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Abstract 
 
Ride-hailing applications create new challenges for governments providing transit services, but 
also create new opportunities to raise tax revenue. To shed light on the effect of taxing or 
subsidizing ride-hailing applications, we extend a pseudo-monocentric city model to include 
multiple endogenously chosen transportation modes, including ride-hailing applications and 
endogenous car ownership. We show that most tax and spending programs that cities have 
currently adopted mildly increase public transit usage. However, the model predicts more 
significant increases in public transit ridership when ride-hailing applications are subsidized as a 
“last-mile” provider. Our model indicates that whether ride-hailing services and public transit are 
substitutes or complements is a policy choice. 
JEL-Codes: C600, H250, H710, L880, L980, R410, R510. 
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1 Introduction

Ride-hailing applications (apps) including Uber, Lyft and Via, have revolutionized trans-

portation in cities around the world. While the effects of these platforms on the labor mar-

ket and pricing strategies are well-studied,1 the effects of ride-hailing apps on government

finances as well as expenditures on related public services such as public transportation re-

main uncertain. Taxing Uber or changing expenditures on related public services, will affect

the transit choices of individuals, possibly altering the business models of these platforms,

and in the long-run, will affect urban form.2 Given many policymakers have argued that

ride-hailing applications lead to added congestion within city limits3 or are crowding out

public transit services, government regulations and policies are critical tools to alter the

urban transit choice landscape. We study various policy options discussed in cities around

the world related to taxing or subsidizing ride-hailing applications, as well as changes in gov-

ernment spending on possibly complementary or substitute modes of transit such as buses

or subways (Hall et al. 2018; Gonzalez-Navarro et al. 2022).

Given the surge in the popularity of ride-hailing apps,4 they pose challenges for policy-

makers, including how to update antiquated tax systems to deal with platform marketplaces.

Despite these challenges, many policymakers view ride-hailing apps as an attractive source

of revenue. As a result, some states and cities have recently reformed their tax laws to raise

revenue from ride-hailing applications. The motives for these new taxes vary from expanding

the sales tax base as consumption shifts to services,5 seeking a way to raise revenue that

can be earmarked to fund public infrastructure or public transit, or, often due to political

economy reasons (Brueckner and Selod, 2006), to help level the playing field for traditionally

taxis. At the same time, other cities are subsidizing them as a means of improving the mo-

bility and employment opportunities of low-income houses or as a way to provide “last-mile”

services for individuals to get from their house to public transit stations.

The expansion of ride-hailing apps may threaten publicly provided transportation net-

works, but privately-provided services such as Uber may also complement public services

(Hall et al. 2018; Gonzalez-Navarro et al. 2022; Erhardt et al. 2019). Hall et al. (2018)

outline several possible mechanisms. Uber may be a substitute because its convenience pro-

1See Chen et al. (2019), Angrist et al. (2017), Cramer and Krueger (2016), Hall et al. (2019), Hall and
Krueger (2018), Berger et al. (2018), Ge et al. (2020), and Cohen et al. (2016).

2Fox (2020) highlights the role of autonomous vehicles on governments.
3See Erhardt et al. (2019) and Cairncross et al. (2021).
4About a third of Americans have used applications like Uber and Lyft for rides. Even in 2016, ride-

hailing apps were 15% of all intra-San Francisco vehicle trips. In 2018 alone, more than 100 million rides
originated or ended in Chicago for a total of over 600 million miles.

5This fits in a broader debate of how tax systems should evolve in the presence of technological change
(Agrawal and Wildasin, 2019). For example, Thuemmel (2018) considers the tax treatment of robots.
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vides value to the consumer, even if the monetary price of Uber is higher. Moreover, adding

another mode choice option may make transit less attractive. On the other hand, Uber may

be a complement to transit because Uber can fill coverage gaps (geographic, time of day) in

public transit coverage. Further, Uber reduces the need to entirely rely on a fixed transit

schedule in the presence of bad weather or other shocks, implying that individuals will be

more likely to use transit in one direction, if they know they can get back home via an

alternative mode, Uber.6 Of these possibilities, our model will focus on the convenience of

Uber lowering its cost relative to other modes of transit and Uber filling geographic coverage

gaps in transit. In addition, we verify the robustness of the model to including idiosyncratic

trip-specific benefits of taking Uber to transit. Finally, an additional mechanism in our

model is endogenous car ownership: higher Uber prices may increase car ownership, which

may in turn affect transit usage for some trips. Thus, our model sheds light on the channels

discussed in the prior literature (Hall et al., 2018) by showing how policies on ride-hailing

apps and related services influence modal choice and the long run development of cities.

While the literature on commodity taxes is well-developed, the taxation of ride-hailing

apps poses challenges not traditionally found in standard (pre-digital economy) products.

First, the taxation of ride-hailing apps will affect modes of transportation, land use, and

public infrastructure investment in the long-run (Larson and Zhao 2020). As a result, these

taxes will have important general equilibrium effects and standard reduced form empirical

analysis is not sufficient to determine the long-run effect of taxing ride-hailing apps. Second,

ride-hailing apps are a platform. The business model of platforms, like Uber, Facebook and

Google, Amazon is based on connecting two interdependent groups. For the case of Uber, a

drivers’ valuation of Uber increases the more passengers are active on the platform because

their earnings opportunities increase. Likewise passengers’ valuation of Uber increases the

more drivers are active because their waiting time decreases. Taxes in this network setting

can have important and non-standard effects (Kind et al. 2008; Koethenbuerger 2020).

We answer several questions. First, how does taxing/subsidizing platforms change car

ownership and the mode of transit in our cities? Second, focusing on the goal of many urban

planners, what is the “optimal” way for cities to tax/subsidize ride-hailing apps? Finally, as

taxes are used to finance public services, does the answer to each of these questions depend

on whether the tax revenue is used finance transportation services or not?

To consider the normative question of the optimal ride-hailing policy, we consider several

policies debated by cities: flat unit taxes per ride, ad valorem sales taxes on rides, mileage

6It is also possible that Uber will not affect transit, particularly, if transit riders and Uber riders are
distinct segments of the population. Moreover, individuals might not experiment with different modes
unless forced to do so (Larcom et al., 2017). Given our model does not feature income heterogeneity, this is
not a channel we can accurately capture, but to the extent it exists, it would likely mute the changes.
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taxes, subsidies on rides to and from public transport stations,7 and congestion pricing

policies. For each tax policy we consider, we allow the government to use the revenue raised

to finance various services: transfers to non-residents (perhaps the policy is implemented by

the state rather than city), lump-sum rebates to residents, reductions in the fares for public

transportation, and improving the quality of public transportation. Given many of these

policies were implemented only months ago, and it would be nearly impossible to harmonize

data across cities, we simulate a model of an urban area. The simulation approach comes

with the advantage of being able to shed light on the long term effects.

We extend the standard monocentric city model (Brueckner, 1987) to allow for various

transportation modes for commuting to work, leisure trips to central points of agglomeration

(downtown), and “idiosyncratic” leisure trips to random points in the city. Although we use

the structure of the monocentric city model for commuting and leisure trips to downtown, the

addition of non-commuting leisure trips to various points throughout the city makes our city

pseudo-monocentric.8 Although some models of the monocentric city include transit choice

(e.g., Arnott and MacKinnon 1977; Anas and Moses 1979; Sasaki 1989; Sasaki 1990; Borck

and Wrede 2008; Brueckner and Franco 2018), these models are limited in their applicability

to our setting. In particular, these models usually only have two transport mode choices and

ignore heterogeneity in distance to transit lines. We extend the monocentric city model to

have multiple transport choices, consumer heterogeneity in the proximity to transit stations,

along with trips to non-central locations in the city, making the model realistic for our setting

but also tractable for other researchers. In addition, our model features a multi-stage process

by which individuals decide to own a car or not, allowing us to capture the long-run effects

of transit prices via more permanent decisions regarding vehicles.

In our model, ride-hailing apps can be used for two choices with respect to trips downtown

for either commuting or leisure purposes: as a direct means of transportation or as a means of

transportation to the nearest public transit station instead of walking or buses. In addition,

ride-hailing apps can be used as an alternative to driving or taking buses on local leisure

trips to “random” (non-central) points. While these types of leisure trips have an exogenous

distance, the distance of downtown leisure trips taken on Uber is endogenous. Our model

7For the literature on transit subsidies, see Parry and Small (2009) and Basso and Silva (2014). Other
studies that have analyzed the effect of cars or car policies, include Kopecky and Suen (2010), Gutiérrez-i-
Puigarnau and van Ommeren (2011), and Xiao et al. (2017).

8The monocentric city model was developed by Alonso (1964), Mills (1967), and Muth (1969). Thus far,
it has been generalized and used extensively to study different policies and new transportation technologies
that affect transportation costs, land use, energy use, and interstate commuting (Larson et al. 2012, Larson
and Zhao 2020, Rappaport 2016, Wheaton 1998, Wildasin 1985, Agrawal and Hoyt 2018). Borck and
Brueckner 2018 apply the monocentric city model to study the effects of optimal energy taxation. Bertaud
and Brueckner (2005) analyze the impact of building height restrictions using the monocentric city model.
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necessarily makes several assumptions. One assumption is that we assume that trips can be

discretely separated into commuting trips subject to congestion forces, leisure trips downtown

at off-peak hours, and other local trips where local trips have a more limited range of transit

options, while for trips to downtown we heavily rely on the structure of the monocentric city.

Given the importance of Uber for trips outside the city center, these leisure trips to non-CBD

(Central Business District) points turn the model into a pseudo-monocentric model.

The model is solved numerically. Therefore, we calibrate this model to a large U.S. city—

Chicago. Large cities such as Chicago are the most likely to pass specific taxes on ride-hailing

apps and are most likely to face a tradeoff between ride-hailing apps and public transit modes.

We first study the equilibrium without any government intervention and then with it. By

focusing on a large city, we likely underestimate the “last-mile” effect of Uber. Rather than

focusing on many different city sizes, we have elected to focus on many different policies. We

will discuss whether the magnitudes of the effects depend on characteristics of the city, such

as income or transit coverage. One may also wonder whether the key results would extend

to cities that are polycentric. We will discuss what additional modeling issues would arise

in polycentric cities. Ultimately, we argue that these added complications may change the

magnitudes of our effects, but are unlikely to alter the sign or the qualitative conclusion that

policy choices influence whether Uber and transit are complements or substitutes.

The first set of results concern taxes on Uber as they are currently implemented. Although

cities have argued that these taxes reduce congestion on the roadways and encourage public

transit usage, our model suggests that most of the substitution away from Uber is toward

solo driving, even when the spending is earmarked to transit. Second, at the margin, what

the tax revenue is used for matters for what mode of transit individuals substitute toward.

If the goal of cities is to reduce congestion and increase transit usage, taxes on Uber that

fund fare reductions are more successful at achieving the goal than increasing spending on

transit frequency improvements. Intuitively, transit improvements are extremely expensive

and the revenue raised from these taxes cannot sufficiently change transit quality.

The second set of results focus on transit proposals adopted in a limited number of cities

that aim at forming a link between ride-hailing apps and public transportation in order

to use Uber to fill coverage gaps. First, we show that subsidies on Uber rides (to transit

stations) are an extremely effective way of increasing public transit usage. Indeed, a three

dollar subsidy for all rides to and from public transit, increases the usage of rapid transit by

over 15%. If cities enact policies, such as flat taxes on Uber, then Uber and rapid transit

are substitutes: Uber remains too costly to act as a last mile provider but Uber offers an

alternative means of getting directly downtown than rapid transit. We estimate the cross-

price elasticity of taking public rapid transportation with respect to the price of taking Uber
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to work as 0.41 when cities tax Uber. But, the relationship between buses and Uber is

more nuanced: raising the price of Uber increases car-ownership which induces declines in

bus usage as a means of going directly to the leisure destination. In this way, Uber may

be a substitute for rapid transit but, simultaneously, a complement to buses. In contrast,

the Uber and rapid transit become complements under the subsidy regime. The cross-price

elasticity is −0.32, when cities enact subsidy policies.

Lastly, we consider optimal congestion tolls (Hall 2018, 2020; van den Berg and Verhoef

2011). Many cities see this as a viable policy because ride-hailing apps are more supportive

of a policy that treats all drivers in the same manner. The optimal congestion toll alone

increases transit usage as Uber subsidies did. However, we show that suboptimal tolls—

implemented to raise the same amount of revenue as the flat tax on Uber rides—result in

smaller increases in transit usage and driving speeds than taxing Uber directly.

A critical lesson from this paper is that transit elasticities are determined by the policy

environment. In other words, these elasticities are not structural parameters, but rather are

policy choices. Critically, and in contrast to the conventional wisdom, our results imply that

standard transit elasticities and cross-price elasticities are not just a function of individual

preferences. Therefore, they are not immutable and governments can choose these elastic-

ities through the appropriate policies. Thus, the choice of various policy instruments can

result in governments choosing the “optimal” transit elasticities. Policy commentators and

government officials often worry that Uber is eroding public transit, but our results indicate

that if this is true, it may be a result of policymakers failing to set an appropriate policy

environment for the co-existence of Uber and transit. Our paper provides a guide forward.

Ride-hailing apps create many challenges and opportunities for cities; our paper provides

policy guidance with respect to these tradeoffs. Critically, whether ride-hailing apps and

public transit are substitutes or complements is a policy choice.

