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Abstract 
 
This paper examines the role of pricing errors in linear factor pricing models, allowing for 
observed strong and semi-strong factors, and latent weak factors. It focusses on the estimation of 
∅k = λk − μk which plays a pivotal role, not only in the estimation of risk premia but also in tests 
of market efficiency, where λk and μk are respectively the risk premium and the mean of the kth 
risk factor. It proposes a two-step estimator of ∅k with Shanken type bias-correction, and derives 
its asymptotic distribution under a general setting that allows for idiosyncratic pricing errors, weak 
missing factors, as well as weak error cross-sectional dependence. The implications of semi-strong 
factors for the asymptotic distribution of the proposed estimator are also investigated. Small 
sample results from extensive Monte Carlo experiments show that the proposed estimator has the 
correct size with good power properties. The paper also provides an empirical application to a 
large number of U.S. securities with risk factors selected from a large number of potential risk 
factors according to their strength. 
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1 Introduction

The linear factor pricing model (LFPM), widely used in finance, explains the time series

of excess returns on each of i = 1, 2, ..., n securities in terms of a set of observed risk

factors, fkt, k = 1, 2, ..., K, t = 1, 2..., T . The popular Fama and MacBeth (1973, FM)

two-pass procedure first runs regressions of individual excess returns on the risk factors

to estimate their loadings, βik, which are then used in the second pass to estimate the

risk premia of fkt, namely λk, using cross section regressions of the time averages of

security excess returns on the estimated factor loadings. In this paper we focus on

estimation of φk = λk − µk, where µk = E(fkt) can be readily estimated from time

series data on risk factors and does not require knowing the factor loadings (and hence

is not subject to Shanken bias-correction). φk plays a pivotal role both in estimation of

the risk premia as well as in tests of alpha. This follows since ai = c+
∑K

k=1 βikφk + ηi,

where ai is the intercept in the ith return regression, c is the zero beta return, βikφk is

what we refer to as the spanning error of the kth risk factor, and ηi is the idiosyncratic

pricing error specific to security i, originally introduced by Ross (1976). Under market

effi ciency ai = 0 (or ai = c if the risk free rate is fixed but unknown), and the spanning

error, βikφk, must be zero for k = 1, 2, ..., K, which in turn implies that φk = 0,

when the associated risk factor, fkt, is suffi ciently strong. A two-step estimator of

φ = (φ1, φ2, ..., φK)′ can be obtained from a regression of the estimated intercepts,

âi, on the estimated loadings, β̂ik, from the LFPM. As with the two-step estimator

of λk, the two-step estimator of φk will also be biased, and requires bias-correction.

Accordingly, we follow Shanken (1992) and propose a bias-corrected estimator of φ,

which we denote by φ̃nT .

The main theoretical contribution of the paper is to develop the asymptotic distri-

bution of φ̃nT under a wide variety of assumptions regarding the idiosyncratic pricing

errors, error cross-sectional dependence, and the presence of missing (latent) factors.

The paper also investigates the implications of factor strengths for the precision with

which φ0 (the true value of φ) can be estimated. The LFPM, following Chamberlain

and Rothschild (1983), assumes that all the observed factors are strong and the eigen-

values of the covariance matrix of the errors are bounded, and hence do not admit a

factor structure. There has been concern in the literature that the factors may be weak
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or not pervasive in that many of the βik may be zero. In our analysis we use a measure

of the strength of factor k, αk, developed in Bailey, Kapetanios, and Pesaran (2016,

2021), which can be estimated from the proportion of non-zero coeffi cients, βik, of the

factor in the LFPM. Similar strength measures can be used to measure the degree of

pervasiveness of missing factors and pricing errors. Strong factors have strength equal

one, semi-strong between one and a half, and weak factors less than a half. Use of this

measure allows us to be precise about the degree of pervasiveness and show how the

strengths of the observed factors, the missing factors and the pricing errors influence

estimation and inference about risk premia.

As noted above, the intercepts in the LFPM return regressions, ai, can be written in

terms of two types of pricing error as: ai = c+
∑K

k=1 βikφk+ηi, where c is the zero beta

return, βikφk is a spanning error related to factor k, and ηi is an idiosyncratic pricing

error specific to security i. The risk premium of factor fkt, λk = φk + µk, is the sum of

the spanning error parameter, φk, and the factor mean, µk = E(fkt). In his theoretical

derivations, Ross (1976) assumed the factors had mean zero: µk = 0, so λk = φk.

Shanken (1992) considered risk premia of traded factors under market effi ciency (setting

φk = 0), and hence λk = µk. The factor mean, µk, can be estimated consistently at the

regular
√
T rate directly using time series data {fkt, for t = 1, 2, ..., T} alone.

The main theoretical results of the paper are set out around five theorems under

a number of key assumptions, with proofs provided in the Appendix. Theorem 1

shows that the standard Fama-MacBeth estimator is valid only when there are no

pricing errors and when n/T → 0. Theorem 2 shows that the Shanken bias-corrected

estimator of λk continues to be consistent for a fixed T as n→∞, even in presence of
weak pricing errors and weak missing common factors. Theorem 3 provides conditions

under which the bias-corrected estimator, φ̃nT , is consistent for φ0, and derives the

asymptotic distribution of φ̃nT , assuming the observed factors are strong. Theorem

4 extends the results to the case with semi-strong factors and considers the relevance

of factor strength for the precision with which φ can be estimated. Finally, Theorem

5 gives conditions for consistent estimation of the asymptotic variance of φ̃nT , using

a suitable threshold estimator of the covariance matrix. In summary, the asymptotic

distribution of the bias corrected estimator, φ̃nT , is established in presence of missing

factors and pricing errors, subject to certain regularity conditions on the strength of
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the missing factors and the pricing errors.

The small sample properties of φ̃nT are investigated using extensive Monte Carlo

experiments, allowing for a mixture of strong and semi-strong observed factors, latent

factors, pricing errors, GARCH effects and non-Gaussian errors. Small sample results

are in line with our theoretical findings, and confirm that the bias-corrected estimator,

φ̃nT , has the correct size and good power properties for samples with time series di-

mensions of T = 120 and T = 240. The results are quite robust to non-Gaussian errors,

GARCH effects, pricing errors, missing weak factors and various forms of error cross

section dependence. In line with our theoretical findings, the Monte Carlo evidence

also showed that the precision with which φk is estimated falls with αk, the strength

of the kth factor.

In our theoretical derivations and Monte Carlo investigations we assume that the

observed risk factors are known. In practice they have to be selected from a large set of

potential factors. Given that both the theory and Monte Carlo indicate the importance

of factor strength, in the empirical application factor selection is based on a threshold

for factor strength. This procedure is applied in a high dimensional setting with both

a large number of securities (n from 1, 090 to 1, 175) and potential risk factors (m from

177 to 189). Various procedures could be used to determine whether a factor had a non-

zero coeffi cient in each return regression. We used Lasso. A factor strength threshold

of 0.75 produced a small number of plausible factors always including the three Fama-

French factors. Estimates of φ0 were obtained with samples of length T = 240 and

T = 120 months, ending in four years, 2015, 2017, 2019, 2021. The spanning error

parameter of the market factor was only significant in the T = 240 sample ending in

2021, which included the COVID-19 pandemic. The joint null hypothesis that φ0 = 0

was rejected in all four periods, suggesting market ineffi ciency. This was mainly due to

two risk factors, a measure of short selling suggested by Dechow, Hutton, Meulbroek,

and Sloan (2001), and the Fama-French value factor, HML.

Related Literature. There is a large literature that relates to our research agenda.
On estimation of risk premia, following Fama and MacBeth and Shanken (1992), esti-

mation of risk premia is further examined by Shanken and Zhou (2007), Kan, Robotti,

and Shanken (2013), and Bai and Zhou (2015). The survey paper by Jagannathan,

Skoulakis, and Wang (2010) provide further references.
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Testing for market effi ciency dates back to Jensen (1968) who proposes testing

ai = 0 for each i separately. Gibbons, Ross, and Shanken (1989) provide a joint test

for the case where the errors are Gaussian and n < T . Gagliardini, Ossola, and Scaillet

(2016) develop two-pass regressions of individual stock returns, allowing time-varying

risk premia, and propose a standardised Wald test. Raponi, Robotti, and Zaffaroni

(2019) propose a test of pricing error in cross section regression for fixed number of

time series observations. They use a bias-corrected estimator of Shanken (1992) to

standardise their test statistic. Ma, Lan, Su, and Tsai (2020) employ polynomial spline

techniques to allow for time variations in factor loadings when testing for alphas. Feng,

Lan, Liu, and Ma (2022) propose a max-of-square type test of the intercepts instead

of the average used in the literature, and recommend using a combination of the two

testing procedures. He, He, Huang, and Zhou (2022) propose two statistics, a Wald

type statistic which require n and T to be of the same order of magnitude and a

standardised t ratio. Kleibergen (2009) considers testing in the case where the loadings

are small. Pesaran and Yamagata (2012, 2023) consider testing that the intercepts in

the LFPM are zero when n is large relative to T and there may be non Gaussian errors

and weakly cross-correlated errors.

Strong and weak factors in asset returns are considered by Anatolyev andMikusheva

(2022) and Connor and Korajczyk (2022). Beaulieu, Dufour, and Khalaf (2020) discuss

the lack of identification of risk premia when many of the loadings are zero. There has

also been concern about the consequences of omitted factors. Giglio and Xiu (2021)

discuss the problem and try to deal with it using a three-pass method which is valid even

when not all factors in the model are specified or observed using principal components

of the test assets. Onatski (2012) and Lettau and Pelger (2020a,b) provide extensive

discussions of weak factor and latent factors, respectively.

A large number of risk factors have been considered in the empirical literature.

We use the Fama and French (1993) three factors in our Monte Carlo design. In our

empirical application we use the five factors proposed by Fama and French (2015)

and the large set of factors provided by Chen and Zimmermann (2022) . Harvey and

Liu (2019) document over 400 factors published in top finance journals. Dello Preite,

Uppal, Zaffaroni, and Zviadadze (2022) argue that despite the hundreds of systematic

risk factors considered in the literature, there is still a sizable pricing error and that
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this can be explained by asset specific risk that reflects market frictions and behavioral

biases. There is a large Bayesian literature, including Chib, Zeng, and Zhao (2020), and

Hwang and Rubesam (2022) on selecting factor models. The issue of factor selection

is also addressed by Fama and French (2018)

The rest of the paper is organized as follows: Section 2 provides the framework for

estimation of φ0. Section 3 sets out the assumptions and states the main theorems.

Section 4 presents the Monte Carlo (MC) design, its calibration and a summary of the

main findings. Section 5 discusses the problem of factor selection from a large number

of potential factors. Section 6 gives the empirical application using monthly data on

a large number of individual US stocks and risk factors over the period 1996-2021.

Section 7 provides some concluding remarks.

Detailed mathematical proofs are given in an online mathematical Appendix. Fur-

ther information on data sources, MC calibration,and MC results, plus some supple-

mentary material for the empirical application are provided in two online supplements,

A and B.

2 Estimation of risk premia using linear factor pric-

ing model

We follow the literature and consider the LFPM

rit = Rit − rft = ai + β′ift + uit, (1)

for i = 1, 2, ..., n and t = 1, 2, ..., T , where Rit is the return on security i, r
f
t the risk

free rate, and rit is the excess return explained in terms of the K×1 vector of observed

factors ft = (f1t, f2t, ..., fKt)
′. The intercept ai and the K × 1 vector of factor loadings,

βi = (βi1, βi2, ..., βiK)′, are unknown. The idiosyncratic errors, uit have zero means and

are assumed to be serially uncorrelated. The observed factors, ft, are assumed to be

covariance stationary with the constant mean µ0 = E (ft).

It will prove convenient to write (1) in matrix notation by stacking the excess

returns by t = 1, 2, ..., T , for each security i

ri◦ = aiτ T + Fβi + ui◦, for i = 1, 2, ..., n, (2)

where ri◦ = (ri1, ri2, ..., riT )′, F = (f1, f2, ..., fT )′, ui◦ = (ui1, ui2, ..., uiT )′, and τ T is a
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T × 1 vector of ones. Similarly, stacking the excess returns by i for each t we have

r◦t = an +Bnft + u◦t, for t = 1, 2, ..., T, (3)

where r◦t = (r1t, r2t, ...., rnt)
′, an = (a1,a2, ...,an)′, Bn = (β◦1,β◦2, ...,β◦K), β◦k =

(β1k, β2k, ..., βnk)
′, and u◦t = (u1t, u2t, ...., unt)

′, with Vu = E (u◦tu
′
◦t). Under the Ar-

bitrage Pricing Theory (APT) due to Ross (1976) the pricing errors, ηi are defined

by

ηi = E (rit)− c− β′iλ0, for i = 1, 2, ..., n (4)

where c is zero-beta expected excess return, λ0 is the K×1 vector of risk premia. Ross

assumes that the pricing errors are bounded such that
n∑
i=1

η2
i <∞. (5)

The focus of the literature has been on testing for alpha, ai = 0, and the estimation of

the risk premia, λ0, using panel data on excess returns, {rit, i = 1, 2, ..., n; t = 1, 2, ..., T} ,
and F, the T ×K matrix of observations on the factors.

2.1 Fama-MacBeth and Shanken estimators of risk premia

The risk premia are usually estimated using a two-pass procedure suggested by Fama

and MacBeth (1973). The first-pass runs time series regressions of excess returns, rit,

on the K observed factors to give estimates of the factor loadings, βi :

β̂iT = (F′MTF)
−1

F′MT ri◦. (6)

The second-pass runs a cross section regression of average returns, r̄i◦ = T−1
∑T

t=1 rit

on the estimated factor loadings, to obtain the FM estimator of λ0 :

λ̂nT =
(
B̂′nTMnB̂nT

)−1

B̂′nTMnr̄n◦, (7)

where B̂nT = (β̂1T , β̂2T , ..., β̂nT )′, r̄n◦ = (r̄1T , r̄2T , ..., r̄nT )′, MT = IT − T−1τ Tτ
′
T , τ T

is a T -dimensional vector of ones, Mn = In − n−1τ nτ
′
n, and τ n is an n-dimensional

vector of ones.

As is well known, when T is finite FM’s two-pass estimator is biased due the errors

in estimation of factor loadings that do not vanish. The small T bias of the two-pass

estimator of λ0 has been a source of concern in the empirical literature. Under standard

regularity conditions and as n→∞, we have

λ̂nT − λ0 →p

[
Σββ +

σ2

T

(
F′MTF

T

)−1
]−1(

ΣββdfT −
σ2

T

(
F′MTF

T

)−1

λ0

)
, (8)
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where

Σββ = lim
n→∞

(
n−1B′nMnBn

)
, dfT = µ̂T − µ0, and σ2 = lim

n→∞
n−1

n∑
i=1

σ2
i > 0. (9)

The bias of λ̂nT is due to terms that involve dfT and σ2. Following Shanken (1992),

σ2
n can be consistently estimated (for a fixed T ) bŷ̄σ2

nT =

∑T
t=1

∑n
i=1 û

2
it

n(T −K − 1)
, (10)

where

ûit = rit − âiT − β̂
′
iT ft, (11)

and as before âiT and β̂iT are the OLS estimators of ai and βi. Using these results the

bias-corrected version of the two-pass estimator is given by1

λ̃nT = H−1
nT

(
B̂′nTMnr̄n◦

n

)
, (12)

where

HnT =
B̂′nTMnB̂nT

n
− T−1̂̄σ2

nT

(
F′MTF

T

)−1

. (13)

When all the risk factors are strong, under certain regularity conditions, there exists a

fixed T0 such that for all T > T0, then

p lim
n→∞

(
λ̃nT

)
= λ∗T = λ0 + (µ̂T − µ0) . (14)

Shanken refers to λ∗T as "ex-post" risk premia to be distinguished from λ0, referred to

as "ex ante" risk premia. See also Section 3.7 of Jagannathan, Skoulakis, and Wang

(2010).

In this paper we exploit Shanken’s bias correction procedure by applying it to φ0=

λ0−µ0 which we identify directly in terms of the observables. To this end, taking

expectations of both sides of equation (1) and using the resultant expression for E(rit)

in (4), we have E (rit) = c+ β′iλ0 + ηi =ai + β′iµ0, which in turn yields

ai = c+ β′iφ0 + ηi, for i = 1, 2, ..., n. (15)

Therefore, φ0 = λ0 − µ0 can be identified from the regression of ai on βi for i =

1, 2, ..., n, so long as the idiosyncratic pricing errors, ηi, are suffi ciently weak relative

to the strengths of the risk factors in a sense which will be made precise below. Under

market effi ciency we must have β′iφ0 = 0, for all i with ηi, i = 1, 2, ..., n suffi ciently

bounded such that the APT condition given by (5) is met. Accordingly, we refer to

1See also Shanken and Zhou (2007), Kan, Robotti, and Shanken (2013), and Bai and Zhou (2015),
and the survey paper by Jagannathan, Skoulakis, and Wang (2010) for further references.
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{β′iφ0, i = 1, 2, ..., n} as spanning errors, since they are spanned by the factor loadings,
and refer to {ηi, i = 1, 2, ..., n} as the idiosyncratic pricing errors. Most tests of alpha
developed in the literature do not distinguish between these two types of pricing errors

and focus on testing {ai = 0, i = 1, 2, ..., n}, see the discussion in the introduction.
Estimation of c and φ0 and inference about their statistical significance complement

the tests of alpha (ai = 0) that do not distinguish between spanning and idiosyncratic

pricing errors. Further, tests on c and the individual elements of φ0 also help with the

interpretation of the test outcomes by identifying particular risk factors that might be

behind the non-zero spanning errors.

2.2 Estimation of φ0

In view of (15), the estimation of φ0 can be carried out following a two-step procedure

whereby in the first step ai and βi are estimated from the least squares regressions

of rit on an intercept and ft, and these are then used in a second step regression to

estimate φ0. Specifically,

φ̂nT =
(
B̂′nTMnB̂nT

)−1

B̂′nTMnânT , (16)

where ânT = (â1T ,â1T , ...,ânT )′ = r̄nT−B̂nT µ̂T , and as before B̂nT = (β̂1T , β̂2T , ..., β̂nT )′.

This estimator is consistent for φ0 so long as n and T → ∞, and bias-corrections are
necessary to ensure the large n consistency of the estimator when T is fixed. A Shanken

type bias-corrected estimator of φ0 is given by

φ̃nT = H−1
nT

[
B̂′nTMnânT

n
+ T−1̂̄σ2

nT

(
F′MTF

T

)−1

µ̂T

]
, (17)

whereHnT and ̂̄σ2

nT are given by (13) and (10), respectively. It is also easily established

that

φ̃nT = λ̃nT − µ̂T , (18)

and for a fixed T and as n→∞, we have
p lim
n→∞

φ̃nT = p lim
n→∞

λ̃nT − µ̂T .
Hence, upon using (14)

p lim
n→∞

φ̃nT = λ0 + (µ̂T − µ0)− µ̂T = λ0 − µ0=φ0, (19)
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and there exists a fixed T0 such that for all T > T0, φ̃nT converges to φ0 as n → ∞.
Also using (14) and (18), and noting that λ0 − µ0 = φ0, interestingly we have

λ̃nT − λ∗T = φ̃nT + µ̂T − λ∗T = φ̃nT − φ0.

So inference using the Shanken bias-corrected estimator of λ around λ∗T , is the same

as making inference using φ̃nT around φ0.

The asymptotic distribution of φ̃nT depends on both n and T . Assuming the

observed factors are strong and under certain regularity conditions, to be introduced

below, we have √
nT
(
φ̃nT − φ0

)
→d N

(
0,Σ−1

ββVξΣ
−1
ββ

)
, (20)

where

Vξ =
(
1 + λ′0Σ

−1
f λ0

)
p lim
n→∞

[
n−1B′nMnVuMnBn

]
.

The variance of φ̃nT is consistently estimated by
̂

V ar
(
φ̃nT

)
= T−1n−1H−1

nT V̂ξ,nTH−1
nT , (21)

where HnT is given by (13),

V̂ξ,nT = (1 + ŝnT )
(
n−1B̂′nMnṼuMnB̂n

)
, (22)

and

ŝnT = λ̃
′

nT

(
F′MTF

T

)−1

λ̃nT , (23)

λ̃nT is defined by (12), and Ṽu is a suitable estimator of Vu = E (u◦tu
′
◦t). How to

estimate Vu and the conditions under which V ar
(
φ̃nT

)
is consistently estimated by

̂
V ar

(
φ̃nT

)
is discussed in sub-section 3.2.

Note that even when Vu = σ2IT the variance of φ̃nT does not reduce to σ
2Σ−1

ββ , the

standard least squares formula used for the case of known factor loadings. When the

loadings are estimated the scaling term
(
1 + λ′0Σ

−1
f λ0

)
is required and its neglect can

lead to serious over-rejection even if n/T → 0 as n and T →∞.

2.3 Factor strength

In this paper we deviate from the standard literature and allow the observed and

latent factors to have different degrees of strength, depending on how pervasively they

impact the security returns. Bailey, Kapetanios, and Pesaran (2021) define the strength

of factor, fkt, in terms of the number of its non-zero factor loadings. For a factor to be
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strong almost all of its n loadings must differ from zero. Given our focus on estimation

of risk premia, we adopt the following definition which directly relates to the covariance

of βi. See also Chudik, Pesaran, and Tosetti (2011).

Definition 1 (Factor strengths) The strength of factor fkt is measured by its degree of
pervasiveness as defined by the exponent α

k
in

n∑
i=1

(
βik − β̄k

)2
= 	(nαk), (24)

and 0 < αk ≤ 1. We refer to {αk, k = 1, 2, ..., K} as factor strengths. Factor fkt
is said to be strong if αk = 1, semi-strong if 1 > αk > 1/2, and weak if 0 ≤ αk ≤
1/2. Condition (24) applies irrespective of whether the loadings, βik, are viewed as

deterministic or stochastic.

In the above definition 	p (nαk) denotes the rate at which additional securities add

to the factor’s strength and αk can be viewed as a logarithmic expansion rate in terms

of n and relates to the proportion of non-zero factor loadings. In the literature it is

commonly assumed that the covariance matrix of factor loadings defined by

Σββ = p lim
n→∞

[
n−1

n∑
i=1

(
βi − β̄n

) (
βi − β̄n

)′]
, (25)

is positive definite, where β̄n = n−1
∑n

i=1 βi = (β̄1, β̄2, ..., β̄k)
′. For Σββ to be positive

definite matrix it is necessary that all the K risk factors under consideration are strong

in the sense that

p lim
n→∞

[
n−1

n∑
i=1

(
βik − β̄k

)2

]
> 0, for k = 1, 2, ..., K. (26)

In terms of our definition of factor strength, Σββ will be positive definite if all the

observed factors are strong, namely if αk = 1 for k = 1, 2, ..., K. However, such an

assumption is quite restrictive and is unlikely to be satisfied for many risk factors being

considered in the literature. Bailey, Kapetanios, and Pesaran (2021) show that, apart

from the market factor, only a handful of 144 factors in the literature considered by

Feng, Giglio, and Xiu (2020) come close to being strong.

2.4 Missing factor

We now turn to the structure of the errors, uit, in the returns equations, and consider

two possible sources of error cross-sectional dependence: a missing or latent factor and
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production networks. The issue of missing factors has been investigated in the recent

literature by Giglio and Xiu (2021) and Anatolyev and Mikusheva (2022). The issue of

production networks has been investigated in the recent literature by Herskovic (2018),

who derives two risk factors based on the changes in network concentration and network

sparsity, and Gofman, Segal, and Wu (2020), who focus on the vertical dimension of

production by modeling a supply chain, in terms of supplier-customer links. They find

that the further away a firm is from final consumers the higher its return. They use

this to create a factor TMB (top minus bottom). Both sources of cross-sectional error

dependence could be important, since network dependence cannot be represented using

latent factor models. See Section 3 of Chudik, Pesaran, and Tosetti (2011).

To allow for both forms of error cross-sectional dependence we consider the following

decomposition of uit
uit = γigt + vit, (27)

where gt is the missing (latent) factor and vit is weakly cross-correlated in the sense

of approximate factor models due to Chamberlain (1983) and Chamberlain and Roth-

schild (1983). Here we allow for a single missing factor to simplify the exposition, but

note that increasing the number of missing factors has little impact on our analysis,

so long as the number of missing factors is fixed. Using the normalization E(g2
t ) = 1,

and assuming that γigt and vit are independently distributed then E(uitujt) = σij =

γiγj + σv,ij, and as shown in Lemma A.1, n−1
∑n

i=1

∑n
j=1 |σij| = O(1) so long as

the strength of gt, αγ < 1/2 and λmax(Vv) < ∞. This is despite the fact that
λmax(Vu) = O(nαγ ), where Vv = E (viv

′
i) and Vu = E (uiu

′
i).
2 In the Monte Carlo

experiments, we consider the possibility of missing factors, as well as weak spatial and

network cross-dependence that satisfy conditions of approximate factor models.

2.5 Pricing errors

The APT condition (5), given by (18) in Theorem II of Ross (1976), ensures that under

APT the (idiosyncratic) pricing errors are sparse. In this paper we relax the Ross’s

2Note that Chamberlain’s approximate factor model specification requires λmax(Vu) = O(1) and
is violated if αγ > 0.
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condition to
n∑
i=1

η2
i = O(nαη), (28)

where the exponent αη measures the degrees of pervasiveness of pricing errors. De-

viations from APT are measured in terms of αη (0 ≤ αη < 1). We investigate the

robustness of our proposed estimator of φ0 to αη. This extension is important for tests

of market effi ciency where the null of interest is H0 : ai = c for all i in (15). We note

that under the alternative hypothesis H1 : ai = c+β′iφ+ ηi, therefore it is desirable to

develop a test of φ0 = 0 which is robust to a wider class of pricing errors than those

entertained originally by Ross, where αη = 0. As noted above, market effi ciency re-

quires φ0 = 0, but is compatible with a moderate degree of pricing errors characterized

by αη.

3 Assumptions and theorems

We make the following standard assumptions about ft, gt, vit, βi, ηi, and γi (the drivers

of asset returns):

Assumption 1 (Observed common factors) (a) The K × 1 vector of observed risk

factors, ft, follows the general linear process

ft = µ+
∞∑
`=0

Ψ`ζt−`, (29)

where ‖µ‖ < C, ζt ∼ IID(0, IK), and Ψ` are K ×K exponentially decaying matrices

such that ‖Ψ`‖ < Cρ` for some C > 0 and 0 < ρ < 1. (b) The T × K data matrix

F = (f1, f2, ..., fT )′ is full column rank and there exists T0 such that for all T > T0,

Σ̂f = T−1F′MTF is a positive definite matrix, λmax

[
(T−1F′MTF)−1] < C, Σ̂f →p

Σf = E (ft − µ0) (ft − µ0)′ > 0, where µ0 is the true value of µ.

Assumption 2 (Observed factor loadings) (a) The factor loadings βik for i = 1, 2, ..., n

and k = 1, 2, ..., K are stochastically bounded such that supikE (β2
ik) < C,

n∑
i=1

(
βik − β̄k

)2
= 	p(nαk), for k = 1, 2, ..., K. (30)

(b)The n×K matrix of factor loadings, Bn = (β◦1,β◦2, ...,β◦K), where β◦k = (β1k, β2k, ..., βnk)
′

12



satisfy

0 < c < λmin
(
D−1
α B′nMnBnD

−1
α

)
< λmax

(
D−1
α B′nMnBnD

−1
α

)
< C <∞, (31)

for some small and large positive constants, c and C, where Mn = In − n−1τ nτ
′
n,

τ n = (1, 1, ..., 1)′, and Dα is the n× n diagonal matrix
Dα = Diag(nα1/2, nα2/2, ...., nαK/2). (32)

Assumption 3 (latent factor) (a) The latent factor, gt, in (27) is distributed inde-
pendently of ft′ , for all t and t′, gt is serially independent with mean zero, E(gt) = 0,

E(g2
t ) = 1, and a finite fourth order moment, suptE(g4

t ) < C. (b) The loadings γi are

such that supi |γi| < C and
n∑
i=1

|γi| = O(nαγ ). (33)

Assumption 4 (idiosyncratic errors) (a) The errors {vit, i = 1, 2, ..., n; t = 1, 2, ..., T}
are distributed independently of the factors fk,t′, and gt, for all i, t, t′ and k = 1, 2, ..., K,

and their associated loadings βik, and γi. They are serially independent with E(vit) = 0

and finite fourth order moments E(v4
it) < ∞, and covariances E(vitvjt) = σv,ij, such

that

sup
i

n∑
j=1

|σv,ij| <∞, and sup
i

n∑
j=1

Cov(v2
it, v

2
jt) <∞, (34)

with λmin (Vv) > 0, where Vv = (σv,ij). (b) The degree of cross-sectional dependence

of vit is suffi ciently weak so that

T−1/2n−1/2

T∑
t=1

n∑
i=1

(βik − β̄k)vit →d N(0, ω2
k), for k = 1, 2, ..., K, (35)

where

ω2
k = p lim

n→∞
n−αk

n∑
i=1

n∑
j=1

(βik − β̄k)(βjk − β̄k)σv,ij. (36)

Assumption 5 (Pricing errors) The pricing errors, ηi, for i = 1, 2, ..., n are individ-

ually bounded, supj |ηj| < C , and are distributed independently of the factor loadings,

βjk, and γj for all i, j and k = 1, 2, ..., K, as well as satisfying the condition
n∑
i=1

|ηi| = O (nαη) , (37)

with αη < 1/2.
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Remark 1 Under Assumption 1 E (ft) = µ, and V ar(ft) = Σf =
∑∞

`=0 Ψ`Ψ
′
`. Also

since ‖Σf‖ ≤
∑∞

`=0 ‖Ψ`‖2 it then follows from part (a) of Assumption 1 that ‖Σf‖ < C.

Remark 2 Under Assumption 2
D−1
α B′nMnBnD

−1
α →p Σββ(α) > 0, (38)

where Σββ(α) is a k × k symmetric positive definite matrix which is a function of

α = (α1, α2, ..., αK)′. This follows from (31) since for any non-zero n× 1 vector c,

c′D−1
α B′nMnBnD

−1
α c ≥ (c′c)λmin

(
D−1
α B′nMnBnD

−1
α

)
> 0.

In the standard case where the factors are all strong (αk = 1 for all k), the above limit

reduces to n−1B′nMnBn →p Σββ(τK) = Σββ > 0.

Remark 3 The high level condition (35) in Assumption 4 is required for establishing
the asymptotic normality of the estimator of φ0, and is clearly met when vit and/or

βik are independently distributed. It is also possible to establish (35) under weaker

conditions assuming that vit and/or βik satisfy some time-series type mixing conditions

applied to cross section.

Remark 4 The exponent parameter, αη, of the pricing condition in (37), can be viewed
as the degree to which pricing errors are pervasive in large economies (as n → ∞).
Letting ηn = (η1, η2, ..., ηn)′ we have

n∑
i=1

η2
i = ‖ηn‖2 ≤ ‖ηn‖∞ ‖ηn‖1 = supj |ηj|

(
n∑
i=1

|ηi|
)
, (39)

and under Assumption (5) it also follows that
n∑
i=1

η2
i = O (nαη) . (40)

Similarly
n∑
i=1

γ2
i = O(nαγ ). (41)

Remark 5 Whilst (37) implies (40), the reverse does not follow. By allowing for

αη > 0 we are relaxing the Ross’s boundedness condition that requires setting αη = 0.

Remark 6 The assumption that the observed and missing factors, ft and gt′ , are dis-

tributed independently is not restrictive and can be relaxed. For example, suppose that

gt = µg + θ′ft + vgt,

14



where f t and vgt are independently distributed. Then using (27) we have

uit = γiµg + γi (θ
′ft) + γivgt + vit,

and the return equation (1) can be written as

rit = (ai + γiµg) + (βi + γiθ)′ ft + γivgt + vit,

with vgt now acting as the missing common factor, which, by construction, is distributed

independently of ft.

Remark 7 Assumptions 3 and 4 ensure that uit have zero means and are serially
independent, but allow uit to be cross-sectionally weakly correlated. This assumption

is not strong for asset pricing models, since realized returns are only mildly serially

correlated and that can be captured by the serial correlation in the observed factors.

