of Experiment 1. Instead, we incentivize subjects
from Experiment 2 to report their WTP for an asset that pays a dividend according to the
objective distribution that we present them. We provide screenshots of this experiment in
Internet Appendix IA.1.

The design allow us to test Prediction 2: reducing cognitive noise will strengthen the
transmission of beliefs to WTP and, as a result, increase the coefficient on risk in a regression
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of expected returns on risk. Importantly, any change we detect across experiments in the
estimated risk-return relationship must be due to a difference in the strength of transmission
of beliefs to WTP. To see this, recall that the sensitivity of expected return to risk is given
by (1 − x)β − (1 − x)γ + γ (from equation 6), and the only value in this expression that
varies across our two experiments is x. Why? The value of β, which captures the correlation
between expected payoff and volatility, does not vary across experiments because we impose
the beliefs that subjects report from Experiment 1 on those subjects in Experiment 2. The
value of γ also remains unchanged across experiments: γ represents the risk aversion of our
subjects, and we randomly draw subjects from the same population in each experiment.
Taken together, any change in the estimated risk-return relationship across experiments can
be attributed to the reduction in cognitive noise.

As in Experiment 1, subjects in Experiment 2 are incentivized using the BDM mechanism
and one of the questions is randomly chosen to be paid. Note that subjects in Experiment 2
therefore answer only 8 questions (compared with 16 in Experiment 1). To keep the incentives
per question constant across experiments, we cut the bonus incentive in Experiment 2 in half
compared with Experiment 1. This is important because larger incentives could lead to lower
cognitive noise in Experiment 2, and we want to hold incentives constant across experiments.

As in Experiment 1, we recruit subjects from Prolific and pre-registered the experiment
on Aspredicted.org.12 Subjects received $2 for completing the experiment, in addition their
bonus payment. The average completion time of the experiment was 6 minutes, and the
average earnings were $3.06 including the $2 participation fee.

4.2 Experimental results

Experiment 2 delivers a panel dataset with 2,400 observations that consist of eight distinct
WTPs, elicited from each of the 300 subjects. Table 5 reports summary statistics from the
dataset. Because we endow subjects with beliefs, we focus here only on the elicited WTP and
the implied expected returns. We observe similar average WTP and expected returns across
the two experiments, though both variables exhibit slightly greater dispersion in Experiment
2 compared to Experiment 1.

12For pre-registration details, see: https://aspredicted.org/NWL_YML
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Table 5
Summary Statistics for Experiment 2

Mean p25 p50 p75 SD Min Max N

Willingness to pay P 97.00 79.80 99.90 115.00 23.22 60.00 150.00 2,400
Expected return E∗[R] = E∗[D]/P 1.22 1.00 1.14 1.40 0.30 0.48 2.36 2,400

Notes: This table presents summary statistics for the variables in Experiment 2 that are different from
Experiment 1. The sample consists of 300 subjects, each elicited for 8 payoff distributions, yielding 2,400
observations. P is the subject’s reported willingness to pay for next period’s dividend. E∗[R] is the expected
return using the mean of the dividend distribution and the subject’s willingness to pay.

We first test whether our experimental manipulation indeed strengthens the transmission
of beliefs to WTP. Column 1 in Table 6 presents results from regressions of WTP on payoff
expectation using data from both experiments, where “Exp2” is a dummy variable that equals
one if and only if the observation is from Experiment 2. Consistent with our Prediction 2,
the transmission of beliefs to WTP is causally strengthened when we endow subjects with
beliefs, thereby eliminating the need for subjects to learn in order to arrive at a belief.
Among subjects in Experiment 2, the coefficient on d is 0.877 (= 0.634 + 0.243), which is
significantly higher than 0.634 in Experiment 1. The intercept of the regression is lower in
Experiment 2 because the higher loading on payoff expectations captures a larger fraction
of the level of the WTP.

The stronger transmission of payoff expectations to WTP remains significant after con-
trolling for risk as shown in Column 2 of Table 6. The coefficient on d significantly increases
from 0.610 in Experiment 1 to 0.817 in Experiment 2. These results suggest that cognitive
noise from expectation formation explains about half of the underreaction of WTP to payoff
expectations.

