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Abstract 
 
We propose a Generalized Poisson-Pseudo Maximum Likelihood (G-PPML) estimator that 
relaxes the PPML estimator’s assumption that the dependent variable’s conditional variance is 
proportional to its conditional mean. Instead, we employ an iterated Generalized Method of 
Moments (iGMM) to estimate the conditional variance of the dependent variable directly from 
the data, thus encompassing the standard estimators in international trade literature (i.e., PPML, 
Gamma-PML, and OLS) as special cases. With conditional variance estimates, GPPML generates 
coefficient estimates that are more efficient and robust to the underlying data generating process. 
After establishing the consistency and the asymptotic properties of the G-PPML estimator, we use 
Monte Carlo simulations to demonstrate that G-PPML shows decent finite-sample performance 
regardless of the underlying assumption about the conditional variance. Estimations of a canonical 
gravity model with trade data reinforce the properties of G-PPML and validate the practical 
importance of our methods. 
JEL-Codes: C130, C500, F100. 
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1 Introduction

Owing to the seminal work of Santos Silva and Tenreyro (2006), who demonstrate that in the pres-
ence of heteroskedasticity (which is the case, for example, with trade data) OLS is not appropriate,
the Poisson Pseudo Maximum Likelihood (PPML) estimator has firmly established itself as the
leading estimator for trade gravity regressions. In fact, Santos Silva and Tenreyro’s “The Log of

Gravity” paper is one of the most influential contributions to the empirical trade literature over the
past 15 years.1 In addition to effectively handling the issue of heteroskedasticity, the multiplica-
tive form of PPML makes this estimator appropriate for utilizing the information that is contained
in zero trade flows, which often take a significant fraction of the data (both at the aggregate and,
especially, at the sectoral level) but are dropped in OLS regressions. Santos Silva and Tenreyro
also clarify that the PPML estimator does not require the data to follow a Poisson distribution,
and that although it is a count data estimator, PPML is appropriate for regressions with continuous
data.2 Consistent with the convincing performance of the PPML estimator for trade regressions,
Wooldridge (2021) recently notes that the “[p]oisson regression can get one so far with so little

trouble” and he wonders “why so many resist [using it]”.
Since its introduction to the trade community, PPML has attracted significant attention, it has

enjoyed remarkable success, and a number of papers have added to the list of its attractive proper-
ties. For example, Fernández-Val and Weidner (2016) show that PPML estimations with two-way
fixed effects do not suffer from the incidental parameter problem (IPP), and Weidner and Zylkin
(2021) extend this analysis to show that PPML with three-way fixed effects is consistent albeit with
asymptotic bias, for which Weidner and Zylkin provide analytic correction.3 Building on Santos
Silva and Tenreyro (2011) and motivated by practical difficulties with PPML convergence, Correia
et al. (2020) introduce the ppmlhdfe STATA command, which simultaneously addresses the issues
of computational speed and convergence with non-linear PPML. Arvis and Shepherd (2013) and
Fally (2015) discover an additive property of the PPML estimator, which makes it perfectly con-
sistent with a wide class of structural gravity models.4 Capitalizing on this property, Anderson et

1In support of this claim, consider the fact that “The Log of Gravity” of Santos Silva and Tenreyro (2006) is the
fourth most-cited article at the Review of Economics and Statistics of all times and that, according to Google Scholar,
it has generated more than 7,300 citations, with more than 800 citations in 2022 alone.

2We refer the reader to Santos Silva and Tenreyro (2022) and to the dedicated PPML web site
https://personal.lse.ac.uk/tenreyro/lgw.html for many helpful tips and relevant information about PPML.

3Gravity models are almost always estimated with two-way fixed effects (one on the importer and one on the
exporter side), which are used to control for the unobservable theoretical multilateral resistance terms (Anderson and
Van Wincoop, 2003). Very often, gravity models are also estimated with pair fixed effects, which are used to mitigate
endogeneity concerns with respect to bilateral trade policies (Baier and Bergstrand, 2007) and to comprehensively
control for all time-invariant bilateral trade costs (Egger and Nigai, 2015; Agnosteva et al., 2019).

4The additive PPML property (Fally, 2015) may not apply to G-PPML. However, the estimates that are obtained
with G-PPML can still be used in a constrained PPML estimation in order to obtain general equilibrium effects directly
with PPML.
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al. (2018) demonstrate how the PPML estimator can be used to obtain not only partial equilibrium
gravity estimates but also benchmark general equilibrium effects.

Against this background, it should not be surprising that the PPML estimator has established
itself as the leading technique for gravity regressions and that it has been utilized in thousands of
academic and policy analysis of trade flows and trade policies. Yet, despite all the attractive prop-
erties of PPML and its remarkable success, some researchers remain skeptical about its validity
and its use as the “workhorse” gravity estimator. As discussed in Head and Mayer (2014), the
main argument against the use of PPML is that the relationship between the variance of bilateral
exports and its expected value may not be consistent with the assumptions of the PPML estima-
tor.5 Based on Monte Carlo simulations, Head and Mayer (2014) challenge the use of PPML, and
recommend that researchers should also estimate gravity with other estimators, including OLS and
Gamma-PML, for robustness checks.

The main contribution of our paper is to address this challenge by proposing and implementing
a Generalized PPML (G-PPML) estimator, which relies on the actual data used in the estimation to
inform and dictate the relationship between the variance of bilateral exports and its expected value,
while simultaneously delivering the gravity estimates of interest.6 We view the extension from
PPML to G-PPML as methodologically similar to that from the OLS to the FGLS estimator. While
maintaining the merits of PPML, the additional properties of our estimator include its improved
estimation efficiency (as reflected in lower standard errors) and the fact that it is immune to the
criticism that the heteroskedastic structure may have been misspecified (Head and Mayer, 2014).
As such, G-PPML generalizes the applicability of PPML to a broader context and adds to the list
of attractive properties of the PPML estimator. Our estimator reinforces the argument for using
PPML as the most appropriate “workhorse” estimator for gravity equations.

The G-PPML estimator is based on three building blocks. First, from a methodological per-
spective, we rely on and extend the ideas of Santos Silva and Tenreyro (2006, 2011) and the latest
developments in related literature, e.g., Weidner and Zylkin (2021) and Mnasri and Nechi (2021).
Second, we capitalize on the cutting-edge econometric contribution of Hansen and Lee (2021), who
verify the misspecification-robust property of the iterated General Method of Moments (iGMM)
estimator and demonstrate that the iGMM estimator provides stable estimates regardless of the
initial guess on parameters. Third, in practical terms, we extend the fast ppmlhdfe command of
Correia et al. (2020) to offer a user-friendly STATA estimation procedure that implements our

5Head and Mayer (2014) show that when the conditional variance of trade volume is expressed as a monomial of
its conditional mean, the exponent is 1.77 and 1.79, respectively, using two different trade datasets.

6We labeled our estimator G-PPML because, under the assumption of pseudo maximum likelihood, we find the
relationship between G-PPML and PPML to resemble the relationship between the Generalized Least Squares (GLS)
estimator and OLS. Alternatively, G-PPML can be viewed as a ‘weighted’ PPML estimator. We thank João Santos
Silva and Seojeong Lee for helpful discussions and suggestions on the name of the estimator.
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methods for gravity estimations. The proposed estimator is computationally attractive and shows
a better finite-sample performance than other estimators based on similar intuition (e.g., Jochmans
(2017)).

Our proposed estimation method includes three stages. The first stage is a conventional PPML
estimation to obtain the preliminary estimates of regression coefficients, which serve as an input to
the next stage. In the second stage, we implement iGMM that estimates the conditional variance of
the dependent variable in the gravity equation. The conditional variance form is general enough to
accommodate all common assumptions in the literature. In the third stage, the estimated variance
parameters provide the optimally weighted moment conditions that augment the PPML moment
conditions. The resulting G-PPML estimator inherits all the desirable properties of the conven-
tional PPML estimator and provides additional efficiency benefits. We verify the consistency and
asymptotic distribution of the estimator considering the existence of two-way fixed effects. Our
findings show that the G-PPML estimator does not suffer from the incidental parameter problem
and is free of asymptotic bias for all of data generating processes (DGP) acknowledged in the lit-
erature. In short, the G-PPML estimator estimates the gravity-type equations more efficiently by
making less assumption about the associated error term.

To compare the efficiency of our approach with the established estimators in the literature, we
perform a series of Monte Carlo experiments. First, we show that the iGMM estimator can estimate
the true conditional variance parameters consistently across a wide range of parameter spaces. In
comparison, leading existing methods are only valid for a limited range of parameters. Second,
we use the estimates of the conditional variance parameter to estimate the gravity equation with
the simulated data. The Monte Carlo results confirm that: (i) G-PPML is more efficient when the
true conditional variance parameter deviates from the presumed values of other PML estimators;
(ii) G-PPML encompasses other PML estimators as special cases when the DGP conforms to
the assumption embedded in each PML; (iii) the efficiency gain from using G-PPML is more
pronounced when the level of noise in the data is greater; (iv) the OLS estimator, which can be
unbiased in a knife-edge case, is considerably biased in a general parametric setting; and (v) G-
PPML can account for potential misspecification in the error term structure.

To demonstrate the practical importance of our methods, we estimate the gravity equation on
a standard set of covariates (e.g., distance, contiguous borders, trade agreements, etc.) using trade
data for 105 sectors. Our estimates of the conditional variance parameter reveal four salient pat-
terns: (i) they are all strictly positive; (ii) they are clustered around one – broadly consistent with
the assumption of Santos Silva and Tenreyro (2006) – suggesting that, in many cases, the PPML es-
timator should perform quite well; (iii) all estimates of the conditional variance parameter are less
than two, implying that the Gamma-PML estimator may not be appropriate for gravity estimations;
and (iv) most important for our purposes, we observe significant heterogeneity in the estimates of
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the conditional variance parameter across sectors, ranging between 0.52 and 1.67. The deviations
of the conditional variance parameter from one imply that there can be estimation efficiency gain
associated with G-PPML. As data suggests that PPML’s assumption about the conditional variance
is generally true and our approach generalizes the idea of PPML to a greater domain, we refer to
our estimator as generalized PPML.

Comparisons between the PPML and G-PPML gravity estimates lead to four conclusions. First,
consistent with our finding that most of the estimated conditional variance parameters are close to
one, we also find that many of the PPML and G-PPML gravity estimates are very similar to each
other. However, second, we also observe that a significant fraction of the G-PPML gravity esti-
mates are different from the corresponding PPML estimates. Moreover, third, and consistent with
our theory, we confirm that the further away the estimates of the conditional variance parameter
are from one, the larger is the difference between the PPML and G-PPML coefficient estimates.
Finally, comparisons of standard errors and z-statistics reveal that in general G-PPML estimation
is more efficient and enables more efficient hypothesis testing. For example, the G-PPML standard
errors are on average over 20% lower than those obtained with PPML across gravity variables and
sectors.

The rest of the paper is organized as follows. Section 2 offers a formal description of the main
challenge to the PPML estimator, introduces our G-PPML estimator, and establishes its consis-
tency and asymptotic properties. Section 3 implements Monte Carlo simulations that showcase the
main properties of our estimator. Section 4 demonstrates the validity and importance of our meth-
ods with an application to real sectoral trade data. Finally, Section 5 offers concluding remarks
and points to possible directions for further research.

2 A Generalized PPML Estimator

The objective of this section is to develop an estimator that inherits the key desired properties of
PPML while being more conservative about the conditional variance structure of the trade volume.
To this end, we synthesize the key insights of PPML and proposes an intuitive modification to
improve the efficiency of the PPML estimator. Capitalizing on a recent development in the econo-
metrics literature (Hansen and Lee, 2021), we implement an iGMM estimator that estimates the
conditional variance of the dependent variable in the gravity equation. The next stage of estimation
solves for the coefficients with the weighted moment conditions, which are informed by the condi-
tional variance estimates, to achieve estimation efficiency improvement. Given the prominence of
PPML for estimating trade gravity equations, we specify the following econometric model as our
departing point:

yijt = exp
(
x′ijtβ + γit + ηjt

)
+ ϵijt, (1)
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where xijt ∈ Rk is a vector of regressors that capture trade costs, and γit and ηjt are exporter and
importer-level fixed effects. The two-way fixed effects may vary across different periods indexed
by t. We conventionally assume that the conditional mean of yijt follows E [yijt|xijt, γit, ηjt] =
µijt ≡ exp

(
x′ijtβ + γit + ηjt

)
. The measurement error ϵijt satisfies E [ϵijt|xijt, γit, ηjt] = 0.7 The

model is consistent with the broad class of models considered in Head and Mayer (2014) since
the error term ϵijt is potentially heteroskedastic. The PPML method particularly assumes that the
conditional variance of yijt is proportional to the conditional mean of yijt. Specifically, given a
general form of the conditional variance of yijt,

Var (yijt|xijt, γit, ηjt) = Var (ϵijt|xijt, γit, ηjt) = h · µλ
ijt, (2)

PPML assumes λ = 1 and h > 0. The specification also includes all the well-known PML
estimators (i.e., Gamma-PML (λ = 2), Negative Binomial PML (λ = 1)8, and Gaussian PML
(λ = 0)) as special cases. From equation (2), it is evident that the PPML assumption is equivalent
to assuming a constant variance-to-mean ratio. As will become clear in Section 3, the special
case where λ = 2 is also consistent with the underlying assumption of OLS when the error term
appears multiplicatively in equation (1). As such, our generic representation of the conditional
variance form in equation (2) encompasses almost all of the conditional variance forms adopted
in the relevant literature.9 Notably, since we do not impose any assumption on the value of λ, our
approach is immune to the criticism raised by Head and Mayer (2014).

