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Optimal Climate Policy as If the Transition Matters

Abstract 

The optimal transition to a low-carbon economy must account for adjustment costs in switching 
from dirty to clean capital, technological progress, and economic and climatic shocks. We study 
the low-carbon transition using a dynamic stochastic general equilibrium model with emissions 
abatement costs calibrated on a large energy modelling database, solved with recursive methods. 
We show how capital inertia puts upward pressure on emissions and temperatures in the short run, 
but that nonetheless it is optimal to actively disinvest from – to ‘strand’ – a significant share of 
the dirty capital stock. Conversely, clean technological progress, as well as uncertainty about 
climatic and economic factors, lead to lower emissions and temperatures in the long run. Putting 
these factors together, we estimate a net premium of 33% on the optimal carbon price today 
relative to a ‘straw man’ model with perfect capital mobility, fixed abatement costs and no 
uncertainty. 
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1 Introduction

In the long run, greenhouse gas emissions will have to be virtually eliminated for global
temperatures to stop rising (IPCC, 2021). Almost all countries have signed up to the long-
run temperature goals of the 2015 UN Paris Agreement on climate change, namely “Holding
the increase in the global average temperature to well below 2◦C above pre-industrial levels
and pursuing efforts to limit the temperature increase to 1.5◦C” (UNFCCC, 2016).1 Although
these are fundamentally political goals, there is also broad agreement in economics research
with the basic premise that emissions should fall from their current record levels to very low
levels eventually (Howard and Sylvan, 2021).

However, how best to make the transition from a high- to low-carbon economy remains
open for debate. How high should initial carbon prices/taxes be, and how should they
change over time (Golosov et al., 2014; Lemoine and Rudik, 2017b; Gerlagh and Liski, 2018;
Dietz and Venmans, 2019; Daniel et al., 2019; Mattauch et al., 2020)? Should we make
immediate, deep emissions cuts, or should we postpone our efforts until later, in effect using
up the remaining carbon budget more quickly (van der Ploeg, 2018; Gollier, 2021)? Can
fossil-fuel-burning assets be used until the end of their economic lifetimes, or do we need to
leave them ‘stranded’2 (McGlade and Ekins, 2015; Barnett, 2019; van der Ploeg and Rezai,
2020b; Cahen-Fourot et al., 2021)?

One reason why the debate remains open is that views differ about the optimal long-run
temperature that would maximise social welfare (Hänsel et al., 2020). But another reason
why these questions endure is that making the transition to a low-carbon economy involves
complex dynamics that go beyond basic models of emissions abatement. In this paper, we
develop a dynamic stochastic general equilibrium model with the aim of analysing these
complex transition dynamics. The model exhibits three key features that, we contend, have
not been studied in a single model before.

First, we capture limits to how fast emissions can be reduced through the introduction
of two kinds of adjustment cost (Gould, 1968; Lucas Jr, 1967). The first kind are convex

1The 2021 Glasgow Climate Pact increased the emphasis on the more ambitious 1.5◦C goal (UNFCCC,
2021).

2A rapid transition could lead carbon-intensive capital to be decommissioned prematurely, used at a lower
capacity rate, or retrofitted or repurposed (e.g., via carbon capture and storage technologies) at a cost, with
a monetary loss for capital owners.
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investment costs to capital accumulation (clean or dirty). These capture the additional
costs faced when rapidly accumulating new capital and lead to smoother investment paths,
as large capital investments concentrated in a short period are more expensive than the
same capital expansion spread over a longer period. The second kind are convex costs of
dirty capital disinvestment. To rapidly reduce emissions, it may be optimal to dispose of
dirty capital faster than its natural depreciation rate. It is often assumed that capital is
perfectly mobile (as are other production factors), so it can be costlessly shifted from dirty
to clean sectors. But some capital has been designed to work in tandem with fossil fuels
(e.g., coal and gas power plants, steel mills, ships, etc.) and would be costly to convert
to low-carbon uses, perhaps prohibitively so. The costs of a rapid transition would be
transmitted by production and financial networks, and it has even been suggested that a
rapid transition could trigger economic and financial instability (Semieniuk et al., 2021).
We assume physical asset stranding (i.e., disinvestment from dirty capital) generates convex
monetary stranding costs: the more rapid is the disinvestment of dirty physical capital, the
larger is the proportion of the monetary value of dirty capital that gets lost.

Second, we incorporate the widely observed phenomenon of falling clean technology costs.
Like adjustment costs, these can affect the timing of investment in clean capital. Clean tech-
nological progress has diverse sources, including knowledge spillovers from other sectors such
as artificial intelligence and nanotechnology, economies of scale and learning-by-doing in the
clean technology sector, induced R&D into clean technology, and network effects (e.g., re-
lating to charging electric vehicles). In our model, falling clean technology costs are partly
autonomous/exogenous and partly induced, i.e., an endogenous function of cumulative emis-
sions abatement, as implied by evidence on experience/learning curves (Boston Consulting
Group, 1970; Weiss et al., 2010). Endogenous clean technological progress creates an in-
centive to abate earlier, unlike exogenous technological progress. In many basic models of
emissions abatement, clean technology costs are either fixed or if they fall then the process
is fully exogenous (Gillingham et al., 2008).

Third, charting an optimal transition path is fraught with uncertainties, including about
economic growth prospects, technological progress, the physical climate system, and the
impacts of climate change (see Heal and Millner, 2014; Cai, 2021, for reviews). The optimal
transition should account for current uncertainties but also how they change over time.
Policy-makers will figure things out along the way. We incorporate multiple sources of
uncertainty, including the business cycle, climate variability, and rare macroeconomic shocks
(Barro, 2009) made more likely by climate change. These uncertainties affect the optimal
transition, which is formulated as a stochastic welfare maximisation problem and solved
using recursive dynamic programming methods so that the planner anticipates and reacts
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to shocks.3 In doing so, we employ Epstein-Zin-Weil preferences (Epstein and Zin, 1989;
Weil, 1990), which disentangle risk aversion from intertemporal consumption substitution,
consistent with empirical data on asset returns. By contrast, most basic models compute
deterministic optimal paths, or at most they are subjected to sensitivity analysis, computing
multiple deterministic optimal paths, while varying the values of key exogenous parameters
(Lemoine and Rudik, 2017a).

We obtain analytical solutions for optimal clean and dirty capital accumulation, as well
as for the optimal carbon price, but our main findings are obtained by solving the model
numerically. We calibrate emissions abatement costs by fitting the model on a large database
of results from detailed energy models using the generalised method of moments. We find
the optimal transition to a low-carbon economy is fast. From 2020 to 2030, emissions are
roughly halved, whether we consider a pure economic planning problem of maximising the
discounted net benefits of emissions reductions, or adopt the international climate policy
approach of meeting an exogenous constraint on warming of 1.5◦C at the lowest discounted
abatement cost. Either way, a high carbon price is required, as is active ‘stranding’ of dirty
assets, rather than working with the grain of capital depreciation. If the imposition of a
carbon price is delayed and its eventual introduction is not anticipated, even more dirty
assets are stranded.

Disentangling the effects of capital inertia, clean technological progress, and uncertainty,
we show how adjustment costs prevent an implausibly large optimal shift from dirty to
clean capital initially, and how capital inertia therefore results in temperature inertia and
higher carbon prices. Falling clean technology costs lead to lower optimal emissions and
temperatures in the long run, while also allowing for modestly lower optimal carbon prices all
along the path. The price effect is the net effect of exogenous technological progress, which
allows lower prices, and endogenous technological progress, which requires a carbon price
premium to the extent that innovation externalities are not internalised using other policy
instruments. Uncertainty leads to lower optimal emissions and temperatures, and higher
optimal carbon prices and dirty capital disinvestment, driven by temperature-related macro-
economic disaster risk. Putting these three effects together, we estimate a net premium of
33% on the optimal carbon price today relative to a ‘straw man’ model with perfect capital
mobility, fixed abatement costs and no uncertainty. The premium falls to about 20% by
mid-century. Higher prices pay off in terms of lower temperatures, but only in the long run,
specifically the second half of this century, because of capital inertia.

Lastly, rather than comparing an unconstrained cost-benefit problem with a temperature-
3In other words, optimal emissions are set by a closed-loop or feedback policy, where emissions are a

function of future states of the coupled climate-economy system (Lemoine and Rudik, 2017a).
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constrained cost-effectiveness problem, as above, we compare two different ways to stay below
the exogenous temperature constraint: (i) maximising discounted net benefits of emissions
reductions, and (ii) minimising discounted abatement costs. The latter stays closer to how
the problem is defined in international climate policy. We make the point that ignoring
climate damages leads the planner to put off – to back-load – emissions reductions. We
estimate the optimal carbon price is 13% lower initially. Since climate damages are not zero,
we conclude the latter approach underestimates optimal carbon prices.

Our paper contributes to the literature studying optimal global climate policies using In-
tegrated Assessment Models or IAMs, which was pioneered by William Nordhaus (Nordhaus,
1991; Nordhaus and Boyer, 2000; Nordhaus, 2008, 2013). The focus on optimal policies con-
trasts with the large applied literatures on the ‘social cost of carbon’ (i.e., marginal damage
cost of CO2) along arbitrary emissions paths (Tol, 2011), and on the marginal abatement
cost of meeting pre-determined climate goals (Clarke et al., 2014). While most of the IAM
literature has computed deterministic optimal paths, the relevance of uncertainty has led
to the recent development of a class of ‘recursive IAMs’, which compute an adaptive opti-
mal path in the face of unfolding uncertainties using recursive methods (e.g. Lemoine and
Traeger, 2014; Cai and Lontzek, 2019; van den Bremer and van der Ploeg, 2021; Karydas and
Xepapadeas, 2022). Our model belongs to this class, which has mostly focused on quantify-
ing the effects of sources of uncertainty (Lemoine and Rudik, 2017a, review the literature).
We connect this work with a smaller and more recent literature looking at adjustment costs
along the low-carbon transition (Coulomb et al., 2019; Hambel et al., 2020; van der Ploeg
and Rezai, 2020a; Vogt-Schilb et al., 2018). This line of work is motivated in part by an
interest in whether pricing carbon will leave dirty capital assets stranded (also see Baldwin
et al., 2020; Rozenberg et al., 2020), but is mostly deterministic.

The remainder of the paper is structured as follows. Section 2 presents the model and
section 3 briefly presents some of the key mechanics of the optimal transition. Section 4
explains our calibration strategy. Section 5 presents and discusses our numerical results.
Section 6 offers a discussion of several key issues, including further comparisons with the
literature, and Section 7 concludes.

2 The model

For expositional reasons, consider an economy in continuous time with an infinite horizon.
We suppress time subscripts unless time-dependence is not obvious. A single type of good
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Y exists, used for both consumption and investment. The production function is

Y = AL1−αKαΛΩ, (1)

where A is total factor productivity, L is labour, K is capital, and α is the capital share.
Labour increases exogenously at constant rate gL. The multiplier Λ represents the costs of
emissions abatement. Similarly, Ω is the climate damage multiplier.

Abatement costs

The abatement cost multiplier is

Λ = exp
(
−ϕt2 µ

2
)
, (2)

where µ stands for abatement, which implies a marginal abatement cost (MAC) function

− Yµ/Y = ϕtµ, (3)

with slope ϕt. Note the slope parameter is time-dependent. Abatement is the difference
between business-as-usual (BAU) emissions, which specifically means the level of emissions
at a carbon price of zero, and actual emissions:

µ = φt/ϕt − E. (4)

The parameter φt represents the MAC at zero emissions and thereby contributes to determin-
ing the level of BAU emissions φt/ϕt. Bounding the zero-emissions MAC at φt is consistent
with evidence on and assumptions about zero-carbon technology costs, e.g., direct air cap-
ture of CO2 (Heutel et al., 2016). By contrast, some model structures imply an infinite MAC
at zero emissions, e.g., the commonly used model that differentiates between clean and dirty
capital/energy inputs and assumes a constant elasticity of substitution between them.