As we shall see, to estimate and conduct inference on the risk premia associated

with the observed factors, fkt, we require αk > αγ < 1/2, where αγ denotes the strength

of the latent factor, gt, and similarly defined by
∑n

i=1 γ
2
i = 	(nαγ ). Namely, the latent

factor must be suffi ciently weak so that ignoring it will be inconsequential, and observed

factors suffi ciently strong so that they can be distinguished from the weak latent factor.

The main theoretical results of the paper are set out around five theorems. Theorem

1 considers the Fama-MacBeth two-step estimator and derives its limiting property as

n and T →∞. To eliminate the bias of Fama-MacBeth estimator we require n/T → 0,

and to eliminate the effects of pricing errors we need Tnαη/n → 0, which results in

a contradiction. Thus the Fama-MacBeth estimator is valid only when there are no

pricing errors (ηi = 0 for all i) and when n/T → 0. Theorem 2 provides a proof that

the estimator of σ̄2
n (denoted by ̂̄σ2

nT ) proposed by Shanken (1992) continues to be

unbiased for a fixed T as n→∞, even under the general setting of the current paper
that allows for missing factors as well as pricing errors. Theorem 2 also establishes

that ̂̄σ2

nT − σ̄2
n → Op(n

−1/2T−1/2), which is essential for establishing the results for the

bias-corrected estimator of φ0, namely φ̃nT given by (17), summarized in Theorem

3. This theorem provides conditions under which φ̃nT is a consistent estimator of

φ0, and derives its asymptotic distribution assuming the observed factors are strong,

again allowing for pricing errors, a missing factor, and other forms of weak error cross-

sectional dependence. Theorem 4 extends the results of Theorem 3 to the case where

one or more of the observed risk factors are semi-strong and shows how factor strength
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impacts the precision with which the elements of φ0 are estimated. Finally, Theorem 5

presents the conditions under which the asymptotic variance of φ̃nT can be consistently

estimated.

Theorem 1 (Small T bias of Fama-MacBeth estimator of λ) Consider the multi-

factor linear return model (3) with the missing factor gt in uit as defined by (27) and

the associated risk premia, λ, defined by (4). Suppose that Assumptions 1, 2, 4, 3 and

5 hold and all observed factors are strong. Suppose further that the true value of the

risk premia, λ0, is estimated by Fama-MacBeth two-pass estimator, λ̂nT , defined by

(7). Then for any fixed T > T0 such that λmin (T−1F′MTF) > 0, we have (as n→∞)

λ̂nT − λ0 = (µ̂T − µ0)− σ̄2

T

[
Σββ + σ̄2 1

T

(
F′MTF

T

)−1
]−1(

F′MTF

T

)−1

λ∗T + op(1),

(42)

where µ̂T = T−1
∑T

t=1 ft,

Σββ = lim
n→∞

(
B′nMnBn

n

)
, and σ2 = lim

n→∞
n−1

n∑
i=1

σ2
i > 0.

The proof is provided in Section B.1 of the Appendix.

To derive the asymptotic distribution of λ̂nT − λ0 it is required that both n and

T →∞, jointly. Also, noting that
λ̂nT − λ0 = (µ̂T − µ0) +

(
φ̂nT − φ0

)
,

it is clear that increasing n is not relevant for the distribution of µ̂T − µ0, but joint

n and T asymptotics are required when investigating the distribution of φ̂nT − φ0.

Focussing on the latter, and using result (B.12) in the Appendix, we have(
n−1B̂′nTMnB̂nT

)√
nT
(
φ̂nT − φ0

)
= n−1/2T 1/2B′nMnηn + n−1/2T 1/2G′TU′nTMnηn

+ n−1/2T 1/2G′TU′nTMnūn◦ − n−1/2T 1/2G′TU′nTUnTGTλ
∗
T .

Where UnT = (u1◦,u2◦, ...,un◦)
′ , ui◦ = (ui1, ui2, ..., uiT )′ , GT = MTF (F′MTF)−1,

un◦ = (u1◦, u2◦, ..., un◦)
′, and ui◦ = T−1

∑T
t=1 uit. Consider first the terms that include

the pricing errors, ηn, and using the results in Lemma A.2 note that

n−1/2T 1/2B′nMnηn = Op

(
T 1/2n−1/2+αη

)
, n−1/2T 1/2G′TU′nTMnηn = Op

(
n−1/2+

αη+αγ
2

)
.
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It is clear that the effects of pricing errors on the distribution of φ̂nT vanish only if

T 1/2n−1/2+αη → 0, and αη + αγ < 1. Also

n−1/2T 1/2G′TU′nTMnūn◦ = Op

(
T−1/2

)
,

n−1/2T 1/2G′TU′nTUnTGTλ
∗
T =

√
n

T
σ̄2
n

(
F′MTF

T

)−1

λ∗T +Op

(
T−1/2

)
.

Finally, for the first two terms involving Bn and UnT we have

n−1/2T 1/2B′nMn (ūn◦ −UnTGTλ
∗
T ) = Op (1) . (43)

It is clear that the small T bias of the asymptotic distribution of the two-step estimator,

given by
√

n
T
σ̄2
n

(
F′MTF

T

)−1

λ∗T , does not vanish unless, n/T → 0. At the same time

for the pricing errors to have no impact on the distribution of the two-step estimator

we must have Tnaη/n → 0. Both conditions cannot be met simultaneously. It is

possible to derive the asymptotic distribution of φ̂nT , and hence that of λ̂nT , when

n/T → 0 and η = 0, but these are quite restrictive conditions, and to avoid them we

follow Shanken (1992) and instead consider a bias-corrected version of φ̂nT , namely

φ̃nT given by (17). As noted earlier φ̃nT = λ̃nT − µ̂T , where λ̃nT is the bias-corrected
version of λ̂nT originally proposed by Shanken.

To investigate the asymptotic properties of φ̃nT we first need to establish conditions

under which ̂̄σ2

nT , defined by (10), is a consistent estimator of σ̄
2
n = n−1

∑n
i=1 σ

2
i , which

enters the bias-corrected estimator. The proof of consistency in the literature does not

allow for missing factors or pricing errors and only considers the case where T is fixed

as n → ∞. For derivation of asymptotic distribution of φ̃nT we also need to consider
the limiting properties of ̂̄σ2

nT under joint n and T asymptotics. The following theorem

provides the required results for ̂̄σ2

nT as an estimator of σ̄
2
n.

Theorem 2 Consider ̂̄σ2

nT , the estimator of σ̄
2
n given by (see (10)),̂̄σ2

nT =

∑T
t=1

∑n
i=1 û

2
it

n(T −K − 1)
, (44)

and suppose that Assumptions 1, 3, and 4, are satisfied. Then for a fixed T

lim
n→∞

E
(̂̄σ2

nT

)
= σ̄2, (45)

where σ̄2 = limn→∞ σ̄
2
n, and σ̄

2
n = n−1

∑n
i=1 σ

2
i . Furthermorê̄σ2

nT − σ̄2
n = Op

(
T−1/2n−1/2

)
. (46)

For a proof see sub-section B.2 in the Appendix.

Result (46) shows that ̂̄σ2

nT continues to be a consistent estimator of σ̄
2 = limn→∞ σ̄

2
n

for a fixed T as n→∞, even in the presence of pricing errors and a missing common
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factor. This result also holds when one or more of the factors are semi-strong.

Equipped with the above result we are now in a position to present the theorem

that sets out the asymptotic distribution of φ̃nT .

Theorem 3 Consider, φ̃nT , the bias-corrected estimators of φ0 given by (17). Suppose

Assumptions 1, 2, 4, 3 and 5 hold, all the observed factors are strong, (αk = 1, for

k = 1, 2, ..., K), and the strength of the missing factor, αγ defined by (33), satisfies αγ
< 1/2.

φ̃nT − φ0 = Op

(
T−1/2n

−1/2
)

+Op

(
T−1/2n−1+

αη+αγ
2

)
(47)

+Op

(
n−1+αη

)
+Op

(
T−1n−1/2

)
,

where αη denotes the degree of pervasiveness of the pricing errors defined by (28). (a)

When T is fixed, αγ < 1/2 and αη < 1, then there exists T0 such that for all T > T0

p lim
n→∞

(
φ̃nT

)
= φ0. (48)

Also√
nT
(
φ̃nT − φ0

)
= Σ−1

ββξnT +Op

(
n−

1
2

+
αη+αγ

2

)
+Op

(
T 1/2n−1/2+αη

)
+Op

(
T−1/2

)
,

(49)

where Σββ = p limn→∞ (n−1B′nMnBn ) ,

ξnT = n−1/2T−1/2B′nMnUnTaT , (50)

and aT = τT −MTF(T−1F′MTF)−1λ∗T . (b) If αγ < 1/2, αη < 1/2, and
√

T
n
nαη → 0,

as n and T →∞ jointly, then√
nT
(
φ̃nT − φ0

)
→d N

(
0,Σ−1

ββVξΣ
−1
ββ

)
, (51)

where

Vξ =
(
1 + λ′0Σ

−1
f λ0

)
p lim
n→∞

(
n−1B′nMnVuMnBn

)
. (52)

For a proof see sub-section B.3 in the Appendix.

Result (47) establishes the finite T consistency of φ̃nT for φ0 so long as αγ < 1/2

and αη < 1, thus extending the Shanken result to a much more general setting. To

the best of our knowledge the asymptotic distribution in (51) is new and shows that

the asymptotic covariance matrix of φ̃nT includes the term λ
∗′
T (T−1F′MTF)−1λ∗T , that

arises from the first stage estimation of the factor loadings, and must be included in

the analysis for valid inference. It is also clear that this additional term does not vanish

with T → ∞, and tends to λ′0Σ−1
f λ0 ≥ (λ′0λ0)λmax

(
Σ−1
f

)
= (λ′0λ0)λmin (Σf ) > 0,

which is strictly non-zero unless λ0 = 0. Shanken type bias correction addresses the

mean of the asymptotic distribution of φ̃nT , but not its covariance.
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The Op

(
T−1/2

)
term in (49) arises from the sampling errors involved in the esti-

mation of the factor loadings and σ̄2
n, and tends to zero at the regular

√
T rate. But

n has to be suffi ciently large to eliminate the effects of pricing errors on identification

of φ0, as dictated by condition
√

T
n
nαη → 0, as n and T →∞.3 The requirement that

T need not be too large relative to n for estimation of φ0 is consistent with separating

the estimation of φ0 from that of µ0, allowing the use a relatively small T and a large

n to estimate φ0 and a relatively large T when estimating µ0.

3.1 What if one or more of the risk factors are semi-strong?

We now turn to an intermediate case where one or more of the observed factors are

semi-strong, in the sense that their factor strength, αk lies between 1/2 and 1. The

case of weak risk factors is already covered in the proceeding analysis, and such factors

can be included in the error term, uit, with little consequence for the estimation of risk

premia of the remaining factors that are strong or semi-strong. Weak factors do not

have any explanatory power and can be dropped from the analysis.

When one or more of the observed factors is semi-strong Σββ is no longer positive

definite and Theorem 3 does not apply, but it is possible to adapt the proofs to establish

the limiting properties of φ̃k,nT (the kth element of φ̃nT ) for different values of αk .

To this end, analogously to φ̃nT , we introduce the following estimator of φ0

φ̃nT (α) = H−1
nT (α)

[
D−1
α B̂′nTMnânT +

n

T
̂̄σ2

nTD−1
α

(
F′MTF

T

)−1

µ̂

]
, (53)

where

HnT (α) = D−1
α B̂′nTMnB̂nTD−1

α −
n

T
̂̄σ2

nTD−1
α

(
F′MTF

T

)−1

D−1
α . (54)

It is now easily seen that

Dα

(
φ̃nT (α)− φ0

)
= H−1

nT (α) qnT (α) , (55)

where

qnT (α) = D−1
α B̂′nTMnânT +

n

T
̂̄σ2

nTD−1
α

(
F′MTF

T

)−1

µ̂T −HnT (α)Dαφ0. (56)

Dα is defined by (32), and α= (α1, α2, ..., αK)′. It is easily established that numeri-

cally φ̃nT (α) is identical to φ̃nT , and its introduction is primarily for the purpose of

3The condition
√

T
nn

αη → 0 can be weakened somewhat to
√

T
nn

αη/2 → 0 if we also assume that

βik − β̄k are independently distributed over i, but will still require n to be larger than T .
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establishing the limiting properties of φ̃k,nT − φ0,k that do depend on αk. Note that

HnT (α) = nD−1
α HnTD−1

α , and qnT (α) = nD−1
α snT

where snT and HnT are already defined by (B.23) and (B.24). Using these in (55) we

have

Dα

(
φ̃nT (α)− φ0

)
=
(
nD−1

α HnTD−1
α

)−1
nD−1

α snT = DαH
−1
nT snT ,

and it follows that φ̃nT (α)− φ0 = H−1
nT snT = φ̃nT (τK) = φ̃nT . See (B.22).

The convergence results for φ̃nT (α) are set out in the following theorem.

Theorem 4 Consider, φ̃nT (α), the bias-corrected estimators of φ0 given by (53),

and suppose Assumptions 1, 2, 4, 3 and 5 hold, the strength of observed factors, f t =

(f1t, f2t, ..., fKt)
′, is given by α= (α1, α2, ..., αK)′, and the strength of the missing factor,

gt, defined by (33) is αγ. Let αmin = mink(αk) and suppose that αγ < 1/2. Then

HnT (α) = D−1
α B′nMnBnD

−1
α +Op

(
T−1n−αmin+1/2

)
,

whereHnT (α) is given by (54), and by part (b) of Assumption 2,HnT (α)→p Σββ(α) >

0, for any fixed T > T0 such that λmax

[(
F′MTF

T

)−1
]
< C and αmin > 1/2 > αγ. Also

φ̃k,nT (α)− φ0,k = Op

(
n−(αk+αmin)/2+1/2T−1/2

)
+Op

(
n
−(αk+αmin)+(αη+αγ )

2 T−1/2

)
(57)

+Op

(
n−(αk+αmin)/2+αη

)
+Op

(
n−(αk+αmin)/2+1/2T−1

)
.

See sub-section B.4 of the Appendix for a proof.

The result in (57) establishes the consistency of φ̃k,nT (α) = φ̃k,nT even if fkt is semi-

strong so long as n→∞, and αmin > 1/2, αk + αmin > αη + αγ, and αk + αmin > 2αη.

Clearly, these results reduce to the case of strong factors where αmin = αk = 1. Turning

to the asymptotic distribution of φ̃k,nT (α), again only convergence rates are affected,

and instead of the regular rate of
√
nT , we have

√
Tn(αk+αmin−1)/2, and using (57) we

have √
Tn(αk+αmin−1)/2

(
φ̃k,nT (α)− φ0,k

)
(58)

= Op(1) +Op

(
n−1/2+

(αη+αγ)
2

)
+Op

(√
Tn−1/2+αη

)
+Op

(
T−1/2

)
.

The conditions needed for eliminating the effects of the pricing errors are the same as

before and are given by αη+αγ < 1 and
√
Tn−1/2+αη → 0. The asymptotic distribution

is unaffected except for the slower rate of convergence alluded to above. It is also of

interest to note that adding semi-strong factors can adversely affect the convergence
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rate of the strong factor with αk = 1. As an example suppose the asset pricing model

contains two factors, one strong, α1 = 1 and one semi strong with α2 < 1. Then

the convergence rate of φ̃1,nT (α) − φ0,1 is given by
√
T n(1+α2−1)/2 which is slower

than the rate we would have obtained for φ̃1,nT (α) − φ0,1 if both factors were strong

(αmin = αk = 1), namely the regular rate of
√
nT .

3.2 Consistent estimation of the variance of φ̃nT

To carry out inference on φ0, or any of its elements individually, we require a consistent

estimator of V ar
(
φ̃nT

)
. Using (51) and (52) we first note that Σββ is consistently

estimated by HnT given by (13). Therefore, it is suffi cient to find a suitable estimator

of Vu = (σij) such that Vξ given by (52) is consistently estimated. Under suitable

sparsity restrictions Vu can be consistently estimated using the various thresholding

procedures advanced in the statistical literature by Bickel and Levina (2008a,b), Cai

and Liu (2011), and Bailey, Pesaran, and Smith (2019, BPS). Fan, Liao, and Mincheva

(2011, 2013) also show that the adaptive threshold technique of Cai and Liu applies

equally to the residuals from an approximate factor model. Here we consider the

threshold estimator proposed by BPS which does not require cross-validation and is

shown to have desirable small sample properties. It is given by Ṽu = (σ̃ij)

σ̃ii = σ̂ii
σ̃ij = σ̂ij1

[
|ρ̂ij| > T−1/2cα(n, δ)

]
, i = 1, 2, . . . , n− 1, j = i+ 1, . . . , n, (59)

where

σ̂ij =
1

T

T∑
t=1

ûitûjt, ρ̂ij =
σ̂ij√
σ̂iiσ̂jj

, ûit = rit − âi,T − β̂
′
i,T ft, (60)

and cp(n, d) = Φ−1
(
1− p

2nd

)
, is a normal critical value function, p is the the nominal

size of testing of σij = 0, (i 6= j) and d is chosen to take account of the n(n − 1)/2

multiple tests being carried out. Monte Carlo experiments carried out by BPS suggest

setting d = 2. The variance estimator given by (59) does not require a knowledge of

the factor strength and applies to risk factors of differing degrees.

Under Assumptions 1, 3, and 4, ‖Vu‖ = O (nαγ ), and using results in Fan, Liao,

and Mincheva (2011, 2013) we have∥∥∥Ṽu −Vu

∥∥∥ = Op

(
nαγ

√
ln(n)

T

)
. (61)
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Consider the following estimator of Vξ

V̂ξ,nT = (1 + ŝnT )
(
n−1B̂′nTMnṼuMnB̂nT

)
.

where ŝnT = λ̃
′

nT (T−1F′MTF)
−1
λ̃nT . Under Assumption 1, T−1F′MTF→pΣf and

using the results above we have λ̃nT = φ̃nT + µ̂T →p φ0 + µ0 = λ0. Hence, ŝnT →p

λ′0Σ
−1
f λ0 as n, T →∞, jointly, and it is suffi cient to show that

n−1B̂′nTMnṼuMnB̂nT − n−1B′nMnVuMnBn →p 0. (62)

The following theorem provides a formal statement of the conditions under which V̂ξ,nT

is a consistent estimator of Vξ.

Theorem 5 Suppose Assumptions 1, 2, 4, 3 and 5 hold, and all the observed factors
are strong, (αk = 1, for k = 1, 2, ..., K), and the strength of the missing factor, gt,

defined by (33), αγ < 1/2. Then∥∥∥V̂ξ,nT −Vξ

∥∥∥ = Op

(
nαγ

√
ln(n)

T

)
, (63)

where

V̂ξ,nT = (1 + ŝnT )
(
n−1B̂′nTMnṼuMnB̂nT

)
, (64)

Ṽu = (σ̃ij), σ̃ij is the threshold estimator of σij given by (59), and

Vξ =
(
1 + λ′0Σ

−1
f λ0

)
p lim
n→∞

(
n−1B′nMnVuMnBn

)
, (65)

For a proof see sub-section B.5 in the Appendix.

This theorem shows that consistent estimation of V ar
(
φ̃nT

)
can be achieved by

using a suitable threshold estimator ofVu, so long as the strength of the missing factor,

αγ, is suffi ciently weak in the sense that nαγ
√

ln(n)/T → 0 as n, T →∞.

4 Small sample properties of the estimators and

tests for φ0

4.1 Monte Carlo Design

This section presents Monte Carlo simulations to investigate the small sample prop-

erties of estimators and tests for φ0. In the empirical application of the next section

the factors are selected from a large list. But here we assume K = 3 and mimic
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the 3 Fama-French factors, namely the market return minus the risk free rate, MKT,

the value factor (high minus low book to market portfolios, HML) and the size factor

(small minus big portfolios, SMB). These are denoted by fkt, k = M,H, S.4 For further

details see Section S3 of the online supplement A.

4.1.1 Loadings and factor strengths

To calibrate the loadings, βik, we used excess returns on a large number securities

observed over the shorter sample covering the 20 years 2002m1 −2021m12 (T = 240).

Monthly returns for NYSE and NASDAQ stocks code 10 and 11 from CRSP were

downloaded from Wharton Research Data Services and converted to excess returns

over the risk free rate, taken from Kenneth French’s webpages, in percent per month.

Only stocks with available data for the full sample were included, yielding a balanced

panel, and to avoid outliers influencing the results, stocks with a kurtosis greater than

16 were excluded. There were 1289 stocks before exclusion on the basis of kurtosis and

1175 after. The summary statistics giving mean, median, standard deviation of the

estimates of βik and their histograms are provided in the online supplement A.

For factor strength, we considered a range of DGPs. Given the evidence that most

factors, other than the market factor, are not strong, we focus on the case where there

is one strong factor, namely the market factor with αM = 1, plus two semi-strong

factors, with the value factor, HML, being quite strong with αH = 0.85, and the

size factor, SML, being only moderately strong with αS = 0.65. These estimates are

also informed by the results provided in Bailey, Kapetanios, and Pesaran (2021) who

propose methods for estimation of factor strength. For a given factor strength, αk,

the associated loadings, βik, are generated as βk = (β1k, β2k, , ..., βαk , 0, 0, ...0) where

nαk = bnαkc the integer part of nαk , with non-zero and zero values of βk given by
βik ∼ IIDN(µβk , σ

2
βk

), for i = 1, 2, ...., bnαkc,
βik = 0 for i = bnαkc+ 1, bnαkc+ 2, ..., n,

where bnαkc denotes the integer part of nαk . Since the security returns are randomly
generated, it does not matter how zero and non-zero values of βik are distributed across

i. Also, the zero loadings can also be replaced by an exponentially decaying sequence

4Data on factors and the risk free rate are downloaded from Kenneth French’s data library:
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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without any implications for the simulation results.5 We also set

µβM = 1, σβM = 0.4; µβH = 0.2, σβH = 0.5
µβS = 0.6, σβS = 0.5,

which match the mean and standard deviation of the estimates of βik. See above.

4.1.2 Generation of pricing errors

The pricing errors in (S3.2) can be considered as firm-specific characteristics and are

set as η =
(
η1, η2, ..., ηnη , 0, 0, ..., 0

)′
. The non-zero loadings of η for i ≤ nη = bnαηc

are drawn from IIDU(0.7, 0.9), and ηi = 0 for i = nη + 1, nη + 2, ...., n. We consider

αη = (0, 0.3). When αη = 0 we have ηi = 0 , for all i. As in the case of factor loadings

the non-zero values of η must be randomly allocated to different groups.

4.1.3 Generation of return equation errors

The return equation errors, uit, are generated following (27) as a combination of a

missing factor, gt ∼ IIDN (0, 1) plus an idiosyncratic error, vjt. The loadings γ =(
γ1, γ2, ..., γnγ , 0, 0, ..., 0

)′
of the missing factor are set as

γi ∼ IIDU(0.7, 0.9), for i = 1, 2, ...., bnαγc,
γi = 0, for i = bnαγc+ 1, bnαγc+ 2, ..., n,

where αγ is the strength of the missing factor gt. We consider αγ = 1/4 and 1/2.

For the idiosyncratic errors, vit, we consider spatial as well as a block diagonal

specification, with the spatial specification including a diagonal specification as the

special case. Under the spatial specification the idiosyncratic errors are generated as the

first order spatial autoregressive model vit = ρε
∑n

j=1 wijvjt+κεit, which can be written

in matrix notation as vt = ρεWvt + κεt, and solved for as vt = κ (In − ρεW)−1 εt.

Adding the missing factor now yields

ut = γgt + κ (In − ρεW)−1 εt. (66)

The spatial coeffi cient ρε is such that |ρε| < 1,W = (wij) with wii = 0, and
∑n

j=1wij =

1. The diagonal case is obtained by setting ρε = 0, with ρε = 0.5 characterizing the

SAR specification. The weight matrix W = (wij) is set to follow the familiar rook

pattern where all its elements are set to zero except for wi+1,i = wj−1,j = 0.5 for

i = 1, 2, ..., n− 2 and j = 3, 4..., n, with w1,2 = wn,n−1 = 1.

5See also footnote 5 of Bailey, Kapetanios, and Pesaran (2016, p.942).
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Under the block error covariance specification, vt is generated as vt = κŜεt, where

Ŝ is a block diagonal matrix with its bth block given by Ŝb for b = 1, 2, ..., B, and

εt = (ε′1t, ε
′
2t, ..., ε

′
Bt)
′, and εbt = (εb,1t, εb,2t, ..., εb,nb,t)

′. Ŝ is set as a Cholesky factor of

the correlation matrix of ut. Denoting this correlation matrix by R̂u,

R̂u =
[
Diag(V̂Bu)

]−1/2

V̂Bu

[
Diag(V̂Bu)

]−1/2

= Diag(R̂bu, b = 1, 2, ..., B),

where V̂Bu is the threshold estimator ofVu subject to the additional restriction thatVu

is block diagonal. For each block R̂bu we set the number of distinct non-zero elements

of this block equal to the integer part of [nb(nb − 1)/2]× qb where qb is the proportion
of non-zero distinct elements in block b of our calibrated sample and computed by

the calibration over the sample 2001m10− 2021m9. The non-zero elements are drawn

randomly from IIDU(0, 0.5). Similarly, adding the missing factor, we have

ut = γgt + κŜεt. (67)

The block diagonal structure is intended to capture possible within industry corre-

lations not picked up by observed or weak missing factors, with each block representing

an industry or sector. To calibrate the block structure estimates of the pair-wise cor-

relations between the residuals of the return regressions using the Fama-French three

factors of the T = 240 sample ending in 2021 were obtained. Then all the statistically

insignificant correlations were set to zero, allowing for the multiple testing nature of

the tests. For the majority of securities (668 out of the 1168), the pair-wise return cor-

relations were not statistically significant. The securities with a relatively large number

of non-zero correlations were either in the banking or energy related industries. Con-

sidering stocks by 2-digit SIC classifications, a division into B = 14 contiguous groups

ranging in size from 33 to 145 stocks, seemed sensible. More detail on the process is

given in Section S4 of the online supplement A.

The primitive errors, εit for i = 1, 2, ..., n in (66) and (67) are generated as εit =
√
σii$it, where $it ∼ IIDN (0, 1), and εit =

√
σii

[√
v−2
v
$it

]
, where $it ∼ IID t(v),

with t(v) denotes a standard t distributed variate with v = 5 degrees of freedom. Also

σii ∼ IID 0.5(1 + χ2
1) , for i = 1, 2, ..., nb and b = 1, 2, ..., B. In this way, it is

ensured that V ar(εb,it) = σb,ii, and on average E [V ar(εb,it)] = E(σii) = 1, under both

Gaussian and t-distributed errors. Note that V ar (νb,it) = v/(v − 2). All the experi-

ments are designed to give an R2 of about 0.3, similar to that obtained in the empirical

applications. For further details see sub-section S-3.5 of the online supplement A.
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4.1.4 Experiments

In total, we consider 12 experimental designs: six designs with Gaussian errors and

six with t(5) distributed errors. We considered designs with GARCH effects, with

and without pricing errors, ηi, and with and without the missing factor, gt. We also

considered designs with spatial patterns in the idiosyncratic errors, vit. All experiments

are implemented using R = 2, 000 replications. Details of of the 12 experiments are

summarized in Table S-1 of the online supplement B (MC results).

4.1.5 Alternative estimators of Vu

Subsection 3.2 considered consistent estimation of the variance of φ̃nT using Ṽu a

threshold estimator for Vu, given by equation (59). For comparison purposes we also

considered two other estimators of Vu. These were the sample covariance matrix V̂u =∑T
t=1 ûtû

′
t/T and a diagonal covariance matrix, where the off-diagonal elements of V̂u,

σ̂ij, are set to zero. Thus we have three designs for the return error covariance matrix,

Vu, and three different estimators of it. A comparison of the results for the different

covariance matrices is available on request. The diagonal estimator, as to be expected,

performed poorly when the true covariance matrix was not diagonal, particularly for

the spatial error covariance matrix and when the strength of the missing factor was

close to 1/2. For these designs the sample and threshold estimators of the covariance

matrix generally performed similarly and given that there is a theoretical justification

for the threshold estimator and there are structures of the error covariance matrix for

which the sample estimator is unlikely to perform well we report the results using the

threshold estimator in the simulations below.

4.2 Monte Carlo results

We focus on a comparison of two-step (defined by (16) and the bias-corrected (BC)

estimator (defined by (17)), and report bias, root mean square error (RMSE) and size

for testing H0j : φ0k = 0, k = M,H, S at the five per cent nominal level, for all

n = 100, 500, 1, 000, 3, 000 and T = 60, 120, 240 combinations. The results for all 12

experiments are summarized in Tables S-A-E1-S-A-E12 in the online supplement B.

In terms of bias and RMSE the two-step estimator does much better than the bias-
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corrected (BC) estimator when T = 60 and n = 100, but this gap closes quickly as n is

increased. In fact for T = 60 and n = 3, 000, the bias and RMSE of the BC estimator

(at 0.0010 and 0.0607) are much less than those of the two-step estimator (at -0.0080

and 0.1489). This pattern continues to hold when T = 120 and 240. Bias correction

can cause the RMSE to "blow up" for small samples, such as n = 100 and T = 60,

but for n = 500 and above the bias-corrected estimator always has a smaller RMSE

than the two-step estimator. As discussed in the theoretical section, having a large n

is important for the properties of the estimators.

But most importantly, the two-step estimator is subject to substantial size distor-

tions, particularly when T is small relative to n. As predicted by the theory, the degree

of over-rejection of the tests based on FM estimator falls with T, but increases with n.

For example, the two-step test sizes rise from 11.1% when T = 60 and n = 100 to 60.9%

when T = 60 and n = 3, 000. Increasing T reduces the size distortion of the two-step

estimator but test sizes are still substantially above the 5% nominal value when n is

large. The strong tendency of the tests based on the two-step estimator to over-reject

could be an important contributory factor leading to false discovery of a large number

of apparently significant factors in the literature. In contrast, sizes of the tests based

on the BC estimator, using the variance estimator given by (21), are all close to its

nominal value, irrespective of the factor strength or sample size combinations. We only

note some elevated test sizes in the case of the experimental design 12, and when we

consider the semi-strong factors. The highest test size of 7.85 per cent is obtained for

the least strong factor, fst, when n = 3000 and T = 60. See Table S-A-E12 of the

online supplement B.

We also experimented with raising αη from 0.3 to 0.5, making the pricing errors

much more pervasive and ρε from 0.5 to 0.85, introducing more spatial correlation.

This increased the rejection rate in experiments 9 and 10.

4.2.1 Empirical power functions

Plots of the empirical power functions for testing the null hypothesis that the spanning

coeffi cients are equal to zero (H0j : φ0k = 0, k = M,H, S) are also provided in the

online supplement B (Figures S-A-E1 to S-A-E12). All power curves have the familiar

bell curve shape and tend to unity as n and/or T are increased, showing the test has
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satisfactory power, particularly for n suffi ciently large even when T = 60. Again the

power functions are quite similar across the 12 different experiments and show similar

patterns for strong and semi-strong factors. However, this similarity hides the fact that

the test of φk = 0 for the strong factor is much more powerful than corresponding tests

for the semi-strong factors, with the test power declining as factor strength is reduced.

4.2.2 Differences in performance of strong and semi-strong factors

These differences in the effects of factor strength on the power of the test of φk = 0

are in line with our theoretical results, and are also reflected in the rate at which the

RMSE of the estimators of φM , φH and φS fall with n. For example, using results in

Table S-B-E12, for the bias-corrected estimator and design 12 with T = 240, the ratio

of RMSE of n = 3, 000 to n = 100 is 17% for the strong factor (αM = 1), 23% for

the first semi-strong factor with αH = 0.85, and 36% for the second semi-strong factor

with αS = 0.65. As strength falls one needs larger cross section samples of securities

to attain the same level of precision. In the case of the two-step estimator there was

the same pattern, but the fall in the RMSE with n was much slower. The ratio for

T = 240 of RMSE of n = 3, 000 to n = 100 is 25% for φM , rather than 17%, which it

was for the bias-corrected estimator; 48% rather than 23% for φH , and the coeffi cient

of the third least strong factor the RMSE fell then increased with n.