2 Institutional Details

Taxes on ride-hailing applications vary dramatically across cities. In January 2018, the city

of Chicago passed a $0.67 per trip tax on ride-hailing services in the city of Chicago – a rate

similar to a few other cities around the country. In January 2020, these surcharges increased

to $1.25 per ride, with slightly lower unit taxes for shared rides. The city has pledged to use

(part of) the revenue generated from the taxes to improve the public transportation system

in the city. While Chicago uses a flat fee for most rides, and many other cities also follow

this model, other options have been considered by Chicago and other states and cities.

Chicago is not alone in its unit tax per trip, though the amount of the tax differs sub-
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stantially across cities. For example, as of 2020, Seattle featured a $0.24 per trip tax on rides

originating in the city, while New York City has taxes of $2.75 on each ride, with reductions

to $0.75 for pooled rides. The state of Connecticut and Massachusetts also have taxes set

on a per ride basis. The amount devoted to improving public transportation varies by city

with New York City earmarking 100% of the revenue to the Metropolitan Transportation

Authority, but with the state of Connecticut depositing all revenue into the General Fund.

Other cities and states have elected to levy state and local ad valorem taxes on the total

fare of an Uber ride. In NYC, in addition to the flat unit tax, the state and local sales tax

(8.875%) is also assessed, but unlike the unit tax, most of the revenue goes to the general

fund. Other states and localities do not levy the sales tax rate, but rather have a specific

ad valorem tax that applies to ride-hailing applications, for example, 1.4% in Philadelphia.

In the case of many of these taxes, cities and states differ in their implementation, including

whether they apply uniformly to both ride-hailing applications and taxis.

Finally, other cities are instead providing subsidies for Uber riders. The rational for the

subsidy is to induce ride-hailing apps to be a “last-mile” provider for individuals wishing

to take public transportation. It is often not cost effective for cities to have a high density

transportation network. However, Uber is prohibitively costly for low-income households.

One urban area that has extensively used subsidies is the Pinellas Suncoast Transit Authority

(PSTA). For rides starting or ending at a designated stop during daytime hours, the PSTA

subsidizes the ride by 50% up to a maximum of $3. The PTSA also provides free ride-hail

rides for low income qualifying riders between 9 pm and 6 am. San Diego has partnered

with Uber to provide $5 off UberPool trips during conferences or large sporting events. In

Philadelphia, the Southeastern Pennsylvania Transportation Authority discounts rides by

40% and up to $10 per ride for rides to and from suburban rapid transit stations.

3 Model Structure

In order to model the general equilibrium effects of tax policy, we first construct a baseline

city that represent a present-day city before ride hailing services are introduced. The city

is pseudo-monocentric and lies on a featureless plane without geological constraints and

housing regulations. We assume that land is owned by absentee landlords. We assume a

closed city model: Uber’s taxation should not result in intercity migration.

The complexity of extending the baseline model to include public transportation, ride-

hailing, multiple trip types, car ownership and tax policy requires the model be solved

numerically. The goal of numerical simulation models is to calibrate it to a real-world city

and then change the model’s parameters to produce general equilibrium comparative statics.
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We first describe the general setup of the model and then subsequently explain how we

calibrate it to a given present-day city.

Given the monocentric city model has come under some criticism as employment has

suburbanized, it is useful to discuss its applicability to our setting. Empirical evidence that

our calibrated city—Chicago—conforms to the predictions of the monocentric city model

abounds. The key prediction of the model is that population density, structure density and

land value decline substantially from the city center. Regarding employment density and

land rents, Garcia et al. (2021) document that transit cities including Chicago display a

monotonic decline in employment density and land rent as one moves away from the CBD.

The decline is steep at first and then quickly flatten out, which is a characteristic of a

monocentric city with a dominant central business district. McMillen (2006) shows, what is

obvious from observing the Chicago skyline, that the city center still dominates urban spatial

patterns in terms of structure density, which declines exponentially from the core.9 Thus,

the monocentric city model remains a useful tool to analyze Chicago. But, obviously other

cities are not monocetric, and the important question is whether our results using Chicago

as a case study extend more generally. We return to this issue later in the paper.

3.1 Theoretical Framework

Summary. Firms are located in a CBD and pay the same exogenous wage rate to identical

workers, which are fixed in population. Workers, who commute to the CBD, reside in a

residential district between the CBD and city boundary. The city boundary is determined

endogenously by the reservation rent of agricultural land. Utility is endogenous and allowed

to vary under different policy scenarios. Households engage in commuting, downtown leisure

trips, and other leisure trips using various transport modes. Mode choice is determined

endogenously. In contrast to existing models of urban areas where households are only

heterogeneous in distance to the city center, in our model, a households’ location decision

is characterized by a multi-dimensional vector given by the distance to the CBD and the

distance to the nearest transit stations. Land and housing prices vary across locations so

that in equilibrium, households are indifferent across all locations.

3.1.1 The Central Business District

All employment is concentrated in the CBD, which is a point at the center of the circle.

Because this is a closed city model, total employment in the CBD is unchanged and hence

9The dominance of the CBD in Chicago can also be seen from the pattern of the population density
distribution shown in Figure A1.
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the size of this area is constant across simulations. For simplicity, this paper does not model

the land market for the CBD and the potential effects of ride hailing transportation services

on parking or the formation of employment sub centers. These simplified assumptions are

necessary to facilitate simulation analysis. However, unlike the standard model, as will

become clear, not all trips are to downtown and so many trips will not rely on this structure.

3.1.2 Land Use

Urban land use is divided among highways, residential streets, residential housing, and other

uses (public transit, parks, etc.). It is assumed that a constant fraction, θR, of land area is

allocated to highways, θs, of land area is allocated to residential streets, a fixed proportion,

θ, of land is allocated for housing, and the remaining share (1 − θR − θs − θ) of land area

devoted to other uses. The road system consists of radial highways and residential streets

that are along the circumference of each radius. The highway network is assumed to be

dense. This eliminates the need to model households’ commuting from home to the highway.

Residential streets are located at each radius. Residential roads are used to engage in

local trips and to drive to the rapid transit lines. We assume that, unlike highways which

follow all rays from the origin, the rapid transit lines are evenly distributed, i.e. the distance

between transit lines is equal at a given annulus. Each rapid transit line offers a radial

route that links the CBD with residential locations. Stops are located at each radius. We

assume that the CBD stops are next to the final destination, such that no additional transit

is necessary. Although rapid transit lines are radial, we assume that buses follow residential

street roads—driving around the circle—and that bus stops are located at each point.

The city expands until the residential sector is outbid by the agriculture sector. At the

city boundary k, the residential land price p`(k) is equal to agricultural land price pa` . The

ride-hailing industry has no effect on the proportions of land use, although, in practice,

in the long run, ride hailing services could potentially reduce parking usage in the CBD

and residential areas (Brueckner and Franco, 2017). The fixed proportions assumption is

reasonable if land use regulations or zoning allocates development in fixed proportions.

3.1.3 Housing Production

Recall individuals are characterized by a distance from the CBD and a distance from the

public transit lines. Housing H(k, j) at distance k from the CBD and distance j from public

transit, is produced using structure (capital), S, and land, `, as inputs under a constant

returns to scale technology. The production function has a constant elasticity of substitution
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(CES) functional form with an elasticity of substitution equal to 1/(1− ρ):

H(k, j) = A [α1S(k, j)ρ + α2`(k, j)
ρ]1/ρ , (1)

where structure inputs are perfectly elastically supplied. Then, A represents the housing

production technology, α1 is the structure input share, and α2 is the land input share.

Housing producers maximize profits by using land and structure inputs to assemble housing.

In equilibrium, given the production function is constant returns to scale, these producers

receive zero economic profit at every location inside the city. Developers choose structure

and land given a structure input price ps and residential land prices p`(k, j). The structure

input price is exogenous while residential land price is determined endogenously.

3.1.4 Households

Homogeneous households consume housing and a composite commodity to maximize:

U = [β1y
η + β2h

η]1/η , (2)

where h is housing consumption, y is numéraire good consumption, β1 and β2 are consump-

tion share parameters, and 1/(1− η) represents the constant elasticity of substitution.

Households have an exogenously given income, W . For a household living at distance

k from the CBD and distance j from rapid transit, she spends income on the numéraire

good, y(k, j), housing, h(k, j), and total transportation costs, T (k, j). Housing expenditure

depends on the housing rental price r(k, j) and size h(k, j), yielding the budget constraint:

W = y(k, j) + r(k, j)h(k, j) + T (k, j). (3)

In equilibrium, households’ utility is identical at each distance, k, from the the CBD edge,

and j from public transit. The assumption of homogeneous income implies there are no

heterogeneous effects of ride hailing transportation services across different income groups.

Survey results generally show that affluent Americans are more likely to adopt ride hailing.

3.1.5 Transportation Technology

The model features three types of trips: commuting trips to the CBD, leisure trips to

downtown, and idiosyncratic “local” trips for leisure. This wide variety of trip-types allows

us to model various channels that policies may influence Uber or transit ridership. The total

transportation cost for households at distance (k, j), T (k, j), includes the total commuting
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cost for work, T com(k, j), the non-commuting cost for leisure trips to the CBD, T leisure(k, j),

and the total cost for “random” local trips, T local(k, j).

As will become apparent, both commuting and CBD leisure trips will rely on the structure

of the monocentric city model, while “random” local trips will not. Commuting and leisure

trips differ in terms of their time of day, thus influencing the available modes of transit, the

costs of each mode, and the extent of traffic congestion on roadways. For example, house-

holds make non-commuting trips to downtown during non-rush hours or on weekend, while

commuting trips occur at peak hours. Among different transportation modes individuals

optimally choose one mode to minimize costs.10

Commuting trips to the CBD. Workers choose from different transportation modes to

commute to work including walking, public transit, driving, and carpooling. According to

the American Community Survey in 2010, over 90% of the U.S. population commute through

these four modes. Workers may arrive at public rapid transit lines by walking or bus. After

the ride hailing service is introduced, workers have the option to either take it directly to

work or to the nearest public transit station. For ease of notation, given a fixed number of

trips, we define transport costs as annualized measures.

For households living at distance k from the CBD and distance j from the public transit

station, the total transportation cost for walking ncommute trips:

Twalk(k, j) = τw · w · (k/Vwalk) · ncommute, (4)

where the time cost of walking is a fraction τw of the wage rate per hour, w. The speed of

walking is set at a constant pace, Vwalk.

For workers who commute to the CBD via automobile, the annual transportation cost

includes the fixed cost of owning a car, m0, an annual parking fee at the CBD, parkingCBD,

costs proportional to distance traveled (e.g. vehicle depreciation, maintenance), m1, gasoline

costs, and time cost of commuting. The gasoline cost is determined by the fuel efficiency of

the car, G, and the price per gallon pg. Then, gasoline consumption per mile G−1 depends

on vehicle velocity, V . The velocity at each distance k is determined jointly by the number of

commuters and road capacity. The time-cost of commuting depends on the value of time as

a fraction, τ , of the wage rate per hour, w, and the travel time
´ k
k

1
V (κ)

dκ, where k represents

the edge of the CBD and κ represents the argument in the integrand. We assume parking is

10Individuals at a given distance k from the CBD and distance j from the public transit station will
commute using the same mode for all commuting trips.
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next to the office. Taken together, the total commuting cost of driving is:

Tdrive(k, j) = m0 +

[
parkingCBD +m1k + pg

ˆ k

k

1

G(V (κ))
dκ+ τw

ˆ k

k

1

V (κ)
dκ

]
· ncommute.

(5)

Both fuel and commuting time are related to the velocity of the automobile at various

locations in the city. The velocity is a function of the ratio of traffic volume to roads.

Following Bureau of Public Roads specification, the function of velocity is

V (k) =
1

a+ bM(k)c
(6)

where M(k) =
−−−→
N(k)/R(k).

−−−→
N(k) represents the traffic volume passing through distance k,

which is a function of commuters living within distance k, N(k). Then R(k) represents the

road capacity. Recall, at each radius k, road capacity is a fixed fraction θR of the land area.

Finally, a, b, and c are congestion parameters.

Households living further away from the CBD have greater incentives to carpool because

costs could be shared among riders. If workers choose to carpool, each carpool has n riders,

who alternate driving trips, implying that all carpoolers will own a car. The shared parking

cost is parkingCBD/n, the variable costs related to distance traveled become m1/n per rider,

and the shared gasoline price per gallon is pg/n. Carpools incur an extra time cost for each

rider because riders have to coordinate schedules and drivers have to pick up and drop off

each rider. This extra carpooling time is assumed to be fixed at zcarpool. Thus, the time cost

of scheduling carpooling is τschedule ·w ·zcarpool, where τschedule is the time cost of coordinating

and scheduling carpooling as a fraction of wage rate. Similarly, τcarpool is the time cost of

driving. Therefore, the total commuting cost for workers who carpool is

Tcarpool(k, j) = m0+[τschedule ·w ·zcarpool+parkingCBD/n+(m1/n)k+(pg/n)

ˆ k

k

1

G(V (κ))
dκ

+ τcarpoolw

ˆ k

k

1

V (κ)
dκ] · ncommute. (7)

As mentioned previously, transit lines are evenly distributed. Each transit line offers a

radial route that links the CBD with residential locations. Stops are located at each radius

to transport workers to the CBD. Buses follow residential roads and thus can be used on

trips from home to transit stations.11 Thus, if households choose to take public transit, in

11Given buses and rapid transit have similar prices in Chicago, we assume individuals would never want
to take a bus directly to downtown given the speed improvements of using rapid transit.
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the absence of ride-hailing apps, they could walk or take bus to the nearest public transit

station and then take the public transit. Therefore, for households walking to the public

transit, the transportation cost is

Twalkpub(k, j) = [τw ·w ·(j/Vwalk)+awt ·τpub ·w+publicfare+τpub ·w ·(k/Vmetro)]·ncommute, (8)

where the first term represents the time cost of walking to the nearby transit station. Then,

awt is the average waiting time. The time cost of transit is measured as a fraction, τpub, of

the wage rate and publicfare is the ticket cost. Then, Vmetro is the average speed of each

transit line. Thus the average time riding the train from distance k to the CBD is k/Vmetro.

