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CESifo Working Paper No. 10174 

How Do Institutions Affect the Impact of 
Natural Disasters?

Abstract 

In this paper we study how differences in the quality of countries’ institutions affect the impact of 
natural hazards in these countries. To do so, we first build a new data set that allows us to 
adequately control for countries’ development and geological characteristics and, importantly, the 
physical intensity of the natural hazard. We then analyze our data using an output distance frontier 
model to assess two important aspects of the relation-ship between institutions and hazard 
impacts. First, the model allows us to estimate the trade-offs between different types of (negative) 
outcomes (e.g., deaths, affected, and damages). Second, it enables us to estimate the excess deaths, 
affected inhabitants and damages that countries, all else equal, suffer relative to the best 
performing countries. We can refer to this as the countries’ (in)efficiency at managing natural 
hazards. Our results show that countries differ a lot in their disaster management efficiencies, with 
richer countries performing better than poorer countries. Richer countries also incur higher capital 
losses in exchange for fewer lives affected, controlling for their overall level of development and 
population density. For rich and poor countries we show that institutions of higher quality indeed 
correlate with higher disaster relief efficiencies. Most important are indicators of good governance 
and government effectiveness, whereas the de jure indicators are not informative. Our estimates 
suggest that a country with a 10%higher disaster relief efficiency will save one more life and 
protect four more people at the cost of $8 million in capital losses in an average intensity natural 
hazard. 
JEL-Codes: O440, Q450, E020. 
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1. Introduction

Natural disasters have become more frequent and more devastating in recent years.
Moreover, climate change is predicted to cause the incidence and intensity of meteoro-
logical hazards to increase, and urbanization in the developing world implies that more,
already vulnerable people will be exposed to their impacts (Loayza et al., 2012).

The evidence to date shows that the performance of countries differs greatly when
it comes to disaster mitigation (Kahn, 2005; Toya and Skidmore, 2007). Some countries
can quickly mobilize resources to support affected regions while others appear to be
much less effective in handling disasters and as a consequence suffer much more severe
impacts. However, the mechanisms behind these findings are not well understood. The
logical next step in this literature is therefore to try and explain this heterogeneity by,
controlling for hazard intensities, linking disaster impacts to the characteristics of the
country it affected. We are not the first to do so. For a recent overview of this literature
see Tol (2022).

Kahn (2005); Strömberg (2007); Noy (2009) provide a good starting point, they show
in a cross-country panel that institutions play a mediating role and that countries with
well developed institutions suffer fewer deaths from natural disasters. Countries with
more democratic or higher institutional quality also experience fewer affected people in
the case of a disaster (Persson and Povitkina, 2017). Similarly, Tennant and Gilmore
(2020) show for tropical cyclones that effective institutions play an important role for
the disaster risk reduction. However, if institutional quality is low they suffer more in
democracies than in autocracies. In other words, disaster effects are more severe in coun-
tries that are poorly run. This has to do with the fact that some governments prepare
well for disasters in the presence of international aid while others have no incentive to
do so (Cohen and Werker, 2008). Related to this, Raschky (2008) finds that higher gov-
ernment stability and better investment climate decrease human and economic damage
from disasters. While higher government effectiveness is connected to fewer people being
killed and affected by disasters in the most vulnerable states (Sjöstedt and Povitkina,
2017).1 Further, Breckner et al. (2016) provide insights into the role of institutional
quality as a complement of insurance penetration in mitigating disaster effects. They
demonstrate that insurance penetration reduces the negative economic consequences of
disasters mainly in countries with good institutions, which they proxy by civil liberties
or political rights.

A related strand of literature documents that natural disaster and extreme weather
shocks lead to institutional change (Burke and Leigh, 2010; Brückner and Ciccone, 2011;
Barone and Mocetti, 2014; Castells-Quintana et al., 2017) – Belloc et al. (2016) even
observe a local institutional stagnation in response to earthquakes in medieval Italy –
and pre-existing institutions serve as a source of differential effects. In regions with lower
pre-quake institutional quality, corruption again distorts markets and deteriorates social
capital, while technical efficiency increases in others due to financial aid and disruptive

 

1Keefer et al. (2011) provide evidence in relation to corruption. They show that non-corrupt systems
are better prepared to deal with the consequences of earthquakes than corrupt regimes. While disas-
ter mortality increases with inequality, corruption, and low-quality institutions (Escaleras et al., 2007;
Anbarci et al., 2005).
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creative mechanisms (Barone and Mocetti, 2014).2 In a regional economic context, Testa
(2021) demonstrates that major earthquakes have a negative impact on city population
growth for those located outside of stable democracies. Weak institutions in combination
with severe droughts paved the way for the Sicilian Mafia, at the expense of subsequent
local development, as shown in Acemoglu et al. (2020). More generally, adverse temper-
ature shocks increase the probability of coup d’états, resulting in negative impacts on
economic growth (Dell et al., 2012).

The contrasting results from the related literature illustrate the need for a better
understanding of the mechanisms that potentially link natural disasters to institutional
quality and change. We address this matter in the current paper by introducing a new
data set and analyzing it with a novel empirical method. Doing so, we can provide
more precise estimates of the trade-offs among different disaster impacts and quantify
the output elasticities for a range of disasters, regional characteristics, and the impact
of institutional quality. To arrive at these contributions, we first build a unique data
set that provides us with multiple measures of disaster characteristics and their con-
sequences for countries worldwide. Next, we introduce the output distance stochastic
frontier framework as an empirical approach for analyzing the data that has a number
of important features. First, in this approach, we can handle multiple relevant disaster
impacts (loss of lives, affected inhabitants, destruction of capital) simultaneously. This
allows us to study important trade-offs in disaster relief efforts. Second, this method
allows us to benchmark each country against a best practice frontier that is estimated
controlling for the physical intensity of the event and important pre-shock features that
are often hard to change. We will refer to these features as the country’s ‘hardware’.
Third, with our approach we can estimate how the distance from the best performers
is related to each country’s ‘software’: the quality of its institutions. And finally, our
model is flexible enough to allow us to investigate whether countries learn from events
and close the gap to the best performers over time.