Clean technological progress

In the model, clean technology costs fall over time. Part of this process is exogenous and part
of it depends endogenously on emissions abatement. Exogenous cost decreases could result
from innovation spillovers elsewhere in the economy (Popp, 2019; Taalbi, 2020). For example,
improvements in lithium-ion batteries in the smartphone industry are now benefiting electric
mobility, thin-layer nanotechnology might be useful for photo-voltaic energy on plastics, and
chemical membrane technology could be employed to produce “green hydrogen” from water.
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They could also result from basic R&D directly into clean technology that is independent
of levels of clean technology use. Endogenous cost decreases could come from learning-by-
doing, network effects, or other sources of increasing returns, as well as induced R&D that
is proportional to the size of the clean technology market (Acemoglu et al., 2012).

The MAC at zero emissions evolves according to

φt = φ0

(
ω

1
M ε

+ (1− ω) 1
1 + gφτ

)
, (5)

and similarly the MAC function slope parameter evolves according to

ϕt = ϕ0

(
ω

1
M ε

+ (1− ω) 1
1 + gϕτ

)
. (6)

Thus, the overall decrease in clean technology costs is a weighted average of the exogenous
and endogenous processes, where ω is the relative weight on endogenous cost reductions.

To represent exogenous cost decreases, the parameters of the MAC function are a de-
creasing function of time. The exogenous evolution of the intercept term φt is given by
φ0/(1 + gφτ) and the slope term by ϕ0/(1 + gϕτ). τ is just a monotonic transformation of
time, τ = 1 − exp(−gτ t), gτ > 0, which is a technical detail necessary to solve the model
numerically (Traeger, 2014). One can think of it as artificial time, starting at zero and
gradually approaching one in the long term. The important point is that φt starts at φ0

and decreases towards a long run asymptote φ0/(1 + gφ). The same goes for ϕt. We assume
gφ = gϕ, which implies constant BAU emissions given (4), consistent with the latest evidence
on future emissions conditional on current policies (IPCC, 2022), where current policies still
involve trivially low pricing of global aggregate emissions (World Bank, 2021).

For endogenous technological progress, M represents cumulative emissions abatement
relative to time zero4 and ε is the constant elasticity of the MAC function parameters with
respect to cumulative emissions. This means that for every doubling of cumulative emissions,
MACs are reduced by the same factor 1−2−ε, i.e., we assume a constant rate of cost reduction.

Damages and warming

The damage multiplier
Ω = exp

(
−γ2T

2
)
, (7)

4Cumulative abatement in the model is M0 +
∫ t

0 µsds, where M0 is cumulative abatement at time zero.
Hence, we can define cumulative abatement relative to time zero asM(S, t) = [M0 +EBAU t− (St−S0)]/M0,
where S stands for cumulative emissions.
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where γ is the damage function coefficient and T is global mean temperature relative to its
pre-industrial level.

Climate science has shown that T is approximately linearly proportional to cumulative
carbon dioxide emissions (IPCC, 2021), so we write

T = ζS, (8)

where S stands for cumulative greenhouse gas emissions and ζ is the slope coefficient, known
as the transient climate response to cumulative carbon emissions or TCRE. Although tem-
perature responds to a CO2 emission impulse with a delay of a few years, the relationship
between temperature and cumulative emissions is still well approximated by Eq. (8) (Dietz
and Venmans, 2019). Thus, as Dietz and Venmans (2019) and Dietz et al. (2021a) showed,
not only is (8) simple, it mimics the behaviour of complex climate science models much
better than most climate modules in IAMs that explicitly model the atmospheric stock of
carbon and thereby require more state variables.

Temperature is subject to a geometric Brownian motion capturing uncertainty in the
temperature impulse response to emissions,

dT = ζEdt+ σTTdWT , (9)

where emissions times the TCRE parameter ζ is by definition the drift and the tempera-
ture volatility is σT . The Brownian motion represents both epistemic uncertainty, i.e., the
fact that our climate model is imperfect, and aleatoric uncertainty, i.e., genuinely random
volatility of the climate system.5.

Clean and dirty capital

The capital stock is composed of dirty and clean technologies. Dirty capital Kd represents all
forms of capital requiring fossil-fuel inputs (e.g., coal- and gas-fired power plants, integrated
steel mills, and cement plants).6 Clean capital Kc represents capital that does not directly
require fossil fuels for production. Upstream sectors where fossil fuels are a direct input

5This could be explicitly modelled as follows: assume epistemic uncertainty (Bayesian updating) of the
TCRE follows the process dζ = σ1dW1 and aleatoric (weather) shocks are proportional to warming, adding
an uncorrelated geometric Brownian motion with volatility σ2. This results in

dT = ζEdt+ σ1

ζ
TdW1 + σ2TdW2, (10)

which is identical to our equation with σT = σ1
ζ + σ2.

6Or which otherwise emit greenhouse gases as a by-product, as cement and some chemical plants do, for
example.
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need to shift towards low-carbon production technologies. Downstream sectors where fossil
fuels are not directly used can already be considered clean. They are dirty only insofar
as their intermediate inputs come from fossil-fuel-burning upstream sectors, e.g., electricity
(Kemp-Benedict, 2018). Therefore, rather than being a small expanding niche in a system
dominated by dirty capital, our definition implies most of the capital stock is clean (or at
least not dirty per se), and we treat as dirty only the capital that directly uses fossil fuels
or otherwise directly emits greenhouse gases.

Use of Kd produces emissions E at intensity ψt,

E = ψtKd. (11)

The emissions intensity of dirty capital ψt decreases at rate gψ, which represents autonomous
improvements in energy efficiency that occur without carbon pricing due to incentives to save
on energy costs. This is distinct from falling clean technology costs.7

Use of Kc does not produce any emissions. Substituting dirty capital with clean capital
reduces emissions at a cost to output (and reduces climate damages). The technical rate of
substitution is

YKd
YKc

= 1 + (φtψt − ϕtψ2
tKd)(Kd +Kc)
α

, (12)

which is decreasing in the stock of dirty capital assuming Kd < Kc, meaning that the less
dirty capital there is, the more clean capital is required at the margin to keep output constant.
At BAU emissions, Kd = φt/(ϕtψt) and both forms of capital are equally productive,8

whereas at zero emissions dirty capital is several times more productive than clean capital
(determined by φt). Substitutability is further impaired by adjustment costs, to which we
now turn.

Capital accumulation, adjustment and disinvestment costs

Clean and dirty capital are expanded by investment, but this is subject to convex increasing
adjustment costs:

ιj =
χji

2
j

k
, j ∈ {c, d} , (13)

where we use lower case to denote units of effective labour (see Appendix A), thus i is gross
investment per unit of effective labour in clean and dirty capital respectively, k = kc + kd

7More specifically, we define ψt = ψ0
1+τ

e(g+gL)t .
8Although our model has constant BAU emissions, BAU dirty capital is initially increasing at rate gψ due

to the effect of decreasing emissions intensity. By contrast, BAU dirty capital as a proportion of GDP equals
Kd,BAU

Y = φ0
Y0ϕ0ψ0(1+τ) and is decreasing to half its initial value in the long run. With constant emissions

intensity, this proportion of dirty capital would decrease at rate g+ gL and become zero in the steady state.
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is total capital per unit of effective labour, and χj is the adjustment cost parameter. For
any amount ij of disbursed investment expenditure, the value of newly installed capital will
only be a proportion of investment expenditure equal to ij − (χji2j)/k. Adjustment costs
are proportional to total capital such that the dynamics of total capital are homogeneous of
degree one.9

In addition to adjustment costs of positive investment in clean/dirty capital, we also
model the costs of negative investment or disinvestment of dirty capital, which may be opti-
mal in order to make a rapid transition, rather than waiting for dirty capital to depreciate.10

Denoting negative dirty investment r ≡ id iff id < 0,

κ(r) = θ1r
θ2

k
, (14)

where the cost function has coefficient θ1 > 0 and exponent θ2 > 1. When dirty assets are
disinvested and retrofitted/repurposed, strictly less than 100% of the value of those assets can
be recovered. Thus, those dirty assets are devalued and become partly ‘stranded’. For low r,
a large share of the value of the original dirty capital can be recovered. But as r increases,
the share of the dirty capital assets’ value that is lost increases more than proportionally.

Both capital stocks are subject to a geometric Brownian motion with correlation coeffi-
cient ρk. This stochastic process represents random changes to the value of capital and its
productivity, similar to changes in the valuation of firms on the stock market, and allows us
to capture part of the uncertainty about future growth prospects.

Putting these elements together, the equations of motion of dirty and clean capital are

dkj =
(
ij −

χji
2
j

k
− (δj + gL + g)kj

)
dt+ σjkjdWj, (15)

where δj is the depreciation rate and dWc = ρkdWd + (1− ρ2
k)

1/2 dW2 with dW2 ⊥ dWd.
At zero dirty investment, emissions naturally decrease at rate δd + gψ. This can be

interpreted as the ‘speed limit’ to decarbonisation, beyond which dirty capital needs to be
repurposed at a cost.11 This penalty on rapid abatement is important in determining the
cost of an abrupt transition to a low-carbon economy.

9Note that one cannot divide by kd because the ratio would converge to zero.
10Given we start in a high-carbon economy, the opposite case ic < 0 is of limited relevance.
11Analytically, we can see this by expressing the (initial) speed of abatement as Ė

E = g + gL − gψ +
k̇d
kd

= −δd − gψ + id−χdi2d/k
kd

. The exact formula for all future periods is more convoluted but with the same
interpretation.

10



Disasters and tipping points

TFP follows a geometric Brownian motion capturing normal economic fluctuations. In ad-
dition, TFP is subject to rare macroeconomic disasters, such as wars, financial crises and
pandemics (Barro, 2009). But, in a twist on the original formulation of these shocks, we
specify them as an increasing function of temperature to account for the risk of climate-
related shocks, e.g., due to crossing tipping points in the physical climate system (Cai and
Lontzek, 2019; Dietz et al., 2021b). TFP therefore evolves according to

dÃ =
(
gA1Ã+ gA2(Ã0 − Ã)

)
dt+ σAÃdWA − ξ1(1 + ξ2T )ÃdP, (16)

where Ã is TFP adjusted for production per unit of effective labour,12 The trend growth rate
gA1 is set so that gA1Ã corresponds to the expected effect of the shocks (as in Barro, 2009),
while gA2 governs a very slow return to a balanced growth path. σA is ‘normal’ economic
volatility, ξ1 is the size of the macro-economic shock in the absence of climate change (from
Barro, 2009) and ξ2 parameterises how this increases as a function of temperature. dP is a
Poisson process and equals one with probability λA.

Consumption and utility

Agents have rational expectations. Consumption per unit of effective labour is

c = y − id − ic − κ(r). (17)

Disinvestment costs reduce the income available from liquidating dirty capital (or, equiva-
lently, retrofitting/repurposing costs must be paid out of income). In order to disentangle
risk aversion from intertemporal consumption smoothing, we use the recursive preference
formulation of Duffie and Epstein (1992), which is equivalent to the discrete-time recursive
preferences of Epstein and Zin (1989), Kreps and Porteus (1978), and Weil (1990). The
representative household maximises utility from per-capita consumption, discounted at the
pure time preference rate ρ, with standardised aggregator function f and value function V :

V (kd, kc, S, Ã, t) = max
ic,id

E
∫ ∞
t
−f(kd, kc, S, Ã, t, V, id, ic)ds, (18)

with
f(kd, kc, S, Ã, t, V, id, ic) = c1−η

1− ηΥ− ρ̂V 1−RRA
1− η , (19)

12Ã = Ae(α−1)gt and production per unit of effective labour y = ÃkαΛΩ.
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Υ = ρ̂ ((1−RRA)V )
η−RRA
1−RRA , (20)

and
ρ̂ = ρ− gL + (η − 1)g. (21)

η is the elasticity of marginal utility of consumption (equal to the inverse of the elasticity
of intertemporal substitution) and RRA is the coefficient of relative risk aversion. Setting
η = RRA would simplify the expression leading back to the standard expected utility case.
However, this would be difficult to reconcile with empirical data on risky and risk-free asset
returns, and in the context of climate policy it has the property that high levels of risk
aversion also increase the discount rate and lead to lower climate ambition, all else being
equal.