The last term represents the time cost of taking public transit. For households taking bus

to the public transit, the transportation cost is

Tbuspub(k, j) = [τbus · w · (j/Vbus) + tbuswait · τbus · w + busfare

+ awt · τpub · w + transferfare + τpub · w · (k/Vmetro)] · ncommute, (9)

where τbus is the time cost of the bus, Vbus is the average speed of the bus, and tbuswait is

the time spent waiting for the bus, and busfare is the bus fare. Then, the first term in this

equation is the total time cost of taking the bus accounting for its speed, the second term

is the time cost of waiting for the bus, and the third term is the bus fare. The remaining

terms parallel that of the prior equation related to taking rapid transit, except the fare for a

transfer to rapid transit is given by transferfare, which may be less than the direct fare of

taking rapid transit. In this way, taking a bus is similar to walking to transit, but potentially

incurs different time costs, waiting costs, and the bus fare.

Some metro lines may already be at or near capacity, implying that any large policy

change that dramatically increases demand may substantially increase wait times. To ac-

count for this, we model public transit crowding following the engineering literature (Osuna

and Newell 1972; Esfeh et al. 2020). Assuming passengers arrive randomly at transit sta-

tions and if passengers can be served by the first arriving vehicle, the average waiting time

is estimated as half of the headway. Therefore, awt = 1
2
Γ, where Γ is the headway or the

frequency of the train. However, if overcrowding is an issue, passengers who are not able to

board the fist-arriving train have to wait another time period of Γ. For passengers who are

left behind, their waiting time is Γ/2 + Γ. Assuming the load capacity of all of the trains in

one time period of Γ is Z, it implies that the trains could fit a population of Z comfortably.

If the number of passengers using public transit, Z, is greater than Z, the public transit is

overcrowded. There are (Z − Z) passengers left behind by the first arriving train and have
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to wait for the next train. Therefore, following Liu et al. (2013), if there is overcrowding,

the average waiting time for all passengers is

awt =
Z

Z
· Γ

2
+ (1− Z

Z
) · (Γ

2
+ Γ). (10)

If Z < Z, there is no overcrowding issue and the average waiting time is Γ/2.

According to survey data in Young and Farber (2019), 17.7% of ride-hailing trips are to

work, but this number is larger for younger workers and night shift workers. Because Uber

is a major player in the ride hailing industry, this paper uses the fare structure of Uber to

represent ride-hailing apps. The cost of taking Uber to work includes the payment to Uber,

the time cost of waiting, and the time cost of traveling, given by:

Tuber(k, j) = [f0+f1 ·k+f2

ˆ k

k

1

V (κ)
dκ+awtuber ·τuberwait ·w+τuber ·w ·

ˆ k

k

1

V (κ)
dκ] ·ncommute,

(11)

where f0 represents the base fare, f1 represents price per mile, f2 represents price per hour,

awtuber is the average waiting time for Uber drivers to arrive, and τuberwait is the time cost of

waiting for Uber. To simplify, the fare structure of taking Uber is set exogenously without

surge pricing. The time cost of commuting is a fraction, τuber, of the wage. We assume

τuber < τ , because while in the Uber, individuals can spend time working or other productive

uses. “Dead trips” where the driver needs to find the next passenger also do not cause added

congestion, given they must always be in the opposite direction on the highway.

If workers choose to take Uber to the nearby transit station, the transportation cost is:

Tuberpub(k, j) = (f0 + f1j + (f2 + τuberw) · [(j − j̄)/Vres + j̄/V̄res] + awtuber · τuberwait · w

+ awt · τpub · w + publicfare + τpubw · k/Vmetro) · ncommute, (12)

where the first five terms represent the cost of taking Uber to transit and the last three terms

represent the cost of taking public transit. To get to transit lines, Uber drives on residential

streets.12 As more people start to take Uber to transit stations, the speed on local roads could

fall. This congestion is likely to be most salient near transit stations, possibly a result of

Uber causing congestion in the dropoff area. Thus, we model this congestion within a given

distance j̄ of transit stations to capture congestion near the Uber arrival and departure

points. To capture this, Vres represents the driving speed on residential streets without

congestion caused by Uber, while V̄res represents the speed on residential streets within j̄

12In contrast to Uber trips to public transit, all highway trips are radial. In addition to driving to transit
stations, residential streets are used for other purposes such as shopping or errands besides commuting.
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miles of transit stations. Then the term within square brackets implies added personal time

costs due to congestion and added costs of Uber, as a result of pricing per minute of travel.

To model congestion near transit, we assume it is based on the average Uber speed rather

than the precise amount of congestion at each distance.13 The average Uber speed with

congestion, V̄res, is a function of number of Uber cars on the road and the residential road

capacity, taking a similar functional form as (6) except replacing a, b and c with residential

road specific congestion parameters, ares, bres, and cres, and replacing M(k) with
Nuberpub
Rres

.

In this last term, Nuberpub is the the number of Uber trips to transit and Rres represents the

residential road capacity. We have verified the results are robust to the distance threshold

that we specify congestion starts at.14

Each household chooses a travel mode optimally to minimize commuting cost. The

transportation cost for households living at radius k and distance j from public transit is:

T com(k, j) = min
{
Twalk(k, j), Twalkpub(k, j), Tbuspub(k, j), Tuberpub(k, j), Tcarpool(k, j), Tdrive(k, j), Tuber(k, j),

}
.

(13)

Car Ownership. We allow for endogenous car ownership, such that Uber and the policy

regime can change the number of car owners. Car ownership decisions are made in two stages.

In the first stage, households choose their commuting mode to work. If they choose to drive

or carpool, they must own a car, incurring the fixed costs of owning a car. In the second

stage, households choose their mode choice for leisure trips discussed below. Households who

choose not to own a car for commuting purposes may decide to own a car for non-commuting

trips if the total costs of doing so are less than the total costs of those trips without a car.

This theoretical innovation sheds light on the effects of Uber on the car ownership rate. The

two stage process is a simplification, but facilitates solving the model. Moreover, such a

process is not unreasonable given the heavy reliance on driving to commute to work.

Households choose to own a car for commuting purposes if households choose to drive or

carpool to work, that is, if T com(k, j) = Tdrive(k, j) or T com(k, j) = Tcarpool(k, j).

Transport Cost Curves. Much of the intuition of the model can be seen using the

transportation cost curves defined above—and those defined subsequently for leisure trips.

Unlike prior models, our model features distance to the CBD and distance to transit lines,

so that the transportation cost curves vary across both dimensions. To gain intuition, Figure

1 show the transport cost curves (per trip) with respect to distance to the CBD, conditional

13This simplifies computations considerably, with little expense. Moreover, this allows us to interpret the
congestion as a fixed cost near the station rather than something that accumulates over distances.

14Intuitively, as this distance increases and congestion occurs over a longer space, then the response of
individuals willing to switch to Uber as a way to get to public transit is muted.
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on various distances to transit lines. Appendix A.1 extensively discusses the differences

between the fixed (shifts) and marginal cost (pivots) of each mode of transit and explicitly

demonstrates how the optimal transit cutoff rules are derived in partial equilibrium.

Focus on Panel 1a. The vertical intercept shows the fixed cost conditional on a given

distance from the transit station. Based on our calibration discussed subsequently, the fixed

cost of walking is the lowest. The fixed costs of taking Uber directly to work is lower than

taking it to a transit station due to the added transit costs. The fixed cost of carpooling

is higher than the fixed cost of driving because the added cost of carpooling is larger than

the savings from sharing parking costs, but the fixed cost of taking Uber is lower than both

options. Finally, the fixed cost of walking to transit is lower than taking the bus and Uber

to transit. However, note these conclusions depend on distance from the transit station.

With respect to marginal costs, note that because each graph fixes the distance to transit,

the marginal cost is only related to terms relating to distance to the CBD. The marginal

cost of walking is the highest. Uber’s marginal cost is the second highest because it charges

a higher fare per mile and minute than would be realized by using one’s own car. Finally,

the marginal cost of carpooling is lower than solo-driving because maintenance and gas costs

are split. With respect to transit stations, conditional on a given distance from transit, the

marginal cost of transit is the same by assumption in our calibration. Each of these curves

have a kink after 15 miles, where the Chicago rapid transit line reaches its endpoint.

The aggregate city-wide transport cost curve is the lower envelope of all of the individual

curves. The intersections of each individual curve along this lower envelope partitions the

city into various modal choices along each transportation array. Then, moving across panels,

as distance to a transit station increases, the cost of walking, taking bus or taking Uber to

public transit each shift upward. However, the walking curve shifts up faster as the cost of

walking an additional mile is much higher. Critically, as distance to transit increases, public

transit becomes too costly, and given Uber directly to work has a relatively low fixed cost,

Uber directly to work becomes a viable option (see the last panel). Taking Uber to transit

is never viable unless subsidized. Thus, the four panel of graphs show that modal choice

differs based on distance to the CBD and distance to transit stations, with the aggregate

lower envelope of these curves being different at different distances from transit lines.

Leisure Trips to Downtown. Our model will feature two types of leisure trips, the first

of which will borrow some of the structure of commuting trips. Households make non-

commuting trips to downtown (shopping, nightlife, concert venues) during non-rush hours

or weekends for leisure purposes. As noted in Hall et al. (2018), there can be idiosyncratic

reasons such as the weather or time of day that alter why individuals take Uber. To model
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this, for each leisure trip i, there is a random benefit (negative cost) associated with taking

Uber to downtown. We could also model a random benefit of taking Uber to transit, but

given we do not have data to calibrate the parameters of that distribution, we leave this as

a robustness exercise for later in the paper.

Households have the same three options to get to public transit for non-commuting trips

to downtown, but the cost functions have different parameters due to being off-peak hours.

For example, for households walking to rapid transit, the non-commuting cost has the same

per-trip form as (8) except that awt is replaced with awtnonrush , the average waiting time for

the transit during non-rush hours or weekends. Due to lower transit frequency at night and

on weekends, we assume awtnonrush > awt. The same modifications to average waiting times

are made for the cost functions of taking the bus and Uber to public transit. Uber to public

transit also has an additional modification: because these trips are not during rush hour, we

assume there is no congestion near transit stations, achieved by setting j̄ = 0 in (12).

If households take Uber directly to their centrally located leisure activity, there is a

random benefit (negative cost) of taking Uber that is trip-specific, randuber(i) which follows

a Pareto type 1 distribution, with scale parameter normalized to one. This random term

captures any psychic benefits of engaging in activities, such as the ability to avoid drunk

driving or the role of time-of-day or weather in changing the relative cost of Uber. The

Pareto distribution is ideal because it implies many trips will have small benefits, but some

trips will have very large Uber benefits. As discussed in the calibration section, we set the

Pareto parameter such that it pins down the appropriate share of Uber trips by trip purpose.

Given individuals optimize the mode for each trip separately, the non-commuting cost for

trip i of taking Uber downtown for leisure is:

T leisureuber (k, j, i) = randuber(i) + f0 + f1 · k+ f2
k

Vnorush
+ awtuber · τuber ·w+ τuber ·w ·

k

Vnorush

+ f1 · k + f2
k

VCBD
+ τuber · w ·

k

VCBD
, (14)

In addition, the cost differs from (11) because Vnorush is the driving speed during non-rush

hours. Furthermore, a critique of ride-hailing apps is that they generate congestion downtown

due to many trips to common points of interest. We allow for Uber to generate downtown

congestion by assuming that VCBD is the driving speed in downtown CBD, so that the last

terms capture the extra cost associated with downtown congestion caused by Uber drivers.

We model downtown congestion on the roads within the CBD. Similar to congestion near

transit stations, after a car enters into the downtown area, its speed becomes a function of

the number of Uber drivers. In practice, we interpret this penalty as a cost of taking an
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Uber into the downtown area, which could capture extra waiting, drivers stopping in the

road or idle driving by Uber drivers who are looking for pickups. The number of Uber drivers

affects car drivers as well. This cost only arises on leisure and not commuting trips: first, as

the calibration will make clear, leisure trips using Uber are more common than commuting

trips and, second, because employment might be more spread out in the CBD than points

of leisure such as the symphony and bar district. The downtown driving speed again takes a

similar form as (6) except replacing a, b and c with downtown-leisure congestion parameters

ales, bles, and cles. Further, we replace M(k) with NCBDleisure
RCBD

, where NCBDleisure is the the

number of Uber trips into the CBD and RCBD represents the road capacity in CBD.

Households can also drive to the city center for leisure purposes. Here, the cost will

depend on whether the household has already purchased a car for commuting. If households

own a car for commuting purpose, the non-commuting cost for driving is:

T leisuredrive (k, j) = parkingpertrip +m1k + pg
k

G(Vnorush)
+ τw

k

Vnorush

+m1 · k + pg
k

G(VCBD)
+ τw

k

VCBD
, (15)

where parkingpertrip is the per-trip cost of parking downtown during off-hours. This equation

differs from (5) because Uber drivers impose an externality on other drivers in the CBD.