To demonstrate how the information about λ can be crucial for G-PPML, it is informative to
spell out the first order conditions (FOCs) with respect to the parameters to be estimated. Suppose
that a researcher observes a random sample {yijt, xijt}, i, j = 1, . . . , N and t = 1, . . . , T to

7Santos Silva and Tenreyro (2006) and other gravity model papers specify the model by yijt =
exp

(
x′
ijtβ + γit + ηjt

)
εijt. The model assumes a multiplicative error εijt to prevent a negative value of yijt. Since

our estimation strategy relies on the conditional moment E [yijt − µijt|xijt, γit, ηjt] = 0, the gravity model specifica-
tion with an additive error ϵijt is theoretically equivalent to the conventional model.

8Although the parametric assumption of Negative Binomial PML is less demanding than that of PPML, it is gen-
erally not recommended for empirical application since the estimation results are unit-sensitive. See Head and Mayer
(2014) for detailed discussions.

9To our knowledge, the only two exceptions to this statement is Santos Silva and Tenreyro (2011) and Weidner
and Zylkin (2021). Santos Silva and Tenreyro (2011) obtains PPML coefficients under potential misspecification and
Weidner and Zylkin (2021) obtain robust standard errors even when the conditional variance does not follow equation
(2). Nevertheless, we posit that it is mild to assume the conditional variance form in equation (2), as it generalizes the
assumptions widely used in the literature to date.
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estimate the gravity equation (1). The FOCs considering heteroskedasticity in equation (2) are

β̃ :
N∑
i=1

N∑
j=1

T∑
t=1

xijt (yijt − µ̃ijt) µ̃
1−λ
ijt = 0,

γ̃it :
N∑
j=1

(yijt − µ̃ijt) µ̃
1−λ
ijt = 0,

η̃jt :
N∑
i=1

(yijt − µ̃ijt) µ̃
1−λ
ijt = 0,

where µ̃ijt = exp
(
x′ijtβ̃ + γ̃it + η̃jt

)
, i, j = 1, . . . , N , and t = 1, . . . , T . Appendix A.5 of

Weidner and Zylkin (2021) shows that estimation efficiency can be improved with the knowledge
of true λ. However, this is not immediately feasible since the researcher is agnostic about the true
value of λ. Therefore, our first and primary goal is to propose a valid estimator for the exponent
λ. The estimated λ naturally leads to a plug-in estimator of β by replacing λ in FOCs with its
estimate λ̂. This provides a feasible routine to estimate gravity equations efficiently with two-way
fixed effects.

2.1 Estimation of the Conditional Variance

The existing literature (e.g., Santos Silva and Tenreyro (2006) and Head and Mayer (2014)) sug-
gests two methods to estimate the parameter θ = (h, λ) ∈ Θ in equation (2), where Θ is the
parameter space of θ. Santos Silva and Tenreyro (2006)’s approach linearly approximates the non-
linear conditional variance at λ = 1, while Head and Mayer (2014) follow Manning and Mullahy
(2001) to log-linearize the conditional variance expression. Our proposed iGMM estimator of λ
preserves the nonlinearity of the conditional variance function, and it out-performs the nonlinear
least-squares (NLLS) estimator. To this end, we assume the following regularity conditions to
estimate the conditional variance.

Assumption 2.1. (Regularity Conditions)

1. The dependent variable yij = (yij1, . . . , yijT )
′ is i.i.d. across i and j conditional on x =

(xijt), γ = (γit), and η = (ηjt) for i, j = 1, . . . , N and t = 1, . . . , T .

2. The support of (xijt, γit, ηjt) is compact, and E
[
y8+ν
ijt |xijt, γit, ηjt

]
is uniformly bounded over

i, j, t for some ν > 0.

3. The parameter space Θ is compact, and E
[
xijtx

′
ijt

(
ϵ2ijt − h · µλ

ijt

)2] is positive definite uni-

formly over Θ.
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Since Var (ϵijt|xijt, γit, ηjt) = E
[
ϵ2ijt|xijt, γit, ηjt

]
= h · µλ

ijt, equation (2) generates a condi-
tional moment

E
[
ϵ2ijt − h · µλ

ijt

∣∣∣∣xijt, γit, ηjt] = 0, (3)

and the NLLS estimator is theoretically valid if there are preliminary estimates for ϵ2ijt and µijt.

For example, let µ̂PPML
ijt = exp

(
x′ijtβ̂

PPML + γ̂PPML
it + η̂PPML

jt

)
denote the fitted value of yijt

using the PPML estimator
(
β̂PPML, γ̂PPML

it , η̂PPML
jt

)
. Proposition 2 of Weidner and Zylkin (2021)

shows that the PPML estimator is consistent even with three-way fixed effects. Then the NLLS
estimator takes a regression of

(
yijt − µ̂PPML

ijt

)2 with respect to the nonlinear conditional mean
function h · µ̂λ

ijt. Unfortunately, our simulation exercise finds that the NLLS method does not
perform well in practice even without fixed effects.

Instead, we propose an iGMM estimator to obtain the conditional variance parameters (h, λ).
The conditional moment of equation (3) implies k-dimensional unconditional moments,

E
[
xijt

(
ϵ2ijt − h · µλ

ijt

)]
= 0, (4)

and the model is identified if k ≥ 2. Since the covariates xijt generally exceed two dimensions, we
focus on the over-identified case of k > 2. As demonstrated by Hansen and Lee (2021), the iGMM
method is robust to the possible moment misspecification and the estimates do not fluctuate much
depending on different initial guesses of parameters.

Define the sample moment and the efficient weight matrix for θ̄ =
(
h̄, λ̄
)
∈ Θ:

m̄N

(
θ̄
)
=

1

N2

N∑
i=1

N∑
j=1

T∑
t=1

xijt

(
ϵ̂2ijt − h̄ · µ̂λ̄

ijt

)
W̄N

(
θ̄
)
=

1

N2

N∑
i=1

N∑
j=1

T∑
t=1

xijtx
′
ijt

(
ϵ̂2ijt − h̄ · µ̂λ̄

ijt

)2
,

where ϵ̂ijt = yijt − µ̂PPML
ijt and µ̂ijt = µ̂PPML

ijt are PPML estimates. The GMM criterion function
is

J̄N
(
θ̄, ϕ
)
= m̄N

(
θ̄
)′
W̄−1

N (ϕ) m̄N

(
θ̄
)
,

where ϕ = (hϕ, λϕ) is the initial guess on the parameter value. For a given (hϕ, λϕ), the next step
estimator is to minimize the GMM sample criterion function. Let ḡN (ϕ) denote the minimizer of
the sample criterion function:

ḡN (ϕ) = argmin
θ̄∈Θ

J̄N
(
θ̄, ϕ
)
,
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where Θ is a closed and bounded subspace of R+×R. Starting from the initial value θ̂0 =
(
ĥ0, λ̂0

)
,

we define the one-step GMM estimator by θ̂1 = ḡN

(
θ̂0

)
. Similarly, the s-step GMM estimator is

θ̂s = ḡN

(
θ̂s−1

)
. The iGMM estimator for θ is

θ̂ = lim
s→∞

θ̂s.

The convergence leads to the true parameter θ, or the values that provide the best fit to the con-
ditional variance under misspecification. We show the existence of θ̂ and the consistency of the
estimator by verifying Theorem 3 of Hansen and Lee (2021).

Proposition 2.1. Under Assumption 2.1, θ̂
p−→ θ as N → ∞.

The proposition implies that the practitioners can recover the conditional variance of yijt as far
as the conditional variance form follows equation (2). Even if the conditional variance deviates
from the form in equation (2), θ̂ still converges to the pseudo-true parameter θ minimizing the
population GMM criterion function. Next, we establish the asymptotic normality of θ̂ that can be
helpful for testing whether the PPML’s assumption on the variance-to-mean ratio is valid.

Define three matrices

W = E
[
xijtx

′
ijt

(
ϵ2ijt − h · µλ

ijt

)2]
Q = −E

[
µλ
ijtx

′
ijt

h · µλ
ijt log (µijt)x

′
ijt

]′
V = E

[
xijtv

′ (xijt, β)
′ VPPMLv

′ (xijt, β)x
′
ijt

]
,

where v (xijt, β) = ϵ2ijt − h · µλ
ijt and VPPML is the asymptotic variance of the PPML estimator

β̂PPML. If the conditional variance of the model is correctly specified (i.e., it satisfies any of the
class of PML estimators widely used to date), the asymptotic variance of N

(
θ̂ − θ

)
is

(
Q′W−1Q

)−1
Q′W−1 (W + V )W−1Q

(
Q′W−1Q

)−1
,

where V is generated from the approximation error of ϵ̂ijt and µ̂ijt. We provide the derivation of
V in Appendix. The asymptotic variance of λ̂ is the second diagonal element of the asymptotic
variance matrix.

Proposition 2.2. Under Assumption 2.1,

N
(
θ̂ − θ

)
d−→ N

(
0,
(
Q′W−1Q

)−1
Q′W−1 (W + V )W−1Q

(
Q′W−1Q

)−1
)
.
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The asymptotic normality informs the construction of the confidence interval for the exponent
component λ. The Monte Carlo simulations in Section 3 confirm that the suggested method is
valid to test the true λ value fitting the conditional variance of the gravity model.

The result of Proposition 2.2 follows the classical efficient GMM estimator’s asymptotic dis-
tribution except that V presents the approximation error from the first-stage estimator ˆβPPML.
Without V , the asymptotic variance is equivalent to (Q′W−1Q)

−1. The result is a special case of
Theorem 4 in Hansen and Lee (2021) under the correctly specified conditional variance. If the
conditional variance structure in equation (2) does not hold, i.e., E

[
xijt

(
ϵ2ijt − h · µλ

ijt

)]
̸= 0, the

asymptotic variance formula changes considering the misspecified moment condition. We provide
the limiting distribution encompassing the mildly-misspecified cases in Appendix. The practi-
tioners can still estimate λ to test the variance-to-mean ratio best describing the data generating
process.

The iGMM estimator θ̂ has a zero asymptotic bias since the initial PPML estimator does not
suffer from the asymptotic bias. Although other initial estimators, including Gaussian PML and
Gamma PML, may replace the PPML and provide the consistency of θ̂, they may cause a problem
in the inference on θ.

2.2 G-PPML

The consistent estimator of λ enables us to develop a more efficient estimator than the PPML
while preserving all the desirable properties of the PPML. Hence, we propose the generalized

PPML estimator replacing the conditional variance parameter λ with its feasible analog λ̂ from the
previous subsection. The FOCs with respect to the regression coefficients can be expressed as

β̂ :
N∑
i=1

N∑
j=1

T∑
t=1

xijt (yijt − µ̂ijt) µ̂
1−λ̂
ijt = 0,

γ̂it :
N∑
j=1

(yijt − µ̂ijt) µ̂
1−λ̂
ijt = 0,

η̂jt :
N∑
i=1

(yijt − µ̂ijt) µ̂
1−λ̂
ijt = 0,
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where µ̂ijt = exp
(
x′ijtβ̂ + γ̂it + η̂jt

)
, i, j = 1, . . . , N , and t = 1, . . . , T . The fixed effect terms

that solve FOCs satisfy

exp (γ̂it) =

(
N∑
j=1

exp
((

2− λ̂
)(

x′ijtβ̂ + η̂jt

)))−1 N∑
j=1

exp
((

1− λ̂
)(

x′ijtβ̂ + η̂jt

))
yijt

exp (η̂jt) =

(
N∑
i=1

exp
((

2− λ̂
)(

x′ijtβ̂ + γ̂it

)))−1 N∑
i=1

exp
((

1− λ̂
)(

x′ijtβ̂ + γ̂it

))
yijt,

and we plug in the fixed effect estimates to the FOC for β to present the FOC as a function of β.
The estimator β̂ solves the system of k equations (FOCs) regarding the k-dimensional parameter
β̂. Under the same regularity assumptions as Proposition 2.1, we derive the consistency of the
proposed estimator.