4.2.3 Semi-strong versus weak factors

So far, we have assumed that the DGP is correctly specified with two semi-strong and no

observed weak factors. Here we consider the implications of incorrectly excluding semi-

strong factors or correctly including weak factors on the small sample properties of the

BC estimator of φM the coeffi cient of the strong factor. Using the same DGP (which

includes one strong factor and two semi-strong factors), we carried out additional

MC experiments (designs 1-12) where we also estimated φM without the semi-strong

factors being included in the regression. Comparative results with and without the

semi-strong factors. The results are summarized in Tables S-C-E1 to S-C-E12 of the

online supplement B. We find that incorrectly excluding semi-strong factors can be

quite costly, both in terms of bias and RMSE as well as size distortions. In terms of
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RMSE it was almost always better to estimate the model with the semi strong factors

included. The exception was for the case of T = 60, n = 100, where including the

semi-strong factors with a very small sample size caused the RMSE to blow up. Size

distortions resulting from the exclusion of the semi-strong factors tended to be more

pronounced for large n and T samples. These conclusions were not sensitive to the

choice of the experimental design. For these experiments the lesson seems to be that

it is important to have n large and include relevant semi-strong factors providing that

they are suffi ciently strong.

When the DGP includes one strong factor (αM = 1) and two weak factors (αH =

αS = 0.5), in terms of the bias and RMSE for φM it is unambiguously better to exclude

the weak factors from the regression, even though they are in the DGP. Weak factors

are best treated as missing and absorbed in the error term.

4.3 Main conclusions from MC experiments

The conclusions from the Monte Carlo simulations are that the bias corrected estimator

of φ0, generally works well. Although, it can generate a large RMSE for small n and T ,

this can be solved by increasing n. This performance is robust to non-Gaussian errors,

GARCH effects, missing weak factors, pricing errors and cross-sectional dependence

of the types considered in these experiments. The size is generally correct and the

power good. The rate at which RMSEs decline with n depends on the strength of

the underlying factors. Semi-strong factors need much larger values of n for precise

estimation. Tests of the joint significance of φM = φH = φS = 0, not reported here,

also performed well, as might be expected given the good power performance of the

separate induced tests which are reported. Including weak factors could be harmful,

but there are potential advantages of adding semi-strong factors, although issue of how

best to select such factors is an open question to which we now turn.
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5 Factor selection when the number of securities

and the number of factors are both large

Our theoretical derivations and Monte Carlo simulations both assume that the number

of risk factors included in the return regressions is fixed and the factors are known. For

the empirical application we face the additional challenge of selecting a small number of

relevant risk factors from a possibly large number of potential factors, m. This problem

has been the subject of a number of recent studies. Harvey, Liu, and Zhu (2016) propose

a multiple testing approach aimed at controlling the false discovery rate in the process

of factor selection, and in a more recent paper Harvey and Liu (2020) suggest using

a double-bootstrap method to calibrate the t-statistic used for controlling the desired

level of the false discovery rate. Giglio and Xiu (2021) suggest applying the double-

selection Lasso procedure by Belloni, Chernozhukov, and Hansen (2014) to second pass

regressions. None of these methods distinguish between strong, semi-strong or weak

factors in their selection process, whereas the theory and simulations presented above

indicate the importance of factor strength for estimation and inference.

Here we propose an alternative selection procedure where we first estimate the

strength of all the m factors under consideration, and then select factors with strength

above a given threshold, the value of which is informed by the convergence results

of Theorem 4. This theorem showed that if factor fkt has strength αk, then the BC

estimator of φk converges to its true value, φ0k, at the rate of nαk/2. As is recognized

in non-parametric estimation literature, if the rate of convergence is less than 1/3,

corresponding to αk = 2/3, the gain in precision with n is so slow that the estimator

may not be that useful.6 Armed with the threshold of 2/3, the main issue is how to

estimate factor strength. This problem is already addressed in Bailey, Kapetanios,

and Pesaran (2021, BKP) when m is fixed. In this setting they base their estimation

on the statistical significance of fkt in the first stage time-series regressions of excess

returns on all the factors under consideration, whilst allowing for the n multiple testing

problem which their approach entails. When m (the number of factors) is also large

6The Manski (1985) maximum score estimator for a binary response model has n1/3 convergence
and this is regarded as very slow and there are suggested modifications such as Horowitz (1992) to
increase the rate of convergence to n2/5.
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the first stage regressions will also be subject to the multiple testing problem and

penalized regression techniques such as Lasso or the one covariate at a time (OCMT)

selection procedure technique proposed by Chudik, Kapetanios, and Pesaran (2018)

could be used. Irrespective of selection technique used at the level of individual security

returns, we end up with n different subsets of them factors under consideration. Factor

strengths can then be estimated similarly to BKP from their selection frequencies across

the n securities.

To be more specific, denote the set of m factors under consideration by S and
denote the set of selected factors for security i by Ŝi and their numbers by m̂i = |Ŝi|.
Clearly Ŝi ⊆ S, and m̂i ≤ m, for i = 1, 2, ..., n. Then compute the proportion of stocks

in which the kth factor is selected, π̂k, for k ∈ {1, 2, ...,m} based on Ŝi, i = 1, 2, ..., n

by π̂k = 1
n

∑n
i=1 I{k ∈ Ŝi}. Then the strength of the kth factor is measured by

α̂k =

1 + ln π̂k
lnn

, if π̂k > 0,

0, if π̂k = 0.
(68)

The transformation from π̂k to α̂k is explained and justified in BKP, where it is shown

that considering strength aids interpretation because it is not dependent on n. It

is beyond the scope of the present paper to provide theoretical justification for the

proposed factor selection procedure, but using extensive Monte Carlo experiments Yoo

(2022) has shown that the proposed method has desirable small sample properties

whether Lasso or OCMT is used for factor selection at the level of individual security

returns.

6 An empirical application using a large number of

U.S. securities and a large number of risk factors

This section uses the results above in the explanation of monthly returns for a large

number, n, of U.S. securities, by a large active set of m potential risk factors. We

first briefly describe the sources and characteristics of the data for the stock returns

and factors, which cover different sub-samples over the period 1996m1− 2021m12.We

then consider the selection of a subset of K factors from the active set, and conditional

on the selected factors present estimates of the spanning error parameters, φ0, of the
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selected factors and discuss their statistical significance.

Monthly returns (inclusive of dividends) for NYSE and NASDAQ stocks from CRSP

with codes 10 and 11 were downloaded on July 2 2022 from Wharton Research Data

Services. They were converted to excess returns by subtracting the risk free rate,

which was taken from Kenneth French’s data base. To obtain balanced panels of stock

returns and factors, only variables for which there was data for the full sample under

consideration were used. Excess returns are measured in percent per month. To avoid

outliers influencing the results, stocks with a kurtosis greater than 16 were excluded.

Four main samples were considered, each had 20 years of data, T = 240, ending in

2015m12, 2017m12, 2019m12, 2021m12. Filtering out the stocks with kurtosis larger

than 16 removed about 100 of the roughly 1200 stocks. The number of stocks (n)

considered for each of the four T = 240 samples are given in panel A of Table 1.

Further detail is given in Section S5 of the online supplement A.7

6.1 Factor selection

For factor selection we used all the 240 observations. But for estimation of the spanning

error parameters, φ0, we also consider the sub-sample of size T = 120 ending in the

years 2015, 2017, 2019 and 2021. The Monte Carlo experiments indicated that when

T = 60 the performance of the estimators was poor, so we do not report results for

sub-samples of that size. The set of factors considered combine the 5 Fama-French

factors with the 207 factors from the Chen and Zimmermann (2022), Open Source

Asset Pricing webpages, both downloaded July 6 2022. Only factors with data for the

full sample were considered so the return regressions constitute a balanced panel. The

number of factors in each of the four 20 year samples ending in the years 2015, 2017,

2019, 2021 is also given in panel A of Table 1, and range between 187 to 199. Summary

statistics for the factors in the active set are given in DS8 of the online supplement A.

To implement the factor selection procedure set out in Section 5, Lasso is used to

carry out selection in the return regressions for individual securities. As is well known,

Lasso does not work well with too many highly correlated regressors, therefore, factors

with an absolute correlation with the market factor greater than 0.70 were dropped.

7Summary statistics for the excess returns across the different samples are given in Table DS7 of
the online supplement A.
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This still left between 177 and 190 risk factors in the active set S, depending on the
sample period (see panel A of Table 1).

Specifically, Lasso was applied n times to the regressions of excess returns, rit =

Rit − rft , for i = 1, 2, ..., n, on the 177 to 190 factors in the active set, S, to select the
sub-set Ŝi for each i over the four 20-year samples, separately. Following the literature,

the tuning parameters in the Lasso algorithm were set by ten-fold cross-validation.8

Interestingly, the market factor was selected by Lasso for almost all the securities, thus

confirming the pervasive nature of the market factor. No other factor came close to

being selected for all the securities. Lasso tended to choose a lot of non-market factors

and every factor got chosen in at least one return regression. The mean number of

non-market factors chosen by Lasso fell from 11.6 in the 2015 sample to 9.9 in the

2021 sample. The median was lower, falling from 10 to 8. There was a long right tail

because Lasso tended to choose a very large number of non-market factors for some

securities, ranging from a maximum of 48 in the 2021 sample to 54 in the 2017 sample.

Apart from the market factor, there are no systematic patterns for the rest of se-

lected factors in the return equations for the individual securities. Following the theory

set out in Section 5, the K factors used to estimate the spanning error parameters are

chosen on the basis of their factor strength.9 A minimum threshold of 0.7 was used.

This is just above the 2/3 strength which results in irregular estimators of φ0 that

converge at rate n1/3 and require very large values of n to achieve a reasonable degree

of precision, as also shown by the Monte Carlo evidence. In addition, a large number

of securities (n) are needed to obtain reasonably precise estimates of factor strength

when it is below 2/3. See the Monte Carlo evidence provided by Bailey, Kapetanios,

and Pesaran (2021).

Given the lower bound of 0.7 threshold values of 0.70, 0.75,and 0.80 were considered.

The number of selected factors for different choices of factor strength threshold is given

in panel B of Table 1, for the four different samples.
Using the threshold of 0.70, 17 factors (inclusive of the market factor) were selected

for the sample ending in 2015, with the number of selected factors declining to 15, 13

8The post-Lasso and one covariate multiple testing (OCMT) approach of Chudik, Kapetanios, and
Pesaran (2018, CKP). were also investigated, but Lasso seemed to work reasonably well. The details
of the Lasso procedure used are given in Section 2.2 of the online supplement of CKP paper.

9The idea of using factor strength could also be viewed as a kind of averaging of the factors selected
in individual return regressions.
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and 11, for the samples ending 2017, 2019 and 2021, respectively. At the other extreme,
setting the threshold at 0.80, the number of selected factors dropped to 4 for the samples
ending in 2015, 2017 and 2021, and 2 for the sample ending in 2021. Since 17 factors
seemed too large and 2 factors too small, the threshold value was set at the intermediate
value of 0.75. We considered always conditioning on the market factor, but since Lasso
almost always selected it, this was unnecessary.

Table 1: Summary statistics for the number of stocks and number of selected factors
using the factor strength threshold of 0.75, for four twenty years (T = 240) samples
ending in 2021, 2019, 2017 and 2015

T = 240 with end dates 2021 2019 2017 2015

Panel A: Number of stocks and factors under consideration
Number of stocks 1289 1276 1243 1181

Number of stocks with kurtosis < 16 1175 1143 1132 1090
Number of non-market factors 187 198 199 197

Number of non-market factors with r < 0.70 177 189 190 189

Panel B: Number of selected factors by strength threshold
Number with strength > 0.80 2 4 4 4
Number with strength > 0.75 4 6 7 7
Number with strength > 0.70 11 13 15 17

Notes. Panel A shows the number of stocks and risk factors used before and after filtering by the

specified criterion. Panel B shows the number of risk factors selected with strength greater than the

specified threshold level using Lasso to select factors at the level of individual securities.

The list of selected factors for the four samples are given in Table 2. The three

Fama-French factors, Market, HML and SMB, are all selected in all four periods.10 Of

the Fama-French three, only the market factor is strong, with estimated strength in

excess of 0.98 across the four periods.11 The other factor which is selected across all

the four periods is "Short-Interest". This is proposed by Dechow, Hutton, Meulbroek,
10We also considered selecting the risk factors using the generalized one covariate at a time (OCMT)

method proposed by Sharifvaghefi (2022). Using GOCMT the Fama-French three factors were again
amongst the five strongest factors selected. The use of GOCMT for factor selection is also investigated
by Yoo (2022), using Monte Carlo and empirical applications.
11These results also support the choice of 3 Fama-French factors and their strength used in our

Monte Carlo simulations.
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and Sloan (2001) who argue that short-sellers target firms that are priced high relative

to fundamentals. It measures the extent to which investors are shorting the market as

reflected in Compustat data. Two additional factors are selected in periods ending in

2019 and earlier. One is "Beta Tail Risk" proposed by Kelly and Jiang (2014) which

estimates a time-varying tail exponent from the cross section of returns. The other is

"Cash Based Operating Profitability" (CBOP) suggested by Ball, Gerakos, Linnain-

maa, and Nikolaev (2016). This is operating profit less accruals, with working capital

and R&D adjustments. For periods ending in 2017 and 2015 the "Sin Stock" indicator

proposed by Hong and Kacperczyk (2009) is also selected. It takes the value of unity if

the stock in question is involved in producing alcohol, tobacco, and gaming. They find

that such stocks are held less by norm-constrained institutions such as pension plans.

The factor strengths are relatively stable across the periods, with many of the

estimates close to the threshold value of 0.75. Apart from the market factor only

SMB, Short Interest and Beta Tail Risk factors have strengths in excess of 0.85 when

averaged across the four periods. From the large number of factors in the active set

we have ended up with only four factors that are reasonably strong and their spanning

risk parameter and associated risk premia can be estimated reasonably accurately.

The strengths of the selected factors are also closely related to the average measures

of fit often used in the literature. Here we consider both AveR̄2 = n−1
∑n

i=1 R̄
2
i , a

simple average of the fit of the individual return regressions adjusted for degrees of

freedom, R̄2
i = 1 − (T − K − 1)−1

∑T
t=1 û

2
it/T

−1
∑T

t=1 (rit − r̄i◦)2, and the adjusted

pooled R2 defined by PR
2

= 1− ̂̄σ2

nT/s
2
r,nT , where ̂̄σ2

nT is the bias-corrected estimator

of σ̄2
n defined by (44) and = (nT )−1∑n

i=1

∑T
t=1 (rit − r̄i◦)2..Both of these measures

behave very similarly, but the pooled version is less sensitive to outliers. As shown in

Appendix S6, for suffi ciently large n and T , PR
2
is dominated by the contribution of

the most strong factor(s). Since the only strong factor selected is the market factor

in Table 3 we report the AveR̄2 and PR
2
in the case of return regressions which just

include the market factor and those which include all other factors with strength in

excess of 0.75. First, we note that the PR
2
values are generally lower than the AveR̄2.

Second, the additional factors do add to the fit, but their relative contributions vary

considerably across sample sizes and periods. In general, the marginal contribution of
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Table 2: Selected factors with estimated strength in excess of the threshold 0.75 for
the samples of size T=240 ending in 2021, 2019, 2017 and 2015

End date 2021 2019 2017 2015
Selected Factors Estimated strength (α)

Mkt. 0.99 0.98 0.98 0.98
SMB 0.90 0.84 0.86 0.86

Short Interest 0.77 0.85 0.85 0.83
HML 0.76 0.77 0.76 0.75

BetaTailRisk 0.87 0.86 0.86
CBOP 0.76 0.77 0.77
Sin Stock . 0.76 0.76

Notes: The risk factors listed are the market factor (Mkt.), size (SMB), Short Interest that measures

the extent of short sales in the market, the value factor (HML), the cash-based operating profitability

factor (CBOP), Beta Tail Risk, and Sin Stock which is a binary indicator taking the value of unity if

the stock in question is involved in so called "Sin" industries producing alcohol, tobacco, and gaming.

Further details on these risk factors are provided by Chen and Zimmermann (2022).

non-market factors tend to be smaller when T is larger, which is consistent with the

theory for adjusted pooled R2 set out in Section S6 of the online supplement A.

6.2 Estimation of φ0 for selected risk factors

Given the selected factors we then estimate their spanning error parameters, φ0, for

T = 240, and T = 120 samples. The risk factors used in both samples are selected

using T = 240 observations. As noted earlier, we do not report estimates for T = 60

as they are likely to be misleading given the Monte Carlo evidence discussed above.

The bias-corrected estimates of φ0 for samples ending 2015, 2017, 2019, and 2021

are summarized in Table 4. Panel A of this table gives the estimates using T = 240

months from the end of each period, whilst panel B reports the estimates based on

T = 120. As can be seen, the spanning error parameter associated with the market

factor is statistically significant only once. This is in the 20 year sample ending in

2021, which includes the disruption of financial markets by the COVID-19 pandemic.

In contrast, the spanning error parameters of the Short Interest and HML risk factors
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Table 3: Average and pooled R squared for the return regressions when using market
factor alone or factors chosen by Pooled Lasso plus 0.75 threshold

End Year 2021 2019 2017 2015
No. of stocks, n 1175 1143 1132 1090

No. of selected factors 4 6 7 7
Mkt. Selected Mkt. Selected Mkt. selected Mkt. selected

T
AveR̄2 240 0.22 0.28 0.18 0.26 0.16 0.25 0.16 0.24

120 0.23 0.30 0.24 0.31 0.25 0.33 0.25 0.32

PR
2

240 0.20 0.24 0.17 0.24 0.15 0.23 0.15 0.23
120 0.18 0.24 0.19 0.24 0.22 0.29 0.22 0.29

Note. This table shows for each of the four end years and the two sample sizes the adjusted average

and pooled R2(AveR̄
2
and PR

2
) for the return regressions when using market factor alone or factors

selected with strength higher than 0.75. The list of selected factors are given in Table 2.

are statistically significant at the 5% level in all the four periods, when T = 240. For

the shorter sample sub-sample (T = 120), the spanning error parameter of the Short

Interest risk factor are statistically significant in two of the four periods at the 1% level

and that of HML is statistically significant in two of the periods once at the 5% level

and once at the 1% level. For both Short Interest and HML factors the statistically

significant coeffi cients were all negative. The φ parameter of the size factor (SMB) is

statistically significant only once at the 10% level in the T = 120 sample ending in

2021. The Cash Based Operating Profitability and the Sin Stocks risk factors were

both significant only once at the 10% level and the Beta Tail Risk not at all.
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Table 4: Bias-corrected estimates of spanning parameters of the selected factors for
the T=240 and T= 120 ending in the specified years

End date 2021 2019 2017 2015
φ0 φ0 φ0 φ0

PANEL A: T = 240
Mkt. −0.49∗∗∗ -0.38 -0.20 -0.07

(0.09 ) (0.21 ) (0.34 ) (0.37 )
SMB 0.12 -0.09 -0.02 -0.03

(0.08 ) (0.08 ) (0.08 ) (0.08 )
Short Interest −1.16∗∗∗ −1.07∗∗∗ −1.21∗∗∗ −1.25∗∗∗

(0.14 ) (0.17 ) (0.17 ) (0.15 )
HML −0.31∗∗∗ −0.30∗∗ −0.47∗∗ −0.56∗∗∗

(0.08 ) (0.12 ) (0.16 ) (0.16 )
CBOP -0.23 -0.52 -0.64

(0.55 ) (0.73 ) (0.83 )
Beta Tail Risk 0.17 -0.07 -0.14

(0.13 ) (0.19 ) (0.16 )
Sin Stocks -0.55∗ -0.40

(0.24 ) (0.25 )

PANEL B: T = 120
Mkt. -0.24 0.30 0.12 0.84

(0.23 ) (0.93 ) (0.40 ) (0.68 )
SMB 0.36∗ 0.12 0.23 0.21

(0.18 ) (0.22 ) (0.24 ) (0.21 )
Short Interest -0.41 -0.57 −1.45∗∗∗ −1.13∗∗∗

(0.37 ) (0.36 ) (0.22 ) (0.22 )
HML −1.01∗∗∗ −0.83∗∗ -0.23 -0.23

(0.22 ) (0.27 ) (0.18 ) (0.18 )
CBOP 0.97 −1.35∗ -0.49

(0.77 ) (0.56 ) (0.81 )
BetaTail Risk 0.28 -0.27 -0.58

(0.18 ) (0.26 ) (0.39 )
Sin Stocks -0.20 0.24

(0.21 ) (0.30 )

Notes: Figures in brackets are asymptotic standard errors. ∗ ∗ ∗ indicates statistical significance at
the 1% level, ∗∗ at the 5% level, and ∗ at the 10% level. See Table 2 for the description of the selected
risk factors.
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7 Concluding remarks

In this paper we have highlighted the importance of decomposing the risk premia, λ,

into the the factor mean, µ, and φ, and writing the alpha of security i, ai, in terms

of φ and the idiosyncratic pricing errors. Given the pivotal role played by φ, both

for estimating the risk premia and for tests of market effi ciency, we have exclusively

focussed on estimation of φ, and its asymptotic distribution under quite a general

setting that allows for missing factors and idiosyncratic pricing errors. Since factor

means, µ, can be estimated at the regular rate of T−1/2 from time series data, it is

relatively straightforward to develop a mixed strategy for estimation of λ by adding

a time series estimate of µ to the bias-corrected estimator of φ. If we use the same

time series sample, such an estimator reduces to the Shanken bias-corrected estimator

of λ. But in practice, given the concern over the instability of the factor loadings

βik over time, one could use relatively long time series, say Tµ, when estimating µ,

and a shorter time series, say Tφ < Tµ, when estimating φ. The distributional and

small sample properties of such a mixed estimator of risk premia is a topic for further

research.

Our theoretical and Monte Carlo results further highlight the important role played

by factor strengths in estimation and inference on φ, and hence on λ. Factors with

strength below 2/3 lead to estimates of φ with convergence rate of n−1/3 or worse,

and their use in asset pricing models can be justified only when n is very large. We

have also shown that weak factors, with strength below 1/2 are best treated as missing

and absorbed in the error term. We have shown that estimation of φ for strong or

semi-strong factors is robust to weak missing factors, and the explicit inclusion of

weak factors in the empirical analysis is likely to have adverse spill over effects on the

estimates of φ for strong and semi-strong factors. In view of these results we have

proposed a factor selection procedure where only factors with strength above 2/3 are

included in the asset pricing model. Developing a formal statistical theory for the

proposed selection is another topic for future research.

Our Monte Carlo results also raise a point of caution. Whereas the proposed bias-

corrected estimator of φ performed well in the Monte Carlo experiments for samples of

size T = 120 and T = 240, and for a wide variety of DGPs, its performance was rather
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poor when T = 60 and n < 3, 000. It is therefore advisable not to use our proposed

estimation and inference method in case of short T samples, unless n is relatively large

(in excess of 3, 000) and the underlying factors are suffi ciently strong (in excess of 0.85).
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A Online Mathematical Appendix

A.1 Introduction

In this online appendix we first introduce the notations used in our mathematical

treatment, and state and establish a number of lemmas. We then provide detailed

proofs of Theorems 1, 2, 3, 4 and 5 presented in the paper.

Notations: Generic positive finite constants are denoted by C when large, and c

when small. They can take different values at different instances. →p denotes conver-

gence in probability as n, T →∞, jointly. λmax (A) and λmin (A) denote the maximum

and minimum eigenvalues of A. A > 0 denotes that A is a positive definite matrix.

‖A‖ = λ
1/2
max(A′A), ‖A‖F = [Tr(A′A)]1/2, ‖A‖p = (E ‖A‖p)1/p, for p ≥ 2 denote

spectral, Frobenius, and `p norms of matrix A, respectively. If {fn}∞n=1 is any real

sequence and {gn}∞n=1 is a sequences of positive real numbers, then fn = O(gn), if there

exists C such that |fn| /gn ≤ C for all n. fn = o(gn) if fn/gn → 0 as n → ∞. Simi-
larly, fn = Op(gn) if fn/gn is stochastically bounded, and fn = op(gn), if fn/gn →p 0,

where →pdenotes convergence in probability. If {fn}∞n=1 and {gn}
∞
n=1 are both pos-

itive sequences of real numbers, then fn = 	 (gn) if there exists n0 ≥ 1 such that

infn≥n0 (fn/gn) ≥ C, and supn≥n0 (fn/gn) ≤ C.

A.2 Statement of lemmas and their proofs

Lemma A.1 Consider the errors {uit, i = 1, 2, ..., n; t = 1, 2, ..., T} defined by (27) and
suppose that Assumptions 3 and 4 hold with αγ < 1/2, and Vu = (σij). Set ui◦ =

T−1
∑T

t=1 uit, and E(u2
it) = σ2

i . Then

‖Vu‖ = λmax (Vu) ≤ sup
i

n∑
j=1

|σij| = O (nαγ ) , (A.1)

n−1

n∑
i=1

n∑
j=1

|σij| = O (1) , and n−1

n∑
i=1

n∑
j=1

σ2
ij = O(1). (A.2)

A1



Also, for any t and t′

an,tt =
1

n

n∑
i=1

(
u2
it − σ2

i

)
= Op

(
n−1/2

)
, (A.3)

V ar(an,tt) =
1

n2

n∑
i=1

n∑
j=1

Cov(u2
it, u

2
jt) = O(n−1), (A.4)

an,tt′ = n−1

n∑
i=1

uituit′ = Op

(
n−1/2

)
, for t 6= t′, (A.5)

V ar (an,tt′) = n−2

n∑
i=1

n∑
j=1

σ2
ij = O

(
n−1
)
, for t 6= t′, (A.6)

bn,t =
1

n

n∑
i=1

(uitui◦ − T−1σ2
i ) = Op

(
T−1/2n−1/2

)
, (A.7)

and

V ar(bn,t) = O
(
T−1n−1

)
. (A.8)

Proof. Result (A.1) follows noting that under Assumptions 3 and 4, σij = γiγj +

σv,ij,
∑n

j=1 |σij| ≤ supi |γi|
∑n

j=1 |γj| +
∑n

j=1 |σv,ij| , and by assumption supi |γi| < C,

supi
∑n

j=1 |σv,ij| < C, and
∑n

j=1 |γj| = O (nαγ ). To prove (A.2)

n−1

n∑
i=1

n∑
j=1

|σij| ≤ n−1

n∑
i=1

n∑
j=1

|γi| |γj|+ n−1

n∑
i=1

n∑
j=1

|σv,ij|

= n−1

(
n∑
i=1

|γi|
)2

+ n−1

n∑
i=1

n∑
j=1

|σv,ij| .

By assumption n−1
∑n

i=1

∑n
j=1 |σv,ij| = O(1), and

∑n
i=1 |γi| = O(nαγ ), then, in view

of (33) and (34) n−1
∑n

i=1

∑n
j=1 |σij| = O (n−1+2αγ ) + O(1) = O(1), since αγ < 1/2.

Similarly σ2
ij = γ2

i γ
2
j + σ2

v,ij + 2γiγjσv,ij, and

n−1

n∑
i=1

n∑
j=1

σ2
ij = n−1Tr(V2

u) = n−1

(
n∑
i=1

γ2
i

)2

+ n−1

n∑
i=1

n∑
j=1

σ2
v,ij + 2n−1γ′Vvγ.
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But

n−1

n∑
i=1

n∑
j=1

σ2
v,ij = n−1Tr

(
V2
v

)
≤ λ2

max (Vv) = O(1), (A.9)

γ ′Vvγ ≤ (γ ′γ)λmax (Vu) = O (nαγ ) .

Overall

n−1

n∑
i=1

n∑
j=1

σ2
ij = O

(
n−1+2αγ

)
+O(1) +O

(
n−1+αγ

)
,

and since αγ < 1/2, then it follows that n−1
∑n

i=1

∑n
j=1 σ

2
ij = O(1). To prove (A.3) we

first note that (using the normalization E(g2
t ) = 1)

u2
it − E(u2

it) = (g2
t − 1)γ2

i +
(
v2
it − σv,ii

)
+ 2gtγivit, (A.10)

and

an,tt = (g2
t − 1)

(
n−1

n∑
i=1

γ2
i

)
+ n−1

n∑
i=1

(
v2
it − σv,ii

)
+ 2gt

(
n−1

n∑
i=1

γivit

)
= O

(
n−1+αγ

)
+Op

(
n−1/2

)
+O

(
n−1+αγ/2

)
= Op(n

−1/2), since αγ < 1/2.

To establish (A.4), using (A.10) we first note that ( for given loadings γi)

Cov
(
u2
it, u

2
jt

)
= γ2

i γ
2
j

[
E
(
g2
t − 1

)2
]

+ Cov(v2
it, v

2
jt) + 4E

(
g2
t

)
γiγjσv,ij,

V ar(an,tt) = n−2

n∑
i=1

n∑
j=1

Cov(u2
it, u

2
jt) = V ar(g2

t )

(
n−1

n∑
i=1

γ2
i

)2

+ n−2

n∑
i=1

n∑
j=1

Cov(v2
it, v

2
jt) + 4E

(
g2
t

)
n−2γ′Vvγ = O

(
n−2+2αγ

)
+O(n−1) +O

(
n−2+αγ

)
,

and since αγ < 1/2, then V ar(an,tt) = O (n−1) , as required (which also corroborate

(A.3)). Consider now (A.5) and since uit is serially independent then E (an,tt′) = 0 for

t 6= t′, and we have

E (uituit′ujtujt′) = E (uitujtuit′ujt′) = E (uitujt)E (uit′ujt′) = σ2
ij for t 6= t′,
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and

V ar (an,tt′) = E
(
a2
n,tt′
)

= n−2

n∑
i=1

n∑
j=1

E (uituit′ujtujt′) , for t 6= t′

= n−2

n∑
i=1

n∑
j=1

σ2
ij = O

(
n−1
)
, using (A.2),

which establishes (A.6) and (A.5). To prove (A.7) set zit = uitui◦ − T−1σ2
i , and write

bn,t = 1
n

∑n
i=1 zit. Also note that uitui◦ = T−1

∑T
s=1 uituis, and given that {uit} is

serially independent then E(zit) = 0 and E(bn,t) = 0. and

V ar(bn,t) = n−2

n∑
i=1

n∑
j=1

E (zitzjt) = n−2

n∑
i=1

n∑
j=1

E(uitujtui◦uj◦)− T−2σ̄4
n

= n−2T−2

n∑
i=1

n∑
j=1

T∑
s=1

T∑
s′=1

E (uitujtuisujs′)− T−2σ̄4
n. (A.11)

Also E (uitujtuisujs′) = 0 for all t if s 6= s′. We are left with one case where s = s′ = t,

and one case where s = s′ 6= t. Hence

n∑
i=1

n∑
j=1

T∑
s=1

T∑
s′=1

E (uitujtuisujs′) =
n∑
i=1

n∑
j=1

T∑
s=1

E (uitujtuisujs)

=
n∑
i=1

n∑
j=1

T∑
s=1,s=t

E (uitujtuisujs) +
n∑
i=1

n∑
j=1

T∑
s=1,s 6=t

E (uitujtuisujs)

=
n∑
i=1

n∑
j=1

E
(
u2
itu

2
jt

)
+

n∑
i=1

n∑
j=1

T∑
s=1,s 6=t

E (uitujt)E (uisujs)

=
n∑
i=1

n∑
j=1

[
Cov

(
u2
it, u

2
jt

)
+ σ2

i σ
2
j

]
+ (T − 1)

n∑
i=1

n∑
j=1

σ2
ij,

and hence

n∑
i=1

n∑
j=1

T∑
s=1

T∑
s′=1

E (uitujtuisujs′) =

n∑
i=1

n∑
j=1

Cov
(
u2
it, u

2
jt

)
+

(
n∑
i=1

σ2
i

)2

+(T−1)

n∑
i=1

n∑
j=1

σ2
ij,
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V ar(bn,t) =n−2T−2

n∑
i=1

n∑
j=1

T∑
s=1

T∑
s′=1

E (uitujtuisujs′)− T−2σ̄4
n

= T−2n−2

n∑
i=1

n∑
j=1

Cov
(
u2
it, u

2
jt

)
+ T−2σ̄4

n + (T − 1)
n∑
i=1

n∑
j=1

σ2
ij − T−2σ̄4

n.