Compared to the existing literature, our approach - which to the best of our knowl-
edge is the first application of frontier model techniques in this literature - has significant
advantages. First, conventional studies exploring key factors behind the impact of nat-
ural hazards can only include a single dependent variable in each regression, such as the
drop in the local GDP, total damages or the death toll (Kahn, 2005; Escaleras et al.,
2007; Toya and Skidmore, 2007; Kellenberg and Mobarak, 2008; Cavallo and Noy, 2011;
Cavallo et al., 2013; Kellenberg and Mobarak, 2011; Schumacher and Strobl, 2011; Strobl,
2010). Raschky (2008) and Felbermayr and Gröschl (2014) have multiple measures of
hazard impacts in their data, but their main results still focus on impacts on economic
growth, thereby ignoring the correlations and possible trade-offs between these different
impacts. Using a model that incorporates several impacts into one estimation equa-
tion, we find that a decrease in the death toll along the frontier typically implies an
increase in the material damage, for given levels of capital and income. Moreover, we
can quantify these trade-offs. Second, the frontier model allows us to obtain unbiased
estimates of trade-offs and marginal effects for the events and countries at the frontier.
That is, for those observations for which we know the response was optimal, at least

2Connected to this, Klomp (2020) shows that election cycles and public spending provided in response
to natural disasters have a stronger effect in countries with fewer checks and balances, such as presidential
systems and majority elections.
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among the observations in our data set. This gives us more precise estimates of such
trade-offs and marginal effects in the presence of significant unobserved heterogeneity
across events and countries. Third, the approach can handle significant unobserved het-
erogeneity by allowing for deviations from the frontier under some mild assumptions on
the distribution of such deviations. This ‘inefficiency’ in the response to natural hazards
is in principle an unexplained residual, but this can be explored further. The fact that
institutional variables, especially those that reflect good governance, positively correlate
with the estimated distance to the frontier suggests not only that our measure of dis-
aster relief (in)efficiency makes sense, but also that it allows us to quantify how much
improving institutions might contributes to countries’ natural hazard resilience through
this channel.

We report three major findings. First, we show countries differ a lot in their disaster-
relief efficiencies, implying unobserved heterogeneity is significant. In our sample period
from 1996 to 2010, New Zealand on average has performed best in disaster mitigation,
followed by other developed nations such as Canada, Japan, and the United States.
Emerging economies such as China, India, and Brazil usually have a middle rank be-
tween 20th and 40th, with developing countries in Sub-Saharan Africa typically closing
the ranks. Second, institutional variables, especially governance quality indicators, such
as government effectiveness, control of corruption, regime durability, voice and account-
ability, and regulatory quality, promote disaster-relief efficiency. In particular, a one
standard deviation increase in the government effectiveness score leads to a 20% to 29%
increase in the country’s disaster relief efficiency while a one standard deviation increase
in the control of corruption score implies a 24% to 33% increase in efficiency. Third, we
find that more efficient countries tend to reduce human mortality while accepting higher
economic damages in disaster mitigation. For example, we show that a 10% efficiency
increase on average implies a 0.25% (0.3%) drop in the number of people killed (affected)
and a 0.7% increase in material damages.

Our paper fits in the literature on the economic impacts of natural hazards and
more specifically on the role that institutions play in mitigating their impacts (Besley
and Burgess, 2002; Garrett and Sobel, 2003; Anbarci et al., 2005; Kahn, 2005; Strömberg,
2007; Kellenberg and Mobarak, 2008). Among them, our paper is most closely related
to the seminal work of Kahn (2005) who specifically explored the relationship between
governance quality and disaster mitigation. Studying 73 countries worldwide, Kahn
(2005) points out that high income as well as good institutions lead to less people killed
by natural disasters. Compared to the work of Kahn (2005), our paper uses a similar set
of governance quality indicators, but extends his work in two important directions. First,
we formally measure countries’ disaster mitigation efficiencies and rank them against a
common benchmark of best performers by employing a stochastic frontier model. Second,
our data set includes data on the physical intensity of natural hazards, such that we
can quantify the trade-offs between death toll, number of people affected and economic
damages, controlling for hazard intensity 3

The rest of our paper is organized as follows. Section 2 describes our data. Section 3
presents and motivates our empirical method. Section 4 presents our main results and

3Kahn (2005) only presents results including the Richter scale for earthquakes and concludes the
elasticity of deaths to income per capita is robust to doing so, but it is not a priori clear that this also
holds for the other types of events.
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the final section concludes.

2. Data, Descriptive Figures, and Statistics

We construct our data by merging four data sets. We start by collecting disaster
damages from the Emergency Events Database (EM-DAT) (Guha-Sapir et al., 2015).
Our key explanatory variables are institutions, mainly the governance quality indicators
from the World Bank. We control for macroeconomic variables from the Penn World
Tables and disaster intensities from the GAME data set compiled by Felbermayr and
Gröschl (2014). After merging the four data sets, we end up with 3,420 complete records
on events over 15 years (1996-2010) in 159 countries (implying on average 1,43 events
per country per year and 21,5 events per country, but the geographic distribution is very
uneven).

2.1. Data for Disasters and Economic Variables

We follow Kahn (2005) and draw on the EM-DAT data set for our natural hazard
impacts. EM-DAT contains the date and geographical location of natural hazards world-
wide and reports the consequences of these hazards, notably including economic losses
and the number of people killed and affected. EM-DAT registers an event if the reported
death toll is above 1 or more that 10 people are affected or more than a million dollars in
damages is reported. This sampling introduces some selection biases (see Felbermayr and
Gröschl (2014) for a discussion), but as we run our analyses at the event level, this is not
a major concern. Our source of data is the GAME data set presented in Felbermayr and
Gröschl (2014). GAME reports the physical hazard intensity. Felbermayr and Gröschl
(2014) collected primary data for all geophysical and meteorological events. This data
set contains date and geographical location and adds disaster-specific intensity measures
such as the magnitude of earthquakes, wind speeds for storms, and mean precipitation
and temperature during months of flooding or drought. We believe it is essential to
control for exogenous and physical disaster intensity when regressing disaster impacts on
notoriously endogenous variables like income and institutional quality.

Figure 1 plots the counts of different types of disasters per continent. It shows that
floods and storms are most frequent, accounting for almost 70% of the total events. The
lower panel shows that Europe, after scaling for continent size, has the highest incidence
of disasters. The most important take-away lesson from this figure is that rich nations,
usually also with better institutions, do not experience fewer disasters or milder shocks
than poorer nations, which is in line with the conclusion by Kahn (2005). Consequently,
a country’s economic strength and governance quality do not correlate with the incidence
or intensity of hazards.