Proposition 2.3. Under Assumption 2.1, β̂ is a consistent estimator of β as N → ∞.

The consistency of the estimator θ̂ derived in Proposition 2.1 is the basis for the consistency of
β̂. The consistency of the G-PPML estimator is not surprising in the two-way fixed effects model
as PML estimators are generally consistent under the current specification (Fernández-Val and
Weidner, 2016). According to Proposition 2 of Weidner and Zylkin (2021), G-PPML estimator
is consistent even with three-way fixed effects as long as the conditional variance is correctly
specified as equation (2).

2.3 Asymptotic Distribution

The proposed generalized PPML estimator is consistent for β, but the estimator may not be im-
mune to the asymptotic bias due to two-way fixed effects. The sample size is N2T and the number
of fixed effect terms is 2NT . Thus, the finite sample bias of the estimator disappears with 1/N

rate, which generally causes the asymptotic bias for the limiting distribution of N
(
β̂ − β

)
. The

closed form expression for the asymptotic bias follows the formula derived by Fernández-Val and
Weidner (2016) and Weidner and Zylkin (2021).

Given the general conditional variance form of yijt, the previous literature confirms that the
PPML estimator is a unique estimator that is immune to the IPP among the class of PML estima-
tors. In this section, we verify that the G-PPML estimator is also immune to the IPP and has no
asymptotic bias if the conditional variance of yijt conforms to the form h · µλ

ijt for any h > 0 and
λ ∈ R. A notable distinction between the two, however, is that G-PPML does not suffer from the
IPP without having to impose a particular variance-to-mean ratio of the dependent variable.
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Define the following elements

Sij,t = (yijt − µijt)µ
1−λ
ijt

Hij,ts =

µ1−λ
ijt (1− λ)

(
yijt − 2−λ

1−λ
µijt

)
if t = s

0 otherwise

Gij,tsr =

µ
1−λ
ijt (1− λ)2

(
yijt −

(
2−λ
1−λ

)2
µijt

)
if t = s = r

0 otherwise.

The defined elements are components of the score vector Sij = (Sij,1, . . . , Sij,T )
′ ∈ RT , the

T × T Hessian matrix Hij , and the T × T × T cubic tensor Gij . We denote H̄ij = E [Hij|xij]
and Ḡij = E [Gij|xij]. Next, let xij = (xij,1, . . . , xij,k) and define the normalized T × k matrix
x̃ij = xij − γxi − ηxj , where γxi and ηxj are standardized T × k matrices and minimize

N∑
i=1

N∑
j=1

Tr
[(
xij − γxi − ηxj

)′
H̄ij

(
xij − γxi − ηxj

)]
.

Following Fernández-Val and Weidner (2016), our result is based on weak serial dependence
across time. The following proposition establishes the asymptotic normality of our estimator.
The extension to accommodate a cluster-robust asymptotic variance is straightforward following
Weidner and Zylkin (2021) and we will discuss the issue in Appendix A.4.

Proposition 2.4. (Asymptotic Distribution) Suppose the model satisfies equation (3). Under As-

sumption 2.1,

N
(
β̂ − β

)
d−→ N

(
0,Ω−1

N

)
,

where ΩN is a k × k matrix

ΩN =
1

N2

N∑
i=1

N∑
j=1

x̃′ijH̄ijx̃ij.

The derived asymptotic distribution is simple and has zero asymptotic bias under the two-way fixed
effects setup.10 The asymptotic bias following Fernández-Val and Weidner (2016) in general case
is Ω−1

N (BN+DN )

N
, where N

(
β̂ − β − Ω−1

N (BN+DN )

N

)
d−→ N

(
0,Ω−1

N

)
. BN and DN are k-dimensional

10Under the three-way fixed effects, however, the asymptotic bias does not disappear for the G-PPML. As Weidner
and Zylkin (2021) demonstrated, PPML has a non-zero asymptotic bias under the three-way fixed effects. As θ̂ uses
the PPML as an initial estimator, θ̂ causes a non-zero asymptotic bias of β̂.
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vectors with their mth elements defined by

Bm
N =− 1

N

N∑
i=1

Tr

( N∑
j=1

H̄ij

)−1 N∑
j=1

E
[
Hijx̃ij,mS

′
ij|xij,m

]
+

1

2N

N∑
i=1

Tr

( N∑
j=1

H̄ij

)−1( N∑
j=1

Ḡijx̃ij,m

) ,
Dm

N =− 1

N

N∑
j=1

Tr

( N∑
i=1

H̄ij

)−1 N∑
i=1

E
[
Hijx̃ij,mS

′
ij|xij,m

]
+

1

2N

N∑
j=1

Tr

( N∑
i=1

H̄ij

)−1( N∑
i=1

Ḡijx̃ij,m

) ,
and BN = DN = 0 if we use the G-PPML estimator under equation (3). The asymptotic bias
components Bm

N and Dm
N are both zero regardless of the conditional variance of yijt if β̂ is the

PPML estimator (λ = 1). The second terms ofBm
N andDm

N are zeros since the G-PPML estimator’s
H̄ij component µ2−λ

ijt is proportional to the Ḡij component (3− 2λ)µ2−λ
ijt for all λ values. The first

terms ofBm
N andDm

N are generally non-zeros unless λ = 1, but become zeros when the conditional
variance of yijt is correctly specified.

We estimate the asymptotic variance of β̂ by Ω̂N = 1
N2

∑N
i=1

∑N
j=1 x̃

′
ij
ˆ̄Hijx̃ij , where

[
ˆ̄Hij

]
ts
=

µ̂2−λ̂
ijt 1 {t = s}. Since λ̂ is a consistent estimator of λ, the plug-in estimator Ω̂−1

N consistently ap-
proximates Ω−1

N . The asymptotic variance estimator Ω̂−1
N does not require an additional estimator

for Var (Sij|xij). The property brings a notable computational benefit since the hessian matrix
of the G-PPML estimator approximates the variance of the score function without relying on the
presumption about the conditional variance of yijt. The simplified asymptotic variance also im-
plies that the G-PPML estimator does not suffer from the downward bias in robust standard errors
pointed out by Weidner and Zylkin (2021).11

3 Monte Carlo Simulation Analysis

This section provides simulation-based evidence on the consistency and the estimation efficiency of
G-PPML. After describing the data generating process, we compare the performance of our method
with established estimators in terms of estimating conditional variance and regression coefficients.
We also demonstrate the robustness of iGMM and G-PPML under misspecification.

11The downward bias returns when the conditional variance does not follow the equation (2).
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3.1 Data Generating Process

We start by generating the vector of independent variables, x = {1, x1,ijt, x2,ijt, . . . x6,ijt, ιit, ιjt},
where x1,ijt is drawn from a normal distribution N (0, 0.1), x2,ijt is a dummy variable from a
Bernoulli distribution with p = 0.5, and the rest of the covariates, x3,ijt . . . , x6,ijt, are indepen-
dently and identically drawn from the same distribution as x1,ijt. ιit and ιjt are exporter-time and
importer-time indicators, respectively. Without loss of generality, we set the constant term and the
coefficients of x1,ijt, . . . , x6,ijt as β = {0.5,−0.5, 0.5,−0.5, 0.5,−0.5, 0.5}′. Consistent with the
structure of a standard bilateral trade dataset, we consider N countries that import from and export
to all other countries (including themselves) over a period of T years. We construct and experi-
ment with two datasets, depending on the number of countries and years: one with 50 countries
and 10 years (i.e., 25,000 observations) and another with 100 countries and 5 years (i.e., 50,000
observations).12 The coefficients of the exporter-year (γit) and importer-year (ηjt) fixed-effects
vary between −0.5 and 0.5. We denote the parameter vector as θ = (β′, γit, ηjt)

′. All Monte Carlo
results are based on 500 independent simulations.

To construct the multiplicative error term εijt, or simply ε, we introduce four parameters
{h1, h2, λ1, λ2}, where the hs are assumed to be non-negative and the λs to be real numbers, and we
assume that ε follows a log-normal distribution, whose mean and variance are given, respectively,
by:13

E (ε|x) = 1 and

Var(ε|x) = [h1 exp (λ1x
′θ) + h2 exp (λ2x

′θ)] / exp (2x′θ) .
(5)

This implies the following first and second moments of the dependent variable y = exp(x′θ) · ε,
where y refers to yijt:

E (y|x) = exp(x′θ) and

Var(y|x) = h1E (y|x)λ1 + h2E (y|x)λ2 .
(6)

The first line in equation (6) is a common assumption and the second line is a very flexible represen-
tation of the conditional variance form that encapsulates all commonly-held conditional variance
forms in the gravity literature (cf. Head and Mayer (2014)). To see this, focus on the first term of
Var(y|x) by assuming h1 > 0 and h2 = 0. If λ1 = 1, the conditional variance of y is proportional
to its conditional mean – the exact working assumption of the PPML estimator (Santos Silva and
Tenreyro, 2006). If λ1 = 2, the conditional variance is a quadratic function of its conditional
mean, and this is consistent with the assumption of the Gamma-PML estimator (Head and Mayer,

12The idea is to simulate two commonly used data structures: one with a smaller set of countries over a longer time
span, and one with a larger set of countries over a shorter period.

13Mechanically, to generate the random variable ε from the lognormal distribution specified in (5),
we first generate a random variable ξ from a standard normal distribution, and then we define ε ≡
exp

(
− log(Var(ε|x) + 1)/2 +

√
log(Var(ε|x) + 1)ξ

)
, which satisfies the first and second moments in (5).
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2014). Under the same condition λ1 = 2, Var(ε|x) reduces to h1 according to (5); that is, the
error term ε becomes homoskedastic. In this case, it is innocuous to take the natural logarithm of
y = exp(x′θ) · ε on both sides and estimate the resulting equation with OLS. In sum, simply by
changing the values of our parameters, our DGP accommodates the assumptions of all common
PML estimators and the OLS.14

As we will demonstrate shortly, the key advantage of the G-PPML estimator is that it relieves
researchers’ “burden of proof” for the value of λ associated with a particular estimator.15 Intu-
itively, our iGMM approach will automatically find the value of λ that provides the best fit of the
error term structure, and then the subsequent G-PPML estimator would capitalize on this value
of λ to construct moment conditions that are better tuned than other PML estimators, which may
assume incorrect λ values. In the kinfe-edge case where iGMM suggests λ̂ = 1, G-PPML becomes
identical to PPML.

Note that beyond determining the conditional variance, (h1, λ1) also dictates the degree of data
noise. The second line in equation (5) shows that when λ2 = 0, h1 dictates the extent of data noise
that is orthogonal to the conditional mean, whereas λ1 dictates the extent of data noise so much
as it correlates with the conditional mean. h2 and λ2 admit similar interpretations. Thus, different
combinations of parameters allow us to compare G-PPML with other estimators under different
levels of data noise.

We also test the performance of G-PPML under misspecification. Specifically, when we as-
sume that both h1 and h2 in equation (6) are positive, the conditional variance becomes a poly-
nomial of the conditional mean and none of the mainstream assumptions for ε are consistent. An
important result from Hansen and Lee (2021) is that the iGMM is robust to potential misspeci-
fication. Applied to our setting, this property of the iGMM further relieves researchers’ “burden
of proof” regarding the functional-form assumptions. Thus, even when the conditional variance
deviates from the specific form given by equation (2), the iGMM estimator would mitigate the
misspecification problem by estimating h and λ that provide the best fit to the estimates of the
conditional variance.

3.2 Estimates of the Conditional Variance

This section compares the performance of our iGMM method for estimating λ with two alternative
leading approaches. Following the existing literature (e.g., Head and Mayer (2014)), we assume

14Under an alternative DGP where the dependent variable is y = exp (x′θ)+ε, the working assumptions of Gamma-
PML and OLS do not coincide. A practical issue with this alternative DGP for our purpose is that y can take negative
values and the resulting simulated dataset would not be well suited for PML or log-linearized OLS estimations.