Using this result in (A.11) we have

V ar(bn,t) = n−2T−2

n∑
i=1

n∑
j=1

Cov
(
u2
it, u

2
jt

)
+
T − 1

T 2

(
n−2

n∑
i=1

n∑
j=1

σ2
ij

)
.

Now using (A.4) and (A.2) we have V ar(bn,t) = O (T−1n−1), which establishes (A.8),

and result (A.7) follows by Markov inequality.

Lemma A.2 Consider the n× T error matrix UnT = (u1◦,u2◦, ...,un◦)
′ , where ui◦ =

(ui1, ui2, ..., uiT )′ , the n × k matrix of factor loadings, Bn = (β◦1,β◦2, ...,β◦K), where

β◦k = (β1k, β2k, ..., βnk)
′, the n × 1 vector of pricing errors ηn = (η1, η2, ..., ηn)′, with

the pervasiveness coeffi cient, αη, the observed factors, fk = (fk1, fk2, ..., fkT )′ are strong

(with αk = 1, for k = 1, 2, ..., K), the missing factor gt, has strength αγ < 1/2, GT =

MTF (F′MTF)−1, F = (f1, f2, ..., fK), Mn = In − 1
n
τ nτ

′
n, un◦ = (u1◦, u2◦, ..., un◦)

′,

ui◦ = T−1
∑T

t=1 uit, σ
2
n = n−1

∑n
i=1 σ

2
i , and τ n and τ T are, respectively, n × 1 and

T × 1 vectors of ones. Suppose that Assumptions 1, 3, 4, 2 and 5 hold. Then

n−1B′nMnηn = Op

(
n−1+αη

)
, (A.12)

n−1B′nMnun◦ = Op

(
T−1/2n−1/2

)
, (A.13)

n−1B′nMnUnTGT = Op

(
T−1/2n−1/2

)
, (A.14)

n−1G′TU′nTMnηn = Op

(
T−1/2n−1+

αη+αγ
2

)
, (A.15)

n−1G′TU′nTMnun◦ = Op

(
T−1n−1/2

)
, (A.16)

G′T
(
n−1U′nTMnUnT − σ̄2

nIT
)
GT = Op

(
T−1n−1/2

)
. (A.17)

Proof. To establish (A.12) we first note that the kth element of n−1B′nMnηn can be

written as

πk,n = n−1

n∑
i=1

(
βik − β̄k

)
ηi, (A.18)
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where β̄k = n−1τ ′nβ◦k. Since ηj and βik are distributed independently for all i and j,

then E (πk,n) = 0, 12

E (|πk,n| |ηn ) = n−1

n∑
i=1

E
∣∣βik − β̄k∣∣ |ηi| ≤ [sup

i,k
E
∣∣βik − β̄k∣∣](n−1

n∑
i=1

|ηi|
)

= O
(
n−1+αη

)
,

for k = 1, 2, ..., K, and by Markov inequality we have n−1B′nMnηn = Op (n−1+αη), as

required. To establish (A.13), noting that

n−1u′n◦MnBn =
[
n−1ū′n◦

(
β◦1 − τnβ̄1

)
, n−1ū′n◦

(
β◦2 − τnβ̄2

)
, ..., n−1ū′n◦

(
β◦K − τnβ̄K

)]
,

and the kth element of n−1B′nMnun◦ is given by ck,nT = n−1
∑n

i=1

(
βik − β̄k

)
ūi◦. We

haveE (ck,nT ) = 0, and V ar (ck,nT |β◦k ) = n−2
∑n

i=1

∑n
j=1

(
βik − β̄k

) (
βjk − β̄k

)
E (ui◦uj◦) ,

with E (ui◦uj◦) = T−1σij. Hence (recalling that Vu = (σij))

V ar (cnT,k) = T−1n−2

n∑
i=1

n∑
j=1

σijE
[(
βik − β̄k

) (
βjk − β̄k

)]
, (A.19)

and by Cauchy—Schwarz inequality and Assumption 2 we haveE
[(
βik − β̄k

) (
βjk − β̄k

)]
≤[

E
(
βik − β̄k

)2
]1/2 [

E
(
βjk − β̄k

)2
]1/2

< C. Hence, V ar (cnT,k) ≤ CT−1n−2
∑n

i=1

∑n
j=1 |σij|.

Since αγ < 1/2, then by (A.2) we have n−1
∑n

i=1

∑n
j=1 |σij| = O(1) and V ar (cnT,k) =

O(T−1n−1). Thus by Markov inequality it follows that cnT,k = Op

(
T−1/2n−1/2

)
, for

k = 1, 2, ..., K, and (A.13) follows. To establish (A.14) using GT = MTF (F′MTF)−1

we have

n−1B′nMnUnTGT = n−1T−1 (B′nMnUnTMTF)
(
T−1F′MTF

)−1
,

and since (T−1F′MTF)
−1 is a positive definite matrix then it is suffi cient to consider

the probability order of the K ×K matrix T−1n−1B′nMnUnTMTF = (qkk′), where

qkk′ = T−1n−1

n∑
i=1

T∑
t=1

(
βik − β̄k

) (
fk′t − f̄k′

)
uit = n−1

n∑
i=1

(
βik − β̄k

)
ψiT ,

12Note that supik E
∣∣βik − β̄k∣∣ < C follows from supiE |βik|

2
< C, required by Assumption 2.
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where ψiT = T−1
∑T

t=1

(
fk′t − f̄k′

)
uit. Thus

V ar (qkk′ |β◦k ) = n−2

n∑
i=1

n∑
j=1

(
βik − β̄k

) (
βjk − β̄k

)
Cov (ψiT , ψjT ) . (A.20)

Also

Cov (ψiT , ψjT |F) = E (ψiTψjT |F) = T−2

T∑
t=1

T∑
t′=1

(
fk′t − f̄k′

) (
fk′t′ − f̄k′

)
E (uitujt′) ,

and E(uitujt′) = σij for t = t′ and 0 otherwise (t 6= t′). Then,

Cov (ψiT , ψjT |F) = T−2

T∑
t=1

(
fk′t − f̄k′

)2
E (uitujt) = σijT

−2

T∑
t=1

(
fk′t − f̄k′

)2
.

Using this result in (A.20) now yields

V ar (qkk′) = T−1n−1

[
T−1

T∑
t=1

E
(
fk′t − f̄k′

)2

]
n−1

n∑
i=1

n∑
j=1

σijE
[(
βik − β̄k

) (
βjk − β̄k

)]
.

The first term of the above is bounded since by assumption ft is stationary. The sec-

ond term is bounded as established above (see the derivations below (A.19)). Hence

V ar (qkk′) = O(T−1n−1) and result (A.14) follows. To establish (A.15) note that

n−1G′TU′nTMnηn = (T−1F′MTF)
−1

(n−1T−1F′MTU′nTMnηn) , where (T−1F′MTF)
−1

=

Op(1). Also the kth element of n−1T−1F′MTU′nTMnηn is given by pk = T−1
∑T

t=1

(
fkt − f̄k

)
cn,t,

where cn,t = n−1
∑n

i=1 uitηi = n−1η′nu◦t. Under Assumption (4) fkt and cn,t are

distributed independently, E(pn,t) = 0, and cn,t are also serially uncorrelated we

have V ar(pk) = T−2
∑T

t=1E
(
fkt − f̄k

)2
V ar(cn,t). Also noting that V ar(cn,t |η ) =

n−2η′nVuηn, then

V ar(pk) =

[
T−1

T∑
t=1

E
(
fkt − f̄k

)2

] (
T−1n−2η′nVuηn

)
.

The first term is bounded, and it follows that

V ar(pk |ηn ) < CT−1n−2η′nVuηn ≤ CT−1n−2 (η′nηn)λmax(Vu) = O
(
T−1n−2+αη+αγ

)
,
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and (A.15) follows. To establish (A.16) note that

n−1G′TU′nTMnun◦ =
(
T−1F′MTF

)−1 (
n−1T−1F′MTU′nTMnun◦

)
,

and the kth element of n−1T−1F′MTU′nTMnun◦ = (dk) is given by

dk =
1

nT

T∑
t=1

(fkt − f̄k)
n∑
i=1

(uit − ūi◦) ūi◦ =
1

nT

T∑
t=1

n∑
i=1

(fkt − f̄k)(uitūi◦ − ūi◦ūi◦)

=
1

T

T∑
t=1

(fkt − f̄k)
[
n−1

n∑
i=1

(
uitūi◦ − T−1σ̄2

n

)]
=

1

T

T∑
t=1

(fkt − f̄k)bn,t,

where bn,t = n−1
∑n

i=1 (uitūi◦ − T−1σ2
i ). By assumption uit and fkt′ are distributed

independently and bn,t are also serially independent. Then E(dk) = 0, and

V ar(dk) =
1

T 2

T∑
t=1

(fkt − f̄k)2V ar(bn,t).

Now using (A.8) in Lemma A.1, V ar(bn,t) = O (T−1n−1) , and overall we have V ar(dk) =

O (T−2n−1) , and by Markov inequality dk = Op

(
T−1n−1/2

)
, as required. Finally, con-

sider (A.17) and note that

G′T
(
n−1U′nTMnUnT − σ̄2

nIT
)
GT

= T−2
(
T−1F′MTF

)−1
F′MT

[
n−1U′nTMnUnT − σ̄2

nIT
]
MTF

(
T−1F′MTF

)−1
.

Since by assumption (T−1F′MTF)
−1 is a positive definite matrix for all T , and K is

fixed then it is suffi cient to derive the probability order of the (k, k′) element of of the

K ×K matrix ∆nT = (δkk′)

∆nT = T−2F′MT

[
n−1U′nTMnUnT − σ̄2

nIT
]
MTF

= T−1
[
n−1T−1F′MTU′nTMnUnTMTF− σ̄2

nT
−1F′MTF

]
= T−1

(
n−1T−1AMnA

′−σ̄2
nT
−1F′MTF

)
= T−1 (S−R) , (A.21)

where A = F′MTU′nT = (aki). Denote the (k, k′) elements of S = n−1T−1AMnA
′ and

R = σ̄2
nT
−1F′MTF by skk′ and rkk′ , respectively, and note that

rkk′ =

(
n−1

n∑
i=1

σ2
i

)[
T−1

T∑
t=1

(fkt − f̄k)(fk′t − f̄k′)
]

(A.22)
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and skk′ = n−1T−1
∑n

i=1 (aki − āk) ak′i, where aki =
∑T

t=1 f̃ktuit, and āk =
∑T

t=1 f̃ktū◦t,

where f̃kt = fkt − f̄k. Then

skk′ = n−1T−1

n∑
i=1

[
T∑
t=1

f̃kt (uit − ū◦t)
][

T∑
t=1

f̃k′tuit,

]
= n−1T−1

T∑
t=1

T∑
t′=1

n∑
i=1

(uit − ū◦t)uit′ f̃ktf̃k′t′

= n−1T−1

T∑
t=1

T∑
t′=1

n∑
i=1

uituit′ f̃ktf̃k′t′ − T−1

T∑
t=1

T∑
t′=1

ū◦tū◦t′ f̃ktf̃k′t′ . (A.23)

Using this result and rkk′ given by (A.22) in (A.21) now yields

Tδkk′ = (skk′ − rkk′)

= n−1T−1

T∑
t=1

T∑
t′=1

n∑
i=1

uituit′ f̃ktf̃k′t′ − T−1

T∑
t=1

T∑
t′=1

ū◦tū◦t′ f̃ktf̃k′t′

− σ̄2
n

(
T−1

T∑
t=1

f̃ktf̃k′t

)
− σ̄2

n

(
T−1

T∑
t=1

f̃ktf̃k′t

)
.

Also writing the first two terms as sums of the elements with t = t′ and those with

t 6= t′, we have

Tδkk′ = n−1T−1

T∑
t=1

n∑
i=1

u2
itf̃ktf̃k′t − σ̄2

n

(
T−1

T∑
t=1

f̃ktf̃k′t

)
− T−1

T∑
t=1

ū2
◦tf̃ktf̃k′t+

+ n−1T−1

T∑
t6=t′

n∑
i=1

uituit′ f̃ktf̃k′t′ − T−1

T∑
t6=t′

ū◦t′ f̃ktf̃k′t′

= T−1

T∑
t=1

an,ttf̃ktf̃k′t − T−1

T∑
t=1

T∑
t′=1

ū◦tū◦t′ f̃ktf̃k′t + T−1

T∑
t6=t′

an,tt′ f̃ktf̃k′t′ ,

T δkk′ = Akk′ −Bkk′ + Ckk′ , (A.24)

where an,tt = n−1
∑n

i=1 (u2
it − σ2

i ) , and an,tt′ = n−1
∑n

i=1 uituit′ . Since uit and fkt′ are

distributed independently then E (Akk′) = 0, and

V ar (Akk′) = T−2

T∑
t=1

T∑
t′=1

E (an,ttan,tt′)E
(
f̃ktf̃kt′ f̃k′tf̃k′t′

)
.
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Since uit is serially independent, then E (an,ttan,tt′) = 0 for t 6= t′ and

V ar (Akk′) = T−2

T∑
t=1

E
(
a2
n,tt

)
E
(
f̃ 2
ktf̃

2
k′t

)
≤
[

sup
k,k′,t

E
(
f̃ 2
ktf̃

2
k′t

)][
T−2

T∑
t=1

E
(
a2
n,tt

)]
.

supk,k′,tE
(
f̃ 2
ktf̃

2
k′t

)
< C since by assumption supt,kE

(
f̃ 4
kt

)
< C. Also (using (A.3) of

Lemma A.1)

E
(
a2
n,tt

)
= n−2

n∑
i=1

n∑
j=1

Cov
(
u2
it, u

2
jt

)
= O

(
n−1
)
,

and we have Akk′ = Op

(
T−1n−1/2

)
. Now write Bkk′ as

Bkk′ = T−1

T∑
t=1

T∑
t′=1

ū◦tū◦t′ f̃ktf̃k′t =

(
T−1/2

T∑
t=1

ū◦tf̃kt

)(
T−1/2

T∑
t=1

ū◦tf̃k′t

)
= q◦kq◦k′ ,

where q◦k = T−1/2
∑T

t=1 ū◦tf̃kt. AlsoE(q◦k) = 0, and V ar (q◦k) = T−1
∑T

t=1E (ū2
◦t)E

(
f̃ 2
kt

)
=

E (ū2
◦t)
[
T−1

∑T
t=1E

(
f̃ 2
kt

)]
, where E (ū2

◦t) = n−2
∑n

i=1

∑n
j=1 σij = O (n−1). Hence,

T−1/2
∑T

t=1 ū◦tf̃kt = Op

(
n−1/2

)
, andBkk′ = Op (n−1). Finally, considerCkk′ = T−1

∑T
t6=t′ an,tt′ f̃ktf̃k′t′ ,

and note that E (an,tt′) = n−1
∑n

i=1 E (uituit′) = 0 for all t 6= t′,which ensures that

E (Ckk′) = 0. Further,

V ar (Ckk′) = T−2

T∑
t6=t′

T∑
s6=s′

E (an,tt′an,ss′)E
(
f̃ktf̃k′t′ f̃ksf̃k′s′

)
= T−2

T∑
t6=t′

E
(
a2
n,tt′
)
E
(
f̃ 2
ktf̃

2
k′t′

)
,

E
(
a2
n,tt′

)
= n−2

∑n
i=1

∑n
j=1 σ

2
ij. See (A.6) in Lemma A.1. Since by assumptionE

(
f̃ 4
kt

)
<

C, then we have

V ar (Ckk′) =

(
n−2

n∑
i=1

n∑
j=1

σ2
ij

)[
T−2

T∑
t6=t′

E
(
f̃ 2
ktf̃

2
k′t′

)]
< C

(
n−2

n∑
i=1

n∑
j=1

σ2
ij

)
,

and using (A.2), it follows that V ar (Ckk′) = O (n−1), and hence Ckk′ = Op

(
n−1/2

)
.

Using this result and the ones obtained for Akk′ and Bkk′ in (A.24) now yields δkk′ =

T−1
[
Op

(
T−1n−1/2

)
+Op (n−1) +Op

(
n−1/2

)]
= Op

(
T−1n−1/2

)
, as required.
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B Proof of theorems in the paper

B.1 Proof of theorem 1

Consider the two-pass estimator of λ defined by (7), which we reproduce here for

convenience

λ̂nT =
(
B̂′nTMnB̂nT

)−1

B̂′nTMnr̄n◦,

where B̂nT = (β̂1, β̂2, ..., β̂n)′, r̄n◦ = (r̄1◦, r̄2◦, ..., r̄n◦)
′, r̄i◦ = T−1

∑T
t=1 rit,

β̂i = (F′MTF)−1F′MT ri◦, (B.1)

and ri◦ = (ri1, ri2, ..., riT )′. Under the factor model (2)

ri◦ = aiτ T + Fβi + ui◦, (B.2)

where ui◦ = (ui1, ui2, ..., uiT )′, and hence

β̂i = βi + (F′MTF)−1F′MTui◦. (B.3)

Stacking these results over i yields

B̂nT = Bn + UnTGT , (B.4)

where UnT = (u1◦,u2◦, ...,un◦)
′, and

GT = MTF(F′MTF)−1. (B.5)

Also

r◦t = an + Bnft + u◦t, (B.6)

where u◦t = (u1t, u2t, ..., unt)
′, an = (a1,a2, ...,an)′. Using (15) in the paper,

an = cτ n + Bnφ0 + ηn, (B.7)

and (B.6) can be written as r◦t = cτ n + Bn (φ0 + ft) + u◦t + ηn. Now averaging over

t yields

r̄n◦ = cτ n + Bnλ
∗
T + ūn◦+ηn, (B.8)
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where r̄n◦ = T−1
∑T

t=1 r◦t = (r̄1◦, r̄2◦, ..., r̄n◦)
′, ūn◦ = T−1

∑T
t=1 u◦t = (ū1◦, ū2◦, ..., ūn◦)

′,

and

λ∗T = φ0 + µ̂T = λ0 + (µ̂T − µ0) . (B.9)

Using (B.8) in (7) we have

λ̂nT =
(
B̂′nTMnB̂nT

)−1

B̂′nTMn (cτ n + Bnλ
∗
T + ūn◦+ηn)

=
(
B̂′nTMnB̂nT

)−1

B̂′nTMn

[
B̂nTλ

∗
T −

(
B̂nT −Bn

)
λ∗T + ūn◦+ηn

]
. (B.10)

Also using (B.9), and recalling that λ0 = φ0 + µ0, we have λ̂nT − λ∗T = λ̂nT − λ0 −
(λ∗T − λ0) =

(
λ̂nT − λ0

)
− (φ0 + µ̂T − λ0) , which yields λ̂nT − λ0 = λ̂nT − λ∗T +

(µ̂T − µ0) . Furthermore, λ̂nT −λ∗T = φ̂nT −φ0,where φ̂nT is the two-step estimator of

φ0 given by (16). This results follows noting that λ̂nT = φ̂nT + µ̂T , and λ
∗
T = φ0 + µ̂T .

Therefore,

λ̂nT − λ0 =
(
φ̂nT − φ0

)
+ (µ̂T − µ0) . (B.11)

We focus on deriving the asymptotic distribution of λ̂nT − λ∗T = φ̂nT − φ0 since the

panel (cross section) dimension does not apply to the second component, (µ̂T − µ0).

Now using (B.4) in (B.10) and after some simplifications we have(
B̂′nTMnB̂nT

)
λ̂nT = B̂′nTMn

[
B̂nTλ

∗
T −

(
B̂nT −Bn

)
λ∗T + ūn◦+ηn

]
,

or (
n−1B̂′nTMnB̂nT

)(
φ̂nT − φ0

)
= pnT , (B.12)

where

pnT = n−1B′nMnηn + n−1G′TU′nTMnηn + n−1B′nMnūn◦ + n−1G′TU′nTMnūn◦

(B.13)
− n−1B′nMnUnTGTλ

∗
T − n−1G′TU′nTMnUnTGTλ

∗
T ,

also

n−1B̂′nTMnB̂nT = n−1 (Bn+UnTGT )′Mn (Bn+UnTGT ) (B.14)
= n−1 (B′nMnBn) + n−1 (G′TU′nTMnBn) +
n−1 (B′nMnUnTGT ) + n−1 (G′TU′nTMnUnTGT ) ,
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Now using the results in Lemma A.2 for case where all the observed factors are strong,

for a fixed T and as n→∞ we have

n−1
(
B̂′nTMnB̂nT

)
= Σββ + σ̄2G′TGT + op(1), (B.15)

where, using (B.5),

G′TGT =
1

T

(
F′MTF

T

)−1

. (B.16)

Similarly, for the terms on the right hand side of (B.13) we have

pnT = − σ̄
2

T

(
F′MTF

T

)−1

λ∗T +Op

(
n−1+αη

)
+Op

(
T−1/2n−1/2

)
+Op

(
T−1/2n−1+

αη+αγ
2

)
.

It is now easily seen that for a fixed T , and if αη < 1 and αγ < 1/2, then as n→∞

pnT →p −
σ̄2

T

(
F′MTF

T

)−1

λ∗T .

Also, for a fixed T by Assumption 1, σ̄
2

T

(
FMTF
T

)−1
is a positive definite matrix, and by

(B.15) n−1B̂′nTMnB̂nT →p Σββ + σ̄2

T

(
FMTF
T

)−1
which is also a positive definite matrix,

noting that under Assumption 2 Σββ is a positive definite matrix. Using these results

in (B.12) we now have

φ̂nT−φ0 = − σ̄
2

T

[
Σββ + σ̄2 1

T

(
F′MTF

T

)−1
]−1(

F′MTF

T

)−1

λ∗T+op(1), for a fixed T as n→∞.

The bias of estimating λ0 by the two-step estimator also contains the bias of estimating

µ0. Using the above result in (B.11) we now have (for a fixed T and as n→∞)

λ̂nT − λ0 = (µ̂T − µ0)− σ̄2

T

[
Σββ + σ̄2 1

T

(
F′MTF

T

)−1
]−1(

F′MTF

T

)−1

λ∗T + op(1),

which establishes Theorem 1.
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B.2 Proof of theorem 2

Using the expression for ûit given by (11), we have ûit =ai−âiT −
(
β̂i,T − βi

)′
ft + uit.

Since ûit are OLS residuals then for each i, we also have T−1
∑T

t=1 ûit = 0, and the above

can be written equivalently as ûit = uit− ūi◦−
(
β̂i,T − βi

)′
(ft − µ̂T ) , for i = 1, 2, ..., n,

and stacking over i now yields

ût = ut − ū−
(
B̂nT−Bn

)
(ft − µ̂T ) = ut − ū−UnTGT (ft − µ̂T ) , (B.17)

and stacking over t

ÛnT = UnTMT −UnTGTF′MT = UnT (MT −GTF′MT ) .

But GT= MTF (F′MTF)−1 , and we have

ÛnT = UnTRT , RT = MT −MTF (F′MTF)
−1

F′MT ,

where R2
T = RT = R′T , Tr (RT ) = T − 1−K. Then

̂̄σ2

nT =

∑T
t=1

∑n
i=1 û

2
it

n(T −K − 1)
=
Tr
(
n−1Û′nT ÛnT

)
T −K − 1

.

Also

n−1T−1E [Tr (U′nTUnT )] = n−1T−1E

(
T∑
t=1

n∑
i=1

u2
it

)
= n−1

n∑
i=1

σ2
i = σ̄2

n,

E
(
n−1U′nTUnT

)
= n−1

n∑
i=1

E (ui◦u
′
i◦) = σ̄2

nIT .

Let v = T −K − 1 and note that

v̂̄σ2

nT = Tr
(
n−1Û′nT ÛnT

)
= Tr

(
n−1U′nTUnTRT

)
=

= Tr
(
n−1U′nTUnTMT

)
− Tr

(
n−1F′MTU′nTUnTMTF (F′MTF)

−1
)

= Tr
(
n−1U′nTUnT

)
− T−1τ ′T

(
n−1U′nTUnT

)
τT − Tr

[
Q′
(
n−1U′nTUnT

)
Q
]
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where Q = MTF (T−1F′MTF)
−1/2. Consider the first term and note that

n−1Tr (U′nTUnT ) =

T∑
t=1

[
n−1

n∑
i=1

(
u2
it − σ2

i

)]
+ T σ̄2

n. (B.18)

Similarly

T−1τ ′T
(
n−1U′nTUnT

)
τT = T−1n−1τ ′T [U′nTUnT − E (U′nTUnT )] τT + σ̄2

n,
T r
[
Q′
(
n−1U′nTUnT

)
Q
]

= Tr [Q′ [U′nTUnT − E (U′nTUnT )] Q] +Kσ̄2
n.

Hence ̂̄σ2

nT − σ̄2
n = (T/v) (anT + bnT + cnT ) , (B.19)

where anT = T−1
∑T

t=1 [n−1
∑n

i=1 (u2
it − σ2

i )] , bnT = T−2n−1τ ′T [U′nTUnT − E (U′nTUnT )] τT ,

and cnT = T−1n−1Tr [Q′ [U′nTUnT − E (U′nTUnT )] Q]. Due to the independence of

F and UnT , we have E(anT ) = 0, E(bnT ) = 0 and E(cnT ) = 0, and for any fixed n and

T E
(̂̄σ2

nT − σ̄2
n

)
= 0, and for a fixed T, limn→∞E

(̂̄σ2

nT

)
= σ̄2, and result (45) follows.

To establish the probability order of ̂̄σ2

nT − σ̄2
n, we consider the probability orders of

anT , bnT , and cnT in turn, noting that that T/v = T/(T − K − 1) = O(1). For anT ,

using result (A.3) in Lemma A.1, and noting that uit are serially independent we have

anT = Op

(
T−1/2n−1/2

)
. (B.20)

Consider now bnT and note that bnT = T−2n−1
∑n

i=1 [τ ′Tui◦u
′
i◦τT − E (τ ′Tui◦u

′
i◦τT )] .

Also τ ′Tui◦u
′
i◦τT =

∑T
t=1

∑T
t′=1 uituit′ , and

bnT = T−2n−1

n∑
i=1

T∑
t=1

T∑
t′=1

[uituit′ − E (uituit′)]

= T−2

T∑
t=1

n−1

n∑
i=1

(
u2
it − σ2

i

)
+ T−2

T∑
t6=t′

(
n−1

n∑
i=1

uituit′

)
= T−2

T∑
t=1

an,tt + T−2

T∑
t6=t′

an,tt′ ,

where an,tt and an,tt′ are both shown in Lemma A.1 to be Op(n
−1/2). See equations

(A.3) and (A.5). Therefore, given that an,tt and an,tt′ with t 6= t′ are also distributed
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independently over t we have

bnT = Op(n
−1/2T−1/2). (B.21)

Denote the kth column of Q by qk = (qk1, q2k, ..., qTk)
′ (a T × 1 vector) and write cnT

as

cnT =
K∑
k=1

T−1

[
n−1

n∑
i=1

q′k [ui◦u
′
i◦ − E (ui◦u

′
i◦)] qk

]
=

K∑
k=1

T−1

[
n−1

n∑
i=1

T∑
t=1

T∑
t′=1

qktqkt′ [uituit′ − E (uituit′)]

]
.

Consider the kth term of the above sum, and note that

cnT,k = T−1n−1

n∑
i=1

T∑
t=1

T∑
t′=1

qktqkt′ [uituit′ − E (uituit′)] = T−1

T∑
t=1

T∑
t′=1

qktqkt′an,tt′ ,

where an,tt′ = n−1
∑n

i=1 [uituit′ − E (uituit′)]. is defined by (A.3) and (A.5) in Lemma

A.1, with V ar(an,tt′) = O (n−1) for all t and t′. Also an,tt′ and an,ss′ are distributed

independently if t or t′ differ from s or s′. Therefore, for all t and t′ for all t

V ar (cnT,k) = T−2

T∑
t=1

T∑
t′=1

q2
ktq

2
kt′V ar(an,tt′) ≤ O

(
n−1
)(

T−2

T∑
t=1

q2
kt

)
.

But it is easily verified that Q′Q = IK which yields
∑T

t=1 q
2
kt = 1, and V ar (cnT,k) =

O (T−2n−1). Hence, cnT,k = Op(T
−1n−1/2), for k = 1, 2, ..., K, which establishes that

cnT = Op(T
−1n−1/2)̇. The order result in (46) now follows using this result, (B.20) and

(B.21) in (B.19).

B.3 Proof of theorem 3

The bias-corrected estimator of φ0 is given by (17) which we reproduce here and re-

write as

HnT

(
φ̃nT − φ0

)
= snT , (B.22)
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where

snT =
B̂′nTMnânT

n
+ T−1̂̄σ2

nT

(
F′MTF

T

)−1

µ̂T −HnT φ0, (B.23)

HnT =
B̂′nTMnB̂nT

n
− T−1̂̄σ2

nT

(
F′MTF

T

)−1

. (B.24)

Also ânT = r̄n◦ − B̂nT µ̂T , and r̄n◦ = cτ n + Bnλ
∗
T + ūn◦+ηn (see (B.8)). Using these

results and noting that λ∗T = λ0 + (µ̂T − µ0) = φ0 + µ̂T , we have

ânT = cτ n + Bnφ0 + ūn◦ + ηn −
(
B̂nT −Bn

)
µ̂T

and ūn◦ = (ū1◦, ū2◦, ..., ūn◦)
′. Then,

B̂′nTMnânT =
(
B̂′nTMnBn

)
φ0 + B̂′nTMnūn◦ (B.25)

+ B̂′nTMnηn − B̂′nTMn

(
B̂nT −Bn

)
µ̂T .

Also

B̂nT = Bn+UnTGT , (B.26)

where UnT= (u1◦,u2◦, ...,un◦)
′ and GT is defined by (B.16). Using these results to-

gether with (B.24), the right hand side of (B.22) can be written as

snT =
B′nMnηn

n
+

G′TU′nTMnηn
n

+
G′TU′nTMnūn◦

n
− B′nMnUnTGTλ

∗
T

n
−G′T

(
U′nTMnUnT

n
− ̂̄σ2

nT

)
GTλ

∗
T ,

where the last term can be decomposed as

G′T

(
U′nTMnUnT

n
− ̂̄σ2

nT

)
GTλ

∗
T = G′T

(
U′nTMnUnT

n
− σ̄2

n

)
GTλ

∗
T−
(̂̄σ2

nT − σ̄2
n

)
G′TGTλ

∗
T .

Similarly, using (B.14), we have

HnT = n−1 (B′nMnBn) + n−1 (G′TU′nTMnBn) +

n−1 (B′nMnUnTGT ) + G′T

(
U′nTMnUnT

n
− σ̄2

n

)
GT − T−1

(̂̄σ2

nT − σ̄2
n

)(F′MTF

T

)−1

.
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Using Theorem 2 and since by assumption T−1F′MTF is positive definite, then(̂̄σ2

nT − σ̄2
n

)(F′MTF

T

)−1

= Op

(
T−1/2n−1/2

)
.

Also using results in Lemma A.2, we have

HnT = n−1 (B′nMnBn) +Op

(
T−1/2n−1/2

)
. (B.27)

Hence, HnT →p Σββ for a fixed T as n → ∞, so long as αγ < 1/2. Note also that by

Assumption Σββ is positive definite. Further

snT = n−1 (B′nMnūn◦ −B′nMnUnTGTλ
∗
T ) + n−1 (B′n + G′TU′nT ) Mnηn + n−1G′TU′nTMnūn◦

(B.28)

−G′T

(
U′nTMnUnT

n
− σ̄2

n

)
GTλ

∗
T + T−1

(̂̄σ2

nT − σ̄2
n

)(F′MTF

T

)−1

λ∗T .

Using (A.12) and (A.15) (in Lemma A.2) we have

n−1B′nMnηn + n−1G′TU′nTMnηn = Op

(
n−1+αη

)
+Op

(
T−1/2n−1+

αη+αγ
2

)
,

and (A.16) and (A.17)

n−1G′TU′nTMnūn◦ −G′T

(
U′nTMnUnT

n
− σ̄2

n

)
GTλ

∗
T = Op

(
T−1n−1/2

)
.

Further by (46)

T−1
(̂̄σ2

nT − σ̄2
n

)(F′MTF

T

)−1

λ∗T = Op

(
T−3/2n−1/2

)
. (B.29)

Hence

snT = n−1 (B′nMnūn◦ −B′nMnUnTGTλ
∗
T ) +Op

(
n−1+αη

)
(B.30)

+Op

(
T−1/2n−1+

αη+αγ
2

)
+Op

(
T−1n−1/2

)
+Op

(
T−3/2n−1/2

)
.