Given our model features endogenous car ownership, if households don’t own a car for

commuting purposes, households need to pay the fixed cost to buy a car for leisure purpose.

Thus, for an individual who does not already own a car, the per trip cost of driving for

leisure trips becomes T leisuredrive,buycar(k, j) which equals the fixed cost of car ownership (m0)

divided by the number of leisure trips plus all of the terms on the right-hand-side of (15).

When deciding to buy a car for leisure purposes, individuals will account for these leisure

trips to downtown, plus the idiosyncratic leisure trips discussed subsequently.

For simplicity, we assume individuals do not carpool or walk directly to the destination

for leisure trips. Then, for each trip i, an individual will pick the mode of transportation

that minimizes the cost of that trip after accounting for the fact that the cost of driving will

be different depending if they already own a car for commuting purposes, they will buy a

car for leisure purposes only, or they will never own a car.

Car Ownership for Leisure Trips. For individuals who already own a car for commuting

purposes, they make no additional ownership decision and instead simply pick the mode that

minimizes each trip cost. But for individuals who do not already own a car, we first calculate

their decision for each trip i assuming they will buy a car (including the added fixed costs).
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We then aggregate their total leisure trip costs (public transport via walking/Uber/bus,

driving, or Uber direct) by summing over all trips i, yielding a sum T leisurebuycar (k, j). We then

repeat this procedure assuming households never buy a car thus facing only the choice set

walking/Uber/bus to transit or Uber direct to downtown for each trip. After aggregating,

this yields a total cost of T leisurenocar (k, j). A household will purchase a car if:

T leisurebuycar (k, j) < T leisurenocar (k, j). (16)

Idiosyncratic Local Trips. Uber is also an important transit mode for trips related to

shopping/social activities outside of the CBD and possible within-CBD trips. By definition,

these trips can be quite “random” in terms of distance, time, and frequency, depending

on proximity to retail agglomerations, social centers, and other sub-centers within the city.

Moreover, whether an individual drives, takes public transit, or takes Uber on these trips

may depend on numerous factors. Nonetheless, we make significant progress by imposing

some simplifying assumptions on the nature and cost of these trips. Adding them to the

model, allows for a more realistic, psuedo-monocentric city that allows us to more accurately

study the effect of ridehailing taxes.

The first assumption is that local trips can only be made by taking Uber, driving or

bus.15 Second, individual trips are heterogeneous in their fixed costs of driving or taking the

bus. Finally, the average distance of local trips is DistL per trip, trip-specific parking costs

are parkingL(i), and the average driving speed is Vres. Only individuals that have decided

to purchase a car, either for commuting or leisure trips, can drive on these trips; individuals

without a car must take the bus or Uber. If choosing to drive, the total cost is a function

the same variables defined previously, except including idiosyncratic costs:

TLocaldrive (i) = parkingL(i) +

[
m1 ·DistL + pg ·

DistL
G(Vres)

+ τ · wDistL
Vres

]
. (17)

Instead, if choosing to take a bus, the local trip cost is:

T localbus (i) = randomwait(i) +
DistL
Vbus

· τbus · w + busfare, (18)

where randomwait(i) is a trip-specific waiting time for the bus. This might include idiosyn-

cratic costs relating to the extent of the bus transfers necessary.

15Given these trips do not involve travel to downtown, radial modes of public transit are not included in
the choice set.
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If choosing to take Uber, the cost function is:

T localuber = f0 + f1 ·DistL + f2
DistL
Vres

+ awtuber · τuberwait · w + τuber · w ·
DistL
Vres

, (19)

For households who own a car, they choose a mode from driving, bus or Uber to minimize

the cost for each trip i. For households who choose not to own a car, their local trip cost is

determined by picking from a choice set that only includes buses or Uber.

Given local trips are heterogeneous and idiosyncratic, we need a flexible way to model

the costs of each local trip. To do this, rather than introduce heterogeneity in the distance

of these trips, we instead allow for heterogeneity in the parking costs and bus waiting times

of each local trip.16 Generally speaking, idiosyncratic parking costs can have a broad inter-

pretation: they could include the the dollar costs of actual parking, any time costs of finding

street parking, and any psychic or monetary costs of engaging in activities such as drunk

driving. Although the dollar cost of parking may be low on average, the total fixed cost

for some trips may be very high. The same is true for bus waiting times: the idiosyncratic

cost could be due to uncertainty of waiting, the numbers of bus transfers necessary to reach

different destinations, or a cost of a bus being late.

Thus, to model the possibility that some trips have very high fixed costs of driving

or taking the bus, we again assume the distribution of parking cost and bus costs follows

Pareto type 1 distributions, with scale parameter normalized to one. For each local trip,

we separately draw a new random parking cost and bus waiting time from the distribution.

Then, as above, parkingL has a CDF of 1− (1/parkingL)α, where the Pareto parameter is

α, with a similar function for bus wait times. As discussed in the calibration section, we

set the Pareto parameter to pin down the the share of Uber trips that are taken to non-

CBD locations to match data on the destination (CBD/non-CBD) of all Uber trips within

Chicago, classifying all trips that are not to or from the CBD as a “local” trip.

Individuals endogenously determine the optimal mode for each trip i. The aggregate

local trip cost per household, TL is the sum of all individual trip costs.

3.1.6 Tax Policy

There have been several tax policies proposed in the past years: a flat tax, an ad valorem

tax, and a mileage tax. Here we consider each of these policies in turn.

16Note that we do not need heterogeneity on all three trips, which would be redundant. Any two trips
could have the idiosyncratic component to make our point.
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Flat Tax. Chicago historically imposed a constant unit tax per Uber trip regardless of the

distance or cost. The historical constant tax rate per Uber trip, ttriptax, was $0.67 per trip

in Chicago. Using, (11), the tax-inclusive transportation cost for taking Uber to work adds

ttriptax to each trip. Similarly, using (12), the cost of Uber to transit adds ttriptax to each

trip. The tax also similarly shifts upward any leisure trip costs that involve Uber.

Sales Tax. Another tax policy that has been implemented in other places such as New

York City is a sales tax, which is proportional to the monetized cost of each Uber trip.

This is a potential alternative tax policy for Chicago to adopt. If a sales tax policy is

adopted, at a sales tax rate, tsalestax, the tax inclusive price of taking Uber to work becomes

(1 + tsalestax) · (f0 + f1 · k + f2
´ k
k

1
V (κ)

dκ). This then replaces the price of Uber in (11),

where all non-monitized costs are obviously not affected by the tax. The sales tax similarly

pre-multiplies the price of Uber for all other mode and trip types involving Uber.

Mileage Tax. Finally, a mileage tax is another policy that has been proposed to tax Uber

and other driving (Davis and Sallee, 2020). It is a tax rate that is imposed on the driving

distance by Uber trips. Given the tax rate per mile, tmiletax, the only term in (11) that is

affected is the second term relating to Uber’s per mile part of its pricing scheme, which now

becomes f1 · k · (1 + tmiletax). Similarly, the distance-based parts of the fares also increase by

the mileage tax rate for all other trips types and destinations involving Uber.

3.1.7 Tax Return Scheme

We consider four spending plans to balance the budget: external transfers, lump sum rebates,

improvement to public transit, and fare reductions.17 The amount of tax revenue, TR, raised

is determined endogenously. Under the constant tax rate ttax per trip, the aggregate tax

revenue is ttax · Tripsuber, where Tripsuber are the total trips on Uber. Under the sales tax,

aggregate tax revenue is tsalestax ·Revenuesalestax, where Revenuesalestax is the aggregate sale

revenue from all Uber trips. Under the mileage tax policy, the aggregate tax revenue is

tmiletax ·Distancemiletax, where Distancemiletax is the aggregate Uber driving distance.

External Transfers. First, we assume that the state government levies this tax only in

Chicago and then spends the revenue such that it only benefits nonresidents of the city.

While Chicago’s tax involves local spending, in many other states the tax is levied by the

state government, which then implicitly use the revenue to subsidize rural parts of the state.

17Parry and Bento (2001), Parry and Bento (2002), and Bento et al. (2009) emphasize the critical impor-
tance of considering what the tax revenue is used for.
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Lump Sum. The second spending scheme is to return the tax revenue lump sum to each

resident household, which increase households’ income. This scenario is realistic from a policy

perspective: cities need not earmark their revenue to transit ridership and may instead use

the revenue to benefit all citizens via a general fund. A lump-sum transfer would capture

this if general public spending are valued at par with increase in private income.

Transit Improvements. A third spending plan is to invest the total tax revenue to im-

prove the public transit system by increasing train frequency, which reduces average waiting

times. We assume that the average waiting times is a function of the total budget devoted

to operating the public transit system. The elasticity of average waiting times with respect

to the public transit budget is assumed to be a constant, εmetro. Therefore,

awt = Cmetro(basebudget+ TR)εmetro , (20)

where Cmetro is a constant, basebudget is the baseline operating budget, and TR is the tax

revenue raised. This tax return scheme has the potential to increase public transit usage by

lowering the cost of transit due to lower waiting times. There may be increasing returns to

improving transit that the constant elasticity assumption suppresses. If so, then the transit

model responses we estimate would be smaller than those with increasing returns.

Reduce Fares. A final spending program is to invest the total tax revenue in the public

transit system by reducing the one way ticket cost of taking metros or buses. In equilibrium,

the aggregate tax revenue should equal to the aggregate public transit fare reduction. This

policy holds the quality of infrastructure fixed, but adjusts the transit price.

3.1.8 Labor Market of Uber

An important part of Uber’s role as a platform is connecting riders and drivers. We model

the driver labor market to incorporate the incidence of the tax: Uber driver’s will share some

of the incidence of the tax. Presumably, drivers make labor supply decisions on expected

hourly wages rather than the realized wage. Given expected wages are unobserved, we proxy

for it using driver revenue net of the Uber commission. To proceed, and be consistent

with empirical labor supply elasticities, we assume that the hours LS of Uber driving time

supplied per driver depend on pay per hour, which equals total revenue, Revenueuber paid

to all drivers divided by LS times the number of drivers. We assume the number of drivers,

Dr, is fixed, so all adjustments occur on the intensive margin.

For each Uber trip, the driver revenue depends on base fare, cost per mile, cost per
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minute, trip length, and the driving time. Aggregate revenue is the sum of revenues from

trips to downtown, to transit, and local trips. Let l index a household that is at location

(k(l), j(l)). Then, aggregate revenue from commuting trips is

Revenuecomuber =
∑

l∈Nuber

f0 + f1 · k(l) + f2

ˆ k(l)

k

1

V (κ)
dκ+

∑
l∈Nuberpub

f0 + f1j(l) + f2 ·
j(l)

Vres
(21)

where Nuber and Nuberpub are the sets of households making the Uber trips directly to the

CBD and to the public transit for commuting purposes. Similar expressions can then be

derived for leisure trips to downtown and for local leisure trips. Summing these two sources

of revenue with revenue from commuting trips yields total Uber revenue, Revenueuber.

However, the company of Uber takes a certain fraction, πuber, of drivers’ revenue as fees.

Although it can vary by city or diver, on average, this is about 30% of drivers’ revenue.

Therefore, Uber drivers’ net revenue is (1− πuber)Revenueuber.
We assume that the labor supply function LS = ((1− πuber)Revenueuber/(LS ·Dr))εlabor

has a constant elasticity, εlabor. Then, rearranging, the labor supply function yields:

LS = Cuber((1− πuber)Revenueuber)εlabor/(1+εlabor), (22)

where Cuber is a constant. Multiplying by Dr, or total potential Uber drivers, gives total Uber

hours, with Dr absorbed into the constant. Critically, πuber adjusts to maintain equilibrium

in the labor market. Some discussion is in order. In particular, for driver revenue, we

only deduct Uber’s commission and, following standard practice among empirical studies

estimating this elasticity, do not deduct driver capital/operating costs.18

A household who chooses to take Uber demands driving service from an Uber driver.

The demand is measured by the driving time for all Uber trips. Similar to the supply side,

summing across all households using Uber, the demand is given by

LD =
∑

l∈N comuber

ˆ k(l)

k

1

V (κ)
dκ+

∑
l∈N comuberpub

j(l)

Vres
+

∑
i∈N localuber

DistL
Vres

+
∑

l∈N leisureuber

(
k(l)

Vres
+
CBD

VCBD
) +

∑
l∈N leisureuberpub

(
j(l)− j̄
Vres

+
j̄
¯Vres

) (23)

where each N is the number of Uber trips for that trip type.

18Hall et al. (2017) do not net out driver costs, and so the measure of the hourly earning rate is a gross
flow to both the driver’s labor and capital. This is consistent with how empirical studies estimate the labor
supply elasticity of Uber drivers: Chen et al. (2019) do not net out driver costs from revenue and Angrist et
al. (2017) define the wage as the hourly farebox net of only the Uber fee.
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In equilibrium, it must be the case that LS · Dr = LD. The aggregate number of Uber

trips, Tripsuber, are determined endogenously by households who choose to take Uber given

the tax rate and fare structure. Then, Uber adjusts the fraction taken from drivers’ revenue

to achieve market equilibrium in response to different policies or regulations.

After the tax is imposed, the price of taking Uber goes up. As a result, the demand for

Uber trips goes down. As demand goes down, aggregate income revenue for Uber drivers

goes down as well, which leads to a movement along the supply curve, which decreases

Uber supply. This disrupts market equilibrium. Note that because Uber is a two-sided

platform any policy change both shifts the demand curve and induces a movement along the

labor supply curve. Depending on the relative size of the demand shift versus the extent of

movement along the labor supply curve, this may result in a shortage or surplus of drivers

if Uber’s commission is held constant. If there is a surplus [shortage] of drivers, then πuber

increases [decreases]. To ensure supply meets the demand, the company of Uber has to

change the fraction taken from drivers’ revenue.