For our macroeconomic control variables, we turn to the Penn World Data (Feenstra
et al., 2015). We control for a country’s population density (total population/country
area) and capital density (capital stock at current PPPs/country area) in the year of
the event, because the higher the density of people and capital, the more human and
material damage an event of given intensity is likely to create. That is, the same wind
speed causes no damage in an empty desert whereas it can be very destructive in a
densely populated urban center. We also control for GDP per capita because previous
studies (Besley and Burgess, 2002; Kahn, 2005; Kellenberg and Mobarak, 2008) have
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Figure 1: Disaster Distribution by Type and Continent. This bar chart plots the number of each type
of disasters taking place in each of the six continents during 1996 to 2010 as well as the number scaled
by continent size based on the EM-DAT data set. The figure shows that floods and storms are the most
frequent events and Europe has the highest incidence of events per square kilometer.

shown that high income implies people are better protected against injury and death at
the cost of higher property damage.

2.2. Institutions and Governance

The key explanatory variable in our study is institutional quality. There are many
proxies for this elusive and multidimensional concept and we do not want to get bogged
down in issues of definition here. Instead, we simply include several indicators compiled
by the World Bank (Beck et al., 2001): Government Effectiveness and Regulatory Quality
capture the capacity of the government to effectively formulate and implement sound
policies; Voice and Accountability and Regime Durability indicate the process by which
governments are selected, monitored, and replaced; and Control of Corruption represents
the respect of citizens and the state for the institutions that govern economic and social
interactions among them. These indicators were constructed based on survey data and
refer to the quality of institutions as perceived by respondents in the respective countries.4

In addition to these five indicators, we include the Polity score from the Center for
Systemic Peace (CSP). A higher score on this indicator means that a country is more
democratic while a lower score means the system is close to autocracy. Note that this
indicator, in contrast to the World Bank indicators, reflects the de jure institutions in

4See Kaufmann et al. (2011) for a discussion of the data collection process.
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the country and the CSP constructs these data based on legal analysis and constitutional
characteristics, not survey data.5

2.3. Descriptive Statistics

Table 1 reports the summary statistics of our main variables for 3,420 events in 159
countries over the period 1996 and 2010. 6 Note that our unit of observation is a natural
event, not a country-year observation. This implies that the mean for variables that are
available only for a country (such as area) or country-years (such as GDP per capita)
are not straightforward to interpret as they are weighted by the number of events in
every country-year combination. What is clear from these statistics, however, is that our
events affect rich and poor, densely and sparsely populated countries alike.

We can interpret the average event intensities and consequences. We see that mor-
tality is greatly distorted by rare events, as the mean is even bigger than the value at the
90th percentile. Probing the data, we find the largest death toll was caused by a drought
and resulting famine in Ethiopia during 1983 and 1984. It killed more than 560,000
people. In contrast to mortality, the largest economic losses usually happen in developed
nations. For example, the biggest-ever economic damage was caused by Hurricane Kat-
rina in the U.S. in 2005, causing around $146 billion in damages. The following largest
damages are related to the 1995 Kobe earthquake in Japan, the 1994 drought in China,
and the 1998 country-wide floods in China. An important feature of our data is that
we can now control for disaster intensity. Each type of disaster, however, has its own
measure of intensity. As can be seen from the table, the average reported earthquake has
a magnitude of 5.76 on the Richter scale. This is a score that can cause physical damage
according to the description of the U.S. Geological Survey. The average and maximum
wind speeds in reported storms are on average 62 and 150 knots, respectively, which
is within the definition for hurricane winds according to the U.S. National Hurricane
Center.7 The average deviation of monthly rainfall from the local, long-run (1970-2010)
mean is -0.09 mm for a drought and +0.20 mm for a flood event. Meanwhile, extreme
temperature events have a mean monthly difference of -0.09 ◦C (more cold spells than
heat waves in our data) and the average divergence for droughts is -0.14 ◦C, due to a
few large negative deviations.

To illustrate the pattern among the three disaster impact measures, we plot them
in Figure 2. The Figure shows the median values for each measure across different
continents. The immediate impression is that African and Asian countries usually suffer
from high mortality, whereas Europe and North America mainly experience economic
losses. This pattern suggests that a trade-off exists among different damage measures.
This poses a problem for our estimation: when we regress the impacts on intensities and
country level variables in three separate equations, we will obtain three different sets of
coefficients, making conclusions inconsistent. We therefore propose to use the output

5See the website of the Center for Systemic Peace (http://www.systemicpeace.org) for a discussion
of the data collection process.

6Although the development indicators begin at 1979, the institutional variables are available only
since 1996. Merging data sets gives us the advantage of exploring the relationship between institutions
and disaster relief but also results in a significant loss of observations. When there is a missing value in
any one of the variables for an observation, we drop that observation.

7See https://www.nhc.noaa.gov/aboutsshws.php.
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Figure 2: Continents Feature Different Types of Damages. This bar chart plots the median values of
each of the three damage measures (number of people killed (in hundreds), number of people affected
(in million), and economic damage (in billion dollars)). We scale killed and affected people to improve
the readability of the figure. The data source is the EM-DAT dataset with the time horizon from
1996 to 2010. The figure indicates that for African countries the biggest consequence of disaster is
massive mortality, whereas Europe and North America, compared to other continents, have relatively
high economic losses in terms of GDP.

distance frontier model that can incorporate multiple outcomes into one equation. In
this model we can simultaneously estimate the distance to the frontier and quantify the
trade-offs at that frontier. As detailed in our results section, we show that a reduction
in the gap may mean a significant drop in mortality yet imply an increase in property
damages. The next section presents this method more formally.

3. Empirical Methodology

3.1. The basis for our approach

Our methodological approach starts from the fact that we are dealing with extreme
events. Therefore, a method that is at its most informative with an average response
function to an average event will not suffice. Indeed, even a local average response func-
tion may mean we miss the most important reactions to the most important events.
Instead, we need a method that informs us about the inefficient, off-center response to
extreme events. The first key to understanding our approach is to think of countries’ abil-
ity to cope with hazards as a time varying, not necessarily normally distributed omitted
variable that itself encapsulates different aspects, many of them related to institutional
arrangements in those countries. The second key is the realization that an extreme event
‘produces’ multiple types of impacts: deaths, injured citizens, and material damage. Our
model should be able to assess the consequences for each type of impact in the following
ways. First, it should allow for a trade-off between the different types of impact yi,
while acknowledging that these different types of impact are not independent of each
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other. Second, it should isolate the moderating effect of ‘software’ (institutional choices
of countries) zi on countries’ efficiency to cope with natural hazards. Third, it should
allow for countries’ ‘hardware’ xi to directly affect each type of impact.