Using this result and (B.27) in (B.22) now yields (47), as required. To derive the

asymptotic distribution of φ̃nT−φ0 since by assumption αη+αγ < 1, then the dominant
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term of snT is given by

n−1 (B′nMnūn◦ −B′nMnUnTGTλ
∗
T ) = Op

(
T−1/2n−1/2

)
, (B.31)

and to ensure that we end up with a non-degenerate, stable limiting distribution,(
φ̃nT − φ0

)
needs to be scaled by

√
nT with n and T → ∞, jointly. To this end we

first note that when T is fixed HnT →p Σββ, as n→∞ and we have

√
nT
(
φ̃nT − φ0

)
a∼ Σ−1

ββ

(√
nT snT

)
. (B.32)

Using (B.30)

√
nT snT = ξnT +Op

(
n−

1
2

+
αη+αγ

2

)
+Op

(
T 1/2n−1/2+αη

)
+Op

(
T−1/2

)
,

where

ξnT = T 1/2n−1/2 (B′nMnūn◦ −B′nMnUnTGTλ
∗
T ) . (B.33)

Using the above results in (B.32) we now have

√
nT
(
φ̃nT − φ0

)
a∼ Σ−1

ββ

[
ξnT +Op

(
n−

1
2

+
αη+αγ

2

)
+Op

(
T 1/2n−1/2+αη

)
+Op

(
T−1/2

)]
.

(B.34)

Therefore, when condition (T/n)1/2nαη → 0, as n and T →∞, is met we have
√
nT
(
φ̃nT − φ0

)
a∼ Σ−1

ββξnT + op(1).

To derive the asymptotic distribution of ξnT , we note that ūn◦ = T−1UnTτ T , and

GTλ
∗
T = T−1MTF(T−1F′MTF)−1λ∗T . Then, using these results in (B.33)

ξnT = (ξk,nT ) = n−1/2T−1/2B′nMnUnTaT , (B.35)

where aT = τ T −MTF(T−1F′MTF)−1λ∗T = (at). Also

s2
a,T = T−1

T∑
t=1

a2
t = T−1a′TaT = 1 + λ∗′T (T−1F′MTF)−1λ∗T , (B.36)
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where λ∗T = φ0 + µ̂T = λ0 + (µ̂T − µ0), and (µ̂T − µ0) = Op

(
T−1/2

)
. Further

s2
a,T ≥ 1 and s2

a,T ≤ 1 + (λ∗′Tλ
∗
T )λmax

[
(T−1F′MTF)−1 ] < C, (B.37)

and s2
a = limT→∞ s

2
a,T = 1 + λ′0Σ

−1
f λ

′
0. The k

th element of ξnT is given by ξk,nT =

n−1/2T−1/2
∑n

i=1

T∑
t=1

at(βik − β̄k)uit, and using (27) we have

ξk,nT =

(
T−1/2

T∑
t=1

atgt

)[
n−1/2

n∑
i=1

(βik − β̄k)γi

]
+ n−1/2T−1/2

n∑
i=1

T∑
t=1

at(βik − β̄k)vit.

Under Assumption 3 gt is distributed independently of f t (and hence of at), as well as

being serially independent. Also V ar(T−1/2

T∑
t=1

atgt) = s2
a,T (recall that E(gt) = 0 and

E(g2
t ) = 1), and we have T−1/2

T∑
t=1

atgt = Op(1). Further E
∣∣n−1/2

∑n
i=1(βik − β̄k)γi

∣∣ ≤
supi,k E

∣∣βik − β̄k∣∣ (n−1/2
∑n

i=1 |γi|
)

= O(n−1/2+αγ ). Hence

ξk,nT = n−1/2T−1/2

T∑
t=1

n∑
i=1

at(βik − β̄k)vit +O(n−1/2+αγ )

= T−1/2

T∑
t=1

athnt +O(n−1/2+αγ ), (B.38)

where hnt = n−1/2
∑n

i=1(βik − β̄k)vit. Under Assumption 2, hnt = n−1/2
∑n

i=1(βik −
β̄k)vit →d N(0, ω2

k), for k = 1, 2, ..., K, where

ω2
k = p lim

n→∞
n−1

n∑
i=1

n∑
j=1

(βik − β̄k)(βjk − β̄k)σv,ij > 0,

and ω2
k ≤ supi,k E(βik − β̄k)

2 limn→∞ n
−1
∑n

i=1

∑n
j=1 |σv,ij| < C. Also, since vit are

serially independent then there exists T0 such that for any fixed T > T0 and as n→∞

T−1/2

T∑
t=1

athnt →d N
(
0, ω2

k

(
1 + s2

aT

))
,
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where s2
aT is defined by (B.36). Using this result in (B.38) and noting that αγ < 1/2,

we also have for any fixed T and as n→∞,

ξk,nT →d N
(
0, ω2

k

(
1 + s2

aT

))
, for a fixed T > T0 and as n→∞.

This result extends readily to the case where n and T →∞, jointly. In this case

ξk,nT →d N
(
0, ω2

k

(
1 + s2

a

))
, where s2

a = 1 + λ′0Σ
−1
f λ0.

Similarly, We have (using uit = γigt + vit)

Cov (ξk,nT , ξk′,nT ) = n−1T−1

n∑
i=1

n∑
j=1

T∑
t=1

a2
t (βik − β̄k)(βjk′ − β̄k′)E (uitujt) =

(
1 + s2

aT

) [
n−1

n∑
i=1

n∑
j=1

γiγj(βik − β̄k)(βjk′ − β̄k′)
]

+
(
1 + s2

aT

) [
n−1

n∑
i=1

n∑
j=1

σv,ij(βik − β̄k)(βjk′ − β̄k′)
]
.

But

E

∣∣∣∣∣n−1

n∑
i=1

n∑
j=1

γiγj(βik − β̄k)(βjk′ − β̄k′)
∣∣∣∣∣ ≤ sup

i,k,k′

∣∣(βik − β̄k)(βjk′ − β̄k′)∣∣E(βik − β̄k)2

(
n−1/2

n∑
j=1

|γi|
)

≤ sup
i,k

E(βik − β̄k)2

(
n−1/2

n∑
j=1

|γi|
)2

= O
(
n−1+2αγ

)
.

and similarly∣∣∣∣∣n−1

n∑
i=1

n∑
j=1

σv,ij(βik − β̄k)(βjk′ − β̄k′)
∣∣∣∣∣ ≤ sup

i,k
E(βik − β̄k)2n−1

n∑
i=1

n∑
j=1

|σv,ij| < C.

Hence Cov (ξk,nT , ξk′,nT ) < C, for all k and k′. Using the above results in (B.35, and

noting that K is fixed, we have ξnT →d N
(
0,Vξ

)
, as n and T → ∞,where Vξ =(

1 + λ′0Σ
−1
f λ0

)
p limn→∞ (n−1B′nMnVuMnBn ) , noting that s2

a,T →p 1 + λ′0Σ
−1
f λ0,

where s2
a,T is given by (B.36). Also recall from (B.34) that

√
nT
(
φ̃nT − φ0

)
=

Σ−1
ββξnT +Op

(
n−

1
2

+
αη+αγ

2

)
+Op

(
T 1/2n−1/2+αη

)
+Op

(
T−1/2

)
. Hence, result (51) follows

since by assumption αη < 1/2, αγ < 1/2, and (T/n)1/2nαγ → 0.
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B.4 Proof of theorem 4

Using (55) and (54) and replacing T−1 (T−1F′MTF)
−1 by G′TGT we have (see (B.5))

HnT (α) Dα

(
φ̃nT (α)− φ0

)
= qnT (α) , (B.39)

where qnT (α) = D−1
α B̂′nTMnânT+n̂̄σ2

nTD−1
α G′TGT µ̂T−HnT (α) Dαφ0, andHnT (α) =

D−1
α B̂′nTMnB̂nTD−1

α − n̂̄σ2

nTD−1
α G′TGTD−1

α . But

HnT (α) = nD−1
α HnTD−1

α , and qnT (α) = nD−1
α snT , (B.40)

where snT andHnT are already defined by (B.23) and (B.24). Consider first the limiting

property of HnT (α), and using (B.26) note that

HnT (α) = D−1
α B′nMnBnD

−1
α + D−1

α G′TU′nTMnBnD
−1
α +

D−1
α B′nMnUnTGTD−1

α + D−1
α G′TU′nTMnUnTGTD−1

α − n̂̄σ2

nTD−1
α G′TGTD−1

α ,

or

HnT (α) = D−1
α B′nMnBnD

−1
α + D−1

α G′TU′nTMnBnD
−1
α + D−1

α B′nMnUnTGTD−1
α

+ nD−1
α

[
G′T

(
n−1U′nTMnUnT

)
GT − ̂̄σ2

nTG′TGT

]
D−1
α .

Further

nD−1
α

[
G′T

(
n−1U′nTMnUnT

)
GT − ̂̄σ2

nTG′TGT

]
D−1
α

= nD−1
α

[
G′T

(
n−1U′nTMnUnT

)
GT − σ̄2

nG
′
TGT

]
D−1
α −

(̂̄σ2

nT − σ̄2
n

)
nD−1

α G′TGTD−1
α .

But by (46) ̂̄σ2

nT − σ̄2
n = Op(T

−1/2n−1/2), and ‖D−1
α ‖ = λ

1/2
max (D−2

α ) = n−αmin/2. Then,

using results in Lemma A.2 we have∥∥D−1
α B′nMnUnTGTD−1

α

∥∥ ≤ n
∥∥D−1

α

∥∥2 ∥∥n−1B′nMnUnTGT

∥∥ = Op

(
T−1/2n−αmin+1/2

)
,

and ∥∥∥nD−1
α G′T

(
n−1U′nTMnUnT − ̂̄σ2

nT IT

)
GTD−1

α

∥∥∥
≤ n

∥∥D−1
α

∥∥∥∥∥G′T (n−1U′nTMnUnT − ̂̄σ2

nT IT

)
GT

∥∥∥ = Op

(
T−1n−αmin+1/2

)
.
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Hence

HnT (α) = D−1
α B′nMnBnD

−1
α +Op

(
T−1n−αmin+1/2

)
,

and HnT (α) →p Σββ(α), as n → ∞, for a fixed T , so long as αmin > 1/2 > αγ.

By Assumption 2, limn→∞ (D−1
α B′nMnBnD

−1
α ) = Σββ(α) is a positive definite matrix.

Using this result in (B.39) we have

Dα

(
φ̃nT (α)− φ0

)
a∼ Σ−1

ββ (α)qnT (α), (B.41)

and (since Σββ(α) is positive definite,
∥∥Σ−1

ββ (α)
∥∥ < C)∥∥∥φ̃nT (α)− φ0

∥∥∥ ≤ ∥∥D−1
α

∥∥∥∥Σ−1
ββ (α)

∥∥ ‖qnT (α)‖ ≤ Cn−αmin/2 ‖qnT (α)‖ .

Using (B.40)

‖qnT (α)‖ =
∥∥nD−1

α snT
∥∥ ≤ n1−αmin/2 ‖snT‖ . (B.42)

Also from (B.30) we have

snT = n−1 (B′nMnūn◦ −B′nMnUnTGTλ
∗
T ) +Op

(
n−1+αη

)
(B.43)

+Op

(
T−1/2n−1+

αη+αγ
2

)
+Op

(
T−1n−1/2

)
.

Also using (B.31))

n−1 (B′nMnūn◦ −B′nMnUnTGTλ
∗
T ) = Op

(
T−1/2n−1/2

)
. (B.44)

Substituting (B.44) in (B.43) and using the result in (B.42) we have

‖qnT (α)‖ = Op

(
n−αmin/2+1/2T−1/2

)
+Op

(
T−1/2n

−αmin+(αη+αγ )
2

)
(B.45)

+Op

(
n−αmin/2+αη

)
+Op

(
n−αmin/2+1/2T−1

)
.

Denote the kth element of qnT (α) by qk,nT (α), we also have

qk,nT (α) = Op

(
n−αmin/2+1/2T−1/2

)
+Op

(
T−1/2n

−αmin+(αη+αγ )
2

)
+Op

(
n−αmin/2+αη

)
+Op

(
n−αmin/2+1/2T−1

)
.
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Also note that the kth element ofDα

(
φ̃nT (α)− φ0

)
is given by nαk/2

(
φ̃k,nT (α)− φ0,k

)
.

Hence, in view of (B.41) and since Σ−1
ββ (α) is a positive definite matrix then the prob-

ability order of nαk/2
(
φ̃k,nT (α)− φ0,k

)
must be the same as that of qk,nT , and hence

(as required)

φ̃k,nT (α)− φ0,k = Op

(
n−(αk+αmin)/2+1/2T−1/2

)
+Op

(
n
−(αk+αmin)+(αη+αγ )

2 T−1/2

)
+Op

(
n−(αk+αmin)/2+αη

)
+Op

(
n−(αk+αmin)/2+1/2T−1

)
.

B.5 Proof of theorem 5

Using (64) and noting that ŝnT →p λ
′
0Σ
−1
f λ0, then

V̂ξ,nT −Vξ =
(
1 + λ′0Σ

−1
f λ0

) [
n−1B̂′nTMnṼuMnB̂nT − p lim

n→∞

(
n−1B′nMnVuMnBn

)]
+ op(1)

=
(
1 + λ′0Σ

−1
f λ0

) [
n−1B̂′nTMnṼuMnB̂nT − n−1B′nMnVuMnBn

]
+ op(1).

(B.46)

Also using (B.4) we have

n−1B̂′nTMnṼuMnB̂nT = n−1 (Bn + UnTGn)′Mn

(
Ṽu −Vu + Vu

)
Mn (Bn + UnTGn) ,

which, after some algebra, yields

n−1B̂′nTMnṼuMnB̂nT − n−1B′nMnVuMnBn =
7∑
j=1

Aj,nT ,

where

A1,nT = n−1B′nMn

(
Ṽu −Vu

)
MnBn, A2,nT = n−1G′nU

′
nTMn

(
Ṽu −Vu

)
MnUnTGn,

A3,nT = n−1G′nU
′
nTMnVuMnUnTGn, A4,nT = n−1G′nU

′
nTMn

(
Ṽu −Vu

)
MnBn,

A5,nT = n−1G′nU
′
nTMnVuMnBn, A6,nT = n−1B′nMn

(
Ṽu −Vu

)
MnUnTGn,

A7,nT = n−1B′nMnVuMnUnTGn.

Considering the above terms in turn we note that

‖A1,nT‖ ≤ n−1 ‖B′nMn‖2
∥∥∥Ṽu −Vu

∥∥∥ = λmax

(
n−1B′nMnBn

) ∥∥∥Ṽu −Vu

∥∥∥ .
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Also, under Assumption 2 λmax (n−1B′nMnBn) < C and using (61) we have ‖A1,nT‖ =

Op

(
nαγ
√

ln(n)
T

)
. Similarly

‖A2,nT‖ ≤ n−1 ‖G′nU′nTMn‖2
∥∥∥Ṽu −Vu

∥∥∥ = λmax

(
n−1G′nU

′
nTMnUnTGn

) ∥∥∥Ṽu −Vu

∥∥∥ .
Then using (A.17) n−1G′nU

′
nTMnUnTGn →p σ̄

2
nG
′
TGT = T−1σ̄2

n(T−1F′MTF)−1 =

O(T−1), and it follows that ‖A2,nT‖ = Op

(
T−1nαγ

√
ln(n)
T

)
. Turning to the third term

‖A3,nT‖ ≤ n−1 ‖G′nU′nTMnUnTGn‖ ‖Vu‖ = λmax

(
n−1G′nU

′
nTMnUnTGn

)
‖Vu‖ .

Also, by Lemma A.1 ‖Vu‖ = O(nαγ ), and hence ‖A3,nT‖ = Op (T−1nαγ ), and ‖A4,nT‖ ≤∥∥n−1/2G′nU
′
nTMn

∥∥∥∥n−1/2MnBn

∥∥∥∥∥Ṽu −Vu

∥∥∥. Also, as shown above ∥∥n−1/2MnBn

∥∥ =

Op(1),
∥∥n−1/2G′nU

′
nTMn

∥∥ = Op(T
−1/2), then

‖A4,nT‖ = Op

(
T−1/2nαγ

√
ln(n)

T

)
,

‖A5,nT‖ ≤
∥∥n−1/2G′nU

′
nTMn

∥∥∥∥n−1/2MnBn

∥∥ ‖Vu‖ = Op

(
T−1/2nαγ

)
,

‖A6,nT‖ ≤
∥∥n−1/2G′nU

′
nTMn

∥∥∥∥n−1/2MnBn

∥∥∥∥∥Ṽu −Vu

∥∥∥ = Op

(
T−1/2nαγ

√
ln(n)

T

)
,

and ‖A7,nT‖ ≤
∥∥n−1/2B′nMn

∥∥ ‖Vu‖
∥∥n−1/2MnUnTGn

∥∥ = Op

(
T−1/2nαγ

)
. Overall,

∥∥∥n−1B̂′nMnṼuMnB̂n − n−1B′nMnVuMnBn

∥∥∥ = Op

(
nαγ

√
ln(n)

T

)
,

which if used in (B.46) establishes (63), as required.
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S1 Introduction

This online supplement provides the details of data sources for the risk factors and the
excess returns on securities used to calibrate the Monte Carlo designs and to carry out
the empirical applications reported in Sections 4 and 6 of the main paper. Section S2
describes the data used to calibrate the Monte Carlo (MC) designs, and Section S3
provides the estimates that formed the basis of the calibration of the parameters of the
MC designs. Section S4 provides evidence for the choice of 14 blocks used in calibration
of error covariances in the Monte Carlo experiments. Section S5 describes the data for
factors and excess returns used in the empirical applications, and Section S6 derives
the relationship between pooled R2 of return regressions and the factor strengths used
in the discussion of the empirical results.

S2 Data used to calibrate the Monte Carlo designs

S-2.1 Factors

To calibrate the parameters of the three factor model used in the Monte Carlo exper-
iments we used monthly Fama-French three factor data series over the long sample
1963m8-2021m12, downloaded from Kenneth French’s webpage.1 The factors are the
market return minus the risk free rate, denoted by MKT, the value factor (high book
to market minus low portfolios, HML) and the size factor (small minus big portfolios,
SMB). The risk free rate is also downloaded from French’s webpage. First order au-
toregressions, AR(1), were estimated for all the three factors using the full data set,
1963m8-2021m12. Then GARCH(1,1) models were then estimated on the residuals
from the fitted AR(1) regressions.

S-2.2 Excess returns

To calibrate the factor loadings and other parameters of the excess return regressions
we used the shorter sample over the 20 years 2002m1 - 2021m12 (T = 240). Monthly
returns (inclusive of dividend payment) over 2002m1 - 2021m12 (T = 240) for NYSE
and NASDAQ stocks with share codes of 10 and 11 from CRSP were downloaded from
Wharton Research Data Services and transformed to firm-specific excess returns using
the risk free rate from French’s webpage, and measured in percent, per month. Only
stocks with data over the period 2002m1-2021m12 were used to arrive at a balanced
panel with T = 240 monthly observations and a total number of n = 1289, securities.

1See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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To avoid extreme outliers influencing the estimates we first computed mean, median,
standard deviation, skewness and kurtosis for each security over 2002m1 - 2021m12.
Table DS1 reports the mean, standard deviations and interquartile range of these
statistics over all the 1289 securities in our sample. The histograms of these summary
statistics (mean, median, standard deviation, skewness and kurtosis) of the individual
stock returns for the full sample over 2002m1 - 2021m12 are shown in Figure DS1.
As can be seen from these summary statistics, there are outlier security returns with
very large standard deviations. This is clear from the cross firm standard deviation of
13.97 which is much larger than the kurtosis of 9.24 (See Table DS1), resulting from a
number of extreme outliers also seen from the long right tail of the histogram for the
distribution of kurtosis across firms.
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Figure DS1: Histogram and density function of the individual stock returns (n =
1289) over 2002m1-2021m12 (T = 240)
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S-2.3 Stocks with the kurtosis less than or equal to 14 and
less than 16

To reduce the influence of outlier returns on our results we considered dropping stock
excess returns having kurtosis in excess of 14 and 16. Excluding stocks with kurtosis
less than or equal to 14, resulted in a sample with n = 1148 securities, whilst if we
use the cut off point of 16 we ended up with n = 1175 securities. The mean, median,
standard deviation, skewness and kurtosis for each security over 2002m1 - 2021m12 of
the whole and two sub-samples, (1289, 1148 and 1175). Then the average, standard
deviation and interquartile range (IQR) for each summary statistic of the stocks from
the two sub-sample are summarized respectively in Table DS1.

Table DS1: The average, standard deviation and interquartile range of the summary
statistics of the individual stocks over 2002m1 - 2021m12 (T = 240)

Average Standard deviation Interquartile range

Panel A: All stocks (n = 1289)
stock.mean 1.3666 0.6593 0.7511
stock.median 0.8360 0.9970 0.9310
stock.standard deviation 11.9030 6.0082 6.5248
stock.skewness 0.6411 1.3766 0.9290
stock.kurtosis 9.2407 13.9786 4.0183

Panel B : Kurtosis ≤ 14 (n = 1148)
stock.mean 1.3303 0.5898 0.7032
stock.median 0.9474 0.8816 0.8654
stock.standard deviation 10.8837 4.3944 5.6429
stock.skewness 0.2976 0.5996 0.7270
stock.kurtosis 5.9885 2.3932 2.7762

Panel B : Kurtosis ≤ 16 (n = 1175)
stock.mean 1.3336 0.5922 0.7081
stock.median 0.9363 0.8878 0.8764
stock.standard deviation 10.9943 4.4695 5.6836
stock.skewness 0.3219 0.6285 0.7607
stock.kurtosis 6.1947 2.7222 2.9819
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Histograms for mean, median, standard deviation, skewness and kurtosis of the
individual stock returns for two sub-samples are shown in Figure DS2 for the sub-
sample with the kurtosis less than or equal to 14 over 2002m1 - 2021m12 (n = 1148),
and Figure DS3 are for the sub-sample with the kurtosis less than 16 over 2002m1 -
2021m12 (n = 1175).
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Figure DS2: Histogram and density function of the individual stock returns with
kurtosis less than or equal to 14 over 2002m1-2021m12 (T = 240) and n = 1148

DS-6



Figure DS3: Histogram and density function of the individual stock returns with
kurtosis less than or equal to 16 over 2002m1-2021m12 (T = 240) and n = 1148
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S3 The MC design and its calibration

S-3.1 Generation of returns

Excess returns, rit, are generated as

rit = ai +
∑

k=M,H,S

βikfkt + uit, (S3.1)

= ai + β′ift + uit,

for i = 1, 2, .., n; t = 1, 2, ..., T , with

ai = c+ β′iφ0 + ηi, (S3.2)

where ft = (fMt, fHt, fSt)
′, and βi = (βMi, βHi, βSi)

′, and φ0 = (φM , φH , φS)′.

S-3.2 Generation of factors

Factors are generated as first-order autoregressive, AR(1), processes with GARCH(1,1)
effects:

fkt = µk(1− ρk) + ρkfk,t−1 +
(
1− ρ2

k

)1/2
σktζkt, (S3.3)

σ2
kt = (1− bk − ck)σ2

k + bkσ
2
k,t−1 + ckσ

2
k,t−1ζ

2
k,t−1, (S3.4)

for k = M,H, S, starting from t = −49, ...0, 1, 2, ..., T, with fk,−50 = 0 (and σk,−50 = 0
in the case where ck 6= 0) to minimize the effects of the initial values on the sample
fkt, t = 1, 2, ..., T used in the simulations.
The data generating process for the factors is calibrated using the full set of Fama-

French three factor data set covering the period 1963m8-2021m12. The calibrated
parameter values are µ = (µM , µH , µS)′ = (0.59, 0.27, 0.23)′ , σ = (σM , σH , σS)′ =
(4.45, 2.86, 3.03)′, and ρ = (ρM , ρH , ρS)′ = (0.06, 0.17, 0.07)′. Note that V ar(fkt) = σ2

k.
The parameters of (S3.2) are also estimated using the bias-corrected procedure and
are set as c = 0.83 and φ0 = (−0.49,−0.35, 0.16)′. To ensure that correlation across
the three factors match the Fama-French data we generated ζt = (ζMt, ζHt, ζSt)

′ as
ζt = Qζωt, where Qζ is the Cholesky factor of Rζ , the correlation matrix of ft given
by

Rζ =

 1 −0.21 0.28
−0.21 1 −0.02
0.27 −0.02 1

 .

We consider both Gaussian and non-Gaussian errors and generate ωt as IID(0, I3), as
well as a multivariate t with 5 degrees of freedom, namely t(0, I3, 5). The remaining
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parameters are set as bk = ck = 0 to generate homoskedastic errors, and bk = 0.8 and
ck = 0.1 for k = M,H, S to generate GARCH effects.

S-3.3 Estimation of factor models

Consider the AR(1) processes with a GARCH(1,1) errors

fkt = µk(1− ρk) + ρkfk,t−1 +
(
1− ρ2

k

)1/2
σktζkt, (S3.5)

σ2
kt = (1− bk − ck)σ2

k + bkσ
2
k,t−1 + ckσ

2
k,t−1ζ

2
k,t−1, (S3.6)

where fkt, k = M,H, S and t = 1, ..., T , denote the the values of three factors
MKT,HML, SMB in month t, respectively. The estimates of GARCH parameters
obtained using the sample 2002m1 - 2021m12 (T = 240) are summarized in Table DS2.

Table DS2: GARCH parameters for the models of three Fama-French factors for the
sample over 2002m1 - 2021m12 (T = 240)

µ̂ ρ̂ σ̂ b̂ ĉ
MKT 0.8030 0.0711 4.5703 0.6781 0.2395

(0.3035) (0.0648) (·) (0.0854) (0.0627)
HML —0.0805 0.1816 3.1513 0.7582 0.1987

(0.2194) (0.0639) (·) (0.0986) (0.0686)
SMB 0.1718 —0.0267 2.5815 0.8353 0.0680

(0.1651) (0.0649) (·) (0.1845) (0.0606)

The correlation matrix of three factors MKT , HML, SMB over 2001m1-2021m9
(T = 240) is 1.00 0.20 0.35

0.20 1.00 0.35
0.35 0.35 1.00

 .

S-3.4 Factor loadings estimates

For each of the securities i = 1, 2, ..., 1175 (with kurtosis below 16), and t = 1, 2, ..., 240,
OLS regressions excess returns yit for security i was run on an intercept and the three
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FF factors
yit = rit − rft = ai +

∑
k∈{M,H,S}

βikfkt + uit,

where rit is the return of ith security at time t, inclusive of dividend (if any), and r
f
t

is the risk free rate. The sample mean and standard deviation of the excess return for
each individual stock, denoted as ȳiT and syiT are computed as

ȳiT = T−1

T∑
t=1

yit, (S3.7)

sdiT (y) =

√√√√(T − 1)−1

T∑
t=1

(yit − ȳiT )2. (S3.8)

The estimates âi,T , β̂ik,T , k = M,H, S are given by(
âi,T , β̂iM,T , β̂iH,T , β̂iS,T

)′
= (F ′0F 0

)−1F ′0yi◦, (S3.9)

where F 0 = (τ T ,F), F = (f 1,f 2, ...,fT )′, f t = (fMt, fHt, fSt)
′ and yi◦ = (yi1, yi2, ..., yiT )′.

The standard error of the ith regression, denoted as siT , is given by

σ̂2
iT = (T −K − 1)−1

T∑
t=1

û2
it, (S3.10)

where ûit = yit − âiT −
∑

k∈{M,H,S} β̂ik,Tfkt. The coeffi cient of determination of the i
th

regression, denoted by R2
iT , is given by

R2
iT = 1−

∑T
t=1 û

2
it∑T

t=1(yit − ȳiT )2
. (S3.11)

We compute the summary statistics: mean, median, standard deviation (S.D.), skew-
ness, kurtosis, interquartile range, minimum, maximum for the sample mean and stan-
dard deviation of the excess returns, the estimates and the corresponding standard er-
ror, R-squared of the regressions over 2002m1 - 2021m12 (T = 240), for the n = 1175
securities: ȳiT , sdi,T (y), âi,T , β̂iM,T , β̂iH,T , β̂iS,T , σ̂2

iT and R2
iT for i = 1, 2, ..., 1175,

computed using (S3.7)-(S3.11). The results are summarized in Table DS3.
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Table DS3: The summary statistics of the estimates, standard error and R-squared
of the panel regression over 2002m1 - 2021m12 (T = 240) and n = 1175

mean median S.D. skewness kurtosis IQR min max
ȳ 1.2366 1.1572 0.5922 0.6219 4.9697 0.7085 —1.5971 3.7434
sd(y) 11.0006 10.1115 4.4695 1.1241 4.4498 5.6826 4.1706 31.3322
â 0.3749 0.3562 0.5810 —0.1980 5.5804 0.6493 —2.8882 2.9736
β̂M 0.9714 0.9362 0.4279 0.5352 3.3349 0.5810 —0.0689 2.8590
β̂H 0.2235 0.2093 0.5276 —0.0916 4.7150 0.5915 —2.4498 2.9788
β̂S 0.6061 0.5790 0.5381 0.3552 3.2197 0.7495 —0.7504 2.7474
σ̂ 9.4123 8.2297 4.2794 1.3292 5.0599 5.3811 3.4523 30.6953
R2 0.2840 0.2782 0.1383 0.2172 2.2941 0.2131 0.0050 0.6814

The histogram for the âT and the β̂k,T for k = M,H, S over 2002m1 - 2021m12 (T =

240), each using 1175 data points âi,T and the β̂ik,T for k = M,H, S, i = 1, 2, ..., 1175,
is shown in the Figure DS4.

Figure DS4: Histogram and density function of the coeffi cients of the panel regression
over 2002m1-2021m12 (T = 240) and n = 1775

The histogram for the R2
T over 2002m1 - 2021m12 (T = 240), using 1175 data

points R2
iT for i = 1, 2, ..., 1175, is shown in the Figure DS5.

DS-11



Figure DS5: Histogram and density function of the R-squared of the panel regression
over 2002m1-2021m12 (T = 240) and n = 1775

S-3.5 Calibrating the fit of return regressions

To see how κ controls the regression fit, note that the n return processes (S3.1) can be
written more compactly in vector form as

rt = a + Bf t + ut,

where ut = γgt + κŜεt, a = (a1, a2, ..., an )′, with ai given by ai = c+ β′iφ+ ηi, and

Ŝ =Diag(Ŝb, b = 1, 2, ..., B).

Overall, the DGP for the return regressions can be written compactly as

rt = cτ n + B (ft + φ) + γgt + κŜεt + ηn,

where ηn = (η1, η2, ..., ηn)′. We abstract from pricing errors and weak latent factor and
ηi = 0, gt = 0, and set κ such that the pooled R2 (PR2) of return regressions can be
controlled to be around R2

0 = 0.30. We have

PR2
nT = 1− n−1T−1

∑T
t=1

∑n
i=1 E (u2

it)

n−1T−1
∑T

t=1

∑n
i=1 V ar(rit)

.
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V ar(rit) = V ar (β′ift) + V ar(uit) = E (β′iΣfβi) + E(u2
it)

= Tr [ΣfE (βiβ
′
i)] + E(u2

it).

Denote the kth element of βi by βik, then if βik ∼ IIDN(µβk , σ
2
βk

), and βik are distrib-
uted independently over k = 1, 2, ..., K, we have

E (βiβ
′
i) = Diag

(
µ2
βk

+ σ2
βk
, for k = 1, 2, ..., K

)
.

Then,

V ar(rit) = Tr [ΣfE (βiβ
′
i)] + E(u2

it) =

K∑
k=1

σ2
fk

(
µ2
βk

+ σ2
βk

)
+ E(u2

it).