In line with Prediction 2, decreasing cognitive noise also increases the reaction of WTP
to risk perceptions. Column 2 of Table 6 shows that the negative loading on risk increases
in magnitude when going from Experiment 1 to 2. The coefficient on risk more than doubles
in magnitude, though the effect is only statistically significant at the 10% level (the large
standard error here is due in part to the strong negative correlation between λ and d).

It is important to note that the transmission from beliefs to actions is still not as strong
as predicted by the frictionless benchmark; the coefficient on d remains significantly below
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Table 6
Willingness to Pay, Expected Payoffs, and Perceived Risk in both Experiments

p (1) (2)

d 0.634∗∗∗ 0.610∗∗∗

(0.049) (0.050)
d x Exp2 0.243∗∗∗ 0.207∗∗∗

(0.064) (0.066)
λ −0.188∗∗∗

(0.073)
λ x Exp2 −0.221∗

(0.121)
Exp2 −1.134∗∗∗ −0.910∗∗∗

(0.302) (0.322)

Observations 4,800 4,800

Notes: This table presents results from mixed effects regressions of willingness to pay (p) on expected payoffs
(d) and perceived volatility (λ), combining data from Experiments 1 and 2. These regressions include a
random effect for d and λ, as well as for the intercept. Standard errors are clustered at the subject level
and displayed in parentheses below the coefficient estimates. The coefficients and standard errors for λ are
multiplied by 100. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

one in Experiment 2. Endowing subjects with objective beliefs clearly reduces cognitive
noise, but it is not fully eliminated. In the discussion section, we speculate on other sources
of cognitive noise that remain in our Experiment 2.

We now turn to assessing the causal effect of cognitive noise on the risk-return relation-
ship. Equation (6) shows that an increase in x mitigates the omitted variable bias in the
univariate risk-return relation. Mitigating the omitted variable bias will increase the slope
of the risk-return relation, and it can potentially restore a positive risk-return relation. Here
we report results from estimating the risk-return relationship, which by design uses the same
set of beliefs from Experiment 1. Column 1 of Table 7 shows that the loading on λ be-
comes positive in Experiment 2, where subjects price the asset based on the objective payoff
distribution. The fact that the sign of the relationship flips demonstrates that endowing
subjects with objective beliefs – rather than having them form subjective expectations as in
Experiment 1 – is associated with a substantial reduction in cognitive noise. We are able
to make this inference because β and γ are held constant across experiments, and thus all
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Table 7
Expected Returns, Expected Payoffs, and Perceived Risk in both Experiments

r (1) (2)

d 0.390∗∗∗

(0.050)
d x Exp2 −0.207∗∗∗

(0.066)
λ −0.174∗∗ 0.188∗∗∗

(0.078) (0.073)
λ x Exp2 0.418∗∗∗ 0.221∗

(0.121) (0.121)
Exp2 −0.113∗∗∗ 0.910∗∗∗

(0.032) (0.322)

Observations 4,800 4,800

Notes: This table presents results from mixed effects regressions of expected returns (r) on expected payoffs
(d) and perceived volatility (λ), combining data from Experiments 1 and 2. These regressions include a
random effect for d and λ, as well as for the intercept. Standard errors are clustered at the subject level
and displayed in parentheses below the coefficient estimates. The coefficients and standard errors for λ are
multiplied by 100. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

of the action must be through an increase in x, which we interpret as a reduction in cogni-
tive noise. Figure 5 demonstrates the positive risk return relationship. It is worth noting
that the relationship looks markedly different compared with the risk-return relation from
Experiment 1 (displayed in Figure 3).

Finally, recall that cognitive noise induces a positive correlation between expected payoffs
and expected returns. Since we predict less cognitive noise in Experiment 2, the correlation
between expected payoff and expected return should be attenuated towards zero. We find
that this is indeed the case. In Column 2 of Table 7, we regress expected return on both
expected payoff and risk, and find that the coefficient on expected payoff is significantly
closer to zero in Experiment 2 compared to Experiment 1. In other words, the impact of
payoff expectations on expected returns induced by the weak transmission becomes smaller
in Experiment 2, which is consistent with equation (4).