3.2. Two important technical aspects

Before we introduce the model formally, let us take a moment to consider two tech-
nical aspects that will turn out to be crucial features of the model. The first one concerns
our use of a so-called ‘Euclidean norm’ to combine different types of impact. Our goal
is to estimate the optimal impact of a natural hazard, i.e., the impact with the least
consequences in terms of deaths, affected citizens, and material damage. We also want
to know for each country at each point in time, how far away it is from that optimum.
Since the optimal impact is measured along multiple dimensions, we need a measure
that convincingly combines these dimensions. Hence, we turn to the Euclidean distance,
similar to what is used for example in many cluster analyzes. More specifically, since
the optimal impact of a hazard is the one with the least deaths, injured citizens, and
material damage, we use the inverse of the Euclidean norm of the disaster output vector
that consists of deaths, injured citizens and material damage.8 As a result, the model
we use is a so-called output-distance model, a particular type of production model that
allows us to estimate a single equation for a process that has three jointly produced
outputs. One of the advantages of this model is that we can also estimate the relation-
ship between each of the outputs, including possible trade-offs. For example, when more
higher quality buildings result in less deaths but more material damage after a disaster,
an output-distance model allows us to estimate the elasticity of substitution between
these impacts at the efficient frontier.

The second technical aspect of our model concerns the crucial omitted variable: the
efficiency term that measures the distance to the ‘optimal’, best-practice mix of outputs
for a given disaster. For that, we use a deconvolution technique, similar to what is known
for example in a random effects panel model, where a standard noise term is replaced
by a joint error term that captures a shared noise element and a (firm-, country- or
otherwise-) specific noise element. Here, we opt for a different type of convolution. After
all, the disaster efficiency of a country is not directly observable, but we know that the
most efficient that a country can be in handling a natural hazard is when it has the
mix of impacts that is predicted by the output-distance model. As a consequence, we
aim to deconvolute the standard noise term of that model to distinguish between two
very different aspects. The first is the standard noise term, that is normally distributed,
has a mean of zero, and captures among other things measurement error. The second is
an inefficiency term, that is truncated normally distributed, since a country either has
the optimal impacts mix or something that is worse (i.e., an impact mix that has more
deaths, affected or damages than the best performers in our data set). Fortunately, this
kind of deconvolution has become standard practice in a large part of the productivity
literature, based on what has become known as stochastic frontier analysis. 9 In that
literature, the resulting stochastic frontier model can identify trade-offs and inefficiency
exactly because (we assume) noise and inefficiency have different distributions.

8See Section 3.2 of Kumbhakar and Knox-Lovell (2000) for more details.
9See, e.g., Aigner et al. (1977),Meeusen and van Den Broeck (1977),Färe and Primont (1990),Kumb-

hakar and Knox-Lovell (2000)
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In our model, we combine both aspects to arrive at an approach that is both ad-
vanced and - as we will see later - straightforward to interpret.

3.3. Model setup

We start with a standard expression of a production function:

yj,i,t = f(xj,i,t;β) · exp{vj,i,t}, (1)

where yj,i,t is our vector of different types of impact for a disaster j in country i at time
t. For our setting with three impacts, we have yj,i,t = y1

j,i,t, y
2
j,i,t, y

3
j,i,t. Likewise, xj,i,t

is a ‘hardware’ vector that includes both hazard intensity and country characteristics.
and vj,i,t is a normally distributed noise term with mean zero. The model at this stage
is multiplicative, but when we arrive at a full specification and take logs of the variables
in both vectors yj,i,t and xj,i,t, it will start to look much more like a standard regression
model.

To illustrate our modeling approach, it proves useful to first write equation (1) as:

yj,i,t
f(xj,i,t;β)

= exp{vj,i,t}. (2)

If there is no noise,
yj,i,t

f(xj,i,t;β) = 1, so vj,i,t = 0 and all countries with the same set of

xj,i,t, will have the same yj,i,t. In practice, of course, that is not - necessarily - the case.
and:

yj,i,t
f(xj,i,t;β)

= D0(xj,i,t,yj,i,t;β), (3)

where D0 is defined as the Euclidean distance between the predicted ŷj,i,t and the actual
yj,i,t for the same xj,i,t. That distance will be zero under two conditions. First, any
noise should on average be zero (and symmetrically distributed). Second, as mentioned,
all countries with the same set of xj,i,t should have the same yj,i,t. The first condition is
met when we assume a standard error term. The second condition is met if all countries
are equally efficient at handling natural hazards. If it is not met, there is inefficiency.
For now, let us denote that inefficiency by uj,i,t. Then we can write:

Do(xj,i,t,yj,i,t;β) = exp{vj,i,t − uj,i,t} (4)

Or equivalently:
1 = Do(xj,i,t,yj,i,t;β) · exp{uj,i,t − vj,i,t}. (5)

Recall that Do is the distance to the optimal mix of disaster outcomes (deaths, injured
people, material damage) for the given mix of hardware xj,i,t. As explained by Kumb-
hakar and Knox-Lovell (2000), since Do(xj,i,t,yj,i,t;β) ≤ 1, exp{uj,i,t− vj,i,t} ≥ 1. That
means that the second condition is only expected to hold if E(uj,i,t|uj,i,t − vj,i,t) = 0,
since E(vj,i,t) = 0 by its definition of being a normally distributed noise term with mean
zero. In the presence of inefficiency for at least some countries, E(uj,i,t|uj,i,t−vj,i,t) ≥ 0,
and uj,i,t is an output (i.e., hazard impact) oriented measure of technical efficiency, ex-
actly as in standard stochastic frontier analysis. Where we have made use of the second
technical aspect described above.

To turn equation (5) into a full-fledged empirical model, we turn to the first technical
aspect. Recall that we can use the reciprocal of the Euclidean norm of yj,i,t to capture the
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distance to the frontier in the multiple dimensions of yj,i,t. Again following Kumbhakar
and Knox-Lovell (2000), we introduce a parameter λ and make use of the fact that:

Do(xj,i,t, λyj,i,t;β) = λDo(xj,i,t,yj,i,t;β), λ > 0 (6)

The reciprocal of the Euclidean norm of yj,i,t then says that:

λ = |yj,i,t|−1 =
(
y1
j,i,t + y2

j,i,t + y3
j,i,t

)− 1
2 . (7)

And so we can write:

|yj,i,t|−1 ·Do(xj,i,t,yj,i,t;β) = Do(xj,i,t,
yj,i,t
|yj,i,t|

;β). (8)

At this stage, we have two more steps to go through before we can start estimating
our model. First, we must parameterize our model and propose an empirical specification.
Second, we must fine tune that empirical specification to further suit our needs in order
to assess how institutions affect the efficiency of disaster relief.