Also,
n∑
i=1

E(u2
it) = Tr [E (utu

′
t)] ,

and (when gt = 0) we have

E (utu
′
t) = Vu = κ2ŜE (εtε

′
t) Ŝ′ = κ2ŜVεŜ

′,

where Vε = Diag(V
(r)
bε , b = 1, 2, ..., B)′. Hence,

n−1T−1

T∑
t=1

n∑
i=1

E
(
u2
it

)
= n−1Tr(Vu) = κ2n−1Tr

(
ŜVεŜ

′
)

and

PR2
nT = 1−

κ2n−1Tr
(
ŜVεŜ

′
)

∑K
k=1 σ

2
fk

(
µ2
βk

+ σ2
βk

)
+ κ2n−1Tr

(
ŜVεŜ′

) .
To achieve limn→∞PR

2
nT = R2

0, we need to set (assuming all K factors are strong)

κ2 =

∑K
k=1 σ

2
fk

(
µ2
βk

+ σ2
βk

)
n−1Tr

(
ŜVεŜ′

) (
1−R2

0

R2
0

)
. (S3.12)

DS-13



When there are no idiosyncratic error dependence, namely when Ŝ = In, the above
expression simplifies to

κ2 =

∑K
k=1 σ

2
fk

(
µ2
βk

+ σ2
βk

)
n−1Tr (Vε)

(
1−R2

0

R2
0

)
. (S3.13)

If we only use the market factor, we have

κ2 =
σ2
M

(
µ2
βM

+ σ2
βM

)
n−1Tr (Vε)

(
1−R2

0

R2
0

)
. (S3.14)

We expect that n−1Tr (Vε)→ 1, if E(σii) = 1, as under our DGP.

S-3.6 Estimation of FF factor strengths

Denote by tik,T = β̂ik,T / s.e.
(
β̂ik,T

)
, the t-statistic corresponding to βik. The total num-

ber of factor loadings of factor k, that are statistically significant over i = 1, 2, . . . , n,
n = 1175, is:

D̂nT,k =
n∑
i=1

d̂ik,nT =
n∑
i=1

1 [|tik,T | > cp(n)] ,

where 1 (A) = 1 if A > 0, and zero otherwise, and the critical value function that
allows for the multiple testing nature of the problem, cp(n, δ), is given by

cp(n, δ) = Φ−1
(

1− p

2nδ

)
, (S3.15)

where p is the nominal size, set, following Bailey, Kapetanios, and Pesaran (2021,
BKP), as p = 0.1, δ > 0 is the critical value exponent, set δ = 0.25, and Φ−1(·) is the
inverse cumulative distribution function of the standard normal distribution. Let π̂nT,k
be the fraction of significant loadings of factor k, and note that π̂nT,k = D̂nT,k/n. The
strength of factor k, denoted by αk0, for k = 1, 2, . . . , K, K = 3, is estimated by

α̂k =

{
1 +

ln π̂nT,k
lnn

, if π̂nT,k > 0,

0, if π̂nT,k = 0.
(S3.16)

The variance of the estimated strength of factor k is given by

V ar(α̂k) = (lnn)−2ψn(αk0),
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where
ψn(αk0) = p(n− nαk0)n−δ−2αk0

(
1− p

nδ

)
.

So the standard error of the estimated strength of factor k can be computed by:

s.e.(α̂k) =

√
ψn(α̂k)

lnn
. (S3.17)

Mean and variance of the loadings associated with factor k are given by

µ̂βkT (α̂k) =

∑n
i=1 1 [|tikT | > cp(n)] β̂ikT∑n

i=1 1 [|tikT | > cp(n)]
, (S3.18)

σ̂2
βk

(α̂k) =

∑n
i=1 1 [|tikT | > cp(n)]

(
β̂ikT − µ̂βkT (α̂k)

)2∑n
i=1 1 [|tikT | > cp(n)]

. (S3.19)

In the case where a factor is strong, namely αk = 1, then it must be that 1 [|tikT | > cp(n)] =
1 for all i. The estimated factor strengths α̂k and corresponding standard errors for
k = M,H, S, using the sample over 2002m1 - 2021m12 (T = 240) and n = 1175 are
reported in DS4.

Table DS4: Strength of three FF factors estimated over 2001m1-2021m9 (T = 240
and n = 1175)

M H S
α̂ 0.9941 0.8373 0.9023

(0.0001) (0.0014) (0.0008)

Note: This table reports the estimates of the factor strength using (S3.16) and the standard errors

that are reported in () using (S3.17), for three factors MKT,HML and SMB, using the sample over

2001m1-2021m9 (T = 240) and n = 1175, K = 3.
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S-3.7 Estimates of spanning error coeffi cients for FF factors

Table DS5: The bias-corrected estimates of c0 (intercept) and φM , φH , and φS for
the sample 2002m1 - 2021m12 (T = 240) with n = 1175 securities

ĉ0 φ̂M φ̂H φ̂S
0.8423 —0.4808 —0.3259 0.1195

(0.0971) (0.0780) (0.0846)

S4 Grouping of securities by their pair-wise corre-
lations

The T = 240 sample ending in 2021 was used to estimate the pair-wise correlations
of the residuals from the n = 1168 returns regressions using the Fama-French three
factors. Then all the statistically insignificant correlations were set to zero. Significance
was determined allowing for the multiple testing nature of the tests, using the critical
value cp(n, δ) = Φ−1

(
1− p

2nδ

)
, with p = 0.05 and δ = 2, since the number of pair-

wise correlations is of order O(n2). See also Bailey, Pesaran, and Smith (2019). For
the majority of securities (668 out of the 1168), the pair-wise return correlations were
not statistically significant. The securities with a relatively large number of non-zero
correlations were either in the banking or energy related industries.
Initially, the securities were grouped using the two digit codes from the 1987 stan-

dard industrial classification (SIC 1987). But this gave too many groups, 62. Many
of the groups had very few members: only one security for 3 out of the 62 groups and
less than 10 for 36 groups. However, code 60 (banking) had 145 securities. Therefore,
it was decided to work with the industrial classification based on a one digit level, and
to aggregate the codes with a small number of securities, taking out two digit codes
where there were large numbers in that code. We ended up with 14 contiguous groups
ranging in size from 33 to 145. Average correlations were low overall, but the aver-
age absolute correlation of securities within the groups was around 10 times that with
firms outside the group. See Table DS6, which gives averages of pair-wise correlations
without thresholding. These estimates suggested that a block diagonal structure with
14 blocks was a reasonable characterization which is used in the Monte Carlo analysis.
See Section 4of the main paper.
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Table DS6: Sector groupings by SIC codes and within and outside sector average
pair-wise correlations.

SIC Number Average correlations
codes of stocks within outside

Agriculture & mining 0-17 51 0.0848 —0.0043
Food processing etc 20-27 82 0.0382 0.0074
Chemicals & refining 28-29 78 0.0234 0.0027
Metals 30-34 65 0.0439 0.0070
Machinery & equipment 35 72 0.0380 0.0037
Electrical Equipment 36 77 0.0601 0.0001
Transport equipment 37 33 0.0800 0.0105
Misc. manufacturing 38-39 78 0.0155 0.0027
Transport etc. 40-49 108 0.0810 0.0035
Wholesale & retail trade 50-59 122 0.0357 0.0034
Banking 60 145 0.1240 —0.0037
Other finance 61-67 98 0.0273 0.0061
Commercial Services 70-79 114 0.0149 0.0031
Professional Services 80-89 45 0.0172 0.0023
Total 1168

Note: This table gives the average correlations within and between 14 groups selected based on one and

two digits SIC codes. It shows the number of stocks in each sector, the average pair-wise correlation

of stock returns within the sector as well as the average pair-wise correlations of returns of stocks in

a given sector with those outside the sector.

S5 Data used in the empirical application

S-5.1 Security excess returns

Monthly returns (inclusive of dividends) for NYSE and NASDAQ stocks from CRSP
with codes 10 and 11 were downloaded on July 2 2022 from Wharton Research Data
Services. They were converted to excess returns by subtracting the risk free rate, which
was taken from Kenneth French’s data base. To obtain balanced panels of stock returns
and factors only variables where there was data for the full sample under consideration
were used. Excess returns are measured in percent per month. To avoid outliers
influencing the results, stocks with a kurtosis greater than 16 were excluded.
Four main samples were considered, each had 20 years of data, T = 240, ending

in 2015m12, 2017m12, 2019m12, 2021m12. Thus the earliest observation used is for
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1996m1. Sub-samples of the main samples of size T = 120 and T = 60 ending at the
same dates were also examined. Table DS7 gives averages of the summary statistics
across the individual stocks for the various samples. These are very similar over these
four periods. Mean returns were high and substantially greater than the median re-
flecting the skewness of returns, which was slightly less in the last period. Filtering
out the stocks with very high kurtosis removed about 100 of the roughly 1200 stocks in
each period and reduced mean return, standard deviation, skewness as well as kurtosis.
The 5 (T = 60) and 10 (T = 120) year sub-samples of the main samples, ending at

the same dates, showed very similar patterns. Because of a requirement for a balanced
panel, the shorter the sample the more stocks will be eligible for inclusion. Compared
with around 1200 in the 20 year sample there were around 2,000 in the 10 year sub-
sample and around 2500 in the 5 year sub-sample. Again filtering by kurtosis reduced
the number of stocks by about 100. There is more variation in means and medians in
the shorter sub-samples and the shorter the sample the lower the average kurtosis is.
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Table DS7: Summary statistics for monthly returns in percent for NYSE and NAS-
DAQ stocks code 10 and 11 for 20 year (T = 240), 10 year (T = 120) and 5 year
(T = 60) samples ending at end of specified year

All stocks Stocks with kurtosis < 16
End date 2015 2017 2019 2021 2015 2017 2019 2021

Panel A: 20 year period, T = 240
Mean 1.38 1.35 1.30 1.37 1.33 1.28 1.25 1.33
Median 0.74 0.70 0.76 0.84 0.80 0.78 0.85 0.94
S.D. 12.44 12.61 12.22 11.90 11.60 11.64 11.31 10.99
Skewness 0.69 0.74 0.72 0.64 0.42 0.44 0.40 0.32
Kurtosis 8.68 9.08 9.22 9.24 6.10 6.29 6.29 6.19
n 1181 1243 1276 1289 1090 1132 1143 1175

Panel B : 10 year period, T = 120
Mean 1.00 1.22 1.24 1.55 0.98 1.17 1.23 1.49
Median 0.52 0.70 0.78 0.89 0.59 0.77 0.84 1.01
S.D. 12.36 12.68 10.70 11.83 11.67 11.80 10.27 10.70
Skewness 0.48 0.50 0.44 0.50 0.29 0.30 0.35 0.28
Kurtosis 6.93 7.08 5.32 7.02 5.57 5.62 4.64 5.33
n 2045 2024 1925 1871 1929 1907 1873 1766

Panel C : 5 year period, T = 60
Mean 0.98 1.39 0.82 1.60 0.96 1.35 0.80 1.47
Median 0.42 0.77 0.20 0.43 0.49 0.82 0.29 0.61
S.D. 10.89 10.62 11.88 14.91 10.41 10.15 11.28 13.28
Skewness 0.44 0.46 0.38 0.48 0.35 0.38 0.29 0.28
Kurtosis 4.84 4.74 4.68 6.21 4.34 4.29 4.20 5.04
n 2600 2425 2497 2512 2541 2373 2439 2388

Note: This table shows the average values of the summary statistics of individual stocks described in

Section 3, and the number of stocks (n), for each sample.

S-5.2 Risk factors

For the empirical applications we combined the 5 Fama-French factors with the 207
factors of Chen and Zimmermann (2022), both downloaded on 6 July 2022. The
available risk factors at the end of each of the four 240 months samples ending in 2015,
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2017, 2019 and 2021 were then screened and factors whose correlations (in absolute
value) with the market factor were larger than 0.70 were dropped. The basic idea
was to remove factors that were closely correlated with market factor. However, the
application of this filter only reduced the number of factors in the active set by around
9-11. See Table 4 of the main paper. The summary statistics for the factors in the
active set are summarized in Table DS8. It reports mean, median, pair-wise correlation,
standard deviation (S.D.), skewness and kurtosis of the statistics indicated in the sub-
headings of the tables for the K factors included in the active set for samples of size
T = 240 months ending in December of 2015, 2017, 2019 and 2021. The summary
statistics reported for the "Mean" on the left panel of Table DS8 are based on the time
series means of the individual factors, those under "Median" are based on the time
series medians of the individual factors, and so on.
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Table DS8: Summary statistics for mean, median, standard deviation, pairwise cor-
relations, skewness and kurtosis of factors for T = 240 samples at the end of specified
years (2015, 2017, 2019 and 2021)

End date 2015 2017 2019 2021 2015 2017 2019 2021
m(# Factors) 190 191 190 178 190 191 190 178

Mean Median
Mean 0.51 0.47 0.41 0.32 0.42 0.37 0.31 0.28
Median 0.45 0.39 0.33 0.26 0.31 0.28 0.22 0.20
S.D. 0.40 0.40 0.38 0.30 0.53 0.50 0.50 0.44
Skewness 1.88 2.50 2.28 0.76 1.59 1.89 1.58 1.38
Kurtosis 10.54 16.35 14.42 3.82 8.99 10.37 9.16 6.68

Standard deviation Pair-wise correlation
Mean 3.97 3.90 3.78 3.33 0.22 0.22 0.22 0.21
Median 3.51 3.47 3.37 2.99 0.18 0.17 0.17 0.16
S.D. 2.21 2.16 2.12 1.68 0.17 0.17 0.17 0.17
Skewness 1.15 1.23 1.29 1.05 0.86 0.88 0.88 0.92
Kurtosis 4.25 4.69 4.96 4.17 2.88 2.93 2.93 2.98

Skewness Kurtosis
Mean 0.14 0.21 0.23 0.04 8.51 8.79 9.42 7.03
Median 0.13 0.18 0.14 0.06 6.44 6.66 7.09 5.86
S.D. 1.15 1.21 1.27 1.01 5.76 6.55 7.12 5.28
Skewness 0.15 0.55 0.61 -1.03 2.34 3.18 2.96 5.01
Kurtosis 3.98 5.28 5.24 7.82 9.65 17.71 15.70 37.21

Note: The T=240 sample was used to select factors and only factors where the absolute correlation

coeffi cient with the market factor is less than 0.70 are included.

S6 Pooled R squared and factor strengths

Lemma S6.1 Consider the factor model

rit = ai +
K∑
k=1

βikfkt + uit = ai + β′ift + uit, for i = 1, 2, ..., n; t = 1, 2, ..., T, (S6.1)
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and consider the following adjusted pooled measure of fit

PR
2

= 1−
̂̄σ2

nT

(nT )−1∑n
i=1

∑T
t=1 (rit − r̄i◦)2

, (S6.2)

where ̂̄σ2

nT is the bias-corrected estimator of (nT )−1∑n
i=1

∑T
t=1E (u2

it) = n
∑n

i=1 σ
2
i =

σ̄2
n, given by (44) r̄i◦ = T−1

∑T
t=1 rit, and ūi◦ = T−1

∑T
t=1 uit. Then under Under

Assumptions 4, 1 and 2 we have

PR
2

nT =
K∑
k=1

	
(
nαk−1

)
+Op

(
T−1/2n−1+

αmax+αγ
2

)
, (S6.3)

where αk is the strength of factor ftk, αmax = maxk(αk), and αγ is the strength of the
missing factor.

Proof. Using (46) we first recall that

̂̄σ2

nT − σ̄2
n = Op

(
T−1/2n−1/2

)
. (S6.4)

Now averaging (S6.1) over t and forming deviations of rit from its time average, r̄i◦, we
have (note that µ̂T = T−1

∑T
t=1 ft)

rit − r̄i◦ = uit − ūi◦ + β′i (ft − µ̂T ) .

Using this result we have

(nT )−1
n∑
i=1

T∑
t=1

(rit − r̄i◦)2 = (nT )−1
n∑
i=1

T∑
t=1

(uit − ūi◦)2 + n−1

n∑
i=1

β′iΣ̂fβi (S6.5)

− 2 (nT )−1
n∑
i=1

T∑
t=1

(uit − ūi◦)β′i (ft − µ̂T ) ,

where Σ̂f = T−1
∑T

t=1 (ft − µ̂T ) (ft − µ̂T )′. For the first term we have

(nT )−1
n∑
i=1

T∑
t=1

(uit − ūi◦)2 − σ̄2
n = Op(n

−1/2T−1/2), (S6.6)

DS-22



which follows from the proof of Theorem 2 by setting βi = 0 and ft = 0 in Section
B.2. For the cross product term we have

(nT )−1
n∑
i=1

T∑
t=1

(uit − ūi◦)β′i (ft − µ̂T )

= (nT )−1
n∑
i=1

β′i

T∑
t=1

(ft − µ̂T ) (uit − ūi◦) = (nT )−1
n∑
i=1

β′i

T∑
t=1

(ft − µ̂T )uit

− (nT )−1
n∑
i=1

ūi◦β
′
i

T∑
t=1

(ft − µ̂T ) = (nT )−1
n∑
i=1

β′i

T∑
t=1

(ft − µ̂T )uit = pnT .

Also, using (27),

pnT = (nT )−1
n∑
i=1

β′i

T∑
t=1

(ft − µ̂T ) (γigt + vit) = p1,nT + p2,nT ,

where

p1,nT =

(
n−1

n∑
i=1

γiβ
′
i

)[
T−1

T∑
t=1

(ft − µ̂T ) gt

]
,

and

p2,nT = (nT )−1
n∑
i=1

β′i

T∑
t=1

(ft − µ̂T ) vit.

Under Assumption 3, (ft − µ̂T ) and gt are distributed independently and gt are serially
independent with E (gt) = 0 and E(g2

t ) = 1, and it follows that

V ar

[
T−1

T∑
t=1

(ft − µ̂T ) gt

]
= E

[
T−2

T∑
t=1

(ft − µ̂T )2E
(
g2
t

)]
= T−1E

(
T−1F′MTF

)
= O

(
T−1

)
.

Hence, T−1
∑T

t=1 (ft − µ̂T ) gt = Op

(
T−1/2

)
. Also (see (30) and (41))∥∥∥∥∥n−1

n∑
i=1

γiβ
′
i

∥∥∥∥∥ ≤ n−1

n∑
i=1

|γi| ‖βi‖ = n−1

n∑
i=1

|γi| (β′iβi)
1/2

≤
(
n−1

n∑
i=1

|γi|2
)1/2(

n−1

n∑
i=1

β′iβi

)1/2

= Op

(
n
−1+αγ

2

)
Op

(
n
−1+αmax

2

)
= Op

(
n−1+

αmax+αγ
2

)
.
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Hence, p1,nT = Op

(
T−1/2n−1+

αmax+αγ
2

)
. Consider p2,nT and recall that under Assump-

tion 4 vit are serially independent, have zero means and are distributed independently
of (ft − µ̂T ) and βi . Then E (p2,nT ) = 0 and

V ar (p2,nT |F) =
1

nT

(
1

n

n∑
i=1

n∑
j=1

σij,vβ
′
iΣ̂fβi

)
,

where E(vitvjt) = σij,v. Also,∥∥∥∥∥ 1

n

n∑
i=1

n∑
j=1

σij,vβ
′
iΣ̂fβi

∥∥∥∥∥ ≤ (supi ‖βi‖)
2
∥∥∥Σ̂f

∥∥∥( 1

n

n∑
i=1

n∑
j=1

|σij,v|
)
,

and by assumption supi ‖βi‖ < C, E
∥∥∥Σ̂f

∥∥∥ < C, and n−1
∑n

i=1

∑n
j=1 |σij,v| = O(1).

Hence, V ar (p2,nT ) = Op(n
−1T−1), and it follows that p2,nT = Op(T

−1/2n−1/2), and
overall (since αγ < 1/2 and αmax ≤ 1)

pnT = Op(T
−1/2n−1/2) +Op

(
T−1/2n−1+

αmax+αγ
2

)
= Op

(
T−1/2n−1+

αmax+αγ
2

)
. (S6.7)

Using (S6.6) and (S6.7) in (S6.5), we now have

(nT )−1
n∑
i=1

T∑
t=1

(rit − r̄i◦)2 = σ̄2
n + n−1

n∑
i=1

β′iΣ̂fβi +Op

(
T−1/2n−1+

αmax+αγ
2

)
.

Using this result and (S6.4) in (S6.2) yields

PR
2

nT = 1− σ̄2
n +Op(T

−1/2n−1/2)

σ̄2
n + n−1

∑n
i=1 β

′
iΣ̂fβi +Op(T−1/2n−1/2) +Op

(
T−1/2n−1+

αmax+αγ
2

) .
Since Op(T

−1/2n−1/2) is dominated by
(
T−1/2n−1+

αmax+αγ
2

)
, we end up with

PR
2

nT =
n−1

∑n
i=1 β

′
iΣ̂fβi/σ̄

2
n +Op

(
T−1/2n−1+

αmax+αγ
2

)
1 + n−1

∑n
i=1 β

′
iΣ̂fβi/σ̄

2
n +Op

(
T−1/2n−1+

αmax+αγ
2

) . (S6.8)
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Hence, the order of PR
2

nT is governed by the pooled signal-to-noise ratio defined by

s2
nT =

n−1
∑n

i=1 β
′
iΣ̂fβi

σ̄2
n

.

However, under Assumption 1

λmin(Σ̂f )
n−1

∑n
i=1 β

′
iβi

σ̄2
n

≤ s2
nT ≤ λmax(Σ̂f )

n−1
∑n

i=1 β
′
iβi

σ̄2
n

, (S6.9)

where c < λmin(Σ̂f ) < λmax(Σ̂f ) < C. Hence,

c

(
n−1

∑n
i=1 β

′
iβi

σ̄2
n

)
≤ s2

nT ≤ C

(
n−1

∑n
i=1 β

′
iβi

σ̄2
n

)
,

and it must be that

s2
nT = 	

(
n−1

n∑
i=1

β′iβi

)
= 	

[
K∑
k=1

(
n−1

n∑
i=1

β2
ik

)]
.

Also, under Assumption 2, n−1
∑n

i=1 β
2
ik = 	 (nαk−1). Hence,

s2
nT =

K∑
k=1

	
(
nαk−1

)
,

which in view of (S6.8) now yields (S6.3), as desired.
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1 Introduction

This online supplement provides detailed Monte Carlo results for all experiments and risk factors. The summary
tables below give the bias, RMSE and size (×100), for the DGP with one strong (αM = 1) and two semi-strong
factors (αH = 0.85, αS = 0.65) for the two-step and the bias-corrected estimators of φ0 = (φM , φH , φS)

′, for different
sample sizes. These are given for the twelve experimental designs listed in Table S-1 below. For experiments 8 and
9 we also report the results with larger values for the parameter of the pricing errors (αη = 0.50) and the spatial
coeffi cients (ρε = 0.85), denoted as Experiments 8a and 9a, respectively. Following each table the empirical power
functions for the bias corrected estimator of φ0 are displayed for different sample sizes. The threshold estimator of
the covariance matrix described in Section 3.2 of the main paper is used in computing the standard errors of the
tests.

2 List of Monte Carlo Experiments

The full list of Monte Carlo experimenst is provided in Table S-1. Six designs, the odd numbered ones, have errors
in the return equations that are Gaussian, six, the even numbered ones, have errors that are t distributed with 5
degrees of freedom. Designs 3 and 4 add GARCH effects in the factor errors to designs 1 and 2, respectively. Designs
5 and 6, add the pricing error, ηi, to designs 3 and 4, and designs 7 and 8 further add the missing factor, gt, to the
error of the return equations. Designs 1-8 have a diagonal covariance matrix for the idiosyncratic errors, vit. Designs
9 and 10 introduce spatial errors in the idiosyncratic errors, vit, and continue to allow for GARCH effects, pricing
errors, and a missing factor. Designs 11 and 12 generate vit with a block covariance matrix structure, instead of the
spatial pattern assumed in designs 9 and 10. All experiments are implemented using R = 2, 000 replications.

Table S-1: List of experimental designs and their parameter values

Error GARCH Pricing Missing Error

distribution effects errors factor covariance

1 Gaussian bk= 0, ck= 0 No No σij = 0, i 6= j
2 t(5) bk= 0, ck= 0 No No σij = 0, i 6= j
3 Gaussian bk= 0.8, ck= 0.1 No No σij = 0, i 6= j
4 t(5) bk= 0.8, ck= 0.1 No No σij = 0, i 6= j
5 Gaussian bk= 0.8, ck= 0.1 αη= 0.3 No σij = 0, i 6= j
6 t(5) bk= 0.8, ck= 0.1 αη= 0.3 No σij = 0, i 6= j
7 Gaussian bk= 0.8, ck= 0.1 αη= 0.3 αγ= 0.5 σij = 0, i 6= j
8 t(5) bk= 0.8, ck= 0.1 αη= 0.3 αγ= 0.5 σij = 0, i 6= j
9 Gaussian bk= 0.8, ck= 0.1 αη= 0.3 αγ= 0.5 ρε= 0.5
10 t(5) bk= 0.8, ck= 0.1 αη= 0.3 αγ= 0.5 ρε= 0.5
11 Gaussian bk= 0.8, ck= 0.1 αη= 0.3 αγ= 0.5 Block

12 t(5) bk= 0.8, ck= 0.1 αη= 0.3 αγ= 0.5 Block

Notes: t-distributed errors are denoted by t(5), bk and ck are the parameters of the GARCH(1,1), αη is the strength of the pricing
errors, αγ refers to the strength of the missing factor, σij = 0, i 6= j means that the error covariance is diagonal, ρε is the coeffi cient
of spatial error process, and "Block" means that the error covariance matrix is block diagonal. See he online supplement A for further

details.

The simulation design, as presented in Table S-1, is aligned with the naming convention employed for tables and
figures. Specifically, if a table is denoted as Table S-A-EX, it signifies that the table pertains to Experiment X when
the GDP and the panel regressions correctly include one strong and two semi-strong factors. On the other hand,
a table labeled as Table S-B-EX relates to Experiment X when the DGP includes one strong and two semi-strong
factors, comparing the results when strong and semi-strong factors are included (correct specification) with the ones
where only the strong factor is included (incorrect specification). Likewise, Table S-C-EX provides the summary
results for Experiment X, when the DGP contains one strong and two weak factors, comparing the results to the case
when strong and weak factors are included (correct specification) with the results obtained when the weak factors
are excluded (incorrect specification). The aforementioned nomenclature also applies to the figures that present the
empirical power functions.
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Table S-A-E1: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators of φ, for Experiment 1
with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
φM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 0.51 -1.55 26.19 86.14 11.10 4.00
500 -0.06 0.28 17.05 14.33 28.25 5.40

1,000 -0.43 0.10 15.80 10.12 41.35 6.20
3,000 -0.86 -0.01 14.77 5.56 60.90 5.70

T = 120 100 0.24 1.84 17.47 91.35 7.70 4.70
500 0.18 0.15 9.34 8.99 13.95 6.15

1,000 -0.04 0.01 7.57 6.22 19.15 5.65
3,000 -0.32 -0.06 6.27 3.49 36.65 4.95

T = 240 100 0.24 -0.15 12.11 13.11 5.40 4.55
500 0.31 0.09 5.75 5.75 8.00 4.85

1,000 0.22 0.03 4.34 4.06 10.60 5.30
3,000 0.07 -0.00 3.06 2.35 18.80 5.10

φH=−0.35, αH=0.85
T = 60 100 2.63 -0.89 29.26 140.65 17.55 3.65

500 4.07 -1.16 25.10 24.87 45.65 5.90
1,000 4.58 -0.12 25.19 18.25 57.25 6.30
3,000 4.81 0.30 26.13 11.76 75.10 5.90

T = 120 100 2.51 3.60 19.56 190.94 9.95 4.75
500 2.97 -0.47 13.83 13.46 25.65 5.55

1,000 3.34 0.02 13.68 10.20 39.85 6.00
3,000 3.57 0.15 13.85 6.48 61.55 5.50

T = 240 100 1.64 -0.50 13.44 16.67 7.75 6.15
500 1.99 -0.39 7.87 8.01 12.95 5.55

1,000 2.29 -0.15 7.28 6.04 23.05 5.40
3,000 2.64 0.02 6.97 3.82 44.55 4.70

φS=0.16, αS=0.65
T = 60 100 -20.09 1.57 37.57 256.48 24.55 2.60

500 -23.78 1.80 37.42 37.75 56.20 4.05
1,000 -25.54 1.05 38.85 32.14 68.60 5.45
3,000 -28.27 0.35 42.26 24.96 82.80 7.00

T = 120 100 -12.99 -6.16 25.50 378.75 16.25 4.90
500 -16.99 0.65 23.97 19.49 46.85 4.80

1,000 -18.80 0.56 25.41 16.40 62.60 5.55
3,000 -22.08 0.44 28.91 12.73 80.55 5.75

T = 240 100 -8.52 0.16 17.30 19.66 10.80 4.55
500 -11.19 0.19 15.08 11.66 36.15 4.90

1,000 -12.71 0.34 15.72 9.27 55.90 4.60
3,000 -15.93 0.18 18.70 7.02 81.90 5.60

Notes: The DGP for Experiment 1 allows for Gaussian errors, no GARCH effects, without pricing errors, no missing factors, and without

spatial/block error cross dependence. For further details of the experiments, see Table S-1.
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Figure S-A-E1: Power functions of the bias-corrected estimators of φM , φH and φS for Experiment 1

Note: See the notes to Table S-A-E1.
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Table S-A-E2: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators of φ, for Experiment 2
with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
φM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 0.65 0.27 26.62 45.08 11.75 3.70
500 -0.07 0.27 17.26 14.47 28.25 5.75

1,000 -0.50 0.04 15.74 10.24 39.75 6.10
3,000 -0.87 -0.05 14.80 5.72 60.70 5.90

T = 120 100 0.42 0.02 17.50 20.45 7.05 4.90
500 0.25 0.23 9.47 9.16 14.80 6.60

1,000 -0.03 0.03 7.46 6.12 19.20 5.55
3,000 -0.36 -0.09 6.31 3.52 36.70 5.65

T = 240 100 0.27 -0.14 12.17 13.18 6.20 5.05
500 0.34 0.11 5.84 5.81 8.15 5.05

1,000 0.22 0.04 4.34 4.07 10.40 5.55
3,000 0.04 -0.03 3.07 2.36 19.15 5.25

φH=−0.35, αH=0.85
T = 60 100 2.88 -2.77 29.60 81.53 17.70 3.25

500 4.18 -0.95 25.36 25.93 44.85 5.80
1,000 4.62 -0.02 25.27 18.42 57.40 5.00
3,000 4.75 0.13 26.17 12.23 74.80 5.95

T = 120 100 2.49 -0.71 19.67 28.58 9.70 4.85
500 3.17 -0.13 13.89 13.46 25.75 5.10

1,000 3.30 -0.05 13.75 10.34 40.05 6.00
3,000 3.52 0.08 13.84 6.61 62.40 6.05

T = 240 100 1.75 -0.39 13.41 16.61 7.70 5.65
500 2.08 -0.27 7.96 8.01 13.75 5.10

1,000 2.23 -0.23 7.22 6.08 22.20 5.15
3,000 2.64 0.02 6.95 3.83 43.50 4.60

φS=0.16, αS=0.65
T = 60 100 -20.16 5.40 37.93 125.25 24.85 3.60

500 -23.88 1.79 37.72 40.47 55.30 4.25
1,000 -25.44 1.10 38.75 33.04 67.85 5.35
3,000 -28.24 0.82 42.24 25.93 82.05 6.45

T = 120 100 -13.00 2.26 25.41 38.09 16.65 5.40
500 -17.08 0.48 24.21 20.35 46.35 5.55

1,000 -18.80 0.53 25.43 16.73 62.75 5.50
3,000 -22.12 0.38 28.88 12.87 79.90 5.70

T = 240 100 -8.38 0.35 17.38 19.88 10.75 4.90
500 -11.10 0.33 14.99 11.64 35.40 5.35

1,000 -12.66 0.43 15.60 9.15 55.40 4.55
3,000 -15.88 0.29 18.65 6.97 80.75 4.95

Notes: The DGP for Experiment 2 allows for t(5) distributed errors, no GARCH effects, without pricing errors, no missing factors, and

without spatial/block error cross dependence. For further details of the experiments, see Table S-1.
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Figure S-A-E2: Empirical Power Functions, experiment 2, for coeffi cient of the semi-strong factors

Note: See the notes to Table S-A-E2.
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Table S-A-E3: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators of φ, for Experiment 3
with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
φM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 0.51 -6.00 26.18 227.89 11.05 3.40
500 -0.14 0.29 17.03 14.71 28.20 5.65