3 Optimal capital accumulation and carbon pricing

In this short section, we build intuition for our quantitative results below by looking at how
adjustment costs affect the optimal accumulation of clean and dirty capital, and how adjust-
ment costs, clean technological progress and uncertainty affect the optimal pricing/taxation
of greenhouse gas emissions.

The Hamilton-Jacobi-Bellman (HJB) equation is

max
ic,id

{
f + 1

dtE[dV (kd, kc, S, Ã, t)]
}

= 0. (22)

Applying Itô’s Lemma (see Appendix A) and maximising the HJB equation with respect to
the capital stocks yields expressions for the shadow prices of clean and dirty capital:

Vkc = c−ηΘ k

k − 2χcic
(23)

and
Vkd = c−ηΘ

(
k

k − 2χdid

)(
1− θ1θ2r

(θ2−1)

k

)
, (24)

where c−η is the marginal utility of consumption, adjusted for Duffie/Epstein preferences via

Θ = ρ̂ ((1−RRA)V )1− 1−η
1−RRA . (25)

Combining (23) and (24) into a ratio of the shadow prices of clean and dirty capital helps
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make the role of adjustment costs clear:

Vkc
Vkd

= k − 2χdid
k − 2χcic

(
1

1− (θ1θ2r(θ2−1)) /k

)
(26)

In the absence of adjustment costs, the ratio of the shadow prices of clean and dirty capital
would be one, as the opportunity cost of investing an extra dollar is the utility of consuming
that dollar instead, regardless of where the investment goes. However, adjustment costs
change this. The first element on the right-hand side is the ratio of adjustment costs of
dirty and clean capital investment. The ratio is increasing in clean capital investment and
decreasing in dirty capital investment. Moreover, if we assume χc = χd, as we do below, then
the ratio just depends on the absolute amount of investment going into each form of capital.
Thus, adjustment costs put a brake on how quickly capital accumulation can shift from
dirty to clean. The second element of the ratio is the costs of disinvesting dirty capital. The
shadow price of clean capital is relatively larger, the larger these dirty capital disinvestment
costs are. For high levels of disinvestment, i.e., r >

(
θ1θ2
k

) 1
1−θ2 , this factor becomes negative:

dirty capital becomes a burden, because the costs of disinvestment exceed its initial value.
Applying the envelope theorem to the HJB equation, we can also obtain an analytic

expression for the optimal marginal abatement cost. For simplicity, we call this the optimal
‘carbon price’, but note that if endogenous clean technological progress is affected by market
imperfections other than climate damages themselves, the first best would be to internalise
these using complementary policy instruments such as innovation subsidies. The optimal
carbon price is:

p = Φ{Ψc−ηyγS − VSSE marginal damage cost
+Ψc−ηy

[
ϕ
2µ

2(1− ω) ε
Mε+1

]
− VtS technological change effect

−VSkd [id − χdi2d − (δd + gL + g)kd] dirty capital contraction effect
−VSkc [ic − χci2c − (δc + gL + g)kc] clean capital expansion effect
−VSSSσ2

S − 1/2VSSSS
2σ2

S temperature risk premium
−1/2VSkdkdk

2
dσ

2
d − 1/2VSkckck

2
cσ

2
c − VSkckdkdkcρkσcσd capital risk premiums

−1/2VSAAÃ
2σ2

A TFP volatility risk premium
−λA

[
VS(Ã−∆Ã)− VS(Ã)

]
disaster risk

+λAVA(Ã−∆Ã)ξ1ξ2ζÃ− VSA
(
ÃgA1 +

(
A0 − Ã

)
gA2

)
}, premium (27)

where
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Φ = (1− η)L0 exp [(g + gL) t]

ρ̂
[
1−RRA+ (RRA− η) c1−η ((1−RRA)V )−

1−η
1−RRA

]
Vkc

(28)

and

Ψ(V ) = ρ̂

((1−RRA)V )
1−η

1−RRA−1
. (29)

To interpret Eq. (27), bear in mind that −VS is the optimal carbon price in utils and is
positive. This helps sign the numerous cross-derivatives.

The term on the first row of (27) is the marginal damage cost of an emission, comprising
the current level of marginal damages Ψc−ηyγS and the future change in marginal damages
−VSSE = −VSSṪ /ζ. On a path of rising temperatures, a convex damage function ensures
rising marginal damages, i.e., −VSS > 0, which is true of our damage function (7) like most
others.13

The term on the second row is the technical change effect. The first element is the
marginal gain of endogenous technical change, which increases the optimal carbon price
because the prospect of reducing the MAC creates an added incentive to abate emissions to-
day. Building on our observation above, part of this incentive may be external to innovating
firms. If another policy instrument exists to internalise this externality, then less than the
full marginal gain of endogenous technical change should be factored into the explicit carbon
price levied on the economy. However, there are many drivers of endogenous technology cost
reductions (learning-by-doing, network effects, induced R&D, etc.), so in reality the distinc-
tion is likely to be less than clear-cut. The second element, VtS, embodies the two exogenous,
time-dependent processes that reduce the MAC in the model, i.e., falling clean technology
costs and autonomous improvements in energy efficiency. These reduce the optimal carbon
price by making emissions abatement exogenously cheaper. Note that VtS is also affected
by endogenous technological change, ∂M/∂t = EBAU > 0, i.e., observing the same level of
cumulative emissions in a later period implies higher cumulative abatement. This will also
reduce the optimal carbon price.

The terms on the third and fourth rows capture, respectively, the effect of shrinking
dirty capital on the optimal carbon price, and the effect of expanding clean capital. In both
cases, the effect of a marginal emission on the opportunity cost of capital (VSkd and VSkc)
is positive, because the marginal emission increases temperatures along the path, higher
temperatures reduce consumption, and lower consumption results in higher marginal utility,

13Technological change uncertainty will affect the impact of rising damages VSS . Therefore, we will
compare the total effect on the carbon price in the results section
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thus a higher opportunity cost. Dirty capital is in decline along the optimal path, so the
trend effect [id − χdi2d − (δd + gL + g)kd] is negative and overall the dirty capital contraction
effect reduces the optimal carbon price. Decreasing dirty capital reduces future warming.
Clean capital is expanding along the optimal path, with a positive trend effect and thus the
optimal carbon price is reduced.

The remaining rows include the risk premiums corresponding to the four stochastic pro-
cesses in the model: uncertainty about the temperature impulse response to emissions (the
TCRE), uncertainty about capital valuations, uncertainty about TFP due to normal eco-
nomic fluctuations/volatility, and the effect of uncertain disasters. These all increase the
optimal carbon price.14 The disaster risk premium has two components. The first is the
difference a disaster makes to marginal damages. On the one hand, marginal damages are
smaller in a smaller, post-disaster economy. On the other hand, marginal utility is higher in
a smaller economy. The latter effect outweighs the former when η > 1. The second compo-
nent of the disaster risk premium takes account of the fact that disasters are larger at higher
temperatures.

In Section 5, we quantitatively decompose our optimal carbon price trajectory into these
different components.

4 Calibration

We calibrate our model using one-year time steps, with gτ set equal to 0.01515. The initial
period of our numerical simulations is 2020. Population is measured in billion people; cap-
ital stock and output in trillion 2020US$; GHG emissions in gigatonnes of CO2 equivalent
(GtCO2eq); and temperature in degrees Celsius (◦C).

We adopt three main strategies to calibrate our parameters. A first subset of parameters
is defined by adopting standard values in the literature or recent empirical estimates. A
second subset is calibrated to replicate empirical evidence or desired features of starting
values. Finally, a third subset of particularly important parameters is estimated by fitting
our model to a large database of results from detailed energy systems models using maximum
likelihood methods. Table A1 in Appendix B provides an overview of the numerical values
used for the parameters and initial conditions.

14Notice that since temperature is linearly proportional to cumulative emissions, the Brownian motion on
temperature can be rewritten as a Brownian motion on S instead.

15This value was chosen so that gτ = g+gL−gψ, which facilitates the convergence of the model algorithm.
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4.1 Preferences

We use the expert survey of Drupp et al. (2018) to set both the elasticity of marginal utility
of consumption (i.e., the inverse of the elasticity of intertemporal substitution) η = 1.35 and
the utility discount rate ρ = 1.1%. The coefficient of relative risk aversion RRA is set equal
to 4, following Barro (2009).

4.2 Production

We calibrate the starting value of TFP A0 = 3.44 so that, given initial values for labour and
the capital stock, the 2020 value of global GDP is US$84.5 trillion (World Bank, 2022). The
TFP growth rate compensating disasters is set to gA1 = 0.0037, with fluctuations following
a Brownian motion with standard deviation σA = 0.013 (van den Bremer and van der Ploeg,
2021), and the steady state stabilisation rate (which has a negligible effect) gA2 = 0.01.
These values allow us to obtain a mean economic growth rate of 2% in the steady state. We
follow UN (2019) in setting the initial value of population L0 = 7.795 and population growth
gL = 0.42%.16 The share of capital in production is assumed to be 0.3, as is common in
the literature. We set the initial value of the aggregate capital stock, K0 = US$348 trillion,
close to its steady state value,17 determined by the parameter values and equal to a fixed
proportion of output.18

To identify the shares of clean and dirty capital, we use the World Input-Output Database
(WIOD), containing sectoral capital stock data for 43 countries at a NACE level 2 disag-
gregation (Timmer et al., 2015). As discussed in Section 2, we interpret dirty capital as the
upstream productive assets requiring fossil fuels to operate. We thus label certain WIOD
sectors as dirty because of their fossil-dependent technological basis (e.g., mining, coke, chem-
icals, plastics, metals, electricity, transportation). Where possible, we employ data from the
Exiobase multi-regional input-output database (Stadler et al., 2018) to further disaggregate
stocks and isolate those directly related to fossil fuels (e.g., the capital stock used for the
exploration and extraction of coal, gas and oil) from those with less of a connection to fossil
fuels (e.g., mining of non-ferrous metals and other materials). To perform this disaggrega-
tion, we assume that the share of fossil-related capital stock of a specific sector is equal to
the share of fossil-related output in total sectoral output. With this method, we estimate
that approximately 8% of the capital stock is dirty. We thus set Kd,0 = US$28 trillion and

16This is equal to the average growth rate in the UN population medium variant scenario for the 2020-2100
period.

17The steady state level of total capital is given by K∗ = L
(
Ae− γ

2 T
∗2 α
ρ+δ+ηg

) 1
1−α .

18In other words, we assume that the steady state capital-output ratio, equal to 3.7 in our central parameter
simulations, also applies to the neighbourhood of the steady state.
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Kc,0 = US$320 trillion.
The depreciation rate of dirty capital δd plays a particularly important role in our model

as, together with the decline rate of emissions intensity ψ, it defines the maximum speed
at which the system can abate emissions without having to disinvest from dirty capital.
We assume δd is equal to the inverse of the average asset lifetime. Since Kd captures a
wide variety of productive stocks with different asset lifetimes,19 we choose a central value
of 4%, corresponding to an average asset lifetime of 25 years. This is roughly in line with
depreciation rates adopted by models including long-lived physical assets.20 For simplicity
and to facilitate the dynamics of the model, we also set δc = δd. Given our initial value
of Kd = US$28 trillion, and 2020 GHG emissions of 56 GtCO2eq, we set the initial value
of emissions intensity ψ0 equal to 2 GtCO2eq/trillion US$. We assume emissions intensity
declines at a rate approximately equal to its historical decline rate gψ = 0.01 (World Bank,
2022).21

A wide range of estimates exist for the adjustment cost parameter (see for instance
Cooper and Haltiwanger, 2006; David and Venkateswaran, 2019). We follow van der Ploeg
and Rezai (2020a) in setting a mid-range value of χd = χc = 0.1.