15Our framework can even account for cases where λ < 0, i.e., the conditional variance of the dependent variable
decreases with its conditional mean.
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that h2 = 0 and use h and λ to refer to h1 and λ1, respectively.16 The first alternative approach
that we implement is the “MaMu” method named after Manning and Mullahy (2001). For a given
set of estimated θ̂ via PPML, we can define the residual term ϵ̂ ≡ y − exp(x′θ̂). Then, to infer the
conditional variance, we estimate the following equation with OLS:

ln
(
ϵ̂2
)
= constant + λx′θ̂, (7)

which is the natural logarithm of the equation Var(y|x) = h exp(λx′θ).
The second alternative approach that we implement to recover λ follows Santos Silva and Ten-

reyro (2006).17 Let ŷ denote ŷ ≡ exp(x′θ̂). Santos Silva and Tenreyro approximate the expression

(y − ŷ)2 = hŷλ (8)

to the first order around λ = 1. After dividing the both sides by
√
ŷ, we obtain:

(y − ŷ)2/
√
ŷ = h

√
ŷ + h(λ− 1) ln(ŷ)

√
ŷ. (9)

Equation (9) can be estimated with OLS and using
√
ŷ and ln(ŷ)

√
ŷ as the first and second regres-

sors, respectively. Then, we recover λ̂ by dividing the second term’s coefficient estimate ĥ(λ̂− 1)

by the the estimate of the first coefficient ĥ and adding one.18 We refer to this method as “SST”.19

Figure 1 reports the estimates of λ that are obtained with each of the three methods (iGMM,
MaMu, and SST). To provide a more comprehensive analysis, we compare the performance of the
three approaches for different values of h (varying between 0.5, 1, and 4 in panels (a), (b) and (c),
respectively) and for a wide range of λs (the [0, 2.2] interval on the horizontal axis in each panel).
Intuitively, the alternative values of h correspond to different levels of noise in the data, while
the alternative values of λ cover a reasonable range from the existing literature.20 Finally, in each
panel, we plot a 45-degree reference line, which indicates that the point estimate and the assumed
parameter value for λ are identical.

We draw three main conclusions based on the results in Figure 1. First, and most important, our

16Results under potential misspecification (h2 > 0) are provided in subsection 3.4.
17The key purpose of the method developed by Santos Silva and Tenreyro (2006) is to test whether λ is statistically

distinguishable from 1 rather than obtaining an efficient point estimate. Thus, we focus on comparing our confidence
intervals with those of Santos Silva and Tenreyro (2006).

18Equation (9) can be estimated both with and without adding a constant term as the third regressor. In general, we
find that estimating equation (9) without the constant term provides estimates of λ closer to the true value. Thus, we
only present the results without the additional constant term.

19We remind readers that although the SST approach to estimate λ was proposed in the same paper that also widely
popularized the PPML for gravity models, the performance of the SST estimator is not associated with the performance
of PPML in gravity estimation. See Santos Silva and Tenreyro (2006) for details.

20For example, our own sectoral estimates of λ in Section 4 lie in the interval (0.5, 1.7).
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Figure 1: Comparing Different Methods to Estimate λ

(a) h = 0.5
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(b) h = 1
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Notes: These figures display the point estimates and the 95% confidence intervals of different estimators under various parametric assumptions

about the data generating process. “iGMM” indicates the iterated GMM estimator proposed as the preceding step to our G-PPML estimator, “SST”

is an estimator of λ proposed by Santos Silva and Tenreyro (2006), and “MaMu” is proposed by Manning and Mullahy (2001). For exposition,

estimation results are omitted when the standard deviation is greater than 1 or the point estimate is negative. Full estimation results are available by

request.
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iGMM estimates (blue dots) exhibit consistent efficiency for different values of h and λ. Regardless
of the level of data noise h, the λs obtained with iGMM are always close to the 45-degree line and
the associated 95 percent confidence intervals always include the true value of λ.21 Second, the
SST estimates (green squares) are very close to the 45-degree line when the true λ is close to 1,
but they deviate from the 45-degree line when λ deviates from 1 and/or if there is substantial data
noise. This result is expected since SST’s estimating equation is obtained after applying a first-
order Taylor approximation around λ = 1. Finally, the MaMu estimates (red crosses) exhibit a
consistent bias toward 2. Specifically, when the true λ is less (greater) than 2, the MaMu estimates
consistently overestimate (underestimate) the true λ.22 Interestingly, the MaMu estimator delivers
the narrowest confidence intervals; yet this becomes a key drawback as the confidence intervals
fail to contain the true values except when λ = 2.

In sum, the Monte Carlo analysis demonstrates that the proposed iGMM method delivers re-
liable estimates of λ across a wide range of λ values and under different levels of noise in the
data. Capitalizing on the strong performance of iGMM and the corresponding λ estimates, in the
next subsection we demonstrate that our G-PPML estimator can deliver more efficient coefficient
estimates than other leading estimators across a wide range of parameter spaces.

3.3 Coefficient Estimates

Table 1 compares the performance of G-PPML with other leading estimators. We compare both
the mean of absolute bias (column Bias) and the mean of standard errors (column S.E.) of various
estimators under various parameter values. We also report the mean of the iGMM λs that are used
in the G-PPML estimation (column λ̂). We consider 6 cases. In cases 1 though 3, we hold constant
the level of h and experiment with different values of λ, taking values of 0, 1 and 2, respectively.
In cases 4 through 6, we experiment with a higher value of h. We focus on two, representative
coefficient estimates. β1 (β2) is the coefficient of a continuous (dummy) variable x1,ijt (x2,ijt). To
ease the interpretation of the results, we remind readers that PPML implicitly assumes λ = 1, and
Gamma-PML assumes λ = 2. Moreover, when λ = 2, the error term becomes homoskedastic and
the OLS becomes unbiased.

First, we note in column λ̂ that across different cases presented in Table 1, the average λ
estimates that we obtain from 500 Monte Carlo simulations are quite close to the assumed value of
λ. As expected, the estimation is more accurate when there are more observations and the level of

21We do note, however, that the confidence intervals become wider when the noise in data becomes more severe
(towards higher values of λ in each figure and especially in panel (c)), reflecting the enhanced difficulty in estimating
the underlying parameters.

22Santos Silva and Tenreyro (2006) note that due to Jensen’s inequality, taking the natural logarithm on both sides of
an estimating equation leads to biased coefficient estimates if the multiplicative error term features heteroskedasiticity.
The same argument, applied to equation (7), can explain why the MaMu estimator leads to biased estimates of λ.
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Table 1: Main Mote Carlo Results

J = 50, T = 10, Obser. = 25 000 J = 100, T = 5, Obser. = 50 000

λ̂ β1 β2 λ̂ β1 β2

Estimator Bias S.E. Bias S.E. Bias S.E. Bias S.E.

Case 1: Var(yi|xi) = 1 · [E(yi|xi)]
0

G-PPML 0.0469 0.0203 0.0240 0.0043 0.0054 0.0298 0.0133 0.0169 0.0030 0.0038
PPML 0.0221 0.0274 0.0047 0.0059 0.0147 0.0191 0.0033 0.0042
Gamma-PML 0.0315 0.0343 0.0119 0.0069 0.0211 0.0251 0.0066 0.0050
OLS 0.1111 0.0340 0.1077 0.0069 0.1108 0.0238 0.1078 0.0048

Case 2: Var(yi|xi) = 1 · [E(yi|xi)]

G-PPML 0.9641 0.0335 0.0410 0.0068 0.0084 0.9811 0.0241 0.0290 0.0049 0.0060
PPML 0.0334 0.0419 0.0068 0.0086 0.0240 0.0293 0.0049 0.0060
Gamma-PML 0.0370 0.0425 0.0109 0.0085 0.0268 0.0311 0.0065 0.0062
OLS 0.0824 0.0415 0.0823 0.0083 0.0823 0.0291 0.0818 0.0058

Case 3: Var(yi|xi) = 1 · [E(yi|xi)]
2

G-PPML 1.8370 0.0506 0.0595 0.0104 0.0119 1.9066 0.0357 0.0431 0.0074 0.0086
PPML 0.0580 0.0716 0.0111 0.0140 0.0402 0.0503 0.0080 0.0098
Gamma-PML 0.0505 0.0562 0.0098 0.0112 0.0357 0.0416 0.0071 0.0083
OLS 0.0437 0.0537 0.0085 0.0107 0.0305 0.0376 0.0061 0.0075

Case 4: Var(yi|xi) = 4 · [E(yi|xi)]
0

G-PPML 0.1575 0.0461 0.0526 0.0101 0.0120 0.1153 0.0287 0.0350 0.0063 0.0079
PPML 0.0436 0.0547 0.0094 0.0118 0.0299 0.0380 0.0066 0.0083
Gamma-PML 0.0621 0.0577 0.0351 0.0116 0.0414 0.0439 0.0198 0.0088
OLS 0.2405 0.0561 0.2381 0.0113 0.2379 0.0392 0.2378 0.0079

Case 5: Var(yi|xi) = 4 · [E(yi|xi)]

G-PPML 1.0098 0.0669 0.0813 0.0140 0.0168 1.0174 0.0476 0.0577 0.0099 0.0119
PPML 0.0667 0.0834 0.0140 0.0172 0.0475 0.0585 0.0099 0.0120
Gamma-PML 0.0695 0.0712 0.0273 0.0143 0.0502 0.0543 0.0168 0.0109
OLS 0.1629 0.0673 0.1617 0.0135 0.1630 0.0471 0.1619 0.0094

Case 6: Var(yi|xi) = 4 · [E(yi|xi)]
2

G-PPML 1.7689 0.0875 0.1016 0.0210 0.0204 1.8401 0.0629 0.0767 0.0149 0.0153
PPML 0.1118 0.1380 0.0225 0.0274 0.0782 0.0995 0.0158 0.0195
Gamma-PML 0.0856 0.0880 0.0172 0.0176 0.0622 0.0685 0.0130 0.0137
OLS 0.0654 0.0819 0.0127 0.0164 0.0456 0.0573 0.0093 0.0115

Notes: This table shows the Monte Carlo results that compare different estimators with various sample sizes and under different assumptions about

the structure of the error term. We report the average λ estimates, mean absolute bias and the standard error of the coefficient estimates. G-PPML

indicates the generalized PPML estimator proposed in this paper, PPML denotes Poisson-Pseudo Maximum Likelihood estimator, Gamma-PML

denotes Gamma Pseudo Maximum Likelihood, and OLS denotes ordinary least squares estimation after taking the natural logarithm of the dependent

variable. β1 and β2 are the coefficients for a continuous variable and a dummy variable, respectively.
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noise in the data, governed by h and λ, is lower.
In case 1 (λ = 0), G-PPML outperforms all other estimators by delivering both lower mean

absolute bias and lower standard errors. The reason is that λ = 0 is not consistent with the working
assumptions of any other estimators, whereas G-PPML does not preemptively assume a particular
value of λ. Yet, Weidner and Zylkin (2021) show that PPML is still a consistent estimator in this
setting and is robust to the IPP. Compared with PPML, we note that the mean bias is lower for
G-PPML both in terms of β1 and β2, and G-PPML’s standard errors are approximately 10% lower
(0.0241 vs. 0.0274 and 0.0054 vs. 0.0059).23 The Gamma-PML estimator does not perform well
relative to G-PPML and PPML in this scenario – its mean biases for β1 and β2 are approximately
50% and 200% greater than G-PPML, respectively. Moreover, Gamma-PML’s standard errors are
also much greater than those of G-PPML. A natural explanation for this result is that case 1 is
inconsistent with the assumption of Gamma-PML and, as shown in Weidner and Zylkin (2021),
Gamma-PML is subject to the IPP in this setting. Finally, consistent with Santos Silva and Tenreyro
(2006), the OLS estimation bias is much greater than other estimators. The key message in our
analysis in case 1 is similar if we experiment with a greater sample size (the right half of Table 1).

In case 2 (λ = 1), the DGP becomes consistent with the underlying assumption of PPML.
Thus, not surprisingly, G-PPML and PPML deliver very similar estimates, while out-performing
Gamma-PML and OLS both in terms of mean bias and standard errors. That G-PPML can perform
as well as the PPML without the prior knowledge about λ relies critically on the preceding iGMM
estimation to be reliable.

In case 3 (λ = 2), the DGP becomes consistent with the underlying assumption of Gamma-
PML. While G-PPML, PPML and Gamma-PML are all consistent in this setting, the Gamma-
PML outperforms both G-PPML and PPML. Due to improved estimation efficiency, G-PPML
outperforms PPML, e.g., G-PPML featuring around 15% (0.0119 vs. 0.0140) to 17% (0.0594
vs. 0.0716) lower standard errors than PPML.24 However, G-PPML does not perform as well as
Gamma-PML, because our iGMM estimates of λ are not sufficiently close to 2.25 We confirm
this hypothesis by increasing the sample size to 50,000 observations to find that G-PPML and
Gamma-PML deliver more similar estimates.

Finally, turning to the OLS results, as discussed in subsection 3.1, when λ = 2, the error

23We do note, however, that the advantage of G-PPML in absolute term is less obvious for the coefficient β2.
Intuitively, both PPML and G-PPML are consistent estimators, and the estimation efficiency, the key benefit of G-
PPML, does not play a crucial role since the coefficient of the dummy variable x2 is inherently easier to estimate.