To summarize the main finding from Experiment 2, we provide causal evidence that WTP
is substantially more responsive to beliefs when subjects price an asset based on objective
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Figure 5. Expected Returns and Risk in Experiment 2
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Notes: This figure is a binned scatter plot of expected returns (r) and risk (λ) in Experiment 2 controlling
for subject fixed effects. The sample size is 2,400 and the number of subjects is 300.

– rather than subjective – beliefs. The increased responsiveness is so large that it flips the
sign of the risk-return relationship. Our results suggest that subjects rely much less on a
cognitive default parameter when they are endowed with objective beliefs.

5 Discussion

In this section, we discuss the implications of our results for the development of asset pricing
models and we discuss connections with the broader literature on survey data. We also
discuss in more detail the psychological source of weak transmission in our experiments and
address limitations of our experimental approach.

5.1 Implications for asset pricing models

Over the past few years several models have been proposed to quantitatively match both
asset prices and survey expectations (e.g., Barberis et al. (2015), Hirshleifer et al. (2015), Jin
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and Sui (2022)). While these models formalize the subjective expectation formation process
in a psychologically grounded manner, they retain the standard assumption that investors
fully act on their subjective beliefs. Our focus in this paper takes expectations as given,
and examines how these expectations propagate into actions. One key finding that emerges
from our experiments is that the transmission of beliefs to actions is far from 1-to-1. We
believe that this result should motivate future theoretical work to explicitly incorporate weak
transmission into the investor’s decision process, in order to potentially improve quantitative
fits to the data.13

An obvious concern, however, is that injecting deviations from rationality in both ex-
pectation formation and expectation transmission gives the modeler too much flexibility.
Indeed, the number of non-rational expectations models is large enough, and adding an
additional degree of freedom does not help the case for parsimony. However, there is an
intriguing possibility that departures from rational expectations are connected to how these
expectations propagate into actions. In Table 4 we show that subjects who state beliefs
closer to the rational benchmark are the same subjects whose valuations are more sensitive
to these beliefs. While more empirical data is needed, our results suggest that the belief
formation process can partially constrain the degree of weak transmission.14

Our results also provide guidance for asset pricing models with learning and state un-
certainty. In Experiment 1, we implement an imperfect information environment in which
subjects receive noisy signals about the state in the form of realized dividends. Using these
signals, subjects are incentivized to form subjective beliefs about the conditional distribution
of payoffs. This imperfect information approach is common in the asset pricing literature.
For instance, several models generate realistic asset price dynamics by relying on the fluctu-
ations in beliefs that result from Bayesian learning about the stochastic state (e.g., Veronesi
(1999), Johannes et al. (2016), Ghaderi et al. (2022)). Our results suggest that learning
models in particular may benefit from incorporating the weak transmission of beliefs to
actions.

13For related work in macroeconomics, see Khaw et al. (2017) for a theoretical model that incorporates
inattentive adjustment of actions.

14See also Andries et al. (2022), who show that experimental subjects are more likely to underreact in
their investment decisions when forming extrapolative expectations compared to rational expectations.
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More broadly, our results suggest that the degree of weak transmission depends on
whether investors have state uncertainty. Recall that in Experiment 1, subjects must learn
from the payoff process, while in Experiment 2, we shut down the learning channel and en-
dow subjects with beliefs. We find that when subjects are endowed with beliefs, their asset
valuations are substantially more sensitive to the endowed beliefs. Because the beliefs are
held constant across experiments, our results provide evidence that belief formation causally
affects how investors act on those beliefs.