Both capital stocks are subject to Brownian motions, with standard deviations σd = σc =
0.013. The combined volatility of TFP and capital mimics the GDP volatility in van den
Bremer and van der Ploeg (2021). In addition to capital volatility, our model also includes
the possibility of macroeconomic disasters, which we assume to lead to a loss of 20% of GDP
with a 1.7% probability, thus setting ξ1 = 0.2. This is taken from Barro (2009), with a
downward adjustment to reflect the fact that Barro estimated the size of regional disasters
whereas our model is globally aggregated.

4.3 Climate and emissions

IPCC (2021) estimates the temperature increase in 2020 relative to pre-industrial T0 = 1.2◦C,
19Coal plants, for instance, have an average lifetime of 46 years (Cui et al., 2019), with many of them

lasting up to 60 or 70 years. Similarly, IEA (2019) uses a reference lifetime of coal plants of 50 years. Other
carbon-related assets like transport infrastructure and buildings have even longer life-spans, reaching 100 or
200 years, while manufacturing equipment is estimated to last between 10 and 40 years (Hallegatte, 2009;
IEA, 2002).

20For instance, van der Ploeg and Rezai (2020a) use a depreciation rate of 5% for fossil-fuel exploration
capital; Coulomb et al. (2019) use 3.33% for electricity generation plants; Baldwin et al. (2020) use 5% for
the general capital stock and 2.5% for fossil energy capital; Vogt-Schilb et al. (2018) use 4% for industry and
2.5% for energy capital.

21We calculate emissions intensity using total GHG emissions (net of agricultural methane and nitrous
oxide emissions) and value added in the industry sector (including construction). We then calculate the
average emissions intensity decline using data from 1994 to 2007, to avoid an excessive distortionary effect
of climate policy on the data).
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which we use. IPCC (2021) also offers a central estimate of the TCRE ζ of 0.00045◦C/TtCO2.
However, this estimate does not take into account the ‘Zero Emissions Commitment’ to
warming,22 and excludes some known climate feedbacks. Taking these into account, and
including the warming effect of non-CO2 emissions, we estimate ζ = 0.0006.23 The com-
bination of T0 and ζ also allows us to calibrate the starting value of cumulative emissions
S0 = 2000. The parameter γ governing the climate damage function is set equal to 0.0077,
based on the meta-analysis of Howard and Sterner (2017).

Temperature is subject to a Brownian motion with a standard deviation σT = 0.03, cali-
brated to fit the range of simulated temperatures at the end of this century across the IPCC
climate models.24 Thus, it represents uncertainty about the mechanisms linking emissions
to temperature change.

Finally, the parameter governing the dependence of macro disasters to temperature ξ2 is
set to 0.07. This assumes an increase of the macro disaster jump from 20% to 21.4% when
T is equal to 2◦C.

4.4 Abatement, disinvestment and technical change

We estimate a set of key parameters linked to abatement and disinvestment costs (ϕ0, θ1,
gϕ and ε) using energy systems modelling results, in particular from: (i) the model/scenario
ensemble underpinning the IPCC Special Report on Global Warming of 1.5◦C (IPCC, 2018);
and (ii) the model/scenario ensemble of the Network of Central Banks and Supervisors for
Greening the Financial System or NGFS (Bertram et al., 2021).25 These databases together
span 18 leading energy systems models.

Each model or project has a BAU reference scenario, and these scenarios differ depending
on assumptions about population growth, GDP growth, openness of economies and other
variables. Various emissions abatement scenarios are included, with a resulting range of
temperature increases from below 1.5◦C to more than 3◦C. After excluding scenarios with
temperatures too high to be compatible with meaningful emissions abatement,26 we are left
with 134 scenarios, for which we have values for carbon prices, as well as for emissions and

22That is, the unrealised warming to which we are committed due to CO2 already emitted to the atmo-
sphere.

23The cumulative CO2 emission budget for 0.73◦C warming from 2020 onwards is 1000 GtCO2 (IPCC,
2021). We assume that 20% of warming stems from other greenhouse gases.

24Specifically, in 2081-2100 for all combinations of Representative Concentration Pathways (RCPs) and
Shared Socioeconomic Pathways (SSPs), as reported by IPCC (2021).

25The databases are available at https://data.ene.iiasa.ac.at/iamc-1.5c-explorer and
https://www.ngfs.net/ngfs-scenarios-portal/, respectively.

26We exclude scenarios with cumulative emissions of more than 2166GtCO2eq in 2100, corresponding to
a temperature increase of above 2.5◦C.
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GDP, from which we can calculate the scenarios’ total abatement costs. The calibration
strategy is to simultaneously choose the values of ϕ0, θ1, gϕ and ε that maximise the fit of
our model to a combination of the marginal and total abatement costs from the scenario
database.

As mentioned in Section 2, BAU emissions are given by EBAU = φt/ϕt, and since φt
and ϕt decrease at the same rate, BAU emissions are constant. We use this to set φ =
ϕEBAU , with EBAU = 60GtCO2eq.27 From (1), production under BAU emissions is YBAU =
AL1−αKα exp

(
−γ

2T
2
)
, thus allowing us to define total abatement costs as a percentage of

GDP as 1− Y
YBAU

. In turn, we can write

Y

YBAU
= exp

−ϕt2
(
E − φt

ϕt

)2
− θ1r

θ2
L0e

(g+gL)t

k∗YBAU
, (30)

where r = −Ė+E(−δ−g−gL+gτ 1−τ
1+τ )

ψ0L0(1+τ) is the optimal disinvestment from dirty capital and k∗ is
the steady state total capital value from the model. Using the MAC function (3), marginal
abatement costs are

− Yµ = Y (φt − ϕtE) (31)

where the MAC, −Yµ, is the optimal carbon price.
Parameters ϕ0, θ1, gϕ and ε are estimated by the Generalised Method of Moments using

(30) and (31) simultaneously. Fitting to both total and marginal abatement costs allows
us to obtain more robust results, in case the MAC functions of the underlying models are
nonlinear.28 We truncate the sample to eliminate outliers, excluding the 5% highest and
lowest costs in each period. We put double weight on model results from the NGFS database.
This database includes many of the models in the IPCC database, but since it is more recent
it incorporates improvements in those models, e.g., calibration on the latest evidence.

Table 1 reports the results. We assume the errors of both equations are normally dis-
tributed. We report estimation results assuming technology costs that decrease exogenously,
and technology costs that decrease endogenously. We do not have precise available estimates
for ω, governing the relative weight of exogenous and endogenous technical change. Taalbi
(2020) finds that at least 30% of variations in innovation activity are driven by the stimulus

27This is 4GtCO2eq above the 2020 level of GHG emissions of 56GtCO2eq, which itself was negatively
impacted by the Covid-19 pandemic, perhaps by up to 2GtCO2eq (IPCC, 2022). Thus, we assume policies
actually implemented to price carbon, implicitly or explicitly, reduced GHG emissions by at least 2GtCO2eq
below BAU in 2020.

28The MAC is the most economically meaningful cost measure, because it determines the first-order
conditions of the optimum. Therefore, we use a diagonal weighting matrix with a 60% weight on the
marginal abatement cost fit and 40% weight on the total abatement cost fit.
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Table 1: GMM estimates of total abatement costs (equation 30) and marginal abatement
costs (equation 31) simultaneously. The database consists of 122 scenarios of the IPCC
Special Report on 1.5◦C (excluding scenarios with cumulative emissions beyond 2500GtCO2)
and 12 scenarios from the NGFS database. BIC: Bayesian Information Criterion. AIC:
Akaike Information Criterion.

Exogenous technology Endogenous technology
ϕ0 4.2e-05*** 4.2e-05***
θ1 7.0e+02** 7.1e+02**
gϕ 0.74***
ε 0.10***

N 1605 1605
Log likelihood 6664 6660
BIC -13305 -13297
AIC -13321 -13313

* p<.1; ** p<.05; *** p<.01

coming from the network of other productive activities. We opt for a mid-value of 0.5.
gφ is by design set to be equal to gϕ. The 2020 cumulative abatement valueM0 is set at an

approximate value of 100 GtCO2, building on the information provided by UNEP (2021).29

Finally, θ2 is set to 2.1 to ensure our convex function has a continuous second derivative.

5 Results

In this section, we present our main results. We show the optimal transition to a low-carbon
economy in different versions of the model, focusing on four key variables: (i) GHG emissions
(E); (ii) global mean temperatures (T ); (iii) carbon prices (p); and (iv) disinvestment from
dirty capital assets (R). For (i) and (ii), we take a century-long perspective, whereas for the
economic variables (iii) and (iv) we only look out as far as 2050, so that important near-term
differences are easier to see.

We consider two different policy/planning objectives. The first is the economist’s natural
objective of maximising welfare as per Eq. (18), i.e., maximising the discounted net benefits
of reducing GHG emissions through shifting from dirty to clean capital, trading off avoided
climate damages with the costs of reducing emissions. We call this the ‘cost-benefit’ problem
for short. The second objective places a constraint on expected warming of 1.5◦C and
minimises only discounted emissions abatement costs, rather than minimising the sum of

29We slightly increase the values from UNEP (2021) to improve the log likelihood fit of the model.
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discounted emissions abatement costs and climate damages.30 We call this the ‘1.5◦C cost-
effectiveness’ problem for short and include it because it is more true to the international
climate negotiations in reality.

Technical details of how we solve the model can be found in Appendix C.

5.1 The optimal transition

Figure 1 shows the optimal transition to a low-carbon economy in the full model, with the
cost-benefit solution in red and the 1.5◦C cost-effectiveness solution in blue. The cost-benefit
solution involves immediate, steep GHG emissions reductions. Optimal emissions are halved
in each of the 2020s and the 2030s. Thereafter, the rate of emissions decrease slows. As a
consequence of the steep initial drop in emissions, expected warming is limited to 1.65◦C
above pre-industrial in 2050 and 1.76◦C in 2100, which is approximately peak warming.

To deliver steep optimal emissions reductions, the planner levies a high initial carbon
price of US$133/tCO2eq, rising to US$283/tCO2eq in 2050. Pricing carbon at this level
triggers an initial US$375 billion/year in disinvestment from dirty capital assets, decreasing
to US$213 billion/year in 2030 and US$80bn/year in 2040. Cumulatively, US$4.8 trillion of
disinvestment from dirty capital is made, which equates to 17% of the dirty capital stock
at the start. Thus, the pace of the optimal transition requires not only an immediate halt
to dirty capital investment but also active decommissioning or repurposing of dirty assets,
rather than using them until the end of their erstwhile economic lifetimes. In Section 2,
we characterised an emissions reduction speed limit of δd + gψ, equal to 5%/year according
to our calibration. This is how fast emissions would decrease if investment in dirty capital
were zero, there were no dirty capital disinvestment, and reductions were thus left to a
combination of capital depreciation and autonomous improvements in energy efficiency. The
optimal transition involves breaking this speed limit, reducing emissions by 6.5-7%/year for
the next two decades. This additional disinvestment creates cumulative stranding costs of
US$1.6 trillion, i.e., roughly 1/3 of the monetary value of dirty capital that is disinvested is
lost.