Critically, the households’ mode choices are not a function of πuber and thus the way we

model the labor market does not affect the equilibrium transit choices in the model.19 Our

approach is important for modeling the incidence of the tax: drivers share some of the cost

of the policy changes because the policies now affect their net profits. This means that driver

welfare is affected by policies, consistent with reality.

Discussion First, in our model, Uber’s labor market clears by drivers adjusting hours

worked. This implicitly assumes there is no extensive margin of labor supply. This assump-

tion is necessary because the literature we draw on to calibrate the elasticity (Chen et al.,

2019), estimate labor supply elasticities in terms of hours worked. However, we can explore

what would change if drivers also responded along the extensive margin. In particular, given

the labor market need only clear in aggregate, the functional form of (22) would be similar,

simply needing to replace the hours elasticity with a number capturing both responses, and

adjusting the the constant appropriately. If allowing for both extensive and intensive labor

supply responses increases the elasticity then it can easily be shown that the changes to the

Uber commission rate will change by more than in our current model. Given the demand-

side is not affected by this, there will be no effect on modal choices. But because driver

profits enter into the welfare function, welfare becomes more positive (or less negative).

Second, Uber adjusts the driver share of revenue rather than the fare to restore equilib-

rium. In practice, Uber could change the driver’s commission, the base fare, the time fare, or

the fare per mile (or a combination of the four). We have elected to use the commission be-

19Alternatively, we could simply assume that supply is perfectly elastic.

24



cause of its simplicity in requilibrating the supply of drivers in contrast to a multi-dimensional

pricing problem. Moreover, there is some evidence that ride-hailing apps do this in practice,

as commission rates appear to vary by location. The New York Times notes that Uber has

adjusted driver commissions in response to New York levying its sales tax on Uber rides,

though there is disagreement as to whether Uber’s contract actually allows this (Scheiber,

July 6, 2017). Lyft, on the other hand, appears to explicitly deduct a percentage from the

fares drivers receive (Scheiber, July 6, 2017). Given the complex multi-dimensional inci-

dence problem underlying this, we leave alternative incidence assumptions to future work.

However, any fare change that is absorbed by Uber because it is not passed on to consumers

will mitigate the modal choice responses relative to our results.

3.2 Model Solution

The model is solved numerically. To solve the model, the city is discretized into a grid of

uniform squares. Each grid point corresponds to a distance k from the CBD and distance

j from the public transit station. Because all transit lines are evenly distributed within the

city and households choose to go to the nearest transit stop, each transit line has an equal

market area. Because the city is radially uniform and symmetric with respect to transit

lines, it is sufficient to examine half the market area for one line. After this market area’s

solution is obtained, it is aggregated across all market areas.

Given the initial values for the housing price and the fraction of people who choose

to drive, then the cost for each transit mode, the optimal mode choice for each type of

trip, and the population density, along with housing and land prices at each location are

solved recursively. We check if the following equilibrium conditions are achieved for spatial

equilibrium. If any one of these equilibrium conditions is not met, the simulation is re-

initialized and simulated until subsequent iterations achieve an equilibrium.

First, all households achieve the same utility level and all housing producers earn zero

economic profit. Second, the land price at the the city edge must be equal to the agricultural

land rent p`(k) = pa` . This condition is used to determine the city boundary, k, in equilibrium.

The city expands until the residential land price falls to the agricultural land rent.

Second, the total population must be housed within the city. Given the exogenous number

of households in the city, N , the following population constraint condition must be met:

N =

ˆ k

k

ˆ J(k)

0

θ ·D(k, j)djdk, (24)

where D(k, j) is the endogenous household density at distance k from the CBD edge and
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distance j from public transit, which is derived from H(k,j)/`(k,j)
h(k,j)

, where H(k, j) is total

housing production, h(k, j) is housing demand per household and `(k, j) is total land, as

defined previously. Recall θ is the fixed fraction of land devoted to housing and J(k) is the

maximum distance to the public transit at each radius k.

Third, the total number of cars on the highway is determined by the population who

choose to drive, carpool, or take Uber to downtown, which must equal to the total traffic

volume passing through the CBD edge. This determines the traffic volume on highways.

Similar conditions imply the volumes on local roads and within the CBD.

Fourth, to clear the Uber labor market, labor supply is equal to labor demand in equi-

librium. This conditions determines the endogenous Uber commission rate.

Finally, aggregate tax revenue is equal to the spending of that revenue, balancing the

government budget constraint. This condition determines the improvement in public transit,

fare reduction, or the amount of the lump sum return endogenously.

3.3 Baseline Calibration and Simulation

The calibration of the model is evaluated by comparing the simulation outputs to the char-

acteristics of Chicago in 2010, before the entry of Uber. The Chicago urbanized area is

selected to calibrate the model due to its size and the presence of a public transit system.20

The relatively strong CBD in Chicago also facilitates our simulations, but we will discuss

the external validity of our results to cities of other sizes and to cities that are polycentric.

For the transit system in Chicago, the total route length is 102.8 miles with several transit

lines. The route length for each line ranges from 5.1 miles to 26.9 miles. In the simulation,

we assume there are 7 lines with equal route length of 15 miles. These 7 lines divide the city

into equal pieces. The simulated city has a CBD, a residential district, and an agricultural

hinterland, which occupy 60% of the circular area.21 The rapid transit system, the simulated

city geometry, and simulated public transit system are shown in Figure 2.

Parameter calibration follows the literature on numerical urban simulations. These pa-

rameter values are shown in Table A1. Additional discussion of some parameters is given in

Appendix A.2. Here we discuss important parameters.

According to National Household Travel Survey (2017), the average annual person trips to

and from work per household is approximately 1/2 the number of vehicle trips for shopping,

family/personal errands, school or church, and social and recreation purpose. We assume

that all social/recreational trips in the National Household Travel Survey are CBD leisure

20According to Gyourko et al. (2008), Chicago has relatively low regulatory barriers. This characteristic
is used to match the assumption of zero zoning regulations in the theoretical model as closely as possible.

21Saiz (2010) estimates that 60% of city area is available for development due to Lake Michigan.
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trips, while all remaining shopping, personal, and school trips are idiosyncratic local trips.

Given this, 25% of leisure trips are to the CBD and 75% are idiosyncratic. From these same

data, the average trip length for local trips is 7.15 miles. In the simulation, we assume each

individual works 5 days per week for 50 weeks. Given 1.25 people per household, the number

of commuting trips is 625 per year per household. The total number of leisure trips to the

CBD is 295, with the annual number of local trips set to 859 per household.

Next, we need to determine the benchmark share of Uber trips by trip type. We use

the Chicago Data Portal “Transportation Network Providers - Trips” to determine this. We

define a local trip as any trip that is not from outside the CBD to the CBD, or vice-versa.

This dataset provides information on the origin and destination of trips within the city from

2018 to 2020. Alex Mucci cleaned and geolocated these data, and counts the number of

ridehailing trips that start/end in the downtown congestion zone.22 These data indicate

that 2/3 of trips have either only an origin or a destination within the downtown zone. See

Figure A2. According to survey data in Young and Farber (2019), 17.7% of ride-hailing trips

are for work, but this number is larger for younger workers and night shift workers. We then

assume that any trip entirely within downtown or that is entirely outside of downtown is a

local trip. Combining these data, we calibrate the model such that (approximately) 18% of

Uber trips are for commuting trips, 48% are CBD leisure trips, and 34% of all Uber trips

are for local trips. To achieve these benchmarks, we set the Pareto parameter for the three

distributions governing the local parking costs, bus waiting times, and random Uber benefits

to match these shares. In other words We pick the local trips Pareto parameters such that

in our baseline simulation, 1/3 of total Uber trips in our model are “local” trips, i.e., not

involving a trip to downtown. And we pick the Pareto parameter on Uber’s CBD leisure

trips such that 48% of all Uber trips are leisure trips to downtown.

Uber drivers’ labor supply elasticity is set at 1.72, based on the elasticity at the median

in Chen et al. (2019). The effective commission taken by Uber ranges from 20% to 50%.

Therefore, in the simulation, the fraction that Uber takes from drivers’ revenue is set at 30%.

We assume that the transit system is near the load capacity per headway because some

stations are overcrowded while others are not. Thus, Z is set to 13% of population.23

Results from simulating the calibrated model are shown in the final column of Table

1. Overall, the simulated baseline city matches the average characteristics of Chicago quite

well. The model fits the modal choices, cor ownership rates, and Uber trip shares well.

22https://www.chicago.gov/city/en/depts/bacp/supp info/city of chicago congestion pricing.html
23The assumption on Z is consistent with rush hour patterns on many lines, but not on off-peak demand.
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4 Results and Counterfactual Scenarios

In this section, we discuss the effect of various tax policies. Our focus is on the mode of

transit and congestion metrics such as speed. The main tables in the text present the results

of mode choice for all trips (commuting, CBD leisure, local leisure) combined, while the

online appendix tables present mode choices disaggregated by trip type.

4.1 No Tax Equilibrium

Before discussing our counterfactual exercises, we first consider the laissez-faire equilibrium

where the city of Chicago does not tax Uber. The first column of Table 2 presents this case.

With respect to transit choice, solo driving is the most common means of transportation.

In addition, just over 4% of people take an Uber directly to their destination. The share of

individuals taking Uber is non-trivial. Among individuals taking public transportation, the

model initially predicts a corner solution: no individuals will take Uber to public transporta-

tion and all individuals walk or take the bus. The reason for this is that Uber charges a base

fare that is too high to make Uber a viable option. We will relax this subsequently. Even if

the time and distance to the train station are small, the base fare of is larger than the fare

to use the L-train. Given no Uber rides are used to get to public transit, the average Uber

trip is 23 minutes, is at a distance of about 8 miles, and costs about $16. Car ownership

rates are almost 90%, with most households owning a car for commuting purposes.

4.2 Counterfactual Exercises with Taxes

In the remainder of Tables 2/A2, we consider Chicago’s fixed tax of $0.67 on Uber.24 As

discussed previously, the tax revenue generated are then allowed to be spent in various ways.

We then proceed in subsequent tables by considering different tax policies. In Table 3/A2

we allow for the city, county and state sales tax to be applied to each fare at a rate of the

9.25%25 As a third tax policy in Tables A4/A5, we consider a 20 cent per mile tax. This

policy attempts to tax road ware that may be caused by an increase in Uber rides.

Figure A3 visually previews the results of transit choice for the laissez-faire equilibrium

and for each of the policies. We will discuss each of these cases in turn.

24Recently, Chicago raised this tax on ride-hailing services above this levee, but we use the historical policy
given it is more in line with the taxes of other cities.

25With the exception of the case of external rebates, we assume that all of the revenue from the county and
state sales tax on the city’s Uber rides are transferred to the city of Chicago via intergovernmental grants.
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4.2.1 Results: A Fixed Tax on Uber

Figure 3 shows the intuition with respect to how the tax policy shifts the transport curves

for commuting trips. Similar figures could be made for leisure trips. While these policies

also shift/pivot bid rent curves as in the standard monocentric city model, the effects on the

transport curves represent the direct effect of the taxes and spending and thus we present

the intuition using them. In the first two panels, we show the fixed tax with a lump sum

rebate or a fare reduction, respectively. For simplicity, we show the effects for individuals

j = 0.1 miles from transit stations; shifts are qualitatively similar for other values of j in

this scenario. The only difference for other j is which curves form the lower envelope.

In both depicted scenarios, the unit tax directly shifts up the Uber to work and Uber to

transit curves. In the latter scenario, with a fare reduction, the Uber to transit curve shift is

muted by the lower fare; additionally, the cost of walking to transit shifts down slightly. With

a lump sum rebate, the upward shift of the Uber cost curve is irrelevant because individuals

living near transit stations never take Uber directly to work. However, recall that as distance

to transit, j, increases, this upward shift will be relevant as walking/transit are no longer

dominant options (e.g., for individuals 1.3 miles from transit in Figure 1). Thus, we can

see that the decline in Uber usage from the tax comes from individuals sufficiently far from

public transit. With a fare reduction, this in turn, mildly increases transit usage.

Now turn to the simulation results in Tables 2/A2. Based on our general equilibrium

model, the tax on Uber raises about 115 million dollars which is approximately 14% of the

Chicago Transit Authority rapid transit budget. To compare results for various spending

policies, consider the various policies in Table 2. Of course, adding the fixed tax to Uber

rides lowers the share of ridership taking Uber to directly to the destination. Even when

tax revenue is entirely used to improve the frequency of public transportation or to reduce

its fare, taxing Uber still results in a corner solution where no individuals take Uber to

public transit.26 Most substitution away from Uber is toward solo driving. Given this, car

ownership mildly increases. However, in situations where transit becomes cheaper due to

the Uber tax revenue funding transit fees, some of the riders that previously took Uber to

work substitute toward public transportation. Only in the latter scenario does car ownership

mildly decline. Finally, speeds on highways and downtown mildly increase.

Critically, in Table A2, Uber trips to the CBD are more elastic than leisure Uber trips.27

Intuitively, Uber is used for leisure trips to downtown with high idiosyncratic benefits of

26For example, in this case, the flat fee is able to improve transit wait times to work by at most only a
few seconds and only results in a transit subsidy of $0.40.