3.4. Empirical specification

To arrive at an empirical output distance frontier, we make use of two properties
of the output distance model: Do is linearly homogenous of degree 1 in all y and we
can write the distance function as a function of xj,i,t and yj,i,t, i.e., D = f(xj,i,t,yj,i,t).
Therefore, we have:

|y1
j,i,t|−1 ·Do(xj,i,t,yj,i,t;β) = f(xj,i,t, ỹj,i,t), (9)

where ỹj,i,t is now the normalized output vector of the remaining impacts, i.e.,

ỹj,i,t =

(
y2
j,i,t

y1
j,i,t

,
y3
j,i,t

y1
j,i,t

)
. (10)

The next step then consists of converting equation (9) into logs and employing a translog
specification for the functional form f . A major benefit of a flexible functional form like
the translog is that it will allow us to inspect both the interactions between the hardware
variables xj,i,t and the impact of a specific disaster yj,i,t as well as the interactions (and
trade-offs) between those disaster impacts at the frontier.

Before we do so, recall that Do(xj,i,t,yj,i,t;β) = exp{vj,i,t − uj,i,t}. Therefore,
lnDo = −uj,i,t and can be moved to the right hand side (where it then changes sign)
and estimated as part of the residual of the resulting translog model, so we arrive at:

− ln y1
j,i,t = α0 +

K∑
k=1

αk lnxkj,i,t +
3∑

m=2

βm ln ŷmj,i,t +
1

2

K∑
k=1

K∑
k′=1

αkk′ lnxkj,i,t lnxk
′

j,i,t

+
1

2

3∑
m=2

M∑
m′=2

βmm′ ln ŷmj,i,t ln ŷm
′

j,i,t +
1

2

K∑
k=1

3∑
m=2

αkm lnxkj,i,t ln ŷmj,i,t + uj,i,t + vj,i,t.

(11)

As the final steps in our modeling process, we revisit the unit of observation in our
analysis and explain how we introduce ‘software’ - institutional variables - in our model.
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3.5. Finetuning our approach

In our model, hazards j in countries i at time t are in the driver’s seat. These
hazards potentially cause damages, hurt, and kill people. It is up to countries to build
institutions to decrease the impact of these hazards. The best mix of institutions makes
a hazards less destructive. Of course, countries are also affected differently by disasters
for reasons that are beyond their control and/or hard to grasp in an empirical analysis.
Also, over time, developments such as, for example, new vintages of physical capital
may change the impact of a disaster. For those reasons, the first way we fine tune our
approach is by replacing the standard intercept α0 by αi and αt - country and year fixed
effects.10

Finally, in Equation (11), efficiency is uj,i,t ≥ 0. It has a truncated normal distri-
bution, |N(µj,i,t, σ

2
j,i,t)|, with the truncation point at µj,i,t. The larger µj,i,t, the less

efficient is the entire distribution containing all disasters on average. More important
for our purposes, in our model this truncation point is determined by an institutional
variable zi,t:

µj,i,t = δ + ηzi,t. (12)

Our coefficient of interest is η, which we expect to be negative. That is, better institutions
should reduce the efficiency of hazards in creating negative impacts. Note that zi,t does
not have a subscript j, since institutional variables are country specific but not disaster
type or event specific. Since institutional variables are often correlated, we estimate our
model with each of the institutional variables of choice separately, in order to be able to
quantify the effect of each individually. To account for a possible second-moment effect,
we further allow the variance of inefficiency to be determined by institutions as well:

σ2
j,i,t = exp(λ+ ψzi,t). (13)

Both equations (12) and (13) are estimated with maximum likelihood methods in a
single step with (11).

4. Results

In this section, we present our key results on the average efficiencies of countries in
disaster mitigation. Then, we turn to the role played by good governance in promoting
such efficiency.

4.1. How Does the “Hardware” Shape the Frontier?

Table 2 presents our results. Column (1) uses a simple OLS framework without
efficiency estimation as a starting point. Columns (2) to (7) use stochastic frontier
models and estimate the effects of governance quality on efficiencies. Results are robust
across models, as can be noticed from the similar signs and magnitudes of coefficients for
each variable.

10Note that we actually observe the precise month in which a disaster takes place. However, in our
entire data set there is no month (for any country) where multiple disasters of different types take place,
so it will not make a difference if we introduce month fixed effects.
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Before we discuss results in more detail, it is important to remember why we care
about the shape and the location of the frontier. We build a frontier using a vector
of what we have termed ‘hardware’ variables to separate the impact of wealth from
development. Given that the per capita income and concomitant amount of capital is
much higher in some countries than in others, our estimates place countries on or below
the frontier where they are surrounded by countries with a similar ‘hardware’ set. If,
later on, we find that more developed countries are more resilient to natural hazards
than less developed countries, this indicates that it is not sheer wealth, but also the way
this wealth has been put to use, for example, by investing in capital (buildings, etc.) of
a higher quality.

As for the estimates on the disaster intensities, the effects of earthquakes and storms
are highly statistically significant in all models, but with a small magnitude. For instance,
a 1 point (about one standard deviation at the mean) increase in earthquake magnitude
leads to a 0.35% increase in damage. 11 Similarly, a one standard deviation increase
in wind speed (about 26 km/h) causes a 0.13% to 0.16% increase in damage. Rainfall
shortage affects damage significantly in some models: the signs are uniform and the
economic magnitude is large. On average, a 10mm less in monthly rainfall from the mean
implies a 30% increase in damage.12 Using column (2) as an example, a 1% increase in
population density (number of people per km2) and GDP per capita (dollars) on average
leads to a 38% and 51% increase in damage (millions of dollars), respectively.

4.2. How Efficient are Countries in Mitigating the Impact of Disasters?

After discussing the shape and location of the frontier, we now turn to the distance
of countries to the frontier. We are interested in the global spread in efficiency scores for
two reasons. First, we want to know how much development correlates with efficiency -
after controlling for countries’ ‘hardware’. Second, the shape of the global efficiency dis-
tribution conveys us with an idea of the overall unconditional opportunities for countries
to advance in building natural hazard resilience.