Despite rapidly reducing emissions, the welfare-maximising path in Figure 1 does not
limit warming to 1.5◦C above pre-industrial. Therefore, keeping warming to no more than
1.5◦C requires even steeper emissions reductions, not so much in the 2020s but increas-
ingly thereafter. Indeed, emissions are slightly negative for most of the second half of the

30Technically, this is achieved by maximising (18) with a damage function (7) that is almost discontinuous,
i.e., a ninth-order polynomial, giving negligible damages below 1.5◦C and very high marginal damages above
that level.
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Figure 1: Optimal transition paths under unconstrained welfare maximisation (cost-benefit;
red) and when minimising emissions reduction costs to limit warming to 1.5◦C above pre-
industrial (1.5◦C cost-effectiveness; blue). The optimal path depends on the stochastic real-
isations along the path. The solid lines represent the mean of 5000 Monte Carlo runs. The
shaded areas represent the 10-90% confidence interval.

(a) Emissions E (b) Temperature T

(c) Carbon price p (d) Dirty capital disinvestment R

century.31 The carbon price is accordingly higher. We estimate an initial carbon price of
US$159/tCO2eq, rising to US$346/tCO2eq in 2050. Both the initial level and growth rate
are higher, so the price paths diverge. The substantially higher carbon price has a large effect
on dirty capital disinvestment, which starts at US$541 billion/year, is US$442 billion/year
in 2030 and remains positive beyond 2050. Cumulatively, US$11.4 trillion in dirty capital
disinvestment is made by mid-century, with US$5.8 trillion in stranding costs (i.e., 51% of
the monetary value of the disinvested dirty capital stock is lost).

The 1.5◦C cost-effectiveness solution has wide confidence intervals around the carbon
price and dirty capital disinvestment, while the cost-benefit solution has a wide confidence

31Technically, the model achieves negative emissions through negative dirty capital, but this should be seen
as an abstraction. The MAC of negative emissions comes from the calibration on energy systems modelling
results. Negative emissions are cost-effective in many of these models.
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interval around temperatures. This reflects the different ways in which the planner responds
to shocks, especially temperature shocks. The cost-benefit planner is much more willing to
accept uncertainty about temperature. The 1.5◦C cost-effectiveness planner is determined to
keep temperatures below the limit and thus responds to temperature shocks with potentially
large adjustments to carbon prices, with knock-on effects on dirty capital disinvestment.

5.2 Optimal carbon price decomposition

Figure 2 decomposes the optimal carbon price from the cost-benefit problem into its various
elements as set out in Section 3 (Eq. 27). The y-axis is scaled so that a value of one
corresponds to 100% of the optimal price in any given year, thus the figure plots shares.

The present value of (deterministic) marginal climate damages accounts for 112% of the
optimal carbon price in 2021. This is divided into a contribution of 50 percentage points from
the present value of marginal damages at the current temperature (i.e., ‘current marginal
damage’, Ψc−ηyγS in Eq. 27), and 62% from the future change in marginal damages (i.e.,
−VSSE). The optimal temperature path is rapidly increasing initially, because capital inertia
leads to high emissions at the start, but temperature growth slows down (Figure 1b). This
explains both the large share of the future change in marginal damages initially, and the
growing share of current marginal damage over time.

The disaster risk premium contributes 24% of the optimal carbon price in 2021 and this
comes from the effect of temperature on disasters (we discuss this further in Section 6). The
share remains relatively constant over time. Thus, avoiding climate-related macro-economic
shocks is a significant motivation for reducing emissions, which persists. The contributions
of the other risk premiums on temperature, capital and TFP respectively are very small.

The technical change effect starts negative overall, because the negative effect of exoge-
nous clean technological progress (-11%) outweighs the positive effect of endogenous clean
technological progress (+2%), however the situation is reversed as soon as 2024, and by
2030 technical change contributes +9% to the optimal carbon price. The dirty capital con-
traction effect reduces the optimal carbon price by 28% initially. This effect is inflated by
dirty capital disinvestment costs, which are initially large, but it diminishes over time as the
dirty capital stock settles down to a much lower and more slowly decreasing level. Opposing
the dirty capital contraction effect is a small positive clean capital expansion effect (2% in
2021), which is increased by adjustment costs on clean capital investment. In the long run,
the clean capital expansion effect is larger because investment flows into clean capital are
larger.
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Figure 2: Decomposition of the optimal carbon price. Y-axis is scaled in percent of the
absolute price.
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5.3 Disentangling the effects of capital inertia, clean technological
progress, and uncertainty

The analysis just above decomposed the optimal carbon price into a set of constituents includ-
ing effects attributable to capital accumulation/decumulation, clean technological progress,
and uncertainty. However, we need a different kind of analysis if we want to show the overall
effect on optimal emissions, temperatures, etc. of modelling our three key features of the
transition: capital inertia, clean technological progress, and uncertainty. This is because,
in general, modifying the model to omit one of these transition dynamics affects all the
elements of the optimal carbon price laid out above. For example, ignoring capital inertia
not only changes the clean capital expansion and dirty capital contraction effects. Rather,
by affecting the optimal temperature trajectory, it also changes current marginal damage,
the future increase in marginal damage, the disaster risk premium, and so on. Therefore, to
analyse what difference capital inertia, clean technological progress and uncertainty make to
the optimal trajectories, in this section we compare results from the full model with a series
of model versions omitting each feature in turn. Again we focus on the cost-benefit problem.
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Capital inertia Figure 3 compares the full model with a version that omits adjustment
costs of capital investment, and dirty capital disinvestment/stranding costs. This version is
made by setting the cost parameters χc = χd = θ1 = 0. Adjustment/disinvestment costs
make it expensive to reduce emissions quickly. Without them, it is optimal to immediately
disinvest from a large portion of the dirty capital stock (US$13 trillion of disinvestment
in the first year, equal to 46% of the dirty capital stock). This leads to a huge drop in
emissions of 29.5 GtCO2eq in the first year, and a flatter emissions path thereafter. Dirty
capital disinvestment costs (Eq. 14) are the critical factor here. Were it possible to disinvest
from dirty capital without “taking a hair cut”, i.e., to recover the full value of the dirty
assets, the imperative of avoiding climate damages would optimally drive nearly instanta-
neous disinvestment from many dirty assets. The emissions paths cross later in the 2030s,
but the additional cumulative emissions in the next decade and a half that capital inertia
brings about are not fully compensated this century, so optimal temperature in the scenario
with adjustment costs is higher throughout.32 The difference is consistently of the order of
0.1◦C. The optimal carbon price in the absence of adjustment/disinvestment costs is initially
US$129/tCO2eq, rising to US$277/tCO2eq in 2050. Thus, the initial carbon price premium
from capital inertia is 3.4%, falling to 2.2% in 2050.

Clean technological progress Figure 4 compares the full model with a model version
in which clean technology costs do not fall, either exogenously or endogenously. MACs are
fixed at their 2020 level, i.e., φt = φ0 and ϕt = ϕ0, ∀t. We find that the initial steep
drop in emissions is virtually unaffected. The difference between the paths in 2030 is just
0.5GtCO2eq. It is only after 2030 that the emissions paths begin to noticeably diverge, with
emissions higher in the absence of clean technological progress. This reflects the fact that
clean technological progress takes time to make a big difference to MACs. Optimal emissions
reductions in the early years are more strongly driven by dirty capital disinvestment costs.
Higher optimal emissions lead to higher temperatures, with the optimal temperature in 2100
reaching 2.1◦C. The carbon price starts at US$138/tCO2eq with fixed MACs, thus clean
technological progress provides a carbon price discount of 3.7% initially, rising to 5% in
2050. Disinvestment from dirty capital is similar in the 2020s, consistent with the similar
emissions paths, but in the absence of clean technological progress there is no more dirty
capital disinvestment from the early 2030s, and hence cumulative dirty capital disinvestment
is lower at US$3 trillion. Without clean technological progress, it becomes less economical
to convert dirty capital to clean capital, and instead emissions/temperatures are allowed to

32Steady-state temperature is the same, but adjustment/disinvestment costs make it optimal to close the
gap slowly.
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Figure 3: Optimal transition paths with adjustment/disinvestment costs (red) and without
(blue). The planner’s objective is to maximise welfare. The optimal path depends on the
stochastic realisations along the path. The solid lines represent the mean of 5000 Monte
Carlo runs. The shaded areas represent the 10-90% confidence interval.

(a) Emissions E (b) Temperature T

(c) Carbon price p (d) Dirty capital disinvestment R

rise.

Uncertainty Figure 5 compares the full model with a model version that has no uncer-
tainty. This is achieved by setting the volatility terms to zero in the temperature, clean/dirty
capital and TFP state equations, and eliminating TFP shocks.33 Uncertainty coupled with
risk aversion leads to lower optimal emissions and temperatures in expectations than when
the climate problem is treated as deterministic. Without uncertainty, the optimal tempera-
ture in 2100 is 2.1◦C. The effect of uncertainty on the optimal carbon price is particularly
marked – it adds 1/3 to the optimal carbon price in 2021, which is US$100/tCO2eq without
uncertainty. In 2050, it adds 23%. Accordingly, dirty capital disinvestment is substantially
lower without uncertainty, at only US$224 billion/year initially and US$1.3 trillion cumula-
tively.

33The TFP drift term is adjusted to obtain the same long-term growth path.
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Figure 4: Optimal transition paths with falling clean technology costs (red) and fixed clean
technology costs (blue). The planner’s objective is to maximise welfare. The optimal path
depends on the stochastic realisations along the path. The solid lines represent the mean of
5000 Monte Carlo runs. The shaded areas represent the 10-90% confidence interval.

(a) Emissions E (b) Temperature T

(c) Carbon price p (d) Dirty capital disinvestment R

5.4 Comparison with ‘straw man’ model

In this section, we compare the full model with a ‘straw man’ model that omits capital inertia,
clean technological progress, and uncertainty. We intentionally favour the term straw man
over ‘standard’ as we do not want to create a misleading impression of the literature – the
idea behind this model variant is that it should fairly represent a basic model of optimal
management of the GHG externality. Most models allow capital to be costlessly shifted
from clean sectors to dirty sectors, and many are deterministic. The treatment of clean
technological progress is more nuanced, however. Some models allow clean technology costs
to fall, but in most cases they fall exogenously (Gillingham et al., 2008; Nikas et al., 2018).
Some models have fixed technology costs, but few if any would fix the cost parameters on
2020 data, which is what we did above in order to make the effect of falling costs clear.
Therefore, for the straw man model we fix MACs at their estimated 2030 level, rather than
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Figure 5: Optimal transition paths with uncertainty (red) and without uncertainty (blue).
The planner’s objective is to maximise welfare. The optimal path under uncertainty depends
on the stochastic realisations along the path. The solid lines represent the mean of 5000
Monte Carlo runs. The shaded areas represent the 10-90% confidence interval.

(a) Emissions E (b) Temperature T

(c) Carbon price p (d) Dirty capital disinvestment R

2020. This mimics the famous McKinsey MAC curves, for example (Enkvist et al., 2007).
Figure 6 presents the comparison, with the full model in red and the straw man in blue.

The straw man emissions trajectory is initially dominated by the effect of ignoring capital
inertia, resulting in an immediate drop of 31GtCO2eq, which is in fact a slightly larger drop
than in the variant that just omits capital inertia. Thereafter, the emissions trajectory is
relatively flat, with emissions in 2100 still as high as 10GtCO2eq. This persistently high level
reflects the combined effect of fixed clean technology costs and no uncertainty. The shape of
the straw man emissions path translates into a more linear warming path, so temperature
is initially lower than the full model optimum (due to the rapid conversion of dirty capital
into clean capital), but it crosses over in the early 2050s and by 2100 the straw man optimal
temperature is 2.1◦C above pre-industrial. Again, this reflects the combined effect of fixed
clean technology costs and no uncertainty, both of which result in a higher steady-state
temperature, whereas capital inertia has no effect on the steady state. In the straw man
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Figure 6: Optimal transition paths for full model (red) and in straw man model without
capital inertia, falling clean technology costs, or uncertainty (blue). The planner’s objective
is to maximise welfare. The optimal path depends on the stochastic realisations along the
path. The solid lines represent the mean of 5000 Monte Carlo runs. The shaded areas
represent the 10-90% confidence interval.