24Apparently, the extent of efficiency improvement hinges on various factors such as the number of observations
and regressors. Thus, we defer a more quantitative assessment of G-PPML’s efficiency gain to Section 4 where we
employ real trade data to estimate a gravity model that is widely adopted in the literature.

25This reflects an inherent challenge to the iGMM method – the greater the underlying λ value is, the more data
noise there is, and, therefore, it becomes more challenging to infer the parameters that govern the structure of the error
term. This naturally leaves open a path for future research that would lead to even more efficient estimates of λ.
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is homoskedastic and taking the natural logarithm of the estimating equation does not introduce
biases. Thus, OLS is the most efficient estimator and it exhibits the lowest bias and standard errors
in this case. Nevertheless, given the poor performance of OLS in cases 1 and 2 and based on
our empirical results in Section 4 showing λ̂ to be strictly less than 2, we posit that it is risky for
econometricians to employ the OLS estimator without firm prior knowledge that λ = 2.

In cases 4 thorough 6, we replicate the results in the preceding cases with a higher value of
h. The purpose is to gain further confidence about the G-PPML estimator when there is greater
data noise. Without going into details, we note that the key conclusions that we drew based on
the results from cases 1 through 3 remain the same. Specifically, the G-PPML is the most efficient
estimator when λ = 0 (case 4); G-PPML performs as well as PPML and better than Gamma-PML
and OLS when λ = 1 (case 5); when λ = 2, G-PPML outperforms PPML, performs similarly to
Gamma-PML as the sample size increases, and it is outperformed by OLS (case 6).26

In sum, we conclude that (i) obtaining precise values of λ are crucial for obtaining sound coeffi-
cient estimates, and (ii) without any prior knowledge on λ, G-PPML outperforms other estimators
in the majority of cases.

3.4 iGMM and G-PPML under Misspecification

We conclude the Monte Carlo analysis with several experiments that investigate the possibil-
ity that the error term could be misspecified. Specifically, we consider additional cases where
the conditional variance can be described as a perturbation to the PPML assumption.27 For
the first three cases (M1 through M3), we consider a conditional variance structure given by
Var(y|x) = E (y|x) + h2E (y|x)0, where h2 ∈ {0.2, 0.4, 0.6}. In the next three cases (M4
through M6), we specify the conditional variance as Var(y|x) = E (y|x) + h2E (y|x)2, where
h2 ∈ {0.1, 0.2, 0.3}. The objective is to compare the performance of different estimators when
there is model misspecification in the error term.

Our findings appear in Table 2. For cases M1 through M3, the average λ estimates are between
0 and 1, as expected. Moreover, the estimates of λ become smaller as h2 increases from 0.2 to
0.6. This suggests that the conditional variance increasingly resembles the h2E (y|x)0 structure
and our iGMM is successful at detecting the change. Similarly, for cases M4 through M6, the λ
estimates are between 1 and 2 and, as expected, the λs deviate further away from 1 as h2 increases.
The intuitive shifts in the λ estimates offer reassuring evidence for the robustness of the iGMM
estimator to potential model misspecification (Hansen and Lee, 2021).

26Based on the analysis in Table 1, we expect that the G-PPML estimator should outperform all other estimators
when λ < 0 or λ > 2.

27We only consider a small perturbation to the PPML assumption since we attempt to gauge the advantage of G-
PPML relative to PPML without placing PPML in an unfair starting point. When the DGP deviates greatly from the
PPML assumption, the efficiency gain from G-PPML will only be more pronounced.
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Turning to the mean bias and standard errors, cases M1 through M3 reveal that G-PPML and
PPML produce very similar low mean bias, with slightly lower standard errors in favor of G-PPML.
The advantages of G-PPML in terms of mean bias and standard errors become more pronounced in
cases M4 and M6, especially as h2 allows for the quadratic term to increase. A natural explanation
for this result is that the performance gap between G-PPML and PPML throughout these cases can
be attributed to the quadratic perturbation being much more impactful than adding a constant term
h2E (y|x)0.

G-PPML and PPML outperform Gamma-PML and OLS, both in terms of mean bias and stan-
dard errors, in cases M1 through M3. This is expected as the increment of h2 in these cases
means that the assumptions of Gamma-PML and OLS are further violated. In cases M4 through
M6, however, both the mean bias and the standard errors of Gamma-PML decline vis-à-vis those
of G-PPML and PPML as h2 increases. This suggests that the conditional variance increasingly
conforms to the assumption of Gamma-PML. The OLS standard errors are relatively low, but the
mean bias remains high in all cases. The Monte Carlo analysis reveals that the G-PPML estimator
remains efficient for a wide parameter range and that it is robust to potential misspecification in
the error term. These results reinforce the key benefit of G-PPML, which is to relieve researchers’
“burden of proof” for a particular value of λ, which, when specified incorrectly, can lead to esti-
mation bias and/or estimation efficiency loss.

4 Empirical Evidence

To demonstrate the validity and practical importance of our methods, we proceed with an empirical
application in four steps. First, we set up a representative econometric gravity model, which we
estimate with PPML. Then, we estimate values of λ at the sectoral level. Third, we obtain gravity
estimates with G-PPML. Finally, we compare the PPML vs. G-PPML estimates and their corre-
sponding standard errors and z-statistics. To perform the empirical analysis, we rely on sectoral
trade data from latest edition of the USITC’s International Trade and Production Database for Es-

timations (ITPD-E-R02) (Borchert et al., 2022), which enables us to obtain a distribution (across
sectors) of the estimated conditional variances (λs), together with corresponding distributions of
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Table 2: Mote Carlo Results (Misspecification)

J = 50, T = 10, Obser. = 25 000 J = 100, T = 5, Obser. = 50 000

λ̂ β1 β2 λ̂ β1 β2

Estimator Bias S.E. Bias S.E. Bias S.E. Bias S.E.

Case M1: Var(yi|xi) = 1 · [E(yi|xi)] + 0.2 · [E(yi|xi)]
0

G-PPML 0.8925 0.0349 0.0427 0.0071 0.0089 0.9092 0.0246 0.0302 0.0051 0.0063
PPML 0.0349 0.0436 0.0071 0.0090 0.0245 0.0305 0.0051 0.0063
Gamma-PML 0.0400 0.0446 0.0123 0.0089 0.0280 0.0327 0.0076 0.0065
OLS 0.0982 0.0434 0.0967 0.0087 0.0961 0.0304 0.0968 0.0061

Case M2: Var(yi|xi) = 1 · [E(yi|xi)] + 0.4 · [E(yi|xi)]
0

G-PPML 0.8301 0.0355 0.0444 0.0075 0.0093 0.8480 0.0258 0.0313 0.0051 0.0065
PPML 0.0353 0.0453 0.0075 0.0094 0.0257 0.0316 0.0051 0.0066
Gamma-PML 0.0409 0.0465 0.0136 0.0093 0.0300 0.0342 0.0086 0.0069
OLS 0.1110 0.0452 0.1094 0.0091 0.1105 0.0316 0.1102 0.0063

Case M3: Var(yi|xi) = 1 · [E(yi|xi)] + 0.6 · [E(yi|xi)]
0

G-PPML 0.7880 0.0383 0.0461 0.0075 0.0096 0.7949 0.0268 0.0324 0.0054 0.0068
PPML 0.0379 0.0470 0.0075 0.0098 0.0268 0.0328 0.0053 0.0068
Gamma-PML 0.0444 0.0482 0.0157 0.0097 0.0314 0.0357 0.0095 0.0071
OLS 0.1251 0.0468 0.1220 0.0094 0.1230 0.0328 0.1224 0.0066

Case M4: Var(yi|xi) = 1 · [E(yi|xi)] + 0.1 · [E(yi|xi)]
2

G-PPML 1.1640 0.0371 0.0460 0.0073 0.0094 1.1916 0.0272 0.0327 0.0055 0.0067
PPML 0.0376 0.0477 0.0073 0.0097 0.0275 0.0334 0.0055 0.0068
Gamma-PML 0.0395 0.0460 0.0106 0.0092 0.0289 0.0337 0.0070 0.0067
OLS 0.0793 0.0446 0.0768 0.0089 0.0770 0.0312 0.0773 0.0062

Case M5: Var(yi|xi) = 1 · [E(yi|xi)] + 0.2 · [E(yi|xi)]
2

G-PPML 1.2888 0.0406 0.0502 0.0083 0.0102 1.3226 0.0292 0.0358 0.0060 0.0073
PPML 0.0418 0.0528 0.0084 0.0107 0.0298 0.0370 0.0061 0.0075
Gamma-PML 0.0427 0.0491 0.0111 0.0098 0.0305 0.0360 0.0071 0.0072
OLS 0.0751 0.0474 0.0725 0.0095 0.0734 0.0332 0.0722 0.0066

Case M6: Var(yi|xi) = 1 · [E(yi|xi)] + 0.3 · [E(yi|xi)]
2

G-PPML 1.3798 0.0433 0.0538 0.0091 0.0109 1.4128 0.0314 0.0385 0.0063 0.0078
PPML 0.0449 0.0574 0.0092 0.0115 0.0324 0.0403 0.0064 0.0081
Gamma-PML 0.0452 0.0517 0.0118 0.0104 0.0325 0.0382 0.0075 0.0076
OLS 0.0737 0.0498 0.0686 0.0100 0.0698 0.0349 0.0691 0.0070

Notes: This table shows the Monte Carlo results that compare different estimators when there is misspecification in the error term structure. We

report the average λ estimates, mean absolute bias and the standard error of the coefficient estimates. G-PPML indicates the generalized PPML

estimator proposed in this paper, PPML denotes Poisson-Pseudo Maximum Likelihood estimator, Gamma-PML denotes Gamma Pseudo Maximum

Likelihood, and OLS denotes ordinary least squares estimation after taking the natural logarithm of the dependent variable. β1 and β2 are the

coefficients for a continuous variable and a dummy variable, respectively.
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PPML and G-PPML gravity estimates for 105 manufacturing sectors.28

Capitalizing on the developments in the voluminous gravity literature, we specify the following
benchmark estimating gravity equation. Due to separability of the theoretical gravity model (An-
derson and Van Wincoop, 2004), our econometric model applies to individual sectors. However,
for simplicity, we omit the sectoral notation:

yijt = exp[β1DISTij + β2DIST -INij + β3CNTGij + β4CLNYij + β5LANGij]×

exp[β6RTAijt + β7EUijt + β8WTOijt + β9BRDRij + γit + ηjt]× εijt. (10)

Here, yijt denotes nominal trade flows from exporter i to importer j in year t (Egger et al., 2022),
including domestic trade flows (Yotov, 2022). Consistent with the multiplicative form of PPML,
yijt enters (10) in levels (Santos Silva and Tenreyro, 2006, 2011). The covariates in (10) include
the most widely used proxies for bilateral trade costs. DIST is the logarithm of bilateral dis-
tance between i and j and DIST -INij is the corresponding variable for domestic distance.29 The
rest of the covariates are indicator variables for common borders (CNTGij), colonial relation-
ships (CLNYij), common official language (LANGij), the presence of regional trade agreements
(RTAijt), EU membership (EUijt), and WTO membership (WTOijt). BRDRijt is a dummy vari-
able that takes a value of one for international trade and is equal to zero for domestic trade, which
is designed to capture border/home bias effects. To control for the multilateral resistance terms
of Anderson and Van Wincoop (2003), as well as for any other country-specific determinants of
bilateral trade flows (e.g., size), we use exporter-time (γit) and the importer-time (ηjt) fixed effects.
Finally, we implement the finite sample bias correction of the standard errors following Weidner
and Zylkin (2021).

Since the focus of our paper is on the possible differences between the PPML and G-PPML
estimates rather than on the level of the gravity coefficients per se, we do not report the PPML esti-
mation results for equation (10) for each individual sector.30 Instead, without going into details, we

28ITPD-E-R02 is suitable for our purposes because it is constructed from raw/administrative data that have not
been manipulated with statistical methods. In addition, ITPD-E-R02 includes a large number of sectors. Given our
purposes, we only focus on 118 manufacturing sectors from ITPD-E-R02, and we were able to obtain estimates for 105
of them. Specifically, PPML, G-PPML and λ estimation procedures faced convergence issues in 3, 2 and 8 different
sectors, respectively. We believe that the convergence performance can be further improved by ruling out data outliers
in the subset of problematic sectors. For consistency, we decided to stay with the raw data. We limit the analysis
to the period 2010-2019, as robustness checks reveal that our conclusions do not depend on time coverage. Finally,
we take advantage of the fact that, consistent with gravity theory, ITPD-E-R02 includes international and domestic
trade flows. However, our main conclusions remain robust when we only use the international trade observations from
ITPD-E-R02, which are based on UN’s Comtrade database.