Applying this intuition to the field, our Experiment 1 corresponds to a real-world envi-
ronment in which investors form expectations about the stock market. For instance, at the
beginning of the COVID-19 crisis in March 2020, investors formed a subjective assessment of
how the stock market would behave going forward. Giglio et al. (2021b) show that investors
updated their beliefs and became more pessimistic about the stock market in the short term.
However, these investors did not adjust their portfolios nearly as much as frictionless asset
pricing models would predict. This finding is consistent with the weak transmission of beliefs
to actions, documented in our Experiment 1. In contrast, Experiment 2 constructs a counter-
factual to Experiment 1 that is impossible to implement in the field. It allows us to test how
investors would have responded if they were endowed with the objective payoff distribution.
This is akin to asking how investors would have behaved in the COVID-19 crisis, if they
were given an objective probability distribution of the short-run stock market performance.
The results from Experiment 2 suggest that investors would have reacted more strongly to
these (objective) beliefs and would have adjusted their portfolios more aggressively.

Our paper is also related to a recent strand of literature that quantifies a demand system
using portfolio holdings of different investors. One key finding from this literature is that
investors’ asset demand is very inelastic compared to predictions from standard asset pricing
models (Koijen and Yogo (2019)). The weak transmission due to cognitive noise, which is the
foundation for the biased risk-return relationship in our work, may be helpful in explaining
the inelasticity. Specifically, cognitive noise can provide a potential microfoundation for the
observed low elasticity of demand for assets in response to expected return fluctuations (e.g.,
Haddad et al. (2021), Chaudhry (2022)).

34



5.2 Connections with the survey literature

Our results also relate to the growing literature on survey data in finance. Recent work has
examined the specific factors that investors say are important to their personal investment
decisions (Bender et al. (2021), Chinco et al. (2021)). For example, beyond expected return
and risk, Choi and Robertson (2020) find that investors report other factors such as time left
until retirement as important determinants of their portfolio decisions. While we focus our
analysis on the sensitivity to expected payoff and perceived risk, it is possible that investors
may not act as aggressively on other factors that they state in surveys. Indeed, if cognitive
noise is in part responsible for affecting an investor’s valuation of an asset conditional on risk
and return, then it seems plausible that cognitive noise would also be present when investors
use additional factors to arrive at asset valuations.

The survey conducted by Giglio et al. (2021a) is similar to our experimental paradigm,
in that we also collect data on beliefs and actions at the individual level. As in Giglio
et al. (2021a), we regress actions on beliefs and find that the empirical link is weaker than
predicted by frictionless models. However, an important difference between the two studies
is that an action in our experiment is defined by a subject-specific WTP. In contrast, an
action in Giglio et al. (2021a) is defined by a portfolio allocation – in which all investors face
the same market price. This distinction makes it difficult to directly compare the subjective
expected returns that we infer from WTP and the subjective expected returns that Giglio
et al. (2021a) directly elicit from Vanguard investors.

It is also worth noting that, like us, Giglio et al. (2021a) find a negative relationship
between expected returns and perceived risk. Our explanation for this pattern (at least in
Experiment 1), is driven by a combination of cognitive noise and omitted variable bias. We
caution that such a mechanism cannot be used to justify the negative relationship between
between expected returns and perceived risk that Giglio et al. (2021a) document. This is
because our results rely on time series variation in beliefs and actions within an individual.
The results in Giglio et al. (2021a) rely on cross-sectional variation in beliefs and actions,
where all investors face the same equilibrium asset price and form heteregeneous subjective
return expectations conditional on that price. Thus, while the insensitivity between actions
and beliefs demonstrated in both studies may derive from a common mechanism of cognitive
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noise, our data cannot speak directly to the pattern of subjective expected returns uncovered
by Giglio et al. (2021a).

Our results also connect with research on analyst forecast surveys. De La O and Myers
(2021) show that analyst forecasts of cash flows explain almost all the variation in stock mar-
ket valuations while return expectations play a much smaller role. In Appendix C, we show
that payoff expectations explain a higher fraction of price variation under subjective beliefs
compared with Bayesian beliefs in our experiment. Such a fact is qualitatively consistent
with the pattern documented by De La O and Myers (2021) in the field.