1,000 -0.51 0.09 15.81 10.33 40.30 6.35
3,000 -0.92 0.00 14.83 5.65 61.15 5.65

T = 120 100 0.21 -0.19 17.45 20.63 7.85 4.50
500 0.13 0.15 9.35 9.05 13.80 6.25

1,000 -0.09 0.02 7.61 6.25 19.95 5.75
3,000 -0.37 -0.05 6.31 3.50 36.65 4.90

T = 240 100 0.25 -0.13 12.15 13.17 5.35 4.45
500 0.31 0.10 5.77 5.78 8.00 5.20

1,000 0.21 0.05 4.36 4.07 11.15 5.25
3,000 0.06 0.00 3.07 2.36 18.80 5.20

φH=−0.35, αH=0.85
T = 60 100 2.67 -7.85 28.98 155.63 17.70 3.80

500 4.06 -1.08 24.84 26.10 45.75 6.05
1,000 4.57 -0.15 24.93 18.93 56.85 6.35
3,000 4.80 0.28 25.82 12.24 75.55 5.40

T = 120 100 2.51 -0.70 19.41 28.86 10.05 4.25
500 2.95 -0.46 13.76 13.63 25.90 5.55

1,000 3.31 0.05 13.56 10.28 39.70 5.70
3,000 3.52 0.17 13.70 6.56 61.60 5.30

T = 240 100 1.64 -0.53 13.42 16.73 7.65 6.15
500 2.02 -0.38 7.86 8.04 13.35 5.65

1,000 2.32 -0.13 7.24 6.05 22.35 5.45
3,000 2.65 0.03 6.93 3.82 44.45 4.35

φS=0.16, αS=0.65
T = 60 100 -20.59 25.62 37.71 892.51 25.80 2.50

500 -24.12 1.65 37.45 40.44 57.75 3.90
1,000 -25.89 1.16 38.88 34.07 68.95 5.40
3,000 -28.50 0.41 42.22 26.13 82.65 6.70

T = 120 100 -13.31 2.54 25.72 37.94 16.80 4.95
500 -17.21 0.73 24.19 19.85 47.55 5.25

1,000 -19.04 0.61 25.61 16.70 63.75 5.65
3,000 -22.27 0.51 29.04 12.99 80.65 5.95

T = 240 100 -8.63 0.19 17.37 19.69 10.70 4.55
500 -11.31 0.21 15.22 11.72 36.85 5.15

1,000 -12.87 0.33 15.91 9.31 56.35 4.75
3,000 -16.07 0.17 18.87 7.04 81.75 5.60

Notes: The DGP for Experiment 3 allows for Gaussian errors, with GARCH effects, without pricing errors, no missing factors, and

without spatial/block error cross dependence. For further details of the experiments, see Table S-1.
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Figure S-A-E3: Empirical Power Functions, experiment 3, for coeffi cient of the semi-strong factors

Note: See the notes to Table S-A-E3.
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Table S-A-E4: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators of φ, for Experiment 4
with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
φM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 0.59 0.17 26.59 107.83 12.15 3.75
500 -0.16 0.23 17.26 14.75 28.05 5.65

1,000 -0.57 0.05 15.76 10.43 39.95 6.10
3,000 -0.93 -0.04 14.85 5.82 60.70 5.95

T = 120 100 0.37 -0.86 17.48 44.37 7.05 4.95
500 0.20 0.21 9.49 9.24 15.15 6.45

1,000 -0.08 0.03 7.50 6.16 19.45 4.90
3,000 -0.40 -0.08 6.35 3.53 36.70 5.85

T = 240 100 0.27 -0.13 12.20 13.22 6.35 4.85
500 0.34 0.12 5.86 5.83 8.80 5.10

1,000 0.22 0.05 4.36 4.08 10.60 5.60
3,000 0.03 -0.02 3.08 2.36 19.15 5.25

φH=−0.35, αH=0.85
T = 60 100 2.92 -5.32 29.30 146.82 17.95 3.15

500 4.18 -0.76 25.12 27.25 44.65 5.80
1,000 4.61 -0.06 25.02 19.04 56.50 4.85
3,000 4.73 0.12 25.86 12.64 74.85 5.60

T = 120 100 2.50 -3.13 19.53 113.15 9.75 4.55
500 3.16 -0.11 13.84 13.64 25.65 5.25

1,000 3.27 -0.02 13.64 10.41 40.10 6.05
3,000 3.47 0.10 13.70 6.67 60.75 6.25

T = 240 100 1.75 -0.41 13.39 16.66 7.85 5.75
500 2.12 -0.25 7.97 8.07 13.90 5.05

1,000 2.25 -0.22 7.17 6.09 21.70 5.40
3,000 2.65 0.02 6.92 3.85 43.35 4.70

φS=0.16, αS=0.65
T = 60 100 -20.62 12.61 38.03 267.24 25.90 3.60

500 -24.23 1.81 37.80 44.22 56.50 3.85
1,000 -25.79 1.07 38.78 34.41 68.90 5.45
3,000 -28.50 0.96 42.21 27.28 81.45 6.20

T = 120 100 -13.32 7.33 25.66 214.62 16.60 5.25
500 -17.29 0.59 24.43 20.72 46.95 5.50

1,000 -19.05 0.56 25.63 16.96 62.30 5.80
3,000 -22.32 0.41 29.03 13.12 80.50 5.85

T = 240 100 -8.49 0.40 17.46 19.99 10.75 5.10
500 -11.22 0.35 15.14 11.73 36.10 5.20

1,000 -12.80 0.44 15.77 9.19 55.95 4.40
3,000 -16.02 0.29 18.80 6.99 81.40 5.00

Notes: The DGP for Experiment 4 allows for t(5) distributed errors, with GARCH effects, without pricing errors, no missing factors, and

without spatial/block error cross dependence. For further details of the experiments, see Table S-1.
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Figure S-A-E4: Empirical Power Functions, experiment 4, for coeffi cient of the semi-strong factors

Note: See the notes to Table S-A-E4.
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Table S-A-E5: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators of φ, for Experiment 5
with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
φM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 0.42 -7.58 26.27 285.21 11.35 3.75
500 -0.15 0.28 17.05 14.79 28.10 5.80

1,000 -0.49 0.10 15.81 10.35 40.35 6.25
3,000 -0.92 -0.00 14.83 5.65 61.10 5.75

T = 120 100 0.06 -0.35 17.63 20.82 7.85 4.95
500 0.13 0.14 9.40 9.15 14.85 6.45

1,000 -0.07 0.04 7.60 6.28 20.00 5.90
3,000 -0.37 -0.06 6.32 3.50 37.00 4.80

T = 240 100 0.08 -0.31 12.48 13.53 6.30 5.35
500 0.31 0.10 5.83 5.84 8.35 5.35

1,000 0.23 0.07 4.38 4.11 10.95 5.20
3,000 0.06 0.00 3.08 2.36 18.75 5.25

φH=−0.35, αH=0.85
T = 60 100 2.58 -8.49 28.97 174.83 18.20 3.30

500 4.10 -1.01 24.82 26.10 45.25 6.15
1,000 4.58 -0.12 24.96 18.91 57.15 6.50
3,000 4.80 0.28 25.82 12.25 75.60 5.60

T = 120 100 2.44 -0.79 19.68 28.94 10.35 4.70
500 2.98 -0.43 13.78 13.79 25.75 5.60

1,000 3.32 0.07 13.57 10.29 40.00 6.05
3,000 3.52 0.17 13.70 6.56 61.85 5.45

T = 240 100 1.57 -0.63 13.97 17.37 8.25 6.75
500 2.04 -0.35 7.92 8.17 13.85 5.75

1,000 2.33 -0.12 7.28 6.09 22.70 5.50
3,000 2.66 0.04 6.94 3.83 44.70 4.55

φS=0.16, αS=0.65
T = 60 100 -20.57 31.92 37.88 1112.05 25.45 2.55

500 -24.15 1.61 37.49 40.53 57.90 3.95
1,000 -25.88 1.16 38.88 34.12 68.80 5.70
3,000 -28.51 0.40 42.23 26.13 82.65 6.60

T = 120 100 -13.21 2.55 26.09 37.89 16.70 5.50
500 -17.24 0.70 24.27 20.01 47.90 5.40

1,000 -19.03 0.62 25.61 16.77 63.50 5.85
3,000 -22.26 0.53 29.04 13.01 80.55 6.05

T = 240 100 -8.55 0.29 18.03 20.67 11.85 6.25
500 -11.35 0.16 15.31 11.89 37.35 5.85

1,000 -12.87 0.33 15.91 9.37 56.40 4.75
3,000 -16.07 0.18 18.86 7.07 81.75 5.65

Notes: The DGP for Experiment 5 allows for Gaussian errors, with GARCH effects, with pricing errors (αη = 0.3), no missing factors,

and without spatial/block error cross dependence. For further details of the experiments, see Table S-1.
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Figure S-A-E5: Empirical Power Functions, experiment 5, for coeffi cient of the semi-strong factors

Note: See the notes to Table S-A-E5.
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Table S-A-E6: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators of φ, for Experiment 6
with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
φM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 0.49 0.05 26.69 103.65 12.25 3.95
500 -0.17 0.24 17.27 14.81 28.25 5.95

1,000 -0.56 0.06 15.75 10.44 39.60 6.00
3,000 -0.93 -0.05 14.85 5.82 60.75 5.80

T = 120 100 0.22 -0.76 17.65 33.47 7.45 5.15
500 0.20 0.22 9.54 9.32 15.30 6.95

1,000 -0.06 0.05 7.49 6.18 19.50 5.30
3,000 -0.40 -0.09 6.36 3.54 37.05 5.70

T = 240 100 0.11 -0.30 12.57 13.63 7.55 6.10
500 0.33 0.11 5.91 5.88 8.60 5.10

1,000 0.24 0.07 4.38 4.13 10.30 5.80
3,000 0.03 -0.03 3.09 2.37 19.25 5.45

φH=−0.35, αH=0.85
T = 60 100 2.83 -5.32 29.34 144.70 18.05 3.40

500 4.22 -0.67 25.10 27.28 44.70 5.45
1,000 4.62 -0.03 25.04 19.02 56.30 4.80
3,000 4.73 0.12 25.86 12.64 74.70 5.65

T = 120 100 2.42 -2.45 19.82 78.69 11.40 4.90
500 3.19 -0.06 13.87 13.81 25.85 5.45

1,000 3.28 -0.00 13.65 10.44 40.80 6.35
3,000 3.47 0.11 13.70 6.67 61.05 6.10

T = 240 100 1.68 -0.51 13.94 17.33 8.35 6.70
500 2.15 -0.22 8.05 8.22 14.70 5.60

1,000 2.26 -0.20 7.23 6.14 21.75 5.65
3,000 2.65 0.03 6.93 3.86 43.85 5.00

φS=0.16, αS=0.65
T = 60 100 -20.59 12.67 38.25 257.83 25.55 3.70

500 -24.27 1.73 37.83 44.57 56.60 3.95
1,000 -25.78 1.10 38.79 34.52 68.85 5.30
3,000 -28.50 0.95 42.22 27.27 81.40 6.05

T = 120 100 -13.22 5.85 26.06 146.46 16.95 5.40
500 -17.32 0.55 24.50 20.89 47.05 5.55

1,000 -19.04 0.58 25.64 17.05 62.35 5.95
3,000 -22.32 0.42 29.03 13.16 80.25 5.90

T = 240 100 -8.41 0.50 18.09 20.93 12.15 6.40
500 -11.25 0.31 15.25 11.95 36.35 5.70

1,000 -12.80 0.44 15.77 9.26 55.35 5.05
3,000 -16.02 0.29 18.80 7.02 81.00 5.10

Notes: The DGP for Experiment 6 allows for t(5) distributed errors, with GARCH effects, with pricing errors (αη = 0.3), no missing

factors, and without spatial/block error cross dependence. For further details of the experiments, see Table S-1.
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Figure S-A-E6: Empirical Power Functions, experiment 6, for coeffi cient of the semi-strong factors

Note: See the notes to Table S-A-E6.
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Table S-A-E7: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators of φ, for Experiment 7
with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
φM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 -0.33 -14.31 26.54 555.11 11.80 3.20
500 -0.50 -0.18 17.67 15.13 29.80 6.40

1,000 -0.73 -0.15 15.95 10.41 42.20 6.25
3,000 -0.91 0.04 14.87 5.81 61.20 5.90

T = 120 100 -0.13 -0.49 17.44 20.30 7.55 5.05
500 0.01 0.01 9.49 8.86 14.20 5.85

1,000 -0.11 0.04 7.74 6.31 20.50 6.60
3,000 -0.27 0.08 6.40 3.60 36.65 5.65

T = 240 100 -0.00 -0.39 12.82 14.02 7.30 6.75
500 0.15 -0.08 6.14 6.13 9.85 6.95

1,000 0.14 -0.03 4.52 4.22 11.90 5.80
3,000 0.07 0.01 3.05 2.32 18.30 5.15

φH=−0.35, αH=0.85
T = 60 100 3.05 -222.60 29.40 9435.95 17.55 2.70

500 4.42 -0.75 25.03 26.57 46.25 4.95
1,000 4.43 -0.56 25.18 19.01 58.75 5.45
3,000 4.63 -0.15 25.85 12.14 76.15 5.75

T = 120 100 2.45 -0.89 19.84 28.94 10.55 4.95
500 3.24 -0.00 13.84 13.44 26.75 5.95

1,000 3.30 0.05 13.47 9.91 41.30 5.20
3,000 3.29 -0.25 13.67 6.56 62.45 5.75

T = 240 100 1.67 -0.55 13.68 16.80 7.45 6.10
500 2.28 -0.04 8.00 8.00 13.35 5.50

1,000 2.42 -0.02 7.22 6.00 22.60 5.10
3,000 2.54 -0.13 6.85 3.82 44.00 5.25

φS=0.16, αS=0.65
T = 60 100 -20.23 62.14 37.82 2347.80 25.15 2.70

500 -24.55 1.18 37.58 46.58 59.25 4.40
1,000 -26.04 0.76 38.91 33.25 69.25 5.25
3,000 -28.68 0.06 42.34 26.75 82.30 6.90

T = 120 100 -12.90 2.52 25.93 38.03 16.35 5.70
500 -17.48 0.44 24.54 21.10 50.00 6.00

1,000 -19.25 0.09 25.81 16.81 63.35 5.45
3,000 -22.34 0.29 29.12 13.12 80.15 6.15

T = 240 100 -8.13 0.84 17.77 20.91 11.30 5.65
500 -11.31 0.30 15.26 11.79 37.05 5.70

1,000 -12.84 0.38 15.96 9.45 56.40 5.15
3,000 -16.09 0.21 18.91 7.26 80.95 6.30

Notes: The DGP for Experiment 7 allows for Gaussian errors, with GARCH effects, with pricing errors (αη = 0.3), with one weak missing

factor (αγ = 0.5), and without spatial/block error cross dependence. For further details of the experiments, see S-1.
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Figure S-A-E7: Empirical Power Functions, experiment 7 for coeffi cient of the semi-strong factors

Note: See the notes to Table S-A-E7.
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Table S-A-E8: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators of φ, for Experiment 8
with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
φM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 -0.27 9.06 27.12 251.34 11.45 3.75
500 -0.74 -0.67 17.81 16.71 29.75 6.30

1,000 -0.64 0.01 16.06 10.38 40.90 5.70
3,000 -0.85 0.12 14.90 5.96 59.65 6.15

T = 120 100 0.04 -0.32 17.49 20.53 7.35 4.75
500 -0.06 -0.04 9.49 8.89 13.95 5.80

1,000 0.01 0.19 7.78 6.40 20.90 6.10
3,000 -0.24 0.14 6.39 3.63 37.25 5.90

T = 240 100 0.09 -0.29 12.84 14.07 7.10 6.35
500 0.20 -0.01 6.08 6.06 9.50 6.05

1,000 0.17 0.01 4.52 4.25 11.55 6.30
3,000 0.06 0.01 3.07 2.35 18.15 5.15

φH=−0.35, αH=0.85
T = 60 100 3.41 39.71 29.84 1913.29 17.65 3.15

500 4.52 -1.03 25.21 30.79 44.70 4.95
1,000 4.47 -0.47 25.14 19.34 57.65 5.85
3,000 4.59 -0.21 25.88 12.19 75.20 5.45

T = 120 100 2.68 -0.54 20.19 28.91 11.20 5.05
500 3.38 0.31 13.97 13.39 26.60 5.35

1,000 3.36 0.14 13.38 9.90 40.55 4.90
3,000 3.33 -0.18 13.64 6.52 61.95 5.20

T = 240 100 1.77 -0.40 13.95 17.05 7.45 6.00
500 2.38 0.12 8.01 7.92 14.30 4.70

1,000 2.58 0.20 7.25 5.99 23.15 4.75
3,000 2.54 -0.13 6.81 3.84 42.85 4.95

φS=0.16, αS=0.65
T = 60 100 -20.01 -141.72 37.89 5932.49 25.40 3.15

500 -24.52 3.22 37.63 77.87 57.05 4.45
1,000 -26.14 0.57 39.14 34.26 69.30 5.10
3,000 -28.54 0.84 42.33 26.81 81.00 5.85

T = 120 100 -13.01 2.45 26.01 36.96 16.80 5.60
500 -17.52 0.34 24.66 20.94 48.35 6.55

1,000 -19.32 -0.11 25.88 16.81 64.05 5.80
3,000 -22.35 0.26 29.14 13.22 79.70 6.20

T = 240 100 -8.14 0.79 17.57 20.56 11.15 5.85
500 -11.42 0.12 15.36 11.78 37.65 5.55

1,000 -13.01 0.12 16.02 9.32 55.70 5.20
3,000 -16.10 0.20 18.91 7.40 80.10 6.70

Notes: The DGP for Experiment 8 allows for t(5) distributed errors, with GARCH effects, with pricing errors (αη = 0.3), with one weak

missing factor (αγ = 0.5), and without spatial/block error cross dependence. For further details of the experiments, see S-1.
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Table S-A-E8a: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators of φ for Experiment 8
with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
φM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 -0.16 12.00 27.46 356.79 12.85 4.05
500 -0.77 -0.71 17.89 16.74 29.55 6.50

1,000 -0.66 -0.02 16.09 10.45 40.95 5.70
3,000 -0.86 0.10 14.91 5.99 59.85 6.20

T = 120 100 0.19 -0.16 18.02 21.26 8.25 5.30
500 -0.09 -0.08 9.66 9.09 14.80 6.00

1,000 -0.01 0.16 7.84 6.51 20.95 6.70
3,000 -0.25 0.12 6.40 3.65 38.10 6.35

T = 240 100 0.27 -0.10 13.79 15.14 8.85 8.70
500 0.19 -0.03 6.34 6.36 11.05 7.05

1,000 0.14 -0.03 4.63 4.40 12.05 7.50
3,000 0.05 -0.00 3.09 2.39 18.85 5.70

φH=−0.35, αH=0.85
T = 60 100 3.10 55.07 29.92 2828.62 18.85 3.10

500 4.53 -0.98 25.32 30.87 45.10 5.45
1,000 4.46 -0.51 25.19 19.42 58.20 5.45
3,000 4.59 -0.21 25.88 12.26 75.20 5.75

T = 120 100 2.39 -0.98 20.59 29.45 11.90 5.85
500 3.39 0.32 14.17 13.75 27.35 5.45

1,000 3.34 0.10 13.45 10.09 40.55 5.00
3,000 3.33 -0.18 13.63 6.58 62.30 5.20

T = 240 100 1.52 -0.70 14.82 18.29 10.60 8.55
500 2.38 0.12 8.27 8.27 15.65 6.05

1,000 2.55 0.15 7.35 6.23 23.20 5.65
3,000 2.54 -0.13 6.83 3.90 42.75 5.95

φS=0.16, αS=0.65
T = 60 100 -19.86 -210.04 38.24 8784.76 26.15 3.40

500 -24.49 3.17 37.68 75.99 56.80 4.95
1,000 -26.11 0.71 39.11 34.49 69.05 4.95
3,000 -28.55 0.78 42.34 26.88 81.20 6.05

T = 120 100 -12.88 2.68 26.48 38.62 17.60 5.85
500 -17.41 0.56 24.62 21.19 47.90 6.25

1,000 -19.28 -0.02 25.86 17.01 63.85 6.00
3,000 -22.36 0.23 29.18 13.36 79.65 6.75

T = 240 100 -8.03 0.96 18.42 22.23 13.25 7.35
500 -11.34 0.24 15.47 12.20 36.80 6.50

1,000 -12.95 0.21 16.03 9.63 56.70 6.20
3,000 -16.10 0.19 18.96 7.59 80.25 7.25

Notes: The DGP for Experiment 8 allows for t(5) distributed errors, with GARCH effects, with pricing errors (αη = 0.5), with one weak

missing factor (αγ = 0.5), and without spatial/block error cross dependence. For further details of the experiments, see S-1.
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Figure S-A-E8: Empirical Power Functions, experiment 8 for coeffi cient of the semi-strong factors

Note: See the notes to Table S-A-E8.
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Figure S-A-E8a: Empirical Power Functions, experiment 8a for coeffi cient of the semi-strong factors

Note: See the notes to Table S-A-E8a.
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Table S-A-E9: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators of φ, for Experiment 9
with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
φM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 -0.51 -15.47 27.16 662.68 11.80 3.40
500 -0.55 1.29 18.02 84.39 31.25 7.75

1,000 -0.85 -0.47 16.24 11.31 43.00 8.50
3,000 -0.99 -0.16 14.97 6.25 61.30 7.75

T = 120 100 -0.17 -0.59 17.92 21.49 7.15 4.50
500 0.03 -0.01 9.70 9.20 13.95 6.15

1,000 -0.17 -0.07 7.88 6.53 20.35 6.30
3,000 -0.33 -0.01 6.45 3.71 36.90 6.50

T = 240 100 -0.12 -0.54 12.73 14.02 6.80 6.85
500 0.13 -0.12 6.18 6.19 9.65 6.55

1,000 0.11 -0.08 4.57 4.30 11.75 6.60
3,000 0.06 -0.00 3.09 2.37 17.90 5.45

φH=−0.35, αH=0.85
T = 60 100 2.80 3.36 30.96 683.86 19.20 3.90

500 4.18 2.34 25.47 189.26 47.10 8.65
1,000 4.41 -0.83 25.43 22.18 59.30 9.35
3,000 4.63 -0.28 25.90 14.12 76.45 10.60

T = 120 100 2.27 -1.02 20.81 33.62 10.25 4.50
500 3.04 -0.39 14.24 14.82 24.60 5.70

1,000 3.17 -0.24 13.77 11.21 38.65 6.10
3,000 3.24 -0.40 13.74 7.47 60.05 7.75

T = 240 100 1.62 -0.61 14.29 17.94 7.20 5.75
500 2.25 -0.09 8.26 8.60 13.10 5.35

1,000 2.36 -0.10 7.47 6.57 21.10 5.65
3,000 2.57 -0.10 6.99 4.27 41.70 5.85

φS=0.16, αS=0.65
T = 60 100 -19.57 38.19 40.89 1634.08 26.25 4.75

500 -24.60 -17.77 38.37 944.75 59.35 10.05
1,000 -26.04 1.99 39.30 41.96 70.30 11.50
3,000 -28.69 0.77 42.55 32.04 82.85 11.70

T = 120 100 -12.73 4.51 29.32 56.35 14.45 5.50
500 -17.45 0.82 25.67 26.62 44.50 8.70

1,000 -19.16 0.54 26.31 20.96 58.65 8.40
3,000 -22.27 0.58 29.33 16.06 77.55 8.95

T = 240 100 -8.13 1.07 21.26 26.72 10.60 6.50
500 -11.34 0.35 16.58 15.28 31.25 7.40

1,000 -12.81 0.50 16.52 11.98 46.35 6.40
3,000 -16.03 0.35 19.08 9.09 75.35 7.25

Notes: The DGP for Experiment 9 allows for Gaussian errors, with GARCH effects, with pricing errors (αη = 0.3), with one weak missing

factor (αγ = 0.5), and with spatial error cross dependence (ρε = 0.5). For further details of the experiments, see Table S-1.
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Table S-A-E9a: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators of φ for Experiment 9
with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
φM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 -0.48 24.91 29.91 1802.71 10.25 3.05
500 -0.58 -1.22 19.37 92.46 26.95 6.75

1,000 -0.92 -0.95 17.00 17.30 37.20 8.60
3,000 -1.03 -0.35 15.24 8.41 55.50 8.65

T = 120 100 -0.02 -1.97 19.95 35.08 8.60 6.20
500 0.03 -0.10 10.58 10.55 13.75 6.10

1,000 -0.24 -0.22 8.38 7.44 17.85 6.55
3,000 -0.40 -0.12 6.67 4.26 33.75 6.90

T = 240 100 0.02 -0.44 13.81 15.39 8.65 7.40
500 0.12 -0.14 6.62 6.70 10.25 6.35

1,000 0.06 -0.15 4.86 4.72 10.85 7.45
3,000 0.04 -0.03 3.26 2.62 16.95 6.45

φH=−0.35, αH=0.85
T = 60 100 1.63 29.05 36.11 1916.43 14.35 1.95

500 3.76 1.48 27.36 303.36 36.10 7.25
1,000 4.26 -1.84 26.21 39.83 48.45 8.20
3,000 4.56 -0.62 26.15 22.78 69.25 11.05

T = 120 100 1.79 -3.12 24.84 50.47 9.30 4.50
500 2.85 -0.87 16.01 19.66 18.60 5.60

1,000 3.03 -0.57 14.77 15.08 28.80 6.90
3,000 3.13 -0.68 14.02 10.07 49.45 8.40

T = 240 100 1.21 -1.21 17.34 22.52 8.30 6.75
500 2.22 -0.15 9.58 10.83 11.00 5.95

1,000 2.27 -0.24 8.46 8.56 18.20 6.15
3,000 2.60 -0.08 7.42 5.55 33.25 7.10

φS=0.16, αS=0.65
T = 60 100 -18.49 110.60 50.00 7440.55 17.75 2.35

500 -24.61 18.11 41.10 1183.88 44.00 6.75
1,000 -26.08 6.93 40.81 118.48 58.05 8.75
3,000 -28.71 2.78 43.19 66.65 75.45 11.30

T = 120 100 -12.19 13.59 37.47 192.49 10.25 4.45
500 -17.28 2.13 28.78 40.29 30.50 8.05

1,000 -19.06 1.36 27.98 31.28 44.05 8.90
3,000 -22.25 1.02 30.06 23.69 66.95 8.90

T = 240 100 -8.15 1.74 28.35 38.76 8.85 5.65
500 -11.28 0.68 19.74 22.51 19.25 7.65

1,000 -12.72 0.82 18.22 17.60 31.20 7.15
3,000 -15.99 0.51 19.76 13.26 62.25 8.00

Notes: The DGP for Experiment 9 allows for Gaussian errors, with GARCH effects, with pricing errors (αη = 0.5), with one weak missing

factor (αγ = 0.5), and with spatial error cross dependence (ρε = 0.85). For further details of the experiments, see Table S-1.
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Figure S-A-E9: Empirical Power Functions, experiment 9 for coeffi cient of the semi-strong factors

Note: See the notes to Table S-A-E9.
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Figure S-A-E9a: Empirical Power Functions, experiment 9a for coeffi cient of the semi-strong factors

Note: See the notes to Table S-A-E9a.
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Table S-A-E10: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators of φ, for Experiment 10
with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
φM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 -0.39 -1.61 27.55 151.91 11.70 3.75
500 -0.82 -0.69 18.11 17.07 30.40 7.70

1,000 -0.73 -0.31 16.33 11.30 42.50 7.05
3,000 -0.92 -0.06 14.97 6.36 60.05 8.00

T = 120 100 0.02 -1.86 18.04 69.05 7.65 4.80
500 -0.07 -0.09 9.78 9.29 15.05 6.10

1,000 0.01 0.15 7.90 6.62 19.70 6.75
3,000 -0.29 0.05 6.42 3.72 37.55 5.80

T = 240 100 0.01 -0.39 12.87 14.17 6.30 6.35
500 0.17 -0.05 6.13 6.15 9.25 6.05

1,000 0.17 0.00 4.55 4.30 11.30 6.40
3,000 0.06 0.00 3.12 2.40 17.65 5.75

φH=−0.35, αH=0.85
T = 60 100 3.25 -8.09 31.16 504.30 19.35 3.65

500 4.29 -1.32 25.64 33.61 46.05 8.10
1,000 4.50 -0.68 25.36 22.95 58.25 9.70
3,000 4.57 -0.37 25.89 14.12 76.05 9.50

T = 120 100 2.48 -1.13 21.16 32.42 11.15 4.50
500 3.15 -0.09 14.31 14.78 25.55 5.70

1,000 3.25 -0.07 13.66 11.19 38.65 5.55
3,000 3.31 -0.26 13.70 7.36 60.50 6.70

T = 240 100 1.78 -0.40 14.58 18.18 8.25 6.05
500 2.35 0.08 8.31 8.60 13.35 5.20

1,000 2.53 0.12 7.51 6.58 21.05 5.00
3,000 2.57 -0.10 6.96 4.28 41.35 6.00

φS=0.16, αS=0.65
T = 60 100 -19.35 25.35 40.86 579.34 25.25 4.60

500 -24.56 2.56 38.40 68.65 57.50 9.85
1,000 -26.17 1.78 39.59 43.66 69.65 10.70
3,000 -28.53 1.55 42.55 32.38 81.95 11.90

T = 120 100 -12.71 10.19 29.68 304.30 14.70 6.05
500 -17.42 0.86 25.76 26.78 43.95 8.75

1,000 -19.30 0.15 26.41 20.74 59.65 8.50
3,000 -22.31 0.47 29.35 16.12 77.35 8.95

T = 240 100 -8.09 1.05 21.11 26.50 10.55 6.65
500 -11.52 0.08 16.67 15.20 30.35 7.15

1,000 -12.98 0.22 16.56 11.84 47.50 6.80
3,000 -16.05 0.32 19.11 9.25 75.50 8.00

Notes: The DGP for Experiment 10 allows for t(5) distributed errors, with GARCH effects, with pricing errors (αη = 0.3), with one weak

missing factor (αγ = 0.5), and with spatial error cross dependence (ρε = 0.5). For further details of the experiments, see Table S-1.
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Figure S-A-E10: Empirical Power Functions, experiment 10 for coeffi cient of the semi-strong factors

Note: See the notes to Table S-A-E10.
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Table S-A-E11: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators of φ, for Experiment 11
with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
φM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 -0.05 -0.72 26.31 47.59 11.30 3.40
500 -0.33 -0.07 17.63 15.12 29.40 6.70

1,000 -0.71 -0.22 16.06 10.46 41.95 6.35
3,000 -0.85 0.05 14.87 5.91 60.85 7.00

T = 120 100 0.10 -0.46 17.08 19.81 7.15 4.55
500 0.13 0.10 9.51 8.93 13.90 6.40

1,000 -0.11 -0.01 7.80 6.28 20.65 6.15
3,000 -0.21 0.09 6.41 3.60 37.25 6.20

T = 240 100 0.20 -0.24 12.33 13.43 6.15 5.30
500 0.24 0.01 6.12 6.11 10.05 6.75

1,000 0.13 -0.07 4.52 4.19 11.75 5.85
3,000 0.11 0.02 3.05 2.32 18.35 4.75

φH=−0.35, αH=0.85
T = 60 100 2.50 -2.25 29.66 103.01 18.75 3.35

500 3.74 -0.07 24.90 25.61 45.55 5.45
1,000 3.60 -0.52 24.93 18.83 59.20 6.05
3,000 3.98 0.01 25.84 12.59 75.45 7.90

T = 120 100 1.81 -0.44 19.83 27.88 10.00 4.95
500 2.49 0.09 13.69 13.12 26.00 6.15

1,000 2.45 0.01 13.32 10.12 40.65 6.00
3,000 2.63 0.01 13.61 6.86 62.05 7.20

T = 240 100 0.97 -0.57 13.36 16.38 6.90 5.55
500 1.60 -0.05 7.76 8.01 13.50 5.40

1,000 1.72 0.01 6.95 5.93 20.35 5.20
3,000 1.85 -0.07 6.58 3.89 41.35 5.95

φS=0.16, αS=0.65
T = 60 100 -20.60 -0.57 38.15 212.41 27.80 2.75

500 -23.77 2.07 36.92 42.46 58.25 5.55
1,000 -25.88 1.00 39.00 34.14 69.55 6.15
3,000 -28.31 0.81 41.99 28.50 82.20 7.90

T = 120 100 -12.85 2.34 26.13 35.00 17.60 4.80
500 -16.99 0.79 23.96 20.38 47.50 5.65

1,000 -19.15 0.29 25.77 16.81 64.20 5.85
3,000 -21.97 0.81 28.73 13.50 80.80 7.00

T = 240 100 -7.60 1.18 17.18 20.04 10.50 5.15
500 -10.88 0.56 14.80 11.65 35.40 5.55

1,000 -12.61 0.61 15.89 9.46 55.65 5.80
3,000 -15.72 0.52 18.57 7.12 80.50 5.35

Notes: The DGP for Experiment 11 allows for Gaussian errors, with GARCH effects, with pricing errors (αη = 0.3), with one weak

missing factor (αγ = 0.5), and with block error cross dependence. For further details of the experiments, see Table S-1.
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Figure S-A-E11: Empirical Power Functions, experiment 11 for coeffi cient of the semi-strong factors

Note: See the notes to Table S-A-E11.
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Table S-A-E12: Bias, RMSE and size for the two-step and bias-corrected (BC) estimators of φ, for Experiment 12
with one strong and two semi-strong factors

Bias(x100) RMSE(x100) Size(x100)
φM=−0.49, αM=1 n Two Step BC Two Step BC Two Step BC

T = 60 100 0.09 -0.14 27.00 129.71 11.65 4.10
500 -0.57 -0.25 17.72 15.76 29.85 6.10

1,000 -0.60 -0.04 16.17 10.48 41.65 5.65
3,000 -0.80 0.10 14.89 6.07 60.25 6.75

T = 120 100 0.22 -0.35 17.19 20.06 6.90 4.15
500 0.07 0.06 9.47 8.91 13.70 5.40

1,000 0.04 0.16 7.81 6.35 20.50 6.00
3,000 -0.18 0.14 6.40 3.62 37.75 5.60

T = 240 100 0.30 -0.13 12.34 13.45 6.50 5.90
500 0.30 0.07 6.02 6.01 8.90 6.30

1,000 0.17 -0.02 4.50 4.21 11.40 5.80
3,000 0.10 0.02 3.09 2.35 18.15 5.05

φH=−0.35, αH=0.85
T = 60 100 2.62 9.84 29.60 432.72 18.55 2.75

500 3.90 0.37 25.08 28.76 45.25 5.35
1,000 3.57 -0.62 24.92 19.22 58.20 5.95
3,000 3.94 -0.10 25.92 12.64 74.50 6.90

T = 120 100 1.82 -0.38 19.87 27.99 9.25 4.65
500 2.59 0.31 13.82 13.27 25.70 5.85

1,000 2.45 0.02 13.31 10.26 39.70 5.95
3,000 2.70 0.11 13.61 6.85 61.20 7.15

T = 240 100 0.92 -0.65 13.61 16.79 7.15 4.90
500 1.65 0.02 7.79 8.06 12.50 5.05

1,000 1.77 0.07 7.03 6.03 21.70 5.55
3,000 1.87 -0.05 6.57 3.93 41.05 6.05

φS=0.16, αS=0.65
T = 60 100 -20.25 1.01 38.24 407.11 26.15 3.00

500 -23.75 1.77 36.94 55.06 55.90 5.30
1,000 -26.03 0.80 39.26 35.51 69.75 6.50
3,000 -28.18 1.33 41.98 27.55 81.60 7.85

T = 120 100 -13.05 2.21 26.45 36.34 18.15 5.05
500 -16.97 0.78 24.00 20.16 47.40 5.40

1,000 -19.18 0.24 25.77 17.03 64.35 6.10
3,000 -21.96 0.84 28.73 13.65 80.55 7.20

T = 240 100 -7.73 1.03 17.33 20.17 11.10 5.40
500 -10.89 0.50 14.85 11.67 34.35 5.40

1,000 -12.73 0.44 15.92 9.49 54.85 5.60
3,000 -15.75 0.49 18.58 7.25 80.80 5.65

Notes: The DGP for Experiment 12 allows for t(5) distributed errors, with GARCH effects, with pricing errors (αη = 0.3), with one weak

missing factor (αγ = 0.5), and with block error cross dependence. For further details of the experiments, see S-1.