Table 3 presents the efficiency value for each country averaged over the sample
period (1996 to 2010). The numbers reported in columns (1) to (5) are similar: they all
point out that countries like New Zealand, Switzerland, Austria, and the U.K. are quite
efficient in disaster relief. With efficiency values between 70% and 90%, these countries’
actual impacts are very close to the minimum impact frontier. Transition economies
such as China, India, and Brazil usually occupy a middle rank between 20th and 40th.
In general, the efficiency ranking is closely related to the development level, with more
developed nations ranking at the top. The last column using the polity score in the
stochastic frontier estimation, is less revealing. Not only is the ranking less intuitive, but
also efficiency values are generally very high. 13

11It is important to note that the Richter Scale is an exponential scale, i.e. a 6 point earthquake is
ten times more intense than a 5 degree earthquake. Therefore, we took the base-10 logarithm in the
estimations.

12Here, “Diff. monthly rainfall drought” means difference in monthly rainfall in mm from the long-run
monthly mean, 1979-2010. When interpreting this coefficient, it is important to note that the positive
sign means that more rainfall reduces the damage of drought, as expected; an excessive shortage of rain
increases the damage.

13A reason might be that the polity score was created to measure the durability of institutional

14



Table 2: Effects of Institutional Variables on Disaster Relief Efficiency Estimated by Output Distance
Frontier Method

(1) (2) (3) (4) (5) (6) (7)
OLS Government Corruption Voice and Regulatory Regime Polity

Frontier effectiveness control accountability quality durability score
Earthquake magnitude 0.110*** 0.124*** 0.117*** 0.122*** 0.120*** 0.099** 0.110***

(0.042) (0.040) (0.040) (0.040) (0.040) (0.041) (0.039)
Maximum wind speed 0.005*** 0.006*** 0.006*** 0.006*** 0.006*** 0.001 0.006***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Diff. monthly temperature -1.440 -1.234 -1.400 -1.752 -1.408 -1.469 -1.243
- drought (3.906) (3.801) (3.899) (4.165) (3.780) (3.960) (3.899)
Diff. monthly temperature -22.443 -25.878 -25.253 -20.229 -23.866 -28.589 -21.321
- extreme weather (19.712) (19.773) (20.056) (19.074) (19.051) (18.861) (18.107)
Diff. monthly rainfall -2.476 -2.751 -2.412 -3.026* -2.350 -2.450 -2.820*
- drought (1.702) (1.745) (1.774) (1.737) (1.659) (1.674) (1.655)
Diff. monthly rainfall 0.288 0.313 0.330 0.339 0.323 0.377 0.331
- flood (0.249) (0.233) (0.231) (0.230) (0.234) (0.231) (0.234)
η (inefficiency mean) -1.529** -1.252*** -1.585*** -0.997** -0.200*** -33.027

(0.641) (0.408) (0.520) (0.482) (0.056) (98.013)
ψ (inefficiency variance) -0.444 -0.631 -0.294 -0.452 0.003 1.826

(0.478) (0.413) (0.270) (0.519) (0.004) (4.033)
Controls Yes Yes Yes Yes Yes Yes Yes
Observations 654 654 654 654 654 569 654
Log Likelihood -1162 -1157 -1156 -1155 -1159 -1008 -1160
Wald χ2 1262 1255 1223 1277 1075 1375

Notes: This table reports the effects of countries’ institutional variables on their disaster relief efficiency using the output distance frontier method.
We include worldwide disaster events taking place between 1996M1 and 2010M12 and control for countries’ natural and economic pre-conditions.
The institutional variables include measures of government effectiveness, control of corruption, regime durability, voice and accountability, regulatory
quality, and the level of democracy (the polity score), as reported in the World Bank dataset. Natural pre-conditions, e.g. mean temperature
difference, mean precipitation difference, are from the EM-DAT database, and economic control variables (with interaction terms, not reported for
readability), e.g. population, capital stock, GDP per capita, country area, are from the Penn World Table. As we have three measures of disaster
damage (i.e. number of people killed, monetary damage, and number of people affected), we choose the output distance frontier method, a modified
stochastic frontier approach that helps us to estimate efficiency using a single equation. We impose a rather loose assumption that inefficiency
has a truncated-normal distribution while letting the model determine the location of the truncation point, which is a function of our institutional
variables. We manually adjusted the signs on coefficients of disaster variables such that they correspond to ln(damage) (the dependent variable
in the derived original regression equation is − ln(damage)). For each institutional variable, the effect on the mean of the inefficiency is reported
at the first two rows whereas the effect on the variance of the efficiency is reported at the second two rows. The standard errors are reported in
parentheses. All the regressions control for the country fixed effects.

To better understand the global picture, we plot the distribution of efficiencies for
all countries in Figure 3 for each institutional measure. The first five histograms unani-
mously show that there is a concentration in the low efficiency region. Moreover, a large
number of countries are either very efficient or very inefficient. The ‘missing’ middle con-
tains relatively few countries, suggesting that the transition from fragility to resilience is
not gradual.

4.3. How Does the “Software” Affect the Distance to the Frontier?

Given the differences in development, the large variation in estimated disaster relief
efficiencies suggests that a country’s “software” variables play a role in explaining this
heterogeneity. The lower part of Table 2 reports the estimated effects of institutional
variables on inefficiencies. A negative η indicates that the institutional factor z makes
the country less inefficient. Indeed, we find a significantly negative relationship between
disaster-relief inefficiency and institutional quality, for government effectiveness, control

frameworks. Hence, it captures the de jure aspect, which might be less informative related to our
question. The variability in the Polity index for countries at the very top or bottom of the ranking is
lost and coding of the Polity index can be discussed, particularly for occupied countries or countries in
a conflict situation; see Boese (2019) for a full discussion.
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Table 3: Efficiency Ranks

(1) (2) (3) (4) (5) (6)
Government Control Voice and Regulatory Regime Polity
effectiveness corruption accountability quality durability score