27This can be calculated using table A2, noting that in the baseline scenario, the average price of Uber for
commuting, Uber leisure trips to downtown, and Uber local trips are $9.91, $21.37, and $14.22, respectively.
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Uber and for local trips that have high idiosyncratic fixed costs of other means. These

trips are in the upper tail of the Pareto distribution, which mutes the response. Moreover,

commuting trips have many other substitutes not possible for local trips. With respect to

Uber’s outcomes, all the different spending policies raise the average trip time and distance.

Intuitively, trips become longer because the fixed cost of taxing Uber becomes higher. As

we assume that the incidence of the tax works partly via Uber’s commission, Uber lowers

its commission to maintain equilibrium in the labor market. Intuitively, the tax shifts down

demand for drivers, but driver revenues also fall, which causes a movement along the labor

supply curve. Given our calibration, if Uber did nothing, there would be a shortage of drivers.

So to maintain equilibrium, Uber lowers the commission rate (Figure A4 for intuition).

However, the Figure makes it clear that even after the adjustment to the commission, after-

tax driver revenue falls, implying drivers are worse off.28

4.2.2 Results: Sales Tax on Uber

The bottom panels of Figure 3 show the effect of a sales tax on ride-hailing apps. Unlike

the unit tax, the ad valorem tax pivots the transportation cost curves. Otherwise, all effects

are qualitatively similar to the prior analysis. Again, the upward pivot of the Uber to work

curve will only reduce Uber usage for individuals sufficiently far away from a transit line,

e.g., only when the Uber to work curve is part of the lower envelope of the overall cost curve.

At the average price of an Uber trip, this sales tax rate results in a tax payment that is

more than the fixed tax considered in the last section, with the ad valorem tax on leisure

trips being substantially higher in dollar terms. Thus, because of these local trips, the sales

tax raises more revenue than the fixed tax. Comparing across the columns in Table 3/A3,

the results are qualitatively similar to the prior section. For this reason, in this section, we

focus on comparing the results to those results in Table 2.

Given the sales tax raises more total revenue, it reduces the share of people taking Uber

to their destination by more than the flat fee, but this reduction is not linear in the size of

the tax. Given the composition of riders, Uber trips to CBD and local leisure trips generally

have lower prices than leisure trips to downtown. This can be seen in the comparing the

driving times on Uber trips with the prior table: trips are shorter under the sales tax. Leisure

trips to the CBD are, on average, more expensive and thus face a higher tax under the sales

tax regime. Thus, the larger decline in Uber trips are mainly driving by this trip type.

Moreover, larger declines in total Uber ridership amplifies the fall in the Uber commission.

Critically, this counterfactual highlights an important policy difference. A sales tax,

which is a percent of the fare, will more stringently penalize riders with longer trips on Uber.

28The change in the commission only dampens the fall in driver revenue, but driver revenue is declining.
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This in turn, will amplify the substitution away from Uber at longer distances, which then

has important implications for congestion and the revenue efficiency of the tax.

4.2.3 Results: Mileage Tax on Uber

Tables A4/A5 show the results of mileage taxes on Uber. The reason given for a mileage

tax are that it pays for damage to the roads by Uber. Relative to the other two tax policies,

note that the mileage tax raises similar revenue than the sales tax. Moreover, the results are

more similar to a sales tax rather than a flat fee. The reason for this is that the mileage tax

more heavily taxes longer trips, which are also more expensive. Thus, a tax per mile does

not raise much revenue from short trips, but raises most of the revenue from longer (high

price) trips. As a result, the effect of using Uber on trips to downtown is dampened, but is

amplified for local trips. Interestingly, the mileage tax raises the average distance on Uber.

But, this result is deceiving, because the tax individually lowers the distance of commuting

trips, downtown leisure trips, and local leisure trips. The average only goes up because the

relative shares of these trips change following the tax.

4.2.4 Results: Comparing Across Tax Policies

For all policies, the share using public transportation always increases by more when the

revenue funds fare reductions than when it funds transit improvements. Intuitively, lowering

wait times in a meaningful way requires a massive amount of investment, and given the

revenues raised are relatively ineffective at reducing headway, price reductions induce more

substitution. Even with transit improvements, congestion at transit stations still causes wait

times to rise relative to the baseline. However, the transit improvements reduce wait times

relative to the lump sum rebate case. Given the reductions in wait times in column (4)

relative to column (3) of Table 2 and a median wage rate of $28 per hour, the improvements

of public transportation are valued at $0.03 per trip. If the revenue is used to reduce fares

directly, the fare reduction is $0.40, which explains the larger increase in rapid transit usage.

From this exercise, if city officials wish to increase transit usage, subsidizing the fares

with tax revenues are more efficient than improving wait times. But in practice, none of

these tax policies is effective at increasing ridership substantially.

The increase in public transportation are due to two effects: a “push factor” where

individuals substitute away from Uber due to the taxes and a “pull factor” where individuals

substitute toward transit because its quality improves or fare decreases. With external

rebates, there is no income effect so, we isolate the pure “push factor” in that specification.

This shows little difference from the lump sum rebate case, suggesting that income effect on

31



transit is small, though it may have effects on other quantities—including externalities.

Notably, under all policies, public transport rises in relative popularity for commuting

trips to the no-tax equilibrium, but for leisure trips may rise or fall depending on how the

money is spent. When comparing lump sum rebates to transit improvements, the added

substitution toward transit is very small even for commuting trips. Thus, much of the

increase in transit ridership is due to the tax pushing people away from Uber and not the

improvements due to public transit quality improvements. Comparing the lump-sum to the

fare reduction scenario, we see that the latter case results in a larger increase in transit

ridership for commuting purposes. Thus, when the revenue is used to fund fare decreases,

much of the transit increase is explained by the “pull factor.”

Our model has several important implications for policy. First, in our model, Uber is a

substitute for rapid transit: an increase in the price of Uber increases transit ridership on

the L-train even without improving public transit. We can calculate the cross-price elasticity

of public transit with respect to the price of taking to Uber. At the average Uber price of

$16.04, the fixed tax represents a 4.18% change in the price of those trips. For the lump

sum case, the change in public transit shares implies a 1.70% increase in rapid transit usage.

This yields a cross-price elasticity of 0.41.29 On the other hand, Uber is a complement to

buses as a means of getting directly to the final destination, as an increase in the price

of Uber lowers bus ridership by 3.2%. Intuitively, this mechanism works via endogenous

car ownership. Higher taxes on Uber induce some individuals to buy a car. As a result

of owning a car, buses become a less attractive mode of transportation for local trips. In

this way, because Uber taxes moderately raise car ownership, they can harm public transit

ridership. Why does this effect only induce buses to be complements and not rapid transit?

These negative effects of car ownership on transit are more pronounced for buses than for

rapid transit because rapid transit is not generally used for trips that do not have a radial

direction. Moreover, combining all types of public transit (bus and L train), the effect of the

Uber tax is a 0.47% decrease in transit. This implies that all public transit modes combined

are a complement, with an elasticity of −0.11. As a result, we conclude that endogenous

care ownership is an important force that influences the cross-price elasticities.

Second, our model shows that taxes on ride-hailing apps alone cannot dramatically in-

crease transit ridership. Rather, how the tax revenue is spent, is critical. Our results suggest

that some uses are more effective than others. Nonetheless, if increasing transit ridership is

a goal, simply taxing Uber and spending it on fare reductions raises overall ridership most.

29Cohen et al. (2016) estimate the own-price elasticity of Uber to be approximately -0.60. As expected,
our cross-price elasticity is smaller in absolute value.
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4.3 Counterfactual Exercises with Subsidy Policies

In the prior sections, we show that Uber is a substitute for rapid transit, but a complement

for buses. Now, we consider whether an appropriate combination of government policies can

shock the system such that both Uber and public transit are separately complements.

In order to provide the subsidy, the government deducts a lump sum tax from each house-

hold’s income. The lump sum income deduction is determined endogenously in equilibrium

to equal aggregate expenditures on the subsidy. In an alternative scenario, we assume the

subsidy is externally financed by nonresidents of the city of Chicago, perhaps as a result

of intergovernmental transfers. This scenario also aims to simulate the effects of different

subsidy policies considered in several cities in the U.S.30 As they are currently implemented

in most cities, subsidies only apply to rides to rapid transit stations.

Flat Subsidy. The first subsidy policy is a flat dollar value off the price of taking Uber

to public transit. Given the subsidy only applies to Uber trips to transit stations, (12) is

affected. Therefore, given the flat subsidy, subsidyflat, the cost of taking Uber to transit

stations for commuting purposes subtracts subsidyflat from the per trip cost, with a similar

change applying for leisure trips. Currently, in cities with policies like this, to correctly levy

the subsidies, Uber uses geolocation software that pinpoints whether the origin or destination

of the ride is near a transit line. We use the prevailing rate of $3.

Ad Valorem Subsidy. Riders get a percentage rate off of the price of taking Uber to

public transit. Given the discount rate, subsidydiscount, assuming there is no congestion

near transit stations, the monetary price of of taking Uber to a transit station in (12)

becomes (1− subsidydiscount)(̇f0 + f1j + f2 · j/Vres), with all non-monetary costs unaffected.

The additional terms with congestion are also subsidized when they exist, and the subsidy

similarly modifies leisure trips to transit via Uber. The discount rate is set at 50% off.

Free Public Transit. In the third subsidy policy, the government (completely) subsidizes

the public transit (L-train) or any bus fare that involves a transfer to the L-train. Free public

transit has been debated in the media and among policy makers. Given free public transit,

publicfare = 0, people have more incentives to take public transit, perhaps even increasing

Uber ridership to transit stations. In addition, we set busfare = 0 and transferfare = 0

for individuals taking the bus to rapid transit.

30For work on subsidy policies more generally, see Brueckner (2005). Given we focus on the city of Chicago,
we ignore spillovers to other municipalities (Brueckner 2015).
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4.3.1 Results

Figure 4 shows the intuition of the subsidy for various distances j from transit. The upper

panels show a fixed Uber subsidy for rides to transit stations, while the lower panels show

the effect of making transit free. The Uber subsidy dramatically lowers the cost of taking

Uber to public transit, making it a viable option for riders that are sufficiently far away from

public transit. This increased transit usage then has general equilibrium effects that mildly

shift down the driving cost curves. However, this scenario raises the cost of transit for people

who walk or take the bus to transit because of the added congestion to public transit from

more riders. Unlike the Uber subsidy, making transit free lowers the cost of all modes of

public transit, though these declines are dampened by transit congestion. Unlike the Uber

subsidy, free transit offsets the added congestion time on the transit.

Tables 4/A6 show the results. Critically, and unlike the tax policies, the Uber subsidy

policies we consider are sufficiently large to induce some individuals to use Uber as a last-mile

service to get to public transportation. The flat rate $3 dollar subsidy financed by a lump

sum deduction has a large effect: 4.02% of people are induced to take Uber to a transit station

and overall transit ridership is 1.2 times the baseline scenario. Given the large increase in

transit ridership, public transit overcrowding is critical to dampening the effect: transit wait

times increase from 5 minutes to over 6 minutes. Moreover, Uber congestion dampens speed

near transit stations by about 5 miles per hour. We re-simulate the model in the absence

of overcrowding. Our model would predict that transit ridership would increase much more

without crowding, suggesting that transit limitations are critical for policy.

A decline in the price of Uber rides to public transit raises total public transit ridership.

For the flat-rate subsidy, most of this increase is due to new riders who use public transit,

but the increase is dampened from riders substituting from walking/buses to Uber as their

last-mile service provider. Overall, the increase in transit ridership reduces solo driving and

the number of people that take Uber directly to their destination, and thus unable to receive

the subsidy. Finally, the increase in speed on highways is larger than under the tax policies.

In the case of the 50% subsidy on Uber rides, the subsidy induces some individuals to

utilize Uber as a means of transport to transit, but not as many as the flat rate. This

is interesting because, given the mean price of an Uber ride to transit is about $5.50, the

average subsidy is only slightly lower than the $3 flat rate. However, unlike the flat rate,

the dollar equivalent of this ad valorem subsidy is low for short trips—which means the ad

valorem subsidy is differently targeted than the flat subsidy. An ad valorem subsidy benefits

longer trips and most trips to transit are short. Given the smaller increase in ridership,

transit congestion does not increase as much under this specification.

In the last column, we consider the case of free public transportation. In this case, transit
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fares fall to zero and there is a surge in transit ridership, but in this case, individuals who are

able to walk to public transportation drive the surge rather than individuals taking Uber. In

practice, this raises interesting equity issues, particularly, if income is a monotonic function

of distance to transit stations. Nonetheless, the decline in public transit fares results in a

negligible share of individuals taking Uber to public transit because such a subsidy cannot

differentially shift the Uber to transit cost curve. However, the decline in transit fares induces

a substitution away from using Uber as a means of driving to the final destination. As noted

previously, public transit congestion is critical. Were there no transit congestion—resulting

from the dramatic increase of people who walk to transit—the shifts would be amplified.

Overall, the results again imply that using Uber to get directly to work is inversely related

to taking transit to work. However, for the Uber subsidies, the decline in individuals taking

Uber to work is small relative to the increase in individuals that take Uber to transit. As

a result, we conclude that overall, Uber is a complement to public transit. As in the prior

section, we can calculate a cross-price elasticity. Here, we use the ad valorem subsidy scenario

as an exogenous shock to the price of Uber and trace out the elasticity of transit ridership.