5.3 Sources of the weak transmission

In the field, there are several potential reasons for the weak transmission of beliefs to actions.
For example, Giglio et al. (2021a) discuss heterogeneous frictions such as capital gains taxes,
institutional settings of retirement plans, and infrequent trading. Our experiment rules out
such institutional frictions by design, and allows us to identify the weak transmission as
driven by a psychological friction. In Experiment 1, where subjects need to form subjective
beliefs, it is likely that some of the cognitive noise arises from uncertainty about expecta-
tions, perhaps because subjects have difficulty implementing Bayes’ rule (Kuhnen (2015)),
Ben-David et al. (2019)). But importantly, in Experiment 2, we show that shutting down
uncertainty about beliefs still leads to weak transmission. We speculate that the noise in
Experiment 2 arises primarily from integrating beliefs about payoffs with perceived risk to
arrive at a valuation.

5.4 Limitations

We have argued that the one period nature of the asset in our experiment is useful because
it allows us to see how valuation relates to expectations in a simple setting. Indeed, we
find clear evidence of a weak transmission of beliefs to actions, even when there is no need
for subjects to form expectations over long horizons. Yet this simplicity also means that
our analyses cannot speak directly to other previously documented facts about subjective
expectations from the field.
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For example, one of the most salient facts from the survey literature is that investors
extrapolate recent returns when forming expectations about future returns (Greenwood and
Shleifer (2014), Barberis et al. (2015)). One reason we do not analyze this dimension of
the data in our experiment is because the degree of extrapolation, and more generally,
expectational errors, may depend on the horizon of the forecast (Giglio and Kelly (2018), Da
et al. (2021), De Silva and Thesmar (2021)). One opportunity for future work is to enrich
the experimental design we present here by having subjects price an asset that delivers a
long stream of cash flows – rather than a one period dividend strip. For example, one
could integrate into our design the experimental method from Afrouzi et al. (2021), which
elicits expectations along the term structure. This would further enable testing of other
important phenomena, including the dividend-price ratio and its ability to predict returns
of long-duration assets such as aggregate equity.

6 Conclusion

Survey data on subjective beliefs have recently opened up a vibrant area of research in asset
pricing (Adam and Nagel (2022)). Subjective beliefs data offer the promise of disciplining
models using the expectations that investors actually report, rather than the rational expec-
tations that investors are typically assumed to hold. Our paper contributes to this agenda
by exploring the implications of investors who do not fully act on their stated beliefs. We
show theoretically that the weak transmission of beliefs to actions induces a substantial bias
in even the most basic asset pricing tests.

Our experimental data provide strong support for the prediction of a downward bias in
the risk-return relation. Subjects in our experiment are indeed insensitive investors, and we
find that expected returns systematically decline in perceived risk – despite the fact that
the average subject is risk averse. Our framework also provides a recipe for restoring the
positive risk-return relation: include expected payoff in the regression of expected returns on
risk. In our data, adding this control flips the sign of the risk-return relation from negative
to positive.

Because our experiment shuts down institutional frictions by design, we identify the
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source of the weak transmission as a psychological friction. In particular, we interpret the
weak sensitivity as arising from cognitive noise, and we find strong evidence that cognitive
noise causally affects the risk-return relation. We interpret the noise as arising from a
combination of uncertainty about expectations, uncertainty about perception of risk, and
the cognitive process of integrating these quantities to arrive at an asset’s valuation.

The fact that we document the weak transmission of beliefs to actions in a controlled
experimental setting points to the idea that weak transmission may be a fundamental com-
ponent of the investor’s decision process. As such, one natural path for future work is to
incorporate this ingredient into existing asset pricing models and assess the change in quan-
titative fit. Another path forward is to better understand the importance that institutional
frictions play in generating weak transmission in the field. Because institutional frictions
are shut down in our experiment, the bias may be even more substantial in tests using data
from the field.
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Appendix

A Additional figures

Here, we provide several additional figures that are referenced in the main body of the paper.