(a) Emissions E (b) Temperature T

(c) Carbon price p (d) Dirty capital disinvestment R

model, the optimal carbon price starts at US$100/tCO2eq. Thus, the carbon price premium
in the full model relative to the straw man model is US$18/tCO2eq or 1/3 initially, falling
to 18% in 2050. There is no dirty capital disinvestment in the straw man model beyond the
initial, huge adjustment, and no monetary stranding costs. Table 2 summarises the results of
this section and the last. Appendix D decomposes the optimal carbon price in these different
model variants.
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Table 2: Summary of effects of omitting capital inertia, clean technological progress, and
uncertainty respectively. Differences are expressed as (full model - model version) / model
version. Note that MACs are fixed at their 2030 level in the straw man model, not 2020 as
in the version with no learning.

Cumulative Temperature CO2 price Cumulative dirty
emissions in 2100 in 2021 capital disinvestment
2020-2100 2020-2050

∆ with no inertia 17.6% 0.08◦C 3.4% -63.9%
∆ with no learning -36.2% -0.33◦C -3.7% 60.5%
∆ with no uncertainty -36.5% -0.34◦C 33.3% 257.5%
∆ with straw man -34.4% -0.29◦C 32.6% -64.7%

5.5 Effect of delaying carbon pricing on dirty capital disinvest-
ment

One of our main findings is that the optimal transition involves significant disinvestment from
dirty assets, as the optimal speed of emissions reductions is beyond what can be achieved
by just letting dirty capital depreciate and relying on autonomous improvements in energy
efficiency.

Figure 7 plots cumulative disinvestment from dirty capital assets as a function of how
long optimal climate policy is delayed. That is, all transitions analysed so far have optimally
restricted GHG emissions from 2020 onwards. Capital inertia inhibits the capacity of the
economy to make a large jump from dirty to clean capital, but the planner still imposes the
optimal carbon price at the outset. Instead, here the internalisation of the GHG externality
is delayed by increments of one year, as a representation of policy failures at the international
and national levels. During the period of policy delay, we assume there is no anticipation of
the introduction of carbon pricing, thus it is a policy shock.

The figure shows that total disinvestment from dirty capital is increasing in the length of
the delay. The rate of increase is particularly fast in the case of limiting warming to 1.5◦C at
minimum abatement cost, because delaying emissions reductions just uses up the available
carbon budget, given that temperature is a linear function of cumulative emissions (Eq.
8). Total disinvestment thus rises from US$11.4 trillion if optimal policy starts in 2020 to
US$25.6 trillion if it is delayed by 10 years. Even a delay of one year to 2021 increases total
disinvestment by US$1.6 trillion. Dirty capital disinvestment increases more slowly when
the policy objective is to maximise welfare without a temperature constraint, because the
planner re-evaluates optimal long-run temperatures. Thus, despite not facing a temperature
constraint, the planner still makes up for lost time with faster rates of emissions reduction.
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Figure 7: Total cumulative (undiscounted) disinvestment from dirty capital as a function of
how long the imposition of optimal emissions reductions is delayed. Unconstrained welfare
maximisation in red; limiting warming to 1.5◦C at minimum abatement cost in blue.

5.6 Cost-benefit versus cost effectiveness

Above, we compared two different formulations of the climate planning problem, uncon-
strained welfare maximisation (cost-benefit), and limiting expected warming to 1.5◦C at
minimum discounted abatement cost (1.5◦C cost-effectiveness). Thus, in switching from the
former to the latter, two things change: (i) a temperature constraint is imposed, and (ii)
damages are effectively ignored. In this section, we isolate the effect of switching from a
cost-benefit to a cost-effectiveness problem, i.e., we focus on the implications of (ii) for the
optimal path. We do this by relaxing the temperature constraint in the cost-effectiveness
problem so that it is just equal to the 2100 temperature that solves the cost-benefit problem.

Figure 8 shows that, since the cost-effectiveness solution is insensitive to the timing of
damages, emissions are higher in the next few decades than they are in the cost-benefit solu-
tion. As a result, temperature increases slightly faster. In the second half of the century, the
ordering of the emissions paths is reversed, as the cost-effectiveness solution must compensate
for the initially higher emissions, which eat up the available carbon budget faster.

These differences are not large, however the differences in the optimal carbon price and
dirty capital disinvestment paths are more so. The cost-effectiveness carbon price starts
at US$116/tCO2eq, which is 13% lower than the cost-benefit carbon price. It grows more
quickly, so the difference between the price paths narrows to just 2.1% in 2050. The lower
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Figure 8: Cost-benefit (red) and cost-effectiveness (blue) paths to achieving a common tem-
perature in 2100. The optimal path depends on the stochastic realisations along the path.
The solid lines represent the mean of 5000 Monte Carlo runs. The shaded areas represent
the 10-90% confidence interval.

(a) Emissions (b) Temperature

(c) Carbon price (d) Dirty capital disinvestment

carbon price results in 17% less dirty capital disinvestment initially, and 33% less cumula-
tively.

Comparing these results with Figure 1, the implication is that the substantially higher
initial carbon price and dirty capital disinvestment required to limit warming to 1.5◦C at
minimum abatement cost is entirely due to the imposition of a very strict temperature con-
straint. Conversely, casting the policy problem as one of limiting temperature at lowest
abatement cost in itself requires a lower initial carbon price and less dirty capital disinvest-
ment (the latter in expectations, at least). Without needing to worry about damages, the
planner back-loads effort until later in the century.
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6 Discussion

In this section, we provide further context to and discussion of four key issues/results: (i)
the level and growth rate of the optimal carbon price; (ii) clean technological progress; (iii)
the risk premium on the optimal carbon price; (iv) stranded assets.

Carbon prices We estimate an optimal carbon price of US$133/tCO2eq in 2021 to solve
the cost-benefit problem. This is consistent with a recent trend towards higher optimal
carbon prices in the literature. There are various reasons for this, especially lower discounting
and higher climate damages, but also updating IAMs’ climate dynamics (Dietz et al., 2021a).
The recent study by Hänsel et al. (2020) is a good illustration of the trend. They implement
various changes to DICE (the 2016 version; Nordhaus, 2017), which has an optimal carbon
price in 2020 of US$37/tCO2 (in 2010 US dollars). Reducing the pure rate of time preference
from 1.5% to 0.5% and reducing the elasticity of marginal utility from 1.45 to 1 raises the
optimal carbon price to US$199/tCO2 in 2020. Our discount rate parameters are in between
(1.1% and 1.35 respectively), as is our optimal carbon price. Retaining Nordhaus’ preferred
discount rate parameters but inter alia updating the DICE model’s climate dynamics and
increasing assumed damages, Hänsel et al. (2020) estimate a 2020 optimal carbon price of
US$82/tCO2. We use similar climate dynamics and a similar damage function calibration,
but add adjustment costs, falling clean technology costs, and risk.

Besides initial carbon prices, the carbon price growth rate is also an important variable.
Our optimal carbon price grows at an average rate of 3% between 2021 and 2030, falling
thereafter and averaging 2.5% over the whole period 2021-2100. How this relates to GDP
growth has been of particular interest ever since Golosov et al. (2014) showed that, under
restrictive assumptions, carbon price and GDP growth are the same. Since GDP growth in
our model is c. 2%, our carbon price grows faster. Dietz and Venmans (2019) showed in a
simple analytical model that the carbon price grows faster than GDP if marginal damages are
increasing in cumulative emissions, but temperature is linear in cumulative emissions. The
former assumption is standard and the latter is a foundational result from climate science
(IPCC, 2021). Our analysis above shows that capital inertia further contributes to the wedge
between carbon price and GDP growth in the near term.

The optimal carbon price that solves the 1.5◦C cost-effectiveness problem is higher at
US$159/tCO2eq in 2021, since the 1.5◦C temperature constraint binds, especially under
risk. It tends to grow a bit more slowly, at an average rate of 2.4% between 2021 and 2100,
although in the first decade the growth rate is 3.4%. The 1.5◦C cost-effectiveness problem is
evaluated by energy systems models participating in the IPCC and NGFS inter-comparison
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exercises. We fit our abatement cost parameters on these model results, so clearly they cannot
be used to validate our carbon price estimates. However, we fit on the relationship between
emissions and carbon prices, which leaves room for a different relationship between prices
and time in the IPCC/NGFS models. Indeed, what is interesting about these energy systems
models is that they yield lower initial carbon prices, but a much steeper trajectory, resulting
in much higher prices by mid-century and beyond (Gollier, 2021). This is accompanied
by higher initial emissions, and lower emissions later on, often significantly negative. Two
likely reasons for this difference are that: (a) the IPCC/NGFS models tend to be solved to
meet a temperature constraint in 2100 and allow overshoot in the meantime, whereas we
impose the temperature constraint throughout, and (b) energy systems models tend to use
higher discount rates calibrated on the market opportunity cost of capital, which leads to
postponing emissions reductions.

Clean technological progress In our model, the cost of clean technology falls along
the transition. Part of this process is exogenous and just depends on time. Part of it is
endogenous, depending on cumulative past abatement. This dual structure is intended to
capture in reduced form the diverse sources of falling clean technology costs, which include
knowledge spillovers from other sectors, economies of scale and learning-by-doing in the clean
technology sector, induced R&D into clean technology, and network effects. Some of these
are associated with market imperfections and can be addressed by a wide range of policies
including R&D subsidies, both economy-wide and specific to clean technology. The literature
on clean technological progress has differentiated between R&D models and learning-by-
doing models (Goulder and Mathai, 2000; Gerlagh et al., 2009). The latter models assume
technologies need to be used for their costs to fall, the former need not. A pure R&D model
would map on to exogenous clean technological progress in our model, with any existing
policies to stimulate R&D also exogenous. A pure learning-by-doing model would map on to
endogenous clean technological progress in our model. However, the dichotomy is somewhat
misleading given the diverse sources of technological progress as mentioned above. Economies
of scale also create a linkage between past abatement and current abatement costs, without
necessarily involving an externality.

The carbon price we report corresponds to the optimal marginal abatement cost. Along
the transition, it is optimal to price carbon because of (i) climate damages, which are an
external cost of carbon emissions, and (ii) future abatement cost reductions, which result
from current abatement. Insofar as the second component results from a different market
imperfection, the first best would be to address it with a separate policy instrument such as
an innovation/deployment subsidy, rather than being priced into a carbon tax (or indirectly
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into the emissions quota in a system of tradeable emissions permits). In this case, our
optimal carbon price would be second best, specifically it would be larger than the explicit
carbon price that one would want to levy in the real world. The results of our decomposition
of the optimal carbon price can be used to identify the difference. Figure 2 shows that the
endogenous technical change effect is about 2% initially and reaches a maximum of about
9% in the early 2030s.

Risk premium Our results show that economic uncertainties, i.e., shocks on clean capital,
dirty capital and TFP, have a very small effect on the optimal carbon price, and even macro-
economic risk has a modest effect. To intuit this result, it is helpful to discuss the climate
beta (Dietz et al., 2018), i.e., the elasticity of marginal climate damages with respect to
consumption. The climate beta indicates whether high marginal damages – high marginal
benefits of abatement – tend to accrue in future states with high (low) consumption, in
which case abatement increases (decreases) consumption risk. Our climate beta is close to
one throughout the 21st century (Appendix E). It starts at just above one and decreases,
non-monotonically, to about 0.85 in 2100. There are three drivers of this result. First, we
assume damages are proportional to production. It is well known that in such models with
‘multiplicative’ damages, the climate beta will be attracted to one, as shocks on clean capital
and TFP will affect consumption and marginal damages proportionally (abstracting from
feedbacks via the savings rate). Second, dirty capital shocks create a positive correlation
between temperature and consumption, increasing beta. Third, temperature shocks create
a negative correlation between temperature and consumption, decreasing beta. The third
effect dominates the second when temperature is high and the dirty capital stock is low.