29The two distance variables are consistently constructed using population-weighted distances between the major
cities in each of the countries in our sample. The distance variables, as well as all other gravity covariates in our model,
come from the USITC’s Dynamic Gravity Database (Gurevich and Herman, 2018).

30All gravity estimates are available by request.
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Figure 2: Estimates of Lambda: ITPD-E Manufacturing

(a) λ Estimates and Confidence Intervals
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Notes: Panel (a) of this figure visualizes the estimates of λ along with their confidence intervals, which are obtained from specification (10) using

all covariates from equation (10) as instruments. Panel (b) reports the kernel density of the λ estimates.

note that our PPML estimates are in line with the literature. Specifically, we obtain large, negative,
and statistically significant estimates of the effects of international distance, domestic distance, and
international borders and positive and statistically significant estimates of the impact of contiguous
borders, colonial ties, common language, RTAs, EU membership, and WTO membership.

More important for our purposes, panel (a) of Figure 2 reports λs along with their confidence
intervals, while panel (b) reports the kernel density of the distribution of λs. Four salient findings
stand out from Figure 2. First, even though our framework does not impose any parameter range
on λ and can accommodate negative λs if they are implied by the data, we find that all estimates of
λ are strictly positive. Consistent with Santos Silva and Tenreyro’s assumption behind PPML, this
result suggests that the conditional variance of trade volume indeed increases with its conditional
mean. Second, most λ values are close to one. The practical implication of this result is that, in
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many cases, the PPML estimator should perform quite well. Third, all estimates of λ are smaller
than two. In combination with our Monte Carlo simulations, this implies that the Gamma-PML
estimator may not be very appropriate for gravity estimations. Finally, we observe significant
heterogeneity in the λ estimates, which range between 0.52 and 1.67. The deviations of λ from
one suggest that there is scope for gains from using G-PPML.

Armed with the distribution of λ values, we use G-PPML to obtain a new set of gravity esti-
mates for each of the sectors in our sample. Given the well-established role of bilateral distance as
the most important, robust, and widely-used gravity variable, in Figure 3 we zoom in on the dif-
ference in our distance estimates.31 Panel (a) compares the PPML vs. G-PPML distance estimates
directly against each other and reveals that most of the estimates are clustered around the 45-degree
line, i.e., most of the PPML and G-PPML estimates of the effects of distance are very similar. This
is an expected result because, as discussed earlier, most of the λ values that we obtained in the
previous step were close to one. In addition, however, panel (a) reveals that a significant fraction
of the estimates are off the 45-degree line, i.e., a significant fraction of the PPML and G-PPML
estimates of the effects of distance are different from each other. According to our theory, the
further away the estimates of λ from one, the greater the potential difference between the PPML
and G-PPML coefficient estimates.

To test this hypothesis, we calculate the absolute value of the percentage difference between
the sectoral PPML and corresponding G-PPML estimates for each gravity variable as follows:

%∆βk,v =

∣∣∣∣∣ β̂k,v
G-PPML − β̂k,v

PPML

β̂k,v
PPML

∣∣∣∣∣ ,
where β̂k,v

PPML is the PPML estimate of the coefficient of gravity variable v for sector k, and
β̂k,v
G-PPML is the corresponding G-PPML estimate. Then, for each gravity variable, we plot the

sectoral percentage difference against the corresponding sectoral estimates of λ. Our results are
reported in panel (b) of Figure 3, where, for exposition, we drop the top 5 percent of the observa-
tions in %∆βk,DIST .32 The message from panel (b) is clear and exactly as expected. The U-shaped
fitted curve reveals that the more λ deviates from one, the larger the differences between PPML and
G-PPML. In extreme cases, i.e., when λ is around 0.6 or 1.6, the percentage difference between
the PPML and G-PPML distance estimates can be as high as 40%. Figure 4 confirms this pattern
for each of the other gravity variables in our model.

Thus far, we demonstrated that PPML and G-PPML may deliver quite different point estimates.

31Comparisons between the PPML vs. G-PPML estimates for the other gravity variables in our model deliver the
same message.

32The outliers in our analysis are due to the inherent difficulties of percentage differences to deal with small denom-
inator values. Specifically, when the absolute value of β̂k,v

PPML is very small, any difference in two estimates translates
into a huge percentage difference.
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Figure 3: Distance estimates: PPML vs. G-PPML

(a) Coefficient estimates: PPML vs. G-PPML
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with PPML and G-PPML against the corresponding sectoral estimates of λ. To construct panel (b) we drop the top 5 percent of %∆βk,DIST . See

text for further details.

Another implication of our methods and Monte Carlo analysis is that G-PPML may lead to im-
proved estimation efficiency relative to PPML. To test this hypothesis, we compare the standard
errors obtained with the two methods. In addition, since reduction in standard errors may be less
crucial for hypothesis testing if the coefficient estimates experience a similar change, we also ex-
amine how relevant G-PPML is for more efficient hypothesis testing by comparing the z-statistics
obtained with PPML and G-PPML. To this end, we construct two additional indices to compare
the efficiency of the two methods:

%∆SEk,v =
SEk,v

G-PPML − SEk,v
PPML

SEk,v
PPML

and %∆zk,v =

∣∣∣∣∣zk,vG-PPML − zk,vPPML

zk,vPPML

∣∣∣∣∣ .
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Figure 4: Difference in Gravity Estimates: PPML vs. G-PPML.
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Table 3: Comparison of Estimation Efficiency, PPML vs. G-PPML

Panel A. sectoral comparison of standard errors, PPML vs. G-PPML

variable lower SE mean median std. dev. p10 p90

BRDR 93.27% -0.261 -0.288 0.178 -0.435 -0.102
CLNY 91.43% -0.202 -0.215 0.154 -0.375 -0.021
CNTG 91.43% -0.224 -0.241 0.162 -0.430 -0.028

DIST 78.10% -0.210 -0.244 0.246 -0.519 0.077
DIST-IN 93.27% -0.265 -0.302 0.179 -0.435 -0.100

EU 86.67% -0.257 -0.314 0.258 -0.509 0.021
LANG 88.57% -0.230 -0.240 0.204 -0.481 0.013

RTA 84.76% -0.234 -0.226 0.216 -0.510 0.036
WTO 81.90% -0.140 -0.187 0.202 -0.333 0.112

Panel B. sectoral comparison of z-statistics, PPML vs. G-PPML

variable greater |z| mean median std. dev. p10 p90

BRDR 87.50% 0.372 0.366 0.358 -0.065 0.788
CLNY 71.43% 0.415 0.260 1.120 -0.568 1.543
CNTG 84.76% 0.181 0.187 0.188 -0.099 0.404

DIST 84.76% 0.565 0.385 0.641 -0.019 1.487
DIST-IN 97.12% 0.531 0.532 0.322 0.126 0.875

EU 74.29% 0.098 0.184 0.410 -0.476 0.504
LANG 75.24% 0.444 0.287 0.719 -0.298 1.529

RTA 78.10% 0.459 0.342 1.087 -0.522 1.859
WTO 89.52% 0.184 0.177 0.162 -0.015 0.392

Notes: This table compares the standard errors (panel A) and z-statistics (panel B) obtained with PPML and G-PPML. We use the ITPD-E-R02

data to estimate the coefficients of gravity variables for each of 105 sectors. In panel A, the first column (lower SE) shows the percentage of sectors

for which the G-PPML standard errors for the corresponding variables are lower than the PPML standard errors. Subsequent columns in panel A

show the distributional statistics for the percentage difference in standard errors. In panel B, the first column (greater |z|) shows the percentage of

sector for which the G-PPML z-statistics for the corresponding variables are greater than the PPML z-statistics. Subsequent columns in panel B

are similar to those in panel A. “std. dev.”, “p10” and “p90” denote the standard deviation, 10th percentile value and 90th percentile value of the

corresponding distribution, respectively.

We do not take the absolute value for %∆SEk,v, since the term is negative (positive) when standard
errors of G-PPML is less (greater) than those of PPML. However, we do take the absolute value
for %∆zk,v, since the sign of z-statistics is not meaningful for two-sided hypothesis testing.

The results regarding the standard errors and z-statistics are presented in Table 3, and we visu-
alize the full distribution of %∆SEk,v and %∆zk,v in Figure 5. In the column labeled ‘lower SE’
in panel A of Table 3, we show the percentage of sectors for which the G-PPML standard errors of
the corresponding variable are lower as compared to PPML. Overall, the G-PPML standard errors
are lower than the PPML standard errors for about 80% to 90% of the sectors in our sample. The
subsequent columns in Table 3 show the key distributional statistics for %∆SEk,v. On average,
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Figure 5: Comparison of Estimation Efficiency, PPML vs. G-PPML

(a) Distribution of Percentage Difference in Standard Errors
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(b) Distribution of Percentage Difference in z-statistics
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Notes: These figures show the distribution of PPML vs. G-PPML percentage difference in standard errors and z-
statistics. See text for further details.

G-PPML standard errors are more than 20% smaller than the PPML standard errors, whereas in
some extreme cases they are 50% smaller (p10). Panel (a) of Figure 5 reinforces these results and
offers further evidence for G-PPML’s improved estimation efficiency vis-à-vis PPML.

Our findings regarding the z-statistics are presented in panel B of Table 3 and in panel (b) of
Figure 5. Column ‘greater |z|’ of Table 3 reveals that, for the majority of cases (ranging from 71%
for CLNY to 97% for DIST-IN), the G-PPML z-statistics are greater than the corresponding PPML
values. This is consistent with our expectations and with the results regarding the differences
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between the standard errors of the two estimators. Subsequent columns in panel B show that the
z-statistics obtained with G-PPML are, in general, much greater than the corresponding PPML
z-statistics – the range varying from 10% for EU to 57% for DIST. The G-PPML z-statistics also
feature greater median values. Panel (b) of Figure 5 confirms these findings and suggests that
G-PPML may help with more efficient hypothesis testing.

5 Conclusion

Owing to the seminal work of Santos Silva and Tenreyro (2006), the PPML estimator has firmly
established itself as the leading estimator for trade gravity regressions and a number of papers have
added to the list of its attractive properties. Despite the success and popularity of PPML, some
researchers have remained skeptical about its validity due to the assumption that the conditional
mean of trade flows should to be proportional to its conditional variance (Head and Mayer, 2014).
We contribute to this debate by capitalizing on the iGMM estimator of Hansen and Lee (2021) to
propose a new Generalized PPML estimator that relies on actual data to estimate the conditional
model variance. Using Monte Carlo analysis and an application with real sectoral trade data, we
demonstrate the benefits of G-PPML in expanding the applicable domain of PPML. Our paper
naturally leads to the following two questions: (i) What drives the underlying determinants of the
conditional variance term as well as its variation across different dimensions (e.g., over time)? and
(ii) What is the statistical property of G-PPML under three-way fixed effects à la Weidner and
Zylkin (2021)? We leave the answers for future research.
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A Proofs

A.1 Proof of Proposition 2.1
The moment equation is E

[
xijt

(
ϵ2ijt − h · µλ

ijt

)]
= 0 following equation (4). The generalized PML

estimator’s conditional variance depends on the two-dimensional parameter (h, λ) ∈ R2 and xijt ∈
Rk, thus the model is generally overidentified if the parameters in µijt = exp

(
x′ijtβ + γit + ηjt

)
are known. Define m (θ) = E

[
xijt

(
ϵ2ijt − h · µλ

ijt

)]
, W (θ) = E

[
xijtx

′
ijt

(
ϵ2ijt − h · µλ

ijt

)2], and
νijt ≡ log (µijt) = x′ijtβ + γit + ηjt. Θ is the support of (h, λ) and is compact by Assumption 2.1.
The population GMM criterion function is

J
(
θ̄, ϕ
)
= m

(
θ̄
)′
W (ϕ)−1m

(
θ̄
)
,

and let g (ϕ) = argminθ̄∈Θ J
(
θ̄, ϕ
)
. Since the FOC is

∂J
(
θ̄, ϕ
)

∂θ̄
= −2E

[
µλ̄
ijtx

′
ijt

h̄ · µλ̄
ijtνijtx

′
ijt

]
W (ϕ)−1m

(
θ̄
)
= 0, (A.1)

the solution g (ϕ) = θ uniquely satisfies the FOC under the correct specification. The infeasible
sample GMM criterion function is

J̄N,0

(
θ̄, ϕ
)
= m̄N,0

(
θ̄
)′
W̄−1

N,0 (ϕ) m̄N,0

(
θ̄
)
,

where

m̄N,0

(
θ̄
)
=

1

N2

N∑
i=1

N∑
j=1

T∑
t=1

xijt

(
ϵ2ijt − h̄ · µλ̄

ijt

)
W̄N,0 (ϕ) =

1

N2

N∑
i=1

N∑
j=1

T∑
t=1

xijtx
′
ijt

(
ϵ2ijt − hϕ · µ

λϕ

ijt

)2
.