Figure A.1. Subjective Expected Payoffs and Perceived Risk
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Notes: This figure is a binned scatter plot of subjective expected payoffs (d) and perceived volatility (λ)
controlling for subject fixed effects. The reported slope results from a mixed effects regression of d on λ.
The regression includes a random effect for λ as well as for the intercept. The standard error in parentheses
is clustered at the subject level. The sample size is 2,400 and the number of subjects is 300. The data are
from Experiment 1.
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Figure A.2. Departures from Bayesian Expectations and Perceived Risk

Slope = −0.0056***
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Notes: This figure is a binned scatter plot of departures of subjective expected payoffs from the Bayesian
benchmark (d − db) and perceived risk (λ) controlling for subject fixed effects. The reported slope results
from a mixed effects regression of d − db on λ. The regression includes a random effect for λ as well as for
the intercept. The standard error in parentheses is clustered at the subject level. The sample size is 2,400
and the number of subjects is 300. The data are from Experiment 1.
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Figure A.3. Bayesian Expected Returns and Perceived Risk
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Notes: This figure is a binned scatter plot of Bayesian expected returns (rb) and perceived risk (λ) controlling
for subject fixed effects. The reported slope results from a mixed effects regression of rb on λ. The regression
includes a random effect for λ as well as for the intercept. The standard error in parentheses is clustered at
the subject level. The sample size is 2,400 and the number of subjects is 300. The data are from Experiment
1.
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Figure A.4. Subjective Expected Returns and Subjective Expected Payoffs

Slope = 0.37***
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Notes: This figure is a binned scatter plot of subjective expected returns (r) and subjective expected payoffs
(d) controlling for subject fixed effects. The reported slope results from a mixed effects regression of r on d.
The regression includes a random effect for d as well as for the intercept. The standard error in parentheses
is clustered at the subject level. The sample size is 2,400 and the number of subjects is 300. The data are
from Experiment 1.
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B Derivations for the conceptual framework

B.1 Gaussian signal extraction

We adapt the basic Bayesian signal extraction studied by Gabaix (2019) to our conceptual
framework. Suppose that the agent’s objective is to minimize the squared distance between
her true willingness to pay p∗ and the willingness to pay p conditional on her noisy signal
p0 = p∗ + ϵ, where ϵ is normally distributed with mean 0 and variance σ2

ϵ :

max
p

E[−1/2(p − p∗)2|po]. (A.1)

Hence the optimality condition is E[p−p∗|po] = 0. Because ϵ has a zero mean, the prediction
about p∗ conditional on the signal p0 is E[p∗|po] = (1−x)p̄+xpo where the dampening factor
is given by:

x =
σ2

p

σ2
p + σ2

ϵ

. (A.2)

As the variance of the noisy signal increases, the agent optimally puts more weight on the
default p̄.

B.2 Estimating x from willingness to pay and payoff expectations

In the following, we show that the univariate relation between p and d results in a upward-
biased estimate of x if payoff expectation d and perceived risk λ are negatively correlated.
Rearranging equation (5) results in

λt = −α

β
+ 1

β
dt − 1

β
ηt, (A.3)

which can be plugged into (3) to obtain

pt = (1 − x)p̄ + xγα

β
+ x

[
1 − γ

β

]
dt + xγ

β
ηt. (A.4)

As a result, the coefficient of p on d is x
[
1 − γ

β

]
which is larger than x if γ > 0 and β < 0.
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C Expected cash flow and return effects

We decompose the variation in WTP into expected payoff and expected return effects and
report results in Table A.1. This exercise is similar to the Campbell and Shiller (1988)
decomposition of the price-dividend ratio into expected dividend growth and expected return
effects.

Table A.1
Decomposition of Variation in WTP

Bayesian Subjective

db 4% d 25%
- rb 96% - r 75%

Notes: This table shows the decomposition of variation in willingness to pay p into expected payoff and
expected return effects using the identities p = d − r and p = db − rb. The numbers represent cov(q̃,p)

var(p) where
q̃ is one of db, d, - rb, and -r. The sample size is 2,400 and the number of subjects is 300. The data are from
Experiment 1.