Recall the subsidy corresponds to a 50% decline in the price. Focusing first on the L-train,

the total change in public transit ridership is 0.93 percentage points, which corresponds to a

15.8% change. The implied cross-price elasticity of total transit usage with respect to Uber

prices is −0.32. Interestingly, the sign of the cross-price elasticity for the L-train flips relative

to the tax scenario. In a case of the L-train and buses combined, a 15.2% increase in all

public transit implies a cross-price elasticity of −0.30.

Reconciling this result with the prior section, governments can create an appropriate

policy environment to induce (or amplify) complementarities between these means of trans-

portation, especially with respect to rapid transit options that are likely to be used for trips

to/from downtown. Critically, various polices can induce the equilibrium away from the cor-

ner solution where no individuals take Uber to public transit. In other words, the elasticities

are endogenous to the policy environment, e.g., the elasticities are a policy choice.31

5 Alternative Policies and Counterfactual Results

5.1 Toll Policies

Congestion tolls have been imposed in different cities around the world to relieve traffic

congestion externalities.32 Uber has opposed city-level tax policies like those considered

31Slemrod and Kopczuk (2002) make a similar argument for the elasticity of taxable income.
32For studies, see as Liu and McDonald (1998) and Liu and McDonald (1999). Brinkman (2016) considers

congestion in the presence of offsetting agglomeration externalities.
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previously, but politically supports a congestion toll policy applied widely and equally to all

drivers. The comparison between tax policy and congestion toll policies adds insights into

which policy is more effective at reducing traffic congestion. We consider two scenarios, the

optimal congestion toll and a sub-optimal toll that raises the same revenue as the Uber tax.

Optimal Toll. In this scenario, optimal congestion tolls are imposed on each car driving

through the highways during rush-hour. The toll is not levied on Uber rides to transit

stations or on local trips because these rides only drive through residential roads. Moreover,

the tolls are not levied on leisure trips to downtown because they occur at off-peak hours.

Following the simple congestion model in McDonald (2004), the optimal congestion toll is

calculated based on the externalities created by each additional driver on the highway. Each

additional driver on the highway can delay every commuter that is already on the highway

and, therefore, increases marginal commuting cost for each driver. As a result, each driver’s

gasoline cost and time cost of driving increase. The toll is calculated as:

toll(k) =
−→
N (k) ∗ dMC(k)

d
−→
N (k)

, (25)

where
−→
N (k) denote the traffic volume at radius k and MC(k) is the marginal commuting cost

for each driver at annulus k, which for solo drivers is equal to m1 + pg
1

G(V (
−→
N (k)))

+ τw 1

V (
−→
N (k))

.

For simplicity, we use the marginal cost of a solo driver, rather than the marginal cost of the

Uber consumer.33 Then, the effect of an added vehicle on marginal commuting cost is

dMC(k)

d
−→
N (k)

= pg
d(1/G(V (

−→
N (k))))

d
−→
N (k)

+ τw
d(1/V (

−→
N (k)))

d
−→
N (k)

. (26)

Therefore, the total commuting cost for each solo driver now adds
´ k
0
toll(κ)dκ per trip

in (5). The same expression is added per trip in (11). For carpools, tolls are split among

riders, therefore, it adds
´ k
0

(toll(κ)/n)dκ per trip in (7).

Fixed Toll. It is difficult to implement optimal congestion toll policy. A fixed toll policy

is more common and easier to implement. The toll rate is fixed per car but the aggregate toll

revenue is equivalent to the tax revenue under the Uber tax of $0.67 per trip, which facilitates

the comparison. Denote the fixed annualized toll as tollfixed. Then, tollfixed is added to the

commuting cost per trip in (5) and (11). For carpools, the toll is split, so tollfixed/n is added

to the per trip cost of carpooling in (7). Again, leisure trips are unaffected.

33Evaluating the toll at the consumer’s marginal cost, would be second order.
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5.1.1 Results: Optimal Toll

Figure 5 shows the intuition from the optimal toll, for different distances from public transit.

The upper panels show the toll with a lump sum rebate, while the lower panels show the toll

revenue used for transit fare reductions. Unlike the prior figures, the largest upward shift

is for solo-driving. Moreover, conditional on a given distance from the CBD, Uber and solo

drivers pay the same toll. However, the upward shift in the Uber cost curve is muted by the

fact that time enters Uber’s pricing formula: individuals taking Uber save time from reduced

congestion and thus are charged a lower price by Uber. The public transit curves also shift

upward as the added transit usage raises congestion on public transit. However, these latter

two effects are offset and have downward shifts when the revenue is used to reduce the transit

fare, which given the toll amount makes transit free shifts the public transit curve to the

pre-toll levels. Note that the increased transit ridership mutes the effect of the increase from

the toll on the Uber to work curve as well, because there is less congestion on the roads.

In Tables 5/A7, the optimal congestion toll raises the average speed on highways by as

much as 7%. First consider the case where the toll revenue is rebated to households. With

respect to transit choice, total car ridership (solo, carpool, Uber) falls by just over 1.5 per-

centage points, though this number is larger if not counting carpool trips. The substitution

patterns are interesting. The fall in solo driving is dramatic, with some individuals switching

to carpool and to public transit. Noticeably, there is only a small change in the share of

households that take Uber directly to their destination, perhaps explaining Uber’s preference

of the policy over taxes specifically targeting them. The optimal congestion toll is not suffi-

cient to induce individuals to take Uber to public transit, however, as that cost curve does

not shift downward relative to the two other means of getting to transit. Thus, the increase

in public transit usage is driven by individuals walking or taking a bus to transit. Critically,

given the toll is very high, this initial specification has a very large income effect from its

rebate to households. Comparing this column with to column with external rebating of the

toll, allows us to isolate the income effect of the policy on mode choice. Transit ridership is

lower with the lump sum rebate to residents (higher income).

In other cases, where the toll revenue is used to improve public transit times or to reduce

transit fares, the toll is even more effective at increasing transit usage. Again, reducing public

transit fares are more effective at increasing transit usage than using the revenue to fund

wait time reductions. Nonetheless, improving transit, is more effective at increasing transit

usage relative to the lump sum rebate. In the case of fare reductions, the optimal congestion

toll doubles L-train and bus usage. The optimal toll combined with reduced transit fares

is the most effective policy—even moreso than Uber subsidies—at increasing total public

transit usage. However, unlike subsidies, it achieves the goal via more individuals walking
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to transit and not Uber ridership. The $3 Uber subsidy is more effective at increasing Uber

usage to public transit, but total transit usage does not increase as much.

Interestingly, car ownership declines in all toll experiments. Much of this decline is a

result of less households owning a car for commuting purposes. Given this, however, more

households buy a car for leisure purposes. Only in cases where the toll revenue funds transit

fee reductions does overall car ownership decline substantially.

Given the congestion toll provides the largest shock to the city, we can discuss some of

the intuition using standard bid rent curves, housing demand, and traffic, as a function of

distance the CBD and the nearest transit station. Relative to the no tax scenario, housing

prices near transit stations increase because public transit becomes a more appealing transit

mode. Commuting speed increases and commuting time falls at all distances. The decline in

traffic congestion due to congestion tolls reduces the commuting cost of driving, which creates

incentives for households to live further away from the CBD. The city radius increases. As

the demand for housing towards the city edge and transit stations increases, the housing

prices for households who live further away from the CBD and near transit stations go up.

tolls may be a more politically viable option.

5.1.2 Results: Fixed Tolls

As shown in Tables A8/A9, if the toll is set to equal the revenue generated from the fixed

Uber tax in our prior simulation, the toll will be much less effective at reducing congestion

than the optimal toll. The reason for this is that the optimal toll is much higher than the

fixed toll. The fixed toll has limited effect on speed. In particular, the speed increase from

the Uber tax is either the same or larger than the fixed toll. Otherwise, the results with

respect to public transit mode choice are similar, but muted in magnitude, relative to the

direct Uber tax. We conclude that a sub-optimal toll is less likely to be effective at reducing

congestion externalities than a tax on Uber.

5.2 Robustness Checks and Model Extensions

Robustness. Tables A10.1-A11.2 show the robustness of our results to changes in various

parameters. We focus on the flat tax with a fare reduction and the flat rate subsidy. To

verify robustness of the model and to conduct exercises in the spirit of comparative statics,

we increase various parameters by 10%. This allows us to verify the sensitivity of the

results. It also allows us to study the “comparative statics” in a local neighborhood of the

equilibrium. Each column in the table represents a change where the change is the post-

policy equilibrium value minus the laissez faire equilibrium value The results can then be
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compared to the baseline change (e.g, Table 2 Column 5 minus Column 1). We show the

change because any change in the parameter value necessitates re-simulating both the laissez

faire and the policy-equilibrium.

As can be seen, the results are qualitatively and oftentimes quantitatively similar to the

baseline changes. We discuss some key checks briefly. Increasing headway, transit capacity,

and the elasticity of transit improvements allow for larger increases in public transit ridership,

but other transit system changes such as the number of lines have the opposite effects. When

focusing on the time cost parameters, there are two effects. First, an increase in the time

cost of transit, for example, raises the laissez faire share of people taking Uber, which allows

for a larger number of riders to substitute to transit following a tax. However, the higher

time cost also dampens this response. Thus, whether the mode that experiences the higher

time cost has a larger or smaller change depends on these two offsetting effects.

Simulations altering floor area ratios, road speeds, and transit availability or capacity are

designed to show if the model can capture alternative mechanisms via which Uber and transit

are complements. Focusing on the results of the subsidies, the higher the road speed, the

more transit capacity, and the grater the transit frequency, the bigger the increase in Uber

to transit and L-train usage, implying the products are more complementary. Eliminating

bus connections to transit also mitigates the overall increase in public transit usage, again

suggesting the extent of transit availability matters for whether Uber is a complement or

substitute. These results are consistent with the mechanisms in Hall et al. (2018). Imposing

a floor area ratio restriction has minimal effect, however. Finally, the last column in each of

these tables, shows the results of a simple partial equilibrium analysis where we rely entirely

on the direct shifts of the transportation cost curves. To conduct this analysis, we hold

fixed housing consumption and location choice, so the partial equilibrium analysis can be

viewed as a short-run rather than long-run effect. As can be seen, eliminating the general

equilibrium effects generally amplifies the mode choice effects, suggesting our transportation

cost curve figures would have even starker shifts in a partial equilibrium economy. Welfare

is always higher under the partial equilibrium scenario.

Uber to Transit. In the laissez faire situation, no one takes Uber to transit. This might

be viewed as implausible because we know it happens at least some. However, we do not

view this as a problem, as it means it will be even harder for us to find that policies change

the share of people making this choice. Nonetheless, a way forward would be to assume that

Uber trips to transit stations (perhaps for leisure purposes) have an idiosyncratic benefit
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much like the one we modeled to Uber trips downtown.34 As a robustness exercise, we add

such an idiosyncratic benefit, which might capture the effect of the weather or time-of-day

on the relative cost of taking Uber rather than a bus or walking to transit stations.

Table 6 shows the results. As can be seen, random benefits of Uber to transit move us

away from the corner solution. Taxing Uber with a lump-sum rebate, reduces the prevalence

of the trips, lowering overall transit ridership on the L-train. In this way, Uber can become

a complement to transit. Intuitively, raising the price of Uber lowers Uber usage to transit,

which also lowers usage of public rapid transit. This result confirms some of the mechanisms

discussed in Hall et al. (2018), which notes that idiosyncratic factors can make Uber and

transit complements because individuals no longer worry about needing to walk from transit

in the rain or at an unsafe time of day. Critically, in the absence of these benefits, this

mechanism did not exist and we found in the analogous column of Table 3, that the L-train

and Uber were substitutes. In other words, there are offsetting forces that depend on the

relative magnitudes of these idiosyncratic factors. The results of the Uber subsidy are similar

to those in the text, although the magnitudes of the responses change.

Subsidy Manipulation. It is possible that individuals may ride Uber to a transit station,

obtaining the subsidy, and then not riding rapid transit. As with any policy program, ma-

nipulating behavior for unintended purposes is possible. In practice, the way these subsidies

are designed generally does not require the person to actually take transit. Of course, the

spirit of the subsidy would be violated, if individuals who know about the subsidy deliber-

ately distorted their arrival or drop-off location to benefit from it. This would be analogous

to tax avoidance and would be bad from a welfare perspective. In practice, this means that

some of our shift to transit may be an overestimate.

External Validity. We have calibrated the model to the city of Chicago, but would like

to discuss the generality of the results. Hall et al. (2018) indicates that the effect of Uber is

more likely to be stronger (in absolute value) in larger cities with higher incomes. In Tables

A10.1-A11.2 we consider changes in the income level of the city, and as expected, higher

incomes amplify the transit responses. Given this, marginally lower incomes likely mute the

magnitudes of our cross-price elasticities.

In addition, smaller cities are likely to have less public transit coverage (both in terms of

geography and frequency). This latter effect cuts both ways: Uber becomes more valuable

because it can fill these larger holes (stronger complement in these cities), but alternatively,

34We did not model this directly in our baseline because we do not have data to calibrate the distributional
parameter on the idiosyncratic term.
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a Uber is relatively more appealing than transit for individuals without a car (stronger

substitute). As noted above, although the sign of the changes is similar to the baseline,

our results altering the length of transit lines, number of transit lines, transit capacity,

bus waiting times, and headway of transit find the transit responses could be amplified or

diminished depending on how the extent of transit is altered.

Combining these exercises, income is likely positively associated with the elasticities in

absolute value, but city size could be positively or negatively correlated with the elasticities.