New Zealand 0.78 New Zealand 0.89 New Zealand 0.75 U.K. 0.76 New Zealand 0.77 Congo 0.93
Austria 0.78 Switzerland 0.82 Switzerland 0.73 New Zealand 0.74 Canada 0.75 Argentina 0.93
Switzerland 0.77 Austria 0.82 Canada 0.72 Switzerland 0.70 U.K. 0.75 Malaysia 0.93
Canada 0.77 Canada 0.82 Australia 0.70 U.S. 0.69 Australia 0.74 Russia 0.93
U.K. 0.73 Germany 0.79 Belgium 0.68 Austria 0.69 Switzerland 0.74 Colombia 0.93
Germany 0.72 Australia 0.78 Germany 0.68 Australia 0.68 Belgium 0.66 Botswana 0.93
Australia 0.72 U.K. 0.78 Austria 0.66 Canada 0.68 Saudi Arabia 0.19 South Africa 0.93
Spain 0.71 U.S. 0.65 Spain 0.66 Chile 0.66 Italy 0.08 Bolivia 0.93
U.S. 0.70 Chile 0.60 U.K. 0.66 Germany 0.66 China 0.05 France 0.92
Belgium 0.67 Belgium 0.59 U.S. 0.64 Belgium 0.63 Austria 0.04 India 0.92
France 0.66 France 0.56 France 0.62 Spain 0.59 Japan 0.03 Italy 0.92
Japan 0.55 Spain 0.52 Slovenia 0.59 Israel 0.56 India 0.03 Japan 0.92
Chile 0.52 Japan 0.49 Hungary 0.58 Hungary 0.55 Israel 0.03 Taiwan (China) 0.92
Israel 0.52 Israel 0.44 Italy 0.57 Taiwan (China) 0.54 Colombia 0.02 Spain 0.92
Malaysia 0.47 Slovenia 0.42 Poland 0.57 France 0.52 Indonesia 0.01 Peru 0.92
Taiwan (China) 0.44 Taiwan (China) 0.32 Japan 0.55 Japan 0.49 Viet Nam 0.01 Poland 0.92
Slovenia 0.43 Botswana 0.31 Chile 0.51 Italy 0.49 Venezuela 0.00 Belgium 0.92
Hungary 0.40 Hungary 0.28 Taiwan (China) 0.49 Poland 0.47 France 0.00 Mauritius 0.92
ROK 0.34 Mauritius 0.28 Mauritius 0.49 Slovenia 0.46 Botswana 0.00 Australia 0.92
Italy 0.34 South Africa 0.27 South Africa 0.46 Botswana 0.41 Malaysia 0.00 Ghana 0.92
South Africa 0.31 Poland 0.25 Botswana 0.44 ROK 0.40 Mauritius 0.00 Israel 0.92
Poland 0.30 Italy 0.25 Israel 0.44 Malaysia 0.39 Morocco 0.00 Austria 0.92
Botswana 0.27 Malaysia 0.24 ROK 0.42 Mauritius 0.38 Turkey 0.00 Slovenia 0.92
Mauritius 0.23 ROK 0.23 Brazil 0.37 South Africa 0.37 Spain 0.00 New Zealand 0.92
Mexico 0.19 Morocco 0.15 India 0.33 Peru 0.35 Kenya 0.00 Canada 0.92
Turkey 0.16 Brazil 0.15 Argentina 0.31 Mexico 0.33 South Africa 0.00 Hungary 0.92
China 0.15 Madagascar 0.15 Mexico 0.26 Turkey 0.32 Argentina 0.00 Switzerland 0.92
Argentina 0.15 Saudi Arabia 0.15 Philippines 0.24 Uganda 0.30 Bolivia 0.00 U.K. 0.92
Colombia 0.14 Colombia 0.14 Bolivia 0.22 Colombia 0.29 Malawi 0.00 Brazil 0.92
Philippines 0.14 Turkey 0.13 Mozambique 0.18 Saudi Arabia 0.29 Pakistan 0.00 U.S. 0.92
India 0.14 Ghana 0.13 Madagascar 0.18 Brazil 0.28 Brazil 0.00 Germany 0.92
Brazil 0.13 Mexico 0.13 Malawi 0.17 Philippines 0.26 Philippines 0.00 Burkina Faso 0.92
Ghana 0.12 Peru 0.11 Colombia 0.16 Burkina Faso 0.22 Zimbabwe 0.00 Mexico 0.92
Indonesia 0.11 Mozambique 0.11 Turkey 0.15 Indonesia 0.21 Taiwan (China) 0.00 Kenya 0.92
Viet Nam 0.09 Venezuela 0.10 Indonesia 0.14 China 0.21 Madagascar 0.00 Venezuela 0.92
Mozambique 0.09 Philippines 0.10 Burkina Faso 0.13 Malawi 0.20 Russia 0.00 Kyrgyzstan 0.91
Kazakhstan 0.09 Burkina Faso 0.10 Kenya 0.12 Kazakhstan 0.20 Mexico 0.00 Angola 0.89
Malawi 0.09 Indonesia 0.09 Russia 0.11 India 0.19 Poland 0.00 Chile 0.88
Pakistan 0.09 Viet Nam 0.08 Morocco 0.10 Russia 0.19 Hungary 0.00 Zimbabwe 0.88
Venezuela 0.08 Bolivia 0.08 Nigeria 0.09 Bolivia 0.19 Slovenia 0.00 Uganda 0.86
Bolivia 0.08 Pakistan 0.08 Pakistan 0.06 Madagascar 0.19 Mozambique 0.00 Madagascar 0.86
Kyrgyzstan 0.07 Ethiopia 0.07 Uganda 0.05 Kyrgyzstan 0.17 Ghana 0.00 Nigeria 0.83
Madagascar 0.07 Kazakhstan 0.07 Kazakhstan 0.05 Pakistan 0.16 Kazakhstan 0.00 Pakistan 0.82
Uganda 0.06 Russia 0.06 Chad 0.05 Venezuela 0.15 Nigeria 0.00 Philippines 0.80
Burkina Faso 0.06 Uganda 0.06 Zimbabwe 0.04 Viet Nam 0.15 Peru 0.00 Mozambique 0.79
Ethiopia 0.05 Kyrgyzstan 0.06 Ethiopia 0.04 Nigeria 0.12 Chad 0.00 Kazakhstan 0.76
Zimbabwe 0.04 Chad 0.05 China 0.03 Chad 0.12 Kyrgyzstan 0.00 Malawi 0.64
Chad 0.04 Zimbabwe 0.05 Viet Nam 0.03 Ethiopia 0.10 Uganda 0.00 Indonesia 0.62
Angola 0.02 Congo 0.04 Angola 0.02 Zimbabwe 0.06 Angola 0.00 Chad 0.58

Notes: This table lists the ranks of countries’ disaster relief efficiencies using all the institutional variables in this study. Ranks are aquired using the stochastic frontier model.
The efficiency value for each country is the yearly average over 1996 to 2010.
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Figure 3: Distribution of Efficiencies. We plot histograms for disaster relief efficiency (maximum score is 1).
We estimate a stochastic frontier model where the inefficiency term u follows a truncated normal distribution.
Crucially, we let the institutional variable determine both the truncation point and the variance. Each set
of efficiency values is based on an estimation with one of the six institutional variables, i.e. government
effectiveness, control of corruption, voice and accountability, regulatory quality, regime durability, and polity
score.
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of corruption, regime durability, voice and accountability, and regulatory quality. Mean-
while, our estimates also show that institutional quality has no impact on reducing the
volatility of efficiencies. None of the estimated ψ’s are significant.