We verify that our model setup with Assumption 2.1 satisfies Assumptions 1 and 2 of Hansen
and Lee (2021). Assumption 1 of Hansen and Lee (2021) is verified in the following steps. First,
the parameter space Θ and the support of xijt are compact by assumption. Second, g (ϕ) is well-
defined to satisfy the FOC (A.1) since h̄ > 0 and µλ̄

ijt > 0 on Θ. Third, xkijt denotes the kth element

of xijt and mk
(
θ̄
)
= E

[
xkijt

(
ϵ2ijt − h̄ · µλ̄

ijt

)]
. Then,

∂mk
(
θ̄
)

∂θ̄
= E

[
µλ̄
ijtx

k
ijt

h̄ · µλ̄
ijtνijtx

k
ijt

]
∂2mk

(
θ̄
)

∂θ̄∂θ̄′
= E

[
0 µλ̄

ijtνijtx
k
ijt

µλ̄
ijtνijtx

k
ijt h̄ · µλ̄

ijtν
2
ijtx

k
ijt

]
,

and all elements are uniformly bounded by compactness of xijt, γit, and ηjt. Fourth, W
(
θ̄
)
=
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E
[
xijtx

′
ijt

(
ϵ2ijt − h̄ · µλ̄

ijt

)2]
is continuously differentiable with respect to h̄ and λ̄. Since

∂W
(
θ̄
)

∂h̄
= −E

[
xijtx

′
ijt

(
ϵ2ijt − h̄ · µλ̄

ijt

)
2µλ̄

ijt

]
∂W

(
θ̄
)

∂λ̄
= −E

[
xijtx

′
ijt

(
ϵ2ijt − h̄ · µλ̄

ijt

)
2h̄µλ̄

ijtνijt

]
,

the derivatives are uniformly bounded by compactness of xijt and µijt. Assumption 2.1-2 states
E
[
y8+ν
ijt |xijt, γit, ηjt

]
<∞, which implies E

[
ϵ8+ν
ijt |xijt, γit, ηjt

]
<∞ for some ν > 0. Fifth,W

(
θ̄
)

is positive definite unless there is multicollinearity in xijt. No multicollinearity is a sufficient
condition of Assumption 2.1-3. Then,

W
(
θ̄
)
= E

[
xijtx

′
ijt

(
ϵ2ijt − h · µλ

ijt + h · µλ
ijt − h̄ · µλ̄

ijt

)2]
= E

[
xijtx

′
ijt

(
V ar

(
ϵ2ijt|xijt

)
+ E

[(
h · µλ

ijt − h̄ · µλ̄
ijt

)2
|xijt

])]
≥ E

[
xijtx

′
ijtV ar

(
ϵ2ijt|xijt

)]
,

and the lower bound’s smallest eigenvalue λmin is always strictly positive. Since λmin does not
depend on θ̄, W

(
θ̄
)

is always positive definite. Last, J (g (ϕ) , ϕ) = 0 under the correctly specified
conditional variance h · µλ

ijt.
Assumption 2.1 directly implies Assumption 2 of Hansen and Lee (2021). First, xijt are inde-

pendent across different county pairs (i, j). Second, The compact support of (xijt, γit, ηjt) implies

that µijt is uniformly bounded by a finite number. m
(
θ̄
)

and
∂m(θ̄)

∂θ̄
are all uniformly bounded on

compact support, hence uniformly integrable. Since
∂2mk(θ̄)
∂θ̄∂θ̄′

is also uniformly bounded on Θ for

all k, E
[
supθ̄∈Θ

∥∥∥ ∂2

∂θ̄∂θ̄′
m
(
θ̄
)∥∥∥2] <∞. Assumption 2-3 of Hansen and Lee (2021) holds since

E

[
sup
θ̄∈Θ

∥∥∥∥∥∂3mk
(
θ̄
)

∂h̄∂λ̄∂θ̄′

∥∥∥∥∥
]
= E

[
sup
θ̄∈Θ

∥∥∥µλ̄
ijtν

2
ijtx

k
ijt

∥∥∥] <∞,

where both µijt and νijt are uniformly bounded over θ̄ ∈ Θ. As our model specification satis-
fies both Assumptions 1 and 2 of Hansen and Lee (2021), the iterated GMM estimator based on
E
[
xijt

(
ϵ2ijt − h · µλ

ijt

)]
= 0 is consistent to θ conditional on true gravity equation parameters β,

γit, and ηjt.
Next, we show that

m̄N

(
θ̄
)
=

1

N2

N∑
i=1

N∑
j=1

T∑
t=1

xijt

(
ϵ̂2ijt − h̄ · µ̂λ̄

ijt

)
W̄N (ϕ) =

1

N2

N∑
i=1

N∑
j=1

T∑
t=1

xijtx
′
ijt

(
ϵ̂2ijt − hϕ · µ̂

λϕ

ijt

)2
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approximate the infeasible sample moment m̄0,N

(
θ̄
)

and weight matrix W̄N,0 (ϕ). m̄N

(
θ̄
)

and
W̄N (ϕ) replace the unobservable error term ϵijt and conditional mean µijt with ϵ̂ijt and µ̂ijt =

exp
(
x′ijtβ̂

PPML + γ̂PPML
it + η̂PPML

jt

)
. The goal is to show that the minimizer of J̄N

(
θ̄, ϕ
)
=

m̄N

(
θ̄
)′
W̄−1

N (ϕ) m̄N

(
θ̄
)

is not different from that of J̄N,0

(
θ̄, ϕ
)
= m̄N,0

(
θ̄
)′
W̄−1

N,0 (ϕ) m̄N,0

(
θ̄
)
.

The feasible estimator ϵ̂ijt = yijt − exp
(
x′ijtβ̂

PPML + γ̂PPML
it + η̂PPML

jt

)
is close to ϵijt as µ̂ijt

approximates the conditional mean exp
(
x′ijtβ + γit + ηjt

)
. Using the FOCs of the PPML estima-

tion, we present γ̂PPML
it = r̂1

(
zijt; β̂

PPML
)

and η̂PPML
jt = r̂2

(
zijt; β̂

PPML
)

for some functions

r̂1 and r̂2 of zijt =
(
yijt, x

′
ijt

)′. Then,

ϵ̂ijt =ϵijt + exp
(
x′ijtβ̂

PPML + γ̂PPML
it + η̂PPML

jt

)
− exp

(
x′ijtβ + γit + ηjt

)
=ϵijt − exp

(
x′ijtβ + γit + ηjt

) (
1− exp

(
x′ijt

(
β̂PPML − β

)
+
(
γ̂PPML
it − γit

)
+
(
η̂PPML
jt − ηjt

)))
=ϵijt − exp

(
x′ijtβ + γit + ηjt

)(
1− exp

(
OP

(
1

N

)))
,

and µ̂ijt = µijt

(
1− exp

(
OP

(
1
N

)))
. Therefore,

m̄N

(
θ̄
)
= m̄0,N

(
θ̄
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+

1
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(
θ̄
)
+OP

(
1

N

)
,

and

∂m̄N

(
θ̄
)

∂θ̄′
=
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(
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)
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 1
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N

)
.

Since W̄N (ϕ) converges to the same limit of W̄N,0 (ϕ), W̄N (ϕ)
p−→ W (ϕ). The sample criterion

function J̄N
(
θ̄, ϕ
)
= JN,0

(
θ̄, ϕ
)
+OP

(
1
N

)
, since

J̄N
(
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)
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(
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The third equality follows the Woodbury matrix identity. The result implies that

sup
θ̄∈Θ

∣∣J̄N (θ̄, ϕ)− J
(
θ̄, ϕ
)∣∣ = sup

θ̄∈Θ

∣∣J̄N (θ̄, ϕ)− J̄N,0

(
θ̄, ϕ
)
+ J̄N,0

(
θ̄, ϕ
)
− J

(
θ̄, ϕ
)∣∣

≤ sup
θ̄∈Θ

∣∣J̄N (θ̄, ϕ)− J̄N,0

(
θ̄, ϕ
)∣∣+ sup

θ̄∈Θ

∣∣J̄N,0

(
θ̄, ϕ
)
− J

(
θ̄, ϕ
)∣∣

p−→ 0,

where the uniform convergence properties follow Theorem 2.6 of Newey and McFadden (1994).
The estimator θ̂ =

(
ĥ, λ̂
)

approximates the minimizer of J̄N,0

(
θ̄, ϕ
)

for a given ϕ, so θ̂ is a
consistent estimator by Theorem 3 of Hansen and Lee (2021).

A.1.1 The case with mild misspecification

Consider the case that the conditional variance form is misspecified, i.e., infϕ∈Θ E
[
xijt

(
ϵ2ijt − hϕ · µ

λϕ

ijt

)]
=

M ̸= 0. Assumption 1.6 of Hansen and Lee (2021) provides a sufficient condition for the existence
of the iGMM estimator:

sup
ϕ∈Θ

J (g (ϕ) , ϕ) <
C2

3

4C1C2

,

where

C1 = sup
ϕ∈Θ

∥∥Q (g (ϕ))′W (ϕ)−1Q (g (ϕ))
∥∥

C2 = sup
ϕ∈Θ

∥∥S (g (ϕ))′
(
W (ϕ)−1 ⊗W (ϕ)−1)S (g (ϕ))

∥∥
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ϕ∈Θ
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∂θ̄∂θ̄′
J
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)
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and the components are

Q (g (ϕ)) = E

[
µ
λϕ

ijtx
′
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hϕ · µ
λϕ

ijt log (µijt)x
′
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]′
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 2
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λϕ

ijt

)
µ
λϕ

ijtvec
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2
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,
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and

vec

(
∂

∂θ̄∂θ̄′
J
(
θ̄, ϕ
)
|θ̄=g(ϕ)

)

= 2



E
[
xijtµ

λϕ

ijt

]′
E
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xijtµ
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ijt

]
E
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µ
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ijt log
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.

Under the uniform boundedness from Assumption 2.1, we know that C1 > 0 is well-defined.
The sensitivity of the weight matrixC2 and the Hessian matrixC3 rely on E

[
xijtµ

λϕ

ijt

]
, E
[
xijtµ

λϕ

ijt log (µijt)
]
,

and E
[
xijtµ

λϕ

ijt log
2 (µijt)

]
, which are all uniformly bounded by Assumption 2.1. Thus, the iGMM

estimator exists even with a certain level of misspecification.
For an illustration, assume that E

[
xijt

(
ϵ2ijt − hϕ · µ

λϕ

ijt

)]
= M, E

[
xijtµ

λ̄
ijt

]
= L1 (µijt) = L1,

E
[
xijtµ

λ̄
ijt log (µijt)

]
= L2 (µijt) = L2, E

[
xijtµ

λ̄
ijt log

2 (µijt)
]
= L3 (µijt) = L3, h̄ = 1 and

W (ϕ) = I satisfy the the iGMM existence conditions C1, C2 and C3. Then, the iGMM estimator
converges to a limit if

∥M∥2 <
∥∥(L′

1L1, L
′
2 (L1 +M) , L′

2 (L1 +M) , L′
2L2 + L′

3M)′
∥∥2∥∥(L1, L2)

′∥∥2 ∥M∥2
,

and the upper bound for the degree of misspecification M depends on L1, L2, and L3. As L1, L2,
and L3 are all functions of µijt, the maximum allowable degree of misspecification also depends
on µijt.

A.2 Proof of Proposition 2.2
The asymptotic normality of θ̂ follows the standard theory for an overidentified GMM estimator’s
large sample properties. Considering potential misspecification in conditional variance, we adopt
the asymptotic theory from Hansen and Lee (2021). We start from the correct specification case.
The iterated GMM estimator θ̂ satisfies

0 =
1

2

∂J
(
θ̄, θ̂
)

∂θ̄
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)
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,

where
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.