In our model, intertemporal inequality aversion (η = 1.35) is hence close to the climate
beta. In a model where η = β, a negative shock to GDP will increase marginal utility
and decrease damages in equal proportion (Dietz et al., 2018; van den Bremer and van der
Ploeg, 2021). As a result, the carbon price will not be affected by growth/macroeconomic
uncertainty, as is the case in Golosov et al. (2014). Some authors have set η < 1 in line with
the observation in capital markets that the asset/dividend ratio decreases with uncertainty
(Olijslagers et al., 2021; Cai and Lontzek, 2019; Bansal et al., 2017). Others use η > 1
(Lemoine and Traeger, 2014; Cai and Lontzek, 2019; Nordhaus, 2017; van den Bremer and
van der Ploeg, 2021). This is more in line with the literature on the social discount rate,
and gives the more intuitive result that economic risk increases the carbon price.

Unlike economic uncertainty, the effect of climate disasters is large, increasing the optimal
carbon price by 24% in 2021. However, this is mainly due to expected damage from disasters:
the risk premium on the mean-preserving volatility of the damages is very small. The
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effect of the Brownian motion on temperature is similarly very small. Appendix E analyses
the sensitivity of our model to risk aversion. Our default assumption is that RRA = 4.
In the Appendix, we test alternative values of 6 and 1.35 (the latter gives the expected
utility model). The optimal carbon price varies little. Other studies investigating climate
uncertainties and tipping points find similar results (Cai and Lontzek, 2019; Hambel et al.,
2021; Crost and Traeger, 2014; van den Bremer and van der Ploeg, 2021).34 One explanation
is that consumption volatility caused by climate damages is modest compared to stock-
market volatility. van den Bremer and van der Ploeg (2021) show that the social cost of
carbon more than doubles when RRA is increased from 4.32 to 6, if consumption volatility
is calibrated on asset volatility. Conversely, they find almost no effect when consumption
volatility is calibrated on GDP volatility. Another explanation is that our model, in keeping
with the literature using recursive IAMs, assumes an optimal and immediate policy reaction
to new information regarding damages and climate. A shock on temperature is followed by a
rapid emissions reduction. Although adjustment costs limit how rapid it can be, the political
decision comes without delay. In reality, policy comes with a delay at best and the absence
of climate policy can lead to much higher risk premiums. Future research could usefully
explore models of policy reaction in between a closed-loop solution with immediate policy
adaptation and an open-loop solution that never adjusts the policy.

Stranded assets Our model finds it is optimal to reduce the dirty capital stock faster
than its natural rate of depreciation. This can be interpreted as repurposing carbon-intensive
capital for low-carbon uses. We find optimal cumulative dirty capital disinvestment of US$4.8
trillion in the cost-benefit case and US$11.4 trillion in the 1.5◦C cost-effectiveness case. These
values represent 17-41% of the total dirty capital stock in the initial period (Kd,0 = US$28
trillion), respectively. The associated cumulative monetary stranding costs are equal to
US$1.6 trillion in the cost-benefit case and US$5.8 trillion in the 1.5◦C cost-effectiveness case.
This means that 33-51% of the repurposed capital stock gets lost, respectively. As Figure
8 shows, delaying the introduction of carbon pricing would increase optimal disinvestment
(and associated costs), involving almost the entire stock of dirty capital if carbon pricing is
postponed to the 2030s and its imposition is not anticipated.

These results are broadly consistent with literature based on technology-rich energy mod-
els and asset-level data (see for instance Pfeiffer et al., 2018; Fofrich et al., 2020; Tong et al.,
2019). These studies, often focused on specific sectors (e.g., coal- and gas-fueled electric-
ity generation), consistently find that imposing a 1.5-2◦C temperature constraint makes it

34Cai and Lontzek (2019) find that increasing the RRA from 2 to 5 increases the SCC by a mere 3% (Fig.
7 therein). In Hambel et al. (2021), the effect is 3% for the Dell et al. (2012) damages calibration and η = 1
(Table 6 therein). The effect is barely visible in Crost and Traeger (2014), SM Fig 5.
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optimal to strand a proportion of existing and planned carbon-intensive physical capital.
Comparing their numerical results to ours is not trivial. Most of this applied literature pro-
vides stranding results in physical rather than monetary values (e.g., gigawatts of stranded
power capacity). In addition, their sector-specific results cannot be easily translated into
economy-wide stranding estimates (see Cahen-Fourot et al., 2021, for a discussion of strand-
ing network effects). However, our results appear to be roughly in line with the results from
Johnson et al. (2015) and on the lower end of the results from Edwards et al. (2022).35

In addition to physical capital, reserves of fossil fuels could also be left stranded in low-
carbon scenarios. Estimates of fossil fuel reserves/resources at risk of stranding vary quite
widely, from $3 trillion to more than $180 trillion (see Hansen, 2022, for a review), but
the fact of ‘unburnable carbon’, i.e., the disparity between, on the one hand, the carbon
embodied in available fossil fuels and, on the other hand, the 1.5-2◦C cumulative carbon
emissions budget, is well documented (see for instance Welsby et al., 2021). This is beyond
the scope of our model, which does not include fossil fuel reserves. Given the misalignment
between available fossil fuels and allowable cumulative emissions, the scarcity rent on fossil
fuels in our model would be zero and would not impact on the optimal transition.

7 Conclusion

In this paper, we have studied the optimal transition to a low-carbon economy, recognis-
ing that the transition is not going to be seamless and smooth. It must be prepared for
adjustment costs to the reallocation of capital from dirty to clean sectors, and shocks to
the economy and climate. It also needs to account for clean technological progress, part of
which is exogenous and incentivises waiting, but part of which is endogenous and incentivises
acting early.

We find the optimal transition is fast, requiring a high carbon price and active stranding
of dirty assets, especially if the imposition of a carbon price is delayed and unanticipated.
Adjustment costs create dirty capital inertia, which in turn creates temperature inertia.
Clean technological progress allows for lower optimal carbon prices, compared to a counter-
factual of no progress beyond today’s technology, but conversely endogenous technological
progress justifies a carbon price premium that may be rather small, especially if other policy
instruments are available. Uncertainty leads to lower optimal emissions and temperatures,
and higher optimal carbon prices and stranded assets. However, the driver of this is expected

35Johnson et al. (2015), using the MESSAGE-MACRO model, find optimal stranding of coal plants in a
2◦C scenario to be between $200 billion and $600 billion, depending on how rapidly policies are implemented.
Edwards et al. (2022), using the GCAM model, find stranded physical capital in the coal sector in the range
of $1-1.4 trillion.
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damages from temperature-related macroeconomic disasters, rather than risk per se. Putting
these effects together, we estimate a net premium of one third on the optimal carbon price
today relative to a ‘straw man’ model with perfect capital mobility, fixed abatement costs
and no uncertainty. Another reason to price carbon at a high level today is to avoid climate
damages in the near to medium term, a basic point that is ignored if the planning problem
is construed as one of meeting a temperature constraint at minimum discounted abatement
cost.
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Appendix A HJB equation, Itô’s lemma and optimal-
ity conditions

Instantaneous utility in our model is

L

(
C
L

)1−η

1− η , (32)

where L is total population, growing at constant rate gL and C is total consumption. Sub-
stituting in consumption per unit of effective labour c = C

L0e(g+gL)t , we obtain

e(gL−(η−1)g)tL0
c1−η

1− η . (33)

The exponent of the first factor is added to the discount rate. This transformation has
two advantages. First, consumption per unit of effective labour has a steady state, and
second, the transformed, larger discount rate will make the HJB equation easier to estimate.
Consumption per unit of effective labour is a function of five state variables {kd, kc, S, Ã, t}
and two decision variables {id, ic},

c
(
kd, kc, S, Ã, t, id, ic

)
= Ã (kd + kc)α e−

ϕ(t,S)
2 µ(t,kd)2− γ2 ζ

2S2 − id − ic − κ (r) , (34)

with abatement µ (t, kd) = φ0
ϕ0
−ψ0L0 (1 + τ(t)) kd. This justifies the value function of Equa-

tion (18) which depends on the five above mentioned states and the associated aggregator
function in Equation (19).

The HJB equation is

maxid,ic

{
f + 1

dt
E[dV (kd, kc, S, Ã, t)]

}
= 0.

Applying Itô’s Lemma gives
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0 = maxid,ic{f

+Vkd
(
id − χi2d − (δ + gL + g)kd

)
+Vkc

(
ic − χi2c − (δ + gL + g)kc

)
+1/2Vkdkdk

2
dσ

2
d + 1/2Vkckck

2
cσ

2
c + Vkckdkdkcρσcσd

+VSE + 1/2VSSS
2σ2

S

+VA
(
A0 − Ã

)
gA + 0.5VAAÃ2σ2

A

+λA
[
V
(
Ã−∆Ã

)
− V

(
Ã
)]

+Vt}

with ∆Ã = ξ1 (1 + ξ2ζS) Ã and V
(
Ã−∆Ã

)
shorthand notation for

V
(
kd, kc, S,

(
Ã−∆Ã

)
, t
)
. (35)

We now turn to the explicit formula for the shadow price of capital. The first order
condition for the maximum of the HJB equation with respect to dirty capital gives

fccid + Vkd (1− 2χid) = 0. (36)

The derivative of the aggregator function with respect to consumption is

fc = ρ̂c−η [(1−RRA)V ]
η−RRA
1−RRA . (37)

From Equation (34) we have
cid = −1 + θ1θ2r

θ2−1. (38)

Combining Equations (36), (37) and (38) results in Equation (24) in the main text. The
FOC for clean capital is the same, except that there will be no stranding/repurposing costs.

Next, we derive the formula for the carbon price. The shadow price of cumulative emis-
sions (expressed in utils) is VS. It is the decrease in welfare for an optimal emissions trajectory
starting with an extra unit of cumulative emissions. Similarly, the shadow price of a unit
of capital (in dollars) expressed in utils is VKc . To convert to units of effective labour, we
can write VKc = Vkc

∂kc
∂Kc

= Vkc

L0e(g+gL)t . Hence the carbon price, expressed in units of capital
(dollars) is p = −VS

Vkc
L0e

(g+gL)t . Applying the envelope theorem with respect to S to the
HJB equation results in our formula for the carbon price in Equation (27). Note that the
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derivative of the aggregator function is tedious but straightforward:

fS = ρ̂c−ηcS ((1−RRA)V )
η−RRA
1−RRA

+ρ̂VS
[
c1−η

1−η (η −RRA) ((1−RRA)V )−
1−η

1−RRA − 1−RRA
1−η

]
.