D Results using tail risk

In this section, we present the risk-return relationship in Experiment 1 using the subjective
probability of the lowest payoff ($60) as the measure of perceived risk. This is a measure of
tail risk and is similar to the measure of disaster risk in Giglio et al. (2021a). Table A.2 and
Figure A.5 show that the results are similar to our main results from Table 3, in which we
use volatility as the perceived risk measure.
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Table A.2
Subj. Expected Returns, Subj. Expected Payoffs, and Perceived Tail Risk

r (1) (2)

d 0.401∗∗∗

(0.051)
λ −0.210∗∗ 0.186∗∗∗

(0.047) (0.060)

Observations 2,400 2,400

Notes: This table presents results from mixed effects regressions of subjective expected returns (r) on
subjective expected payoffs (d) and the perceived probability of the lowest payoff (λ). These regressions
include a random effect for d and λ, as well as for the intercept. Standard errors are clustered at the subject
level and displayed in parentheses below the coefficient estimates. The data are from Experiment 1. ∗, ∗∗,
and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Figure A.5. Subjective Expected Returns and Perceived Tail Risk
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Notes: This figure is a binned scatter plot of subjective expected returns (r) and the perceived probability
of the lowest payoff (λ) controlling for subject fixed effects. The sample size is 2,400 and the number of
subjects is 300. The data are from Experiment 1.
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E Heterogeneity across subjects

Here, we analyze the sources of variation in the data from Experiment 1 and report the
fractions of variation explained by time and subject fixed effects in Table A.3. Consistent
with the field evidence from Giglio et al. (2021a), fixed effects explain a large fraction of
WTP, subjective return expectations, and perceived risk. Payoff expectations have a larger
component driven by time rather than subject fixed effects. This result likely reflects the
commonality in learning.

Table A.3
Decomposition of Variation: Subject and Time Fixed Effects

Time FE Subject FE Both FE
R2 in % (1) (2) (3)

d 24.8 8.1 36.2
p 6.1 65.6 71.7
r 0.6 68.3 68.8
λ 3.6 54.7 58.3

Observations 2,400 2,400 2,400

Notes: This table reports the R2s corresponding to the regressions of the variables displayed in the first
column on time fixed effects, subject fixed effects, or both. The dependent variables are subjective expected
payoffs (d), willingness to pay (p), subjective expected returns (r), and perceived volatility (λ). The data
are from Experiment 1.
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IA.1 Screenshots of the experiments

IA.1.1 Experiment 1

Subjects had full information of the dividend distribution in both states. The distributions

were displayed to subjects before the first dividend realization and in each elicitation period.

Figure IA.1. Distribution in the good state

Figure IA.2. Distribution in the bad state
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Below is a screenshot showing how dividend realizations were displayed to subjects in each

period:

Figure IA.3. Dividend realization

After observing the dividend realizations over the course of several periods, subjects were

asked to answer two questions. While answering these questions, they received an overview

of the full history of dividend realizations:

Figure IA.4. Overview of history of dividend realizations
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Subjects were able to report the probability that they attached to each dividend outcome.

The ordering of the buckets (i.e., highest to lowest or lowest to highest) was randomized

across subjects. The probability of each bucket was restricted to [0%, 100%] and the sum

of the five probabilities was required to add up to 100%. Subjects were able to input their

willingness to pay using a slider. This slider had to be initiated by the subject by clicking on

the slider. The screenshots below show how the slider appeared before and after initiation:

Figure IA.5. Elicitation of payoff expectations
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Figure IA.6. Elicitation of willingness to pay (after initiation)
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IA.1.2 Experiment 2

Subjects were shown the probability of each dividend outcome. The ordering of the buckets

(i.e., highest to lowest or lowest to highest) was randomized across subjects. Subjects were

able to input their willingness to pay using a slider. This slider had to be initiated by the

subject by clicking on the slider. The screenshots below show how the slider appeared before

and after initiation:

Figure IA.7. Display of payoff distribution
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Figure IA.8. Elicitation of willingness to pay (after initiation)
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