To quantify the relationship between institutions and efficiencies, we draw a scatter
plot of institutional quality values and the calculated efficiencies for each regression in
Figure 4. We find a significant economic effect of institutions on efficiency. Referring to
summary statistics in Table 1, a one standard deviation in the government effectiveness
corresponds to a 20% to 29% efficiency change, while a one standard deviation in the
control of corruption score indicates a 24% to 33% efficiency change. We observe the same
pattern for institutional quality variables like voice and accountability and regulatory
quality. Furthermore, the slope of each of the plotted curves becomes steeper as the
scores increase: the effects of governance quality are even more pronounced for countries
that already have good quality institutions.14 The last two sub-figures in Figure 3 show
that there is little variance in disaster relief efficiency to explain when it comes to regime
durability and the polity score.

Finally, considering that our analysis has controlled for a large set of “hardware”
variables including country fixed effects, it is worth noting that the estimated changes
in efficiency mainly reflect variations in institutional quality over time. Therefore, the
evidence in Figure 4 contains a strong message to countries about the need to reform
institutions if they want - and need - to improve how they handle natural hazards. This
message gains urgency when the incidence and intensity of natural hazards tends to rise
with climate change and increases in population, capital, and economic activity located
in hazard prone areas.

4.4. From Efficiencies to Real Damages

Our analysis is motivated by the enormous impact natural hazards can have on
people and capital. Subsequently, we have analyzed the role of institutions as ways to
mitigate that impact. Now it is time to close the loop, and ask what an improvement in
disaster relief efficiency would really imply for local economies and people? We therefore
complete our reasoning by translating improvements in efficiency back to ‘real’ variables,
i.e., the number of people killed, affected, and economic damages.

Figure 5 displays scatter plots to show the relationship between efficiency and the
consequences of disasters. Results are based on regressions using government effective-
ness, control of corruption, voice and accountability, and regulatory quality as these have
proven most informative in explaining efficiency differences. We find a significant nega-
tive relationship between efficiency levels and the number of people killed (affected) and
a significant positive relationship between efficiency and material damages. On average,
a 10% efficiency increase implies a 0.25% (0.3%) drop in the number of people killed
(affected) and a 0.7% increase in material damages. Taking our sample averages of disas-
ters as an admittedly very crude measure, this implies that a country with a 10% higher

14It is important to note that from a technical point of view, this fast increasing curve is expected
by construction. Looking at equations 12 and 11, the effect of the institutional variable on efficiency

is
dej,i,t
dzj,i,t

=
dej,i,t
duj,i,t

duj,i,t

dzj,i,t
= − exp(−uj,i,t)η. As inefficiency decreases from large values towards zero,

the exponential term increases even faster. In short, the rapidly increasing curve is mainly caused by
transforming from inefficiency to efficiency using ej,i,t = exp(−uj,i,t).
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Figure 4: Disaster Relief Efficiency and Institutional Variables. This figure shows the scatter plots of the
relationship between our institutional variables and the disaster relief efficiency estimated by the stochastic
output distance model. The plots show a significant positive relationship between disaster relief efficiency and
our institutional quality measures, e.g. government effectiveness, control of corruption, regime durability, voice
and accountability.
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Figure 5: Disaster Relief Efficiency and Cost Variables. This figure shows scatter plots of the relationship
between efficiency and disaster consequences (number of people killed, number of people affected, and damage
in millions of dollars, all in log).

disaster relief efficiency can save one more life and protect four more people at the cost
of $8 million.

As countries improve their governance quality and disaster-relief capacity, they em-
phasize preventing human losses and will suffer more material damages as a consequence,
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resulting in a trade-off between saving people’s lives and reducing material damages.15

5. Conclusion

It is a long known fact that building and maintaining high quality institutions is
crucial for long-term growth. In this paper we show that those same institutions also play
an important role in short-term resilience to natural hazards shocks. After constructing
and analyzing a comprehensive data set that provides us with hazard intensities and
different measures of damage, we introduce a model that helps us to evaluate and rank
countries’ disaster relief efficiency. The same model also allows us to explore in more
detail how institutional variables contribute to a higher level of efficiency.

We show that countries differ a lot in their disaster relief efficiencies, with richer
countries performing better than poorer countries. We also show richer countries incur
higher capital losses in exchange for fewer lives affected. Countries with institutions of
higher quality indeed have higher disaster relief efficiencies. Most important are indica-
tors of good governance, whereas the de jure indicator is not informative. In real terms,
taking our sample disaster averages as a crude measure, a country with a 10% higher
disaster relief efficiency can save one more life and protect four more people at the cost
of $8 million in capital losses.

15Note that both the killed and affected numbers are not scaled by the material damage as we did in
the model. After scaling the two variables, the negative relationship becomes stronger as can be seen
from Figure .7 in Appendix 5. This shows that the relationships are robust.
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Appendix A

To reveal the relationships among our development levels and institutional measures,
we present the table and heat map for the correlation matrix in Table .4 and Figure .6.
The illustrations show that any one development level indicator (except for population)
is usually positively related to other measures for development as well as institutional
quality. One important message here is perhaps that the polity score is positively corre-
lated with other institutional measures and the values are similar to those of others. This
excludes the possibility that the insignificant contribution of polity score on efficiency
found in later sections is due to low correlation.
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Figure .6: Correlation Matrix. This figure is a visualization of the correlation matrix in Table .4.
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Figure .7: Disaster Relief Efficiency and Cost Variables. This figure shows the scatter plots of the rela-
tionship between efficiency and disaster consequences (number of people killed/damage, number of people
affected/damage, and damage, all in log form).
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