Another issue of generality is whether the city is has a dominant CBD like Chicago or

polycentric like the Bay Area. The way we model local leisure trips is not dependent on

city structure, as we assume these trips are to/from an unspecified origin/endpoint. The

assumption is that there is a reasonable belief that a bus could service the local trip. If so,

the city form is unlikely to affect these trips much except via endogenous car ownership.

Commuting trips to downtown and leisure trips to downtown depend on city form. Leisure

trips to downtown could most easily modified by splitting them into multiple types of trips

to each city subcenter, as long as it is accessible by rapid transit. If public transit lines

easily connect each of the city centers, as in the Bay Area, where BART allows access to any

of the three centers (San Francisco, Oakland, San Jose), then the mechanisms underlying

our commuting trips still persist even if the magnitudes are qualitatively affected. Because

the radial lines are not so dense in the Bay area as in Chicago, the complementary channel

may be most affected, as discussed in relation to the extent of public transit above. But

if a city center cannot be accessed by public transit, that would dampen the last mile

complementarity because transit does not allow for easy travel to a core center. Commuting

trips would be more challenging to modify as, the polycentric nature of cities would require

endogenizing a cutoff that determines which sub-city individuals commute to. But absent

having an additional endogenous variable, we believe the qualitative mechanisms would

persist, but again not necessarily magnitude.

Of course, having a polycentric urban area also means that having a single tax/subsidy

within the urban area would require state-level policy making. If policies remain decentral-

ized to the cities, then decentralized taxes or subsidies could leisure destinations within the

urban area, making it more important to endogenize the number of leisure trips to each

city subcenter. In the current model, making the share of trip types endogenous is less of

a concern because of the ability to have a single uniform policy and because the distances

traveled for leisure purposes is endogenous for our downtown leisure trips.
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6 Welfare Calculations

We now turn to the welfare implications. The approach for the welfare analysis follows

Sullivan (1985) and Borck and Brueckner (2018). Note, we are not calculating excess burden

in this welfare analysis. There are several components in our aggregate welfare analysis.

First, imposing taxes leads to welfare losses for landowners. The welfare losses experienced by

landowners is measured by the reduction in aggregate land rent (residential plus agricultural).

To aggregate this, the total land area used for the city and agriculture is held constant at a

40 mile radius. We then calculate the decline in land rents accounting for the endogenous

border of the city radius, which partitions land into residential and agricultural.

Second, the imposition of the tax and expenditures on transit results in behavioral re-

sponses, but the income effect also changes household’s utility. In particular, because house-

holds can move within the city, changes in income have implications for housing demand that

depend on the income elasticity. Moreover, the laissez faire equilibrium is not first-best due

to the presence of congestion externalites. As a result, any distorted quantity (e.g., conges-

tion) that is affected by income effects will have a different change in utility relative to the

case of no income effects. The welfare change experienced by households is measured based

on the compensating variation (CV) associated with the adoption of the policy. The CV is

calculated as the change in income required to achieve the same utility as before the policy

is imposed. To compute the compensating variation in earnings, the model is re-simulated

holding households’ utility level constant—but now in an open-city model framework. The

direction of the compensating variation can be inferred from the change in the utility level.

Thirdly, assuming each Uber driver is a self-employed (resident) entrepreneur, then her

profit is a part of the city’s welfare change. The net profit for each Uber driver is the

difference between the total revenue from Uber rides net of Uber’s commission and the

driver’s operating cost. The operating cost includes the variable cost of operating a car

and gasoline cost. In our analysis, the firm’s profit (Uber’s) does not enter into the welfare

analysis of the city, as we assume it is owned by non-residents.35

We aggregate these individual components into the total change in welfare and then

present the change as a percent of aggregate urban income in Table 7.

Focusing on the $0.67 trip tax with a lumpsum rebate, the welfare effect of taxing Uber

is negative, although smaller in absolute value than the revenue raised. This negative effect

is the net of two counteracting forces: the fact that a tax on Uber distorts the optimal mode

choice, but at the same time improves congestion on roadways. The first of these effects

dominates because the tax affects many trips (leisure) that are not subject to congestion

35Alternatively, we could assume it makes zero profit: the commission just covers costs of the platform.
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externalities. Interestingly, the welfare decline resulting from using the revenue to subsidize

public transit is larger in absolute value than the lump sum return. In part, this is likely

a result of how this added subsidy reduces car ownership, while only having a relatively

small increase in transit usage. The effects are qualitatively similar for other tax policies,

except that the sales tax and mile tax may have positive welfare effects under the lump

sum rebate. In part, this is due to the magnitude of these taxes, which raise more revenue

than the $0.67 trip tax. As a result, the lump sum rebates are larger in these scenarios, and

thus the income effects have larger effects on initially distorted quantities. To verify this, we

resimulate the flat per-trip tax with lump-sum rebates at different values, and can show that

welfare is increasing in the tax rate (and thus tax revenue raised), suggesting that from an

optimally perspective, the choice of the tax rate is important. The laissez faire equilibrium

is not optimal, nor is the 0.67 tax, but there do exist tax policies that improve welfare.

With respect to the subsidy policies, given they are effective at increasing transit rider-

ship, they reduce congestion in the city. But, at the same time when they are financed via

income reductions, those income losses have adverse effects. Although effective at improving

transit ridership, the welfare effects are negative, likely because they are inefficiently tar-

geted. In particular, the subsidies reduce rush-hour transportation for commuting trips, but

at the same time, the city spends money on subsidies for leisure trips that occur at off-peak

hours. For these latter trips, the subsidies have no externality-reducing effect, but reduce

income. If the subsidies were only targeted to Uber trips to transit stations for commut-

ing purposes, then the welfare effects would likely be more positive. Moreover, when the

subsidies are externally financed, they improve a welfare, just like a “free lunch.”

The welfare effects of the optimal toll with a lump sum rebate are also positive. However,

the welfare effects of the congestion toll may sometimes come with some negative effects.

Although the marginal damage is internalized and speed increases, the average commuting

time to work increases. This is partially a result of the congestion toll increasing urban sprawl

because individuals further away have less viable options to substitute toward. Nonetheless,

the large lump sum return from the congestion toll combined with the increases in speed,

raises welfare. This is not the case when the toll is externally rebated or when revenue is

then used to improve transit or reduce fares. With respect to the latter two, this suggests

that these policies are excessive relative to the already levied optimal toll, which internalizes

the marginal damage of congestion. This result might no longer hold if we accounted for

additional environmental externalities, which could be added, in the welfare calculation.
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7 Conclusion

Technological changes create important new challenges and opportunities for cities and their

public finances. Ride-hailing apps represent one of the most important technological changes

of the last decade, but the effect of government policies on these companies remains uncer-

tain. We provide evidence that some of the existing policies targeting ride-hailing apps are

ineffective at meeting their stated goals of reducing congestion externalities and increasing

public transit usage. Instead, subsidies for ride-hailing apps or congestion tolls are more

effective of meeting these two goals. Our results suggest that taking Uber directly to the

final destination is a substitute for rapid transit. At the same time, Uber being a substitute

to rapid transit does not mean it is also a substitute for buses, as lower Uber prices can en-

dogenously lower car ownership decisions, possibly raising bus transportation for trips where

rapid transit does not go. But, Uber and rapid transit can be complements if cities adopt

appropriate policies to encourage Uber to be a “last-mile” service provider. In other words,

the cross-price elasticities are not immutable, and can be chosen by the policies set by cities.

While we have made much progress on study the taxation of ride-hailing apps, much more

research is needed. While our robustness exercises provide some evidence, future research

might consider how results differ depending on the size of the city. Given sufficient density is

critical for public transit system, the mechanisms we identify are may be even more applicable

in smaller cities where buses or other modes of transit do not readily cover suburban parts

of the urban area. Finally, our model does not feature any regulatory policies (Mangrum

and Molnar, 2020) on taxis or ridehail applications, but such policies could have their own

effects on the cross-price elasticities of demand, and thus merit further study.

Our model represents a comprehensive model of transit choice in urban areas. As evi-

denced by the wide arrange of policies we can consider, the model is flexible enough to study

other policy interventions on completely unrelated topics, making the modeling contributions

in our paper important—in their own right—for the study of mode choice in our cities.
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Figure 1: Transportation Cost Curves (By Distance to Transit Stations)

(a) 0.1 Miles from Transit
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(b) 0.4 Miles from Transit
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(c) 0.8 Miles from Transit
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(d) 1.3 Miles from Transit
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This figure shows the transportation cost curves for commuting purposes. Similar figures could
also be drawn for leisure trips. Recall that transportation cost curves vary by distance to the CBD
(horizontal axis) and distance to the nearest transit line (each panel). Rather than present a 3D
surface, we show the transport cost curves in a series of panels. The horizontal axis of each figure
corresponds to the distance to the CBD, while each panel corresponds to a given distance from the
transit line. We truncate transit lines at 15 miles from the CBD, as is the case in Chicago, and
as a result the labels on the figures are the distance to transit lines for individuals no further than
15 miles from transit. Those individuals further than 15 miles from the CBD will have different
distance to transit, which explains the kinks in those cost curves. The intercepts represent fixed
costs, while the slopes represent marginal costs. The numerical values of the costs are based on our
calibration to the city of Chicago.
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Figure 2: Chicago Public Transit System, Actual and Simulated

(a) Public Transit Map

(b) Simulated
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This figure shows the layout of Chicago’s “L” System. While there are many transit lines, the left
figure shows that the lines move in approximately seven different distinct directions. The right
figure shows the equal spacing of these lines for our simulated model.
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Figure 3: How a Fixed Uber Tax and a Sales Tax Change Transport Curves (Post-reform:
Dashed Lines)

(a) Fixed Tax, Lump Sum Rebate
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(b) Fixed Tax, Reduce Fare
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(c) Sales Tax, Lump Sum Rebate
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(d) Sales Tax, Reduce Fare
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This figure shows how the commuting transportation cost curves shift in response to various tax
polices. Panel (a) focuses on the fixed tax with a lump sum rebate, panel (b) focuses on the fixed
cost with a fare reduction, panel (c) focuses on the sales tax with a lump sum rebate, and panel
(d) focuses on the sales tax with a fare reduction. Recall that transportation cost curves vary by
distance to the CBD and distance to the nearest transit line. The horizontal axis of each figure
corresponds to the distance to the CBD, while each panel corresponds to a given distance from the
transit line. We truncate transit lines at 15 miles from the CBD, as is the case in Chicago, and
as a result the labels on the figures are the distance to transit lines for individuals no further than
15 miles from transit. Those individuals further than 15 miles from the CBD will have different
distance to transit, which explains the kinks in those cost curves. For purposes of this policy
counterfactual, we only show graphs for individuals near transit lines; the shifts are qualitatively
similar at other distances, although which curves are the lower envelope are different. Pre-policy
lines are solid and post-reform policy lines are dashed. Different colors denote different transit
modes.
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Figure 4: Subsidy Policies (Post-reform: Dashed Lines)

(a) Fixed Subsidy, 0.1 Miles
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(b) Fixed Subsidy, 1.3 miles
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(c) Free Transit, 0.1 Miles
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(d) Free Transit, 1.3 Miles
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This figure shows how the commuting transportation cost curves shift in response to various subsidy
policies—the fixed subsidy in panel (a) and (b) and free public transit in panel (c) and (d). Recall
that transportation cost curves vary by distance to the CBD and distance to the nearest transit
line. The horizontal axis of each figure corresponds to the distance to the CBD, while each panel
corresponds to a given distance from the transit line. We truncate transit lines at 15 miles from
the CBD, as is the case in Chicago, and as a result the labels on the figures are the distance to
transit lines for individuals no further than 15 miles from transit. Those individuals further than
15 miles from the CBD will have different distance to transit, which explains the kinks in those
cost curves. For purposes of these figures, panels (a) and (c) show the transport cost curves for
individuals near transit lines, while panels (b) and (d) show the transport cost curves conditional
on being 1.3 miles from transit lines. Pre-policy lines are solid and post-reform policy lines are
dashed. Different colors denote different transit modes.
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Figure 5: Optimal Toll (Post-reform: Dashed Lines)

(a) Optimal Toll, Lump Sum Rebate, 0.1 Miles
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(b) Optimal Toll, Lump Sum Rebate, 1.3 miles
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(c) Optimal Toll, Reduce Transit Fare, 0.1 Miles
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(d) Optimal Toll, Reduce Transit Fare, 1.3 Miles
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This figure shows how the commuting transportation cost curves shift in response to various optimal
toll policies—with lump sum rebates in panel (a) and (b) and with fare reductions in panel (c) and
(d). Recall that transportation cost curves vary by distance to the CBD and distance to the nearest
transit line. The horizontal axis of each figure corresponds to the distance to the CBD, while each
panel corresponds to a given distance from the transit line. We truncate transit lines at 15 miles
from the CBD, as is the case in Chicago, and as a result the labels on the figures are the distance to
transit lines for individuals no further than 15 miles from transit. Those individuals further than
15 miles from the CBD will have different distance to transit, which explains the kinks in those
cost curves. For purposes of these figures, panels (a) and (c) show the transport cost curves for
individuals near transit lines, while panels (b) and (d) show the transport cost curves conditional
on being 1.3 miles from transit lines. Pre-policy lines are solid and post-reform policy lines are
dashed. Different colors denote different transit modes.
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Table 1: Calibration of the Simulation

City Characteristics Chicago Simulated
Urbanized Area Characteristics

Total Occupied Units 3,012,005 3,01,0616
Median Income 56,069 56,069
Median Lot