Define some more notation following Hansen and Lee (2021). Define R̄N

(
θ̄
)
= ∂

∂θ̄
vec
(
Q̄N

(
θ̄
)′),
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M = m (θ), Q = Q (θ), W = W (θ), R
(
θ̄
)
= ∂

∂θ̄′
vec
(
Q
(
θ̄
)′), R = R (θ), S = S (θ) =

∂
∂θ′
vec (W (θ)), m̄N = m̄N (θ), Q̄N = Q̄N (θ), and W̄N = W̄N (θ). Then, N
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≈
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)
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The correctly specified conditional variance simplifies a lot of notation. As verified in Section
2.1, H̄N (θ)

p−→ Q′W−1Q as m̄N (θ)
p−→ 0 and M = 0. In the same way, M = 0 impliesNF̄N (θ) =

N (Q′W−1m̄N (θ)) + op (1). Recall that the PPML estimator β̂PPML is the estimator with no
asymptotic bias, hence

N
(
β̂PPML − β

)
d−→ N

(
0, V PPML

)
under the two-way fixed effects and a smooth function of β̂PPML also preserves the zero asymptotic
bias, as

N
(
r
(
β̂PPML

)
− r (β)

)
≈ r′ (β)N

(
β̂PPML − β

)
d−→ N

(
0, r′ (β)′ V PPMLr′ (β)

)
.

Thus,

Nm̄N (θ) = Nm̄N,0 (θ) +
1

N

N∑
i=1

N∑
j=1

T∑
t=1

xijt
((
ϵ̂2ijt − ϵ2ijt

)
+ h

(
µ̂λ
ijt − µλ

ijt

))
d−→ N (0,W ) +N (0, V ) ∼ N (0,W + V ) ,

where 1
N

∑N
i=1

∑N
j=1

∑T
t=1 xijt

((
ϵ̂2ijt − ϵ2ijt

)
+ h

(
µ̂λ
ijt − µλ

ijt

)) d−→ N (0, V ) for some V and W =

E
[
xijtx

′
ijt

(
ϵ2ijt − h · µλ

ijt

)2]. Let v (β) = ϵ2ijt − h · µλ
ijt and v

(
β̂PPML

)
= ϵ̂2ijt − h · µ̂λ

ijt. The
resulting asymptotic distribution is

N
(
θ̂ − θ

)
d−→ N

(
0,
(
Q′W−1Q

)−1
Q′W−1 (W + V )W−1Q

(
Q′W−1Q

)−1
)
,

and
V = E

[
xijtv

′ (β)′ V PPMLv′ (β)x′ijt
]
.

The correctly specified case implies that the asymptotic variance of the G-PPML estimator is
similar to the asymptotic variance of the efficient GMM estimator (Q′WQ)−1, but not exactly the
same due to approximation errors of ϵ̂ijt and µ̂ijt from the first stage estimator. The zero asymptotic
bias property of β̂PPML directly contributes to the zero asymptotic bias of θ̂.

We also allow for some degree of conditional variance misspecification. Under the mild
misspecification discussed in Section A.1, the asymptotic variance includes the misspecification-
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related terms. First,

H̄N (θ)
p−→ Q′W−1Q+

(
M′W−1 ⊗ Ik

)
R−

(
M′W−1 ⊗Q′W−1

)
S = HM,

where M is the degree of misspecification. Next, since

NF̄N (θ) = N
(
Q′W−1m̄N (θ) + Q̄N (θ)′W−1M−Q′W−1W̄N (θ)W−1M

)
,

when a mild misspecification problem exists, we define a new matrix ΩM = 1
N2

∑
i,j,t E

[
ψijtψ

′
ijt

]
,

where

ψijt = Q′W−1xijt
(
ϵ̂2ijt − h · µ̂λ

ijt

)
+ Q̂ (xijt, θ)

′W−1M−Q′W−1xijtx
′
ijt

(
ϵ̂2ijt − h · µ̂λ

ijt

)2
W−1M,

and Q̂ (xijt, θ) =
[
xijtµ̂

λ
ijt, xijth · µ̂λ

ijt log (µ̂ijt)
]
. Note that assumptions for asymptotic normality

are already verified. We additionally assume that the degree of misspecification M satisfies the
condition in Section A.1.1. Then, following Theorem 4 of Hansen and Lee (2021),

N
(
θ̂ − θ

)
d−→ N

(
0, H−1

M ΩMH
−1
M

)
.

A.3 Proof of Proposition 2.3
Note that Proposition 2 of Weidner and Zylkin (2021) provides consistency of the infeasible esti-
mator β̃

β̃ :
N∑
i=1

N∑
j=1

T∑
t=1

xijt (yijt − µ̃ijt) µ̃
1−λ
ijt = 0,

γ̃it :
N∑
j=1

(yijt − µ̃ijt) µ̃
1−λ
ijt = 0,

η̃jt :
N∑
i=1

(yijt − µ̃ijt) µ̃
1−λ
ijt = 0,

even for the three-way fixed effects case. The estimator β̂ solves the FOCs

β̂ :
N∑
i=1

N∑
j=1

T∑
t=1

xijt (yijt − µ̂ijt) µ̂
1−λ̂
ijt = 0,

γ̂it :
N∑
j=1

(yijt − µ̂ijt) µ̂
1−λ̂
ijt = 0,

η̂jt :
N∑
i=1

(yijt − µ̂ijt) µ̂
1−λ̂
ijt = 0,
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and since µ̂1−λ
ijt is uniformly bounded,

µ̂1−λ̂
ijt = exp

((
1− λ̂

)(
x′ijtβ̂ + γ̂it + η̂jt

))
= exp

((
1− λ−OP

(
1

N

))(
x′ijtβ̂ + γ̂it + η̂jt

))
= exp

(
−OP

(
1

N

))
µ̂1−λ
ijt = µ̂1−λ

ijt +OP

(
1

N

)
,

which approximates the feasible PML estimator. The consistency of λ̂ implies the consistency of
the plug-in estimator β̂, following Theorem 2.5 of Newey and McFadden (1994).

Note that under the two-way fixed effects, other “misspecified” PML estimators are consistent
as well. That is, a mild misspecification we discussed in the conditional variance estimation does
not affect the consistency of β̂.

A.4 Proof of Proposition 2.4
The derived asymptotic variance is a direct application of Theorem 4.1 of Fernández-Val and
Weidner (2016). The asymptotic bias following Weidner and Zylkin (2021) follows the form of
W−1

N (Bm
N +Dm

N ) /N . Note that

Bm
N =− 1

N

N∑
i=1

Tr

( N∑
j=1

H̄ij

)− N∑
j=1

E
[
Hijx̃ij,mS

′
ij|xij,m

]
+

1

2N

N∑
i=1

Tr

( N∑
j=1

Ḡijx̃ij,m

)(
N∑
j=1

H̄ij

)− N∑
j=1

E
[
SijS

′
ij|xij,m

]( N∑
j=1

H̄ij

)−
 ,

and

Dm
N =− 1

N

N∑
j=1

Tr

( N∑
i=1

H̄ij

)− N∑
i=1

E
[
Hijx̃ij,mS

′
ij|xij,m

]
+

1

2N

N∑
j=1

Tr

( N∑
i=1

Ḡijx̃ij,m

)(
N∑
i=1

H̄ij

)− N∑
i=1

E
[
SijS

′
ij|xij,m

]( N∑
i=1

H̄ij

)−
 .

Since WN is a positive definite matrix, the size of the bias relies on Bm
N and Dm

N . In general,
bothBm

N andDm
N are non-zeros and asymptotic bias does not vanish. In the correctly specified case,

Sij,t = (yijt − µijt)µ
1−λ
ijt and E [Sij,tSij,s] = µ2−λ

ijt 1 {t = s}. Similarly,
[
H̄ij

]
ts

= µ2−λ
ijt 1 {t = s}

and
[
Ḡij

]
tsr

=(3− 2λ)µ2−λ
ijt 1 {t = s = r}. The second terms of Bm

N and Dm
N can be reduced by

1
2N

∑N
j=1 Tr

[(∑N
i=1 H̄ij

)−1 (∑N
i=1 Ḡijx̃ij,m

)]
since E [Sij,tSij,s] =

[
H̄ij

]
ts

.

Next, by definition of x̃ij,m, which minimizes
∑N

i=1

∑N
j=1 Tr

[(
xij − γxi − ηxj

)′
H̄ij

(
xij − γxi − ηxj

)]
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with respect to γxi and ηxj ,
∑N

j=1 Ḡijx̃ij,m =
∑N

j=1 H̄ijx̃ij,m = 0 and
∑N

i=1 Ḡijx̃ij,m =
∑N

i=1 H̄ijx̃ij,m =

0 if λ = 1. But for any other λ values,
∑N

j=1 Ḡijx̃ij,m = (3− 2λ)
∑N

j=1 H̄ijx̃ij,m = 0 for all PML
estimators. Thus, as far as the DGP follows the assumption of any PML estimator, the second
terms of Bm

N and Dm
N are zeros.

The first terms of Bm
N and Dm

N are also zeros if the PML estimator’s assumption holds. That
is,
∑N

i=1 E
[
Hijx̃ij,mS

′
ij|xij,m

]
=
∑N

j=1 E
[
Hijx̃ij,mS

′
ij|xij,m

]
= 0 and there is no asymptotic bias.

Since

E
[
x̃ij,mµ

2−2λ
ijt (1− λ)

(
yijt −

2− λ

1− λ
µijt

)
(yijt − µijt) |xij

]
is the mth column of the matrix Hijx̃ij,mS

′
ij , we compute if the column elements are zeros. Since

E
[
(yijt − µijt)

2 |xij
]
= h·µλ

ijt under the correctly specified conditional variance and E [yijt − µijt|xij] =
0,

E
[
x̃ij,mµ

2−2λ
ijt (1− λ)

(
yijt −

2− λ

1− λ
µijt

)
(yijt − µijt) |xij

]
=x̃ij,mµ

2−2λ
ijt (1− λ)E

[(
yijt −

2− λ

1− λ
µijt

)
(yijt − µijt) |xij

]
= h (1− λ) · x̃ij,mµ2−λ

ijt .

Therefore,

N∑
i=1

E
[
Hijx̃ij,mS

′
ij|xij

]
=

N∑
i=1

E
[
x̃ij,mµ

2−2λ
ijt (1− λ)

(
yijt −

2− λ

1− λ
µijt

)
(yijt − µijt)

]

= h (1− λ)
N∑
i=1

x̃ij,mµ
2−λ
ijt ,

and by the FOC of x̃ij ,

N∑
j=1

N∑
i=1

E
[
Hijx̃ij,mS

′
ij|xij

]
= h (1− λ)

N∑
j=1

N∑
i=1

x̃ij,mµ
2−λ
ijt = 0.

We find that Bm
N and Dm

N are always zero if λ = 1. But even if λ ̸= 1 and h (1− λ) ̸= 0,∑N
j=1

∑N
i=1 x̃ij,mµ

2−λ
ijt = 0 since the model is correctly specified. Under the class of PML esti-

mators, we do not have asympotic bias, thus no bias correction is needed. For general conditional
variances,

∑N
i=1 E

[
Hijx̃ij,mS

′
ij|xij,m

]
nor

∑N
j=1 E

[
Hijx̃ij,mS

′
ij|xij,m

]
will be zero, causing non-

zero asymptotic bias of the estimator.
Considering potential clustering and serial correlation, the robust asymptotic variance estima-

tor is a traditional sandwich form W−1
N ΩNW

−1
N and requires an estimator for E [Sij,tSij,s]. As

Ê
[
Ŝij,tŜij,s

]
is the potential source of finite-sample downward bias, the bias correction method

proposed by Weidner and Zylkin (2021) is still necessary.
If the conditional variance of yijt does not follow equation (2), the provided asymptotic bias

formula offers a feasible method to correct the asymptotic bias of β̂. We estimate Ḡij by
[
ˆ̄Gij

]
tsr

=
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(
3− 2λ̂

)
µ̂2−λ̂
ijt 1 {t = s = r}, and

[
Ĥij

]
ts
= µ̂1−λ̂

ijt

(
1− λ̂

)(
yijt − 2−λ̂

1−λ̂
µ̂ijt

)
1 {t = s}. Then,

B̂m
N =− 1

N

N∑
i=1

Tr

( N∑
j=1

ˆ̄Hij

)−1 N∑
j=1

Ĥij
ˆ̃xij,mŜ

′
ij

+
1

2N

N∑
i=1

Tr

( N∑
j=1

ˆ̄Hij

)−1( N∑
j=1

ˆ̄Gij
ˆ̃xij,m

)
D̂m

N =− 1

N

N∑
j=1

Tr

( N∑
i=1

ˆ̄Hij

)−1 N∑
i=1

Ĥij
ˆ̃xij,mŜ

′
ij

+
1

2N

N∑
j=1

Tr

( N∑
i=1

ˆ̄Hij

)−1( N∑
i=1

ˆ̄Gij
ˆ̃xij,m

) ,
where Ŝij,t = (yijt − µ̂ijt) µ̂

1−λ̂
ijt , and ˆ̃xij = xij − γ̂xi − η̂xj . Ω̂−1

N

(
B̂N + D̂N

)
/N is the estimated

correction term.
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