(39)
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Appendix B Parameters and initial values

Table A1: Parameters and initial values in the central scenario

Parameter Symbol Value Source

Preferences
Elasticity of marginal utility of consumption η 1.35 Drupp et al. (2018)
Relative risk aversion RRA 4 Barro (2009)
Utility discount rate ρ 0.011 Drupp et al. (2018)

Production
Initial TFP value A0 3.44 Calibration
TFP growth rate compensating disasters gA1 0.0037 Barro (2009)
Steady state stabilisation rate gA2 0.01 Calibration
Std. dev. of TFP Brownian motion σA 0.013 van den Bremer and

van der Ploeg (2021)
Initial population L0 7.794 UN (2019)
Population growth rate gL 0.0042 UN (2019)
Output elasticity of capital α 0.3 Standard
Initial dirty capital Kd,0 28 Calibration
Initial clean capital Kc,0 320 Calibration
Depreciation rate δd,δc 0.04 Calibration
Initial carbon intensity ψ0 2 Calibration
ψ decline rate gψ 0.01 Calibration
Adjustment cost parameter χd,χc 0.1 van der Ploeg and Rezai

(2020a)
Std. dev. of kd and kc Brownian motions σd,σc 0.013 van den Bremer and

van der Ploeg (2021)
Correlation between kd and kc Brownian motions ρk 0.5 By assumption
Size of macro disasters without climate ξ1 0.2 Calibration
Likelihood of a macro disaster λA 0.017 Barro (2009)

Climate and emissions
Temperature increase in 2020 T0 1.2◦C IPCC (2021)
TCRE ζ 0.0006 IPCC (2021)
Climate damage function parameter γ 0.0077 Howard and Sterner

(2017)
Std. dev. of T Brownian motion σT 0.03 IPCC (2021)
Dependence of macro disasters on T ξ2 0.07 Calibration

Abatement, disinvestment and learning
φ initial value φ0 0.00252 Calibration
φ decline rate gφ 0.69 Calibration
ϕ initial value ϕ0 0.00004 Estimation
ϕ decline rate gϕ 0.69 Estimation
Disinvestment cost function parameter θ1 705 Estimation
Disinvestment cost function exponent θ2 2.1 By assumption
Exogenous learning weight parameter ω 0.5 Calibration
Cumulative abatement at t0 M0 100 UNEP (2021)
Elasticity of MAC to cumulative abatement ε 0.1 Estimation
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Appendix C Variable transformations and equations
in the CompEcon toolbox

The value function is estimated over a five-dimensional ‘rectangular’ grid of 1600 points or
nodes. The value function is approximated by a complete Chebyshev polynomial, containing
232 basis functions.36

We use a transformation of variables to obtain a smoother function and a more stable
solution. Instead of time, we use ‘synthetic’ time τ = 1− e−gτ t, a transformed variable with
a steady state. The transformation gives more precision for the initial decades, and less for
the centuries after 2100.

The states kd and kc have two computational disadvantages. First, they interact strongly
in determining their contribution to the value function because the marginal rate of substi-
tution depends largely on the level of dirty capital. These strong interaction effects make
the functional form of the value function more complicated. Second, kd interacts strongly
with the time state due to the time-dependent emissions intensity of the economy. For ex-
ample the node on the grid corresponding to high kd far in the future will have emissions
above BAU (although E/Kd decreases over time, E/kd increases over time). This node will
have a strong curvature, while being useless to estimate an optimal path. Therefore, we use
emissions E = kdL0ψ0 (1 + τ) and total capital k = kd + kc as transformed states in a value
function Ṽ (E, k, S, Ã, τ).

Differentiating the new variables gives

dE = dkdL0ψ0 (1 + τ) + kdL0ψ0dτ, (40)

dk = dkd + dkc. (41)

To sum up, consumption per unit of effective labour is now

c
(
E, k, S, Ã, τ

)
= Ãkαe−

ϕ(τ,S)
2 (φ0/φ0−E)2− γ2 ζ

2S2 − id − ic − κ(id), (42)

with the slope of the marginal abatement curve decreasing over time as follows:

ϕ(τ, S) = ϕ0

[
ωM−ε + (1− ω) 1

1 + gϕτ

]
, (43)

36Chebyshev polynomials are linear combinations of cosinus functions with different frequencies, which can
also be written as power functions. Our Chebyshev polynomial can be thought of as a polynomial containing
232 combinations of states where the sum of all powers is maximum 5 (for example S2

1 ∗ S2
2 ∗ S3).
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and
M = M0 + φ0/φ0 (−g−1

τ ln(1− τ))− (S − S0)
M0

, (44)

subject to the following equations of motion:

dE =
[(
id −

χi2d
k

)
L0ψ0 (1 + τ)− (δ + gL + g)E

]
dt+ EσddWd + E

1 + τ
(1− τ) gτdt,

dk =
[
id + ic − χ

i2d + i2c
k
− (δ + gL + g)k

]
dt,

+ E

L0ψ0 (1 + τ)︸ ︷︷ ︸
kd

σddWd +

k − E

L0ψ0 (1 + τ)︸ ︷︷ ︸
kc

σcdWc,

dS = Edt+ SσSdWS,

dÃ =
(
gA1Ã+ gA2

(
A0 − Ã

))
dt+ σAÃdWA − ξ1 (1 + ξ2ζS) ÃdP,

dτ = (1− τ) gτdt.

To convert the derivatives for the carbon price decomposition we have

VSkd = ṼSk 1︸︷︷︸
∂k/∂kd

+ ṼSEL0ψ0 (1− τ)︸ ︷︷ ︸
∂E/∂kd

, (45)

VSkc = ṼSk, (46)

VSt =

ṼSτ + ṼSE
E

1 + τ︸ ︷︷ ︸
∂E/∂kd

 (1− τ) gSτ . (47)

The HJB equation is solved using a discrete time step of one year. The differential equations
are approximated by dX ∼= Xt −Xt−1, except for synthetic time where an exact solution is
available, τt+1 = 1−(1− τt) e−gτ , and for emissions where the relationship between emissions
and dirty capital is linear, Et+1 = kdt+1L0ψ0 (1 + τt+1).

We use the CompEcon Toolbox (Miranda and Fackler, 2002) to solve the model, and
adapt the dpsolve command to include Epstein-Zin preferences. The CompEcon Toolbox
applies a projection method where the value function is approximated by a polynomial,
collocated on Chebyshev nodes. We adapt the toolbox to introduce complete Chebychev
polynomials (Cai, 2019). Complete Chebyshev polynomials perform better than the tensor-
product Chebyshev polynomials, because higher order terms oscillate too much and lead
to non-convergence of the algorithm. The polynomial is fitted to have a minimal squared
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deviation from the estimated value function on our 1600 grid points.
In our main specification, we use a 5-dimensional grid with 5, 4, 4, 4 and 5 Chebyshev

nodes, respectively. This results in a grid with 1600 nodes. Our Chebyshev polynomial has
232 terms, which is less than the number of nodes because we leave out terms with a degree
(sum of all powers) higher than 5. Figure A1 shows very similar results for a solution with
7776 nodes compared to our baseline solution with 1600 nodes.

Figure A1: Optimal transition paths comparing our baseline solution on a grid with 1600
nodes (red) with a solution using a finer grid with 7776 nodes, i.e. 6 nodes in each dimension
(blue). The planner’s objective is to maximise welfare. The optimal path depends on the
stochastic realisations along the path. The solid lines represent the mean of 5000 Monte
Carlo runs. The shaded areas represent the 10-90% confidence interval.

(a) Emissions E (b) Temperature T

(c) Carbon price p (d) Dirty capital disinvestment R

The initial guess for the value function is based on a linear-quadratic approximation of
the problem. Next, we use value function iteration to fit the polynomial to the HJB equation.
We do this for our model versions that converge most easily (cost-benefit, expected utility,
only exogenous technical change). Finally, we start with the outcome of this model and
gradually change parameters to solve more complicated models (cost-effectiveness, Epstein-
Zin, endogenous technical change, etc.). These gradual parameter updates are possible with
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the Newton algorithm in the Toolbox, which converges substantially faster, but requires a
better initial guess.

The most difficult aspect for convergence of the algorithm is the fact that the shocks can
bring the value of the state variable in the next period outside the grid, where polynomials
give notoriously bad approximations. For example, with a 1.7% probability of a disaster in
any given year, there is a 0.03% probability that a disaster is followed by another disaster,
which brings TFP to 64% of its steady state value. We shrink the size of repeated shocks
such that TFP does not decrease below this level of 64%. Similarly, we shrink the size of
brownian motions at the highest node of emissions and cumulative emissions. These nodes
are far from the optimal path. We also introduce bounds on both decision variables in case
repeated shocks in the Monte Carlo simulation bring one of the state variables out of the
grid.37 These bounds, which are not binding within optimal regions of the grid also help for
convergence of the HJB equation.

The Compecon Toolbox discretises the multidimensional probability density function of
the Brownian Motions and jumps (our shocks on dirty and clean capital are correlated).
The right hand side of the HJB equation is therefore a sum of stochastic realisations. We
adapted the Compecon Toolbox to calculate each realisation in parallel using the multi-core
’parfor’ loop in Matlab.

37We adapted the CompEcon command dpsimul to that purpose.
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Appendix D Optimal carbon price decomposition in
different model variants

We repeated the optimal carbon price decomposition for the model versions that omit capital
inertia, clean technological progress, and uncertainty, as well as the ‘straw man’ model. Table
A2 reports differences in the share of the optimal carbon price attributable to each element,
relative to the full model. A value of -10 in the table means the share of the optimal carbon
price is 10 percentage points lower, for example. We compare the difference in shares in 2021
and 2050.

In the model version that omits adjustment costs, the temperature path is flatter, because
emissions can instantaneously jump downwards. This intuitively results in a much smaller
contribution to the optimal carbon price in 2021 from the future increase in marginal dam-
ages. Conversely, the technological change effect is much larger because the large initial
abatement leads to rapid technological change. These effects are short-lived, as the 2050
comparison shows. The optimal carbon price with MACs fixed at their 2020 level naturally
has a smaller technological change effect, but larger contributions from marginal damages,
particularly future, given the higher temperature path. The model version with no uncer-
tainty has no disaster risk premium by definition, while the straw man model shares features
of the versions omitting adjustment costs and uncertainty, namely a much smaller contribu-
tion from the future increase in marginal damage initially, and no disaster risk premium.

Table A2: Differences in the share of the optimal carbon price attributable to each element,
relative to the full model. Units are percentage points.

No capital Fixed clean No Straw
inertia tech. costs uncertainty man

2021
Current marginal damage -4.9 6.5 15.1 19.5

Future increase marginal damage -22.7 17.1 27.9 -0.3
Technological change effect 19.3 -8.5 -3.8 -10.2

Clean capital expansion effect 0.4 0.8 0.3 1.0
Dirty capital contraction effect 10.0 -22.1 -21.5 8.0

Disaster risk premium -1.8 5.8 -16.9 -16.9
2050

Current marginal damage -2.6 -5.0 3.6 5.0
Future increase marginal damage 2.7 7.4 20.4 21.8

Technological change effect -0.6 -5.9 -2.2 -5.2
Clean capital expansion effect -0.1 0.8 -0.2 -0.6
Dirty capital contraction effect -0.4 -1.1 -2.1 -1.5

Disaster risk premium 0.6 1.3 -20.1 -20.7
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Appendix E The climate beta and the effect of risk
aversion

Figure A2 plots the climate beta over this century, as estimated by our model. The climate
beta (Dietz et al., 2018) may be calculated as

βt = Cov (ln ct, lnDTt)
Var (ln ct)

,

where marginal damage in our model DTt = Ytζ
2γTt. The climate beta is close to one

throughout.

Figure A2: The climate beta

To investigate the effect of risk aversion we compare two models with relative risk aversion
(RRA) of 1.35 and 6 respectively. The low value of RRA equals the intertemporal inequality
aversion and corresponds therefore to expected utility. Increasing the risk averseness gives an
insight in the effect of mean-preserving uncertainty. In the limit case where RRA converges
to zero, uncertainty is not priced, only expected damages matter. RRA equals 4 in our main
analysis. Figure A3 shows that increasing risk aversion has only a mild effect on carbon
prices and emission trajectories.
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Figure A3: Optimal transition paths comparing a low relative risk aversion of 1.35 (red) with
a high relative risk aversion of 6 (blue). The planner’s objective is to maximise welfare. The
optimal path depends on the stochastic realisations along the path. The solid lines represent
the mean of 5000 Monte Carlo runs. The shaded areas represent the 10-90% confidence
interval.

(a) Emissions E (b) Temperature T

(c) Carbon price p (d) Dirty capital disinvestment R
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