MCS-28



Figure S-A-E12: Empirical Power Functions, experiment 12 for coeffi cient of the semi-strong factors

Note: See the notes to Table S-A-E12.
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2.1 Estimators of φ for one strong and two semi-strong factors, threshold estimator
of the covariance matrix with and without misspecification

This subsection compares the estimators of φ for one strong and two semi-strong factors with and without misspec-
ification. Under the misspecification, only strong estimators φM are considered in the estimation process. Each
table contains the results of three of the 12 experiments described in Table S-1, and corresponding empirical power
functions follow.

Table S-B-E1-3: Bias, RMSE and size for the bias-corrected estimators of φM=−0.49, αM=1 with and without
semi-strong factors (αH = 0.85, αS = 0.65) included in the regression for the cases of experiments 1, 2 and 3

Bias(x100) RMSE(x100) Size(x100)
Experiment 1 n With Without With Without With Without

semi-strong factors semi-strong factors semi-strong factors
T = 60 100 -1.55 5.63 86.14 31.56 4.00 7.60

500 0.28 3.72 14.33 14.60 5.40 8.80
1,000 0.10 2.96 10.12 11.02 6.20 10.85
3,000 -0.01 1.96 5.56 6.98 5.70 13.50

T = 120 100 1.84 4.96 91.35 20.49 4.70 7.50
500 0.15 3.36 8.99 9.93 6.15 10.50

1,000 0.01 2.72 6.22 7.40 5.65 12.15
3,000 -0.06 1.88 3.49 4.71 4.95 15.80

T = 240 100 -0.15 5.00 13.11 14.46 4.55 7.90
500 0.09 3.33 5.75 7.03 4.85 11.90

1,000 0.03 2.73 4.06 5.33 5.30 14.40
3,000 -0.00 1.95 2.35 3.52 5.10 19.95

Experiment 2
T = 60 100 0.27 6.04 45.08 32.20 3.70 7.25

500 0.27 3.69 14.47 14.60 5.75 7.75
1,000 0.04 2.85 10.24 11.07 6.10 11.10
3,000 -0.05 1.94 5.72 7.03 5.90 14.45

T = 120 100 0.02 5.24 20.45 20.58 4.90 8.30
500 0.23 3.46 9.16 10.04 6.60 10.35

1,000 0.03 2.73 6.12 7.37 5.55 11.35
3,000 -0.09 1.83 3.52 4.70 5.65 16.10

T = 240 100 -0.14 5.08 13.18 14.44 5.05 8.75
500 0.11 3.39 5.81 7.06 5.05 11.65

1,000 0.04 2.74 4.07 5.35 5.55 15.50
3,000 -0.03 1.92 2.36 3.51 5.25 20.55

Experiment 3
T = 60 100 -6.00 5.70 227.89 31.96 3.40 7.55

500 0.29 3.68 14.71 14.81 5.65 9.10
1,000 0.09 2.94 10.33 11.25 6.35 11.55
3,000 0.00 1.96 5.65 7.18 5.65 14.55

T = 120 100 -0.19 4.89 20.63 20.51 4.50 7.45
500 0.15 3.32 9.05 9.98 6.25 10.65

1,000 0.02 2.68 6.25 7.46 5.75 12.15
3,000 -0.05 1.85 3.50 4.75 4.90 15.20

T = 240 100 -0.13 4.96 13.17 14.48 4.45 7.90
500 0.10 3.32 5.78 7.05 5.20 11.85

1,000 0.05 2.72 4.07 5.34 5.25 14.10
3,000 0.00 1.93 2.36 3.53 5.20 19.90

Notes: The DGP includes one strong αM = 1 and two semi-strong (αH = 0.85, αS = 0.65) factors, the regression with the two semi-strong

factors includes them, the regression without excludes them. For further details of the experiments, see S-1.
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Figure S-B-E1: Empirical Power Functions, experiment 1, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-B-E1-3.
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Figure S-B-E2: Empirical Power Functions, experiment 2, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-B-E1-3.
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Figure S-B-E3: Empirical Power Functions, experiment 3, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-B-E1-3.
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Table S-B-E4-6: Bias, RMSE and size for the bias-corrected estimators of φM =−0.49, αM=1 with and without
semi-strong factors (αH = 0.85, αS = 0.65) included in the regression for the cases of experiments 4, 5 and 6

Bias(x100) RMSE(x100) Size(x100)
Experiment 4 n With Without With Without With Without

semi-strong factors semi-strong factors semi-strong factors
T = 60 100 0.17 6.08 107.83 32.68 3.75 7.25

500 0.23 3.64 14.75 14.88 5.65 7.85
1,000 0.05 2.84 10.43 11.29 6.10 10.85
3,000 -0.04 1.94 5.82 7.21 5.95 14.15

T = 120 100 -0.86 5.15 44.37 20.62 4.95 8.10
500 0.21 3.42 9.24 10.11 6.45 10.75

1,000 0.03 2.69 6.16 7.41 4.90 11.05
3,000 -0.08 1.81 3.53 4.75 5.85 15.55

T = 240 100 -0.13 5.03 13.22 14.46 4.85 8.70
500 0.12 3.37 5.83 7.07 5.10 11.15

1,000 0.05 2.72 4.08 5.36 5.60 15.50
3,000 -0.02 1.90 2.36 3.52 5.25 20.00

Experiment 5
T = 60 100 -7.58 5.70 285.21 31.96 3.75 7.55

500 0.28 3.68 14.79 14.86 5.80 9.05
1,000 0.10 2.92 10.35 11.25 6.25 11.80
3,000 -0.00 1.97 5.65 7.19 5.75 14.70

T = 120 100 -0.35 4.89 20.82 20.51 4.95 7.45
500 0.14 3.32 9.15 10.03 6.45 10.30

1,000 0.04 2.67 6.28 7.48 5.90 12.20
3,000 -0.06 1.86 3.50 4.76 4.80 15.45

T = 240 100 -0.31 4.96 13.53 14.48 5.35 7.90
500 0.10 3.31 5.84 7.08 5.35 11.50

1,000 0.07 2.71 4.11 5.36 5.20 14.10
3,000 0.00 1.94 2.36 3.53 5.25 20.30

Experiment 6
T = 60 100 0.05 6.08 103.65 32.68 3.95 7.25

500 0.24 3.63 14.81 14.93 5.95 8.25
1,000 0.06 2.82 10.44 11.30 6.00 11.00
3,000 -0.05 1.95 5.82 7.22 5.80 14.40

T = 120 100 -0.76 5.15 33.47 20.62 5.15 8.10
500 0.22 3.42 9.32 10.16 6.95 10.65

1,000 0.05 2.68 6.18 7.43 5.30 11.25
3,000 -0.09 1.82 3.54 4.75 5.70 15.40

T = 240 100 -0.30 5.03 13.63 14.46 6.10 8.70
500 0.11 3.37 5.88 7.10 5.10 11.85

1,000 0.07 2.71 4.13 5.38 5.80 15.50
3,000 -0.03 1.91 2.37 3.52 5.45 20.40

Notes: The DGP includes one strong αM = 1 and two semi-strong (αH = 0.85, αS = 0.65) factors, the regression with the two semi-strong

factors includes them, the regression without excludes them. For further details of the experiments, see S-1.
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Figure S-B-E4: Empirical Power Functions, experiment 4, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-B-E4-6.
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Figure S-B-E5: Empirical Power Functions, experiment 5, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-B-E4-6.
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Figure S-B-E6: Empirical Power Functions, experiment 6, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-B-E4-6.
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Table S-B-E7-9: Bias, RMSE and size for the bias-corrected estimators of φM =−0.49, αM=1 with and without
semi-strong factors (αH = 0.85, αS = 0.65) included in the regression for the cases of experiments 7, 8 and 9

Bias(x100) RMSE(x100) Size(x100)
Experiment 7 n With Without With Without With Without

semi-strong factors semi-strong factors semi-strong factors
T = 60 100 -14.31 4.76 555.11 31.07 3.20 5.35

500 -0.18 3.25 15.13 15.20 6.40 9.65
1,000 -0.15 2.62 10.41 11.29 6.25 11.35
3,000 0.04 1.99 5.81 7.17 5.90 14.95

T = 120 100 -0.49 4.70 20.30 19.98 5.05 6.55
500 0.01 3.15 8.86 9.80 5.85 10.15

1,000 0.04 2.62 6.31 7.45 6.60 11.85
3,000 0.08 1.99 3.60 4.80 5.65 17.05

T = 240 100 -0.39 4.91 14.02 14.48 6.75 8.50
500 -0.08 3.13 6.13 7.18 6.95 12.85

1,000 -0.03 2.67 4.22 5.45 5.80 15.15
3,000 0.01 1.97 2.32 3.50 5.15 20.90

Experiment 8
T = 60 100 9.06 4.80 251.34 31.95 3.75 6.85

500 -0.67 2.88 16.71 15.13 6.30 9.95
1,000 0.01 2.75 10.38 11.32 5.70 10.25
3,000 0.12 2.09 5.96 7.25 6.15 14.70

T = 120 100 -0.32 4.83 20.53 20.18 4.75 6.25
500 -0.04 3.05 8.89 9.73 5.80 10.20

1,000 0.19 2.76 6.40 7.60 6.10 12.70
3,000 0.14 2.01 3.63 4.81 5.90 17.05

T = 240 100 -0.29 5.00 14.07 14.58 6.35 9.40
500 -0.01 3.19 6.06 7.15 6.05 12.05

1,000 0.01 2.68 4.25 5.46 6.30 15.90
3,000 0.01 1.96 2.35 3.52 5.15 20.95

Experiment 9
T = 60 100 -15.47 4.04 662.68 33.36 3.40 6.95

500 1.29 2.84 84.39 15.74 7.75 11.40
1,000 -0.47 2.26 11.31 11.50 8.50 12.25
3,000 -0.16 1.69 6.25 7.20 7.75 15.35

T = 120 100 -0.59 4.09 21.49 21.20 4.50 7.00
500 -0.01 2.95 9.20 9.95 6.15 9.15

1,000 -0.07 2.40 6.53 7.37 6.30 10.80
3,000 -0.01 1.74 3.71 4.68 6.50 14.30

T = 240 100 -0.54 4.06 14.02 14.60 6.85 8.50
500 -0.12 2.85 6.19 7.11 6.55 10.80

1,000 -0.08 2.42 4.30 5.27 6.60 13.35
3,000 -0.00 1.75 2.37 3.37 5.45 17.50

Notes: The DGP includes one strong αM = 1 and two semi-strong (αH = 0.85, αS = 0.65) factors, the regression with the two semi-strong

factors includes them, the regression without excludes them. For further details of the experiments, see S-1.
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Figure S-B-E7: Empirical Power Functions, experiment 7, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-B-E7-9.
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Figure S-B-E8: Empirical Power Functions, experiment 8, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-B-E7-9.
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Figure S-B-E9: Empirical Power Functions, experiment 9, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-B-E7-9.
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Table S-B-E10-12: Bias, RMSE and size for the bias-corrected estimators of φM =−0.49, αM=1 with and without
semi-strong factors (αH = 0.85, αS = 0.65) included in the regression for the cases of experiments 10, 11 and 12

Bias(x100) RMSE(x100) Size(x100)
Experiment 10 n With Without With Without With Without

semi-strong factors semi-strong factors semi-strong factors
T = 60 100 -1.61 4.07 151.91 33.92 3.75 7.45

500 -0.69 2.46 17.07 15.76 7.70 11.35
1,000 -0.31 2.39 11.30 11.47 7.05 10.90
3,000 -0.06 1.79 6.36 7.31 8.00 14.95

T = 120 100 -1.86 4.22 69.05 21.53 4.80 7.25
500 -0.09 2.81 9.29 9.92 6.10 9.85

1,000 0.15 2.59 6.62 7.51 6.75 11.40
3,000 0.05 1.76 3.72 4.69 5.80 14.55

T = 240 100 -0.39 4.20 14.17 14.82 6.35 8.60
500 -0.05 2.87 6.15 7.09 6.05 10.80

1,000 0.00 2.46 4.30 5.28 6.40 13.65
3,000 0.00 1.75 2.40 3.40 5.75 18.80

Experiment 11
T = 60 100 -0.72 4.82 47.59 31.18 3.40 5.90

500 -0.07 3.31 15.12 15.30 6.70 10.30
1,000 -0.22 2.56 10.46 11.28 6.35 11.45
3,000 0.05 1.96 5.91 7.26 7.00 16.00

T = 120 100 -0.46 4.75 19.81 20.00 4.55 6.60
500 0.10 3.25 8.93 9.83 6.40 10.00

1,000 -0.01 2.59 6.28 7.41 6.15 11.95
3,000 0.09 1.99 3.60 4.83 6.20 16.70

T = 240 100 -0.24 4.94 13.43 14.51 5.30 8.45
500 0.01 3.22 6.11 7.23 6.75 12.95

1,000 -0.07 2.64 4.19 5.42 5.85 14.65
3,000 0.02 1.97 2.32 3.50 4.75 20.55

Experiment 12
T = 60 100 -0.14 4.87 129.71 32.05 4.10 6.75

500 -0.25 2.94 15.76 15.19 6.10 9.45
1,000 -0.04 2.71 10.48 11.34 5.65 10.40
3,000 0.10 2.05 6.07 7.34 6.75 15.20

T = 120 100 -0.35 4.86 20.06 20.21 4.15 6.35
500 0.06 3.16 8.91 9.76 5.40 10.35

1,000 0.16 2.76 6.35 7.57 6.00 12.75
3,000 0.14 2.01 3.62 4.82 5.60 16.95

T = 240 100 -0.13 5.03 13.45 14.61 5.90 9.25
500 0.07 3.27 6.01 7.18 6.30 12.40

1,000 -0.02 2.66 4.21 5.41 5.80 15.70
3,000 0.02 1.96 2.35 3.52 5.05 20.65

Notes: The DGP includes one strong αM = 1 and two semi-strong (αH = 0.85, αS = 0.65) factors, the regression with the two semi-strong

factors includes them, the regression without excludes them. For further details of the experiments, see S-1.
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Figure S-B-E10: Empirical Power Functions, experiment 10, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-B-E10-12.
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Figure S-B-E11: Empirical Power Functions, experiment 11, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-B-E10-12.
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Figure S-B-E12: Empirical Power Functions, experiment 12, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-B-E10-12.

MCS-45



2.2 Estimators of φ for one strong and two weak factors, threshold estimator of the
covariance matrix with and without misspecification

This subsection compares the estimators of φ for one strong and two weak factors with and without misspecification.
Under the misspecification, only strong estimators φM are considered in the estimation process. Each table contains
the results of three of the 12 experiments described in Table S-1, and corresponding empirical power functions follow.

Table S-C-E1-3: Bias, RMSE and size for the bias-corrected estimators of φM = −0.49, αM=1 with and without
weak factors included in the regression for the cases of experiments 1,2 and 3

Bias(x100) RMSE(x100) Size(x100)
Experiment 1 n With Without With Without With Without

weak factors weak factors weak factors
T = 60 100 22.05 3.67 454.21 30.53 1.15 6.10

500 -10.55 1.66 332.83 13.13 2.25 6.15
1,000 -1.33 1.10 382.27 9.48 1.65 6.65
3,000 -19.15 0.58 932.38 5.38 2.00 6.20

T = 120 100 6.52 3.04 237.70 19.49 2.90 5.80
500 0.73 1.37 35.05 8.75 3.20 7.30

1,000 4.61 0.94 152.17 6.12 3.60 6.50
3,000 0.02 0.50 6.94 3.42 2.90 5.00

T = 240 100 8.56 2.91 385.16 13.50 3.45 6.45
500 0.22 1.24 7.22 5.80 4.00 5.80

1,000 0.06 0.90 4.23 4.14 4.00 6.50
3,000 0.01 0.51 2.41 2.38 4.90 5.25

Experiment 2
T = 60 100 -13.53 4.08 774.85 31.16 1.40 6.00

500 -11.15 1.63 755.67 13.33 2.10 5.65
1,000 10.51 1.01 256.15 9.61 2.00 6.55
3,000 -0.10 0.56 71.71 5.50 2.25 6.60

T = 120 100 468.29 3.25 20351.06 19.57 2.25 6.60
500 5.00 1.46 141.50 8.89 3.85 7.55

1,000 -0.54 0.97 16.07 6.06 2.80 5.75
3,000 0.00 0.45 9.71 3.45 3.35 5.45

T = 240 100 -1.38 2.96 67.20 13.49 4.15 7.50
500 0.04 1.28 6.83 5.85 4.15 5.60

1,000 0.11 0.91 4.59 4.15 4.65 7.15
3,000 -0.03 0.48 2.46 2.39 5.15 6.10

Experiment 3
T = 60 100 11.17 3.75 686.97 30.84 1.00 6.25

500 -10.50 1.65 377.36 13.28 2.00 6.15
1,000 -4.65 1.09 120.83 9.59 1.50 6.15
3,000 -4.51 0.59 134.45 5.45 1.90 6.25

T = 120 100 5.69 3.01 267.53 19.52 2.65 5.65
500 -5.01 1.36 140.66 8.79 3.15 7.45

1,000 -0.91 0.94 23.35 6.14 3.35 6.45
3,000 -0.35 0.50 20.92 3.43 2.70 4.75

T = 240 100 1.04 2.89 38.32 13.51 3.45 6.35
500 0.32 1.24 8.13 5.82 3.95 5.90

1,000 0.08 0.90 4.42 4.14 4.00 6.45
3,000 0.04 0.51 2.59 2.39 4.85 5.45

Notes: The DGP includes one strong αM = 1 and two weak (αH = αS = 0.5) factors, the regression with weak factors includes them,

the regression without excludes them. For further details of the experiments, see Table S-1.
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Figure S-C-E1: Empirical Power Functions, experiment 1, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-C-E1-3.
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Figure S-C-E2: Empirical Power Functions, experiment 2, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-C-E1-3.
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Figure S-C-E3: Empirical Power Functions, experiment 3, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-C-E1-3.
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Table S-C-E4-6: Bias, RMSE and size for the bias-corrected estimators of φM = −0.49, αM=1 with and without
weak factors included in the regression for the cases of experiments 4, 5 and 6

Bias(x100) RMSE(x100) Size(x100)
Experiment 4 n With Without With Without With Without

weak factors weak factors weak factors
T = 60 100 -24.42 4.12 1165.53 31.54 1.35 6.15

500 -11.84 1.61 302.88 13.49 1.95 5.55
1,000 5.16 1.01 229.86 9.72 1.90 6.75
3,000 -8.17 0.57 450.22 5.57 2.05 6.60

T = 120 100 -4.28 3.22 452.39 19.63 2.30 6.30
500 -0.54 1.44 26.55 8.94 3.80 7.85

1,000 0.98 0.96 31.58 6.08 2.75 5.80
3,000 -0.17 0.45 8.84 3.46 3.25 5.40

T = 240 100 -0.11 2.94 31.04 13.51 3.95 7.55
500 -0.50 1.28 27.63 5.85 4.05 5.90

1,000 -0.05 0.91 5.23 4.16 4.65 6.90
3,000 0.02 0.48 3.36 2.39 4.85 6.05

Experiment 5
T = 60 100 12.72 3.75 679.29 30.84 0.95 6.25

500 -10.07 1.66 364.25 13.34 2.10 6.15
1,000 -5.01 1.07 122.63 9.60 1.45 5.90
3,000 -4.43 0.60 133.49 5.47 1.90 6.25

T = 120 100 6.87 3.01 277.10 19.52 2.55 5.65
500 -4.67 1.36 127.57 8.85 3.65 7.60

1,000 -0.85 0.92 24.13 6.16 3.60 6.40
3,000 -0.35 0.51 20.50 3.44 2.65 5.20

T = 240 100 0.54 2.89 31.90 13.51 4.15 6.35
500 0.29 1.25 7.91 5.86 3.85 6.00

1,000 0.10 0.89 4.44 4.16 4.30 6.75
3,000 0.04 0.52 2.58 2.40 5.20 5.45

Experiment 6
T = 60 100 -27.78 4.12 905.91 31.54 1.45 6.15

500 -11.62 1.60 305.30 13.55 2.05 5.95
1,000 5.28 0.99 231.07 9.73 1.65 6.50
3,000 -7.16 0.58 412.98 5.59 2.05 6.95

T = 120 100 -2.66 3.22 451.26 19.63 2.30 6.30
500 -0.54 1.44 26.52 9.00 4.15 7.85

1,000 0.92 0.94 30.26 6.10 2.90 6.30
3,000 -0.18 0.46 8.91 3.47 3.25 5.55

T = 240 100 -0.18 2.94 29.74 13.51 5.10 7.55
500 -0.49 1.29 27.08 5.89 4.40 6.30

1,000 -0.02 0.90 5.12 4.17 5.20 6.80
3,000 0.03 0.49 3.47 2.40 4.50 6.45

Notes: The DGP includes one strong αM = 1 and two weak (αH = αS = 0.5) factors, the regression with weak factors includes them,

the regression without excludes them. For further details of the experiments, see Table S-1.
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Figure S-C-E4: Empirical Power Functions, experiment 4, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-C-E4-6.
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Figure S-C-E5: Empirical Power Functions, experiment 5, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-C-E4-6.
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Figure S-C-E6: Empirical Power Functions, experiment 6, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-C-E4-6.
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Table S-C-E7-9: Bias, RMSE and size for the bias-corrected estimators of φM = −0.49, αM=1 with and without
weak factors included in the regression for the cases of experiments 7, 8 and 9

Bias(x100) RMSE(x100) Size(x100)
Experiment 7 n With Without With Without With Without

weak factors weak factors weak factors
T = 60 100 3.08 2.82 859.39 30.18 1.30 5.35

500 24.88 1.20 840.21 13.62 1.85 6.65
1,000 0.24 0.84 79.72 9.64 1.35 6.25
3,000 -4.91 0.61 528.52 5.51 2.20 6.40

T = 120 100 4.42 2.67 216.43 19.15 2.10 6.00
500 1.74 1.23 147.10 8.59 2.95 6.05

1,000 -3.59 0.89 154.11 6.12 3.75 5.90
3,000 -0.84 0.61 41.40 3.52 3.75 5.75

T = 240 100 -0.94 2.74 22.50 13.27 4.95 5.80
500 -0.83 1.11 38.11 6.04 6.15 7.15

1,000 -0.06 0.84 4.85 4.25 4.95 7.00
3,000 -0.01 0.55 2.46 2.38 4.70 6.50

Experiment 8
T = 60 100 -18.57 2.85 1090.60 31.04 1.30 5.70

500 3.08 0.84 248.52 13.70 1.90 6.10
1,000 11.56 0.98 511.88 9.66 1.60 5.60
3,000 -0.24 0.71 45.00 5.66 2.05 6.50

T = 120 100 15.36 2.83 488.96 19.33 2.40 5.00
500 -8.41 1.12 424.57 8.53 3.55 5.70

1,000 -1.21 1.04 42.58 6.25 3.65 6.25
3,000 -0.68 0.64 43.26 3.56 3.60 6.00

T = 240 100 -4.70 2.85 184.48 13.30 5.10 6.30
500 0.07 1.17 7.15 5.98 5.45 6.30

1,000 -0.07 0.85 4.44 4.27 5.10 6.60
3,000 0.01 0.54 2.41 2.40 4.80 6.70

Experiment 9
T = 60 100 16.90 1.71 1051.65 32.31 1.35 6.65

500 -10.51 0.95 739.68 14.35 2.35 7.50
1,000 -2.96 0.53 160.31 10.26 2.65 8.75
3,000 -0.09 0.43 106.32 5.80 2.70 8.35

T = 120 100 61.02 1.74 2471.10 20.37 2.05 6.25
500 -9.78 1.08 365.78 8.87 2.70 6.00

1,000 0.35 0.73 77.55 6.36 3.00 7.30
3,000 1.23 0.46 48.78 3.59 3.85 6.55

T = 240 100 0.51 1.73 52.46 13.89 4.55 6.90
500 -0.22 0.91 8.62 6.08 5.75 6.40

1,000 -0.20 0.71 7.44 4.27 5.50 7.15
3,000 -0.04 0.43 2.52 2.37 4.30 5.60

Notes: The DGP includes one strong αM = 1 and two weak (αH = αS = 0.5) factors, the regression with weak factors includes them,

the regression without excludes them. For further details of the experiments, see Table S-1.

MCS-54



Figure S-C-E7: Empirical Power Functions, experiment 7, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-C-E7-9.
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Figure S-C-E8: Empirical Power Functions, experiment 8, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-C-E7-9.
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Figure S-C-E9: Empirical Power Functions, experiment 9, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-C-E7-9.
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Table S-C-E10-12: Bias, RMSE and size for the bias-corrected estimators of φM = −0.49, αM=1 with and without
weak factors included in the regression for the cases of experiments 10, 11 and 12

Bias(x100) RMSE(x100) Size(x100)
Experiment 10 n With Without With Without With Without

weak factors weak factors weak factors
T = 60 100 -1.30 1.80 581.15 33.08 1.55 6.95

500 19.94 0.54 738.70 14.45 2.10 8.20
1,000 1.31 0.69 76.46 10.23 1.85 7.35
3,000 1.02 0.53 333.48 5.91 2.70 8.30

T = 120 100 27.62 1.91 810.64 20.78 1.90 6.30
500 -4.30 0.95 195.46 8.90 2.40 6.25

1,000 7.68 0.93 212.90 6.46 3.45 7.25
3,000 -0.46 0.49 34.61 3.60 3.20 5.50

T = 240 100 0.01 1.87 109.19 14.08 4.60 7.30
500 0.27 0.94 19.59 6.08 5.20 6.50

1,000 0.41 0.76 21.39 4.28 5.50 6.55
3,000 -0.04 0.76 2.57 2.40 4.70 7.10

Experiment 11
T = 60 100 17.29 2.89 696.53 30.28 1.45 5.40

500 -5.92 1.27 510.19 13.71 2.00 6.80
1,000 45.15 0.78 2091.69 9.66 2.00 6.45
3,000 2.77 0.59 75.60 5.61 2.65 7.05

T = 120 100 4.02 2.73 135.30 19.16 2.55 6.20
500 0.44 1.34 24.35 8.61 3.50 5.60

1,000 10.16 0.86 415.98 6.09 3.85 6.10
3,000 0.10 0.62 7.88 3.54 4.65 6.70

T = 240 100 -0.31 2.77 14.31 13.28 4.10 6.15
500 0.07 1.19 6.78 6.06 5.45 6.90

1,000 -0.06 0.81 4.40 4.23 5.45 6.65
3,000 0.01 0.55 2.37 2.38 4.65 6.50

Experiment 12
T = 60 100 0.33 2.93 531.55 31.13 1.35 5.75

500 -16.77 0.90 496.29 13.75 1.70 5.60
1,000 17.22 0.93 766.48 9.68 1.65 6.15
3,000 -0.91 0.68 162.80 5.75 2.40 7.00

T = 120 100 -11.47 2.88 529.74 19.36 2.55 5.15
500 -16.06 1.23 555.75 8.55 3.55 5.80

1,000 0.99 1.03 20.02 6.22 3.50 6.50
3,000 -2.21 0.64 100.80 3.57 4.00 5.90

T = 240 100 -0.27 2.88 19.39 13.31 4.20 6.30
500 0.10 1.24 6.30 5.99 5.35 6.25

1,000 -0.05 0.83 4.37 4.23 5.10 6.70
3,000 0.01 0.54 2.39 2.41 4.95 6.50

Notes: The DGP includes one strong αM = 1 and two weak (αH = αS = 0.5) factors, the regression with weak factors includes them,

the regression without excludes them. For further details of the experiments, see Table S-1.
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Figure S-C-E10: Empirical Power Functions, experiment 10, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-C-E10-12.
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Figure S-C-E11: Empirical Power Functions, experiment 11, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-C-E10-12.
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Figure S-C-E12: Empirical Power Functions, experiment 12, for coeffi cient of the φM factor with and without
misspecification

Note: See the notes to Table S-C-E10-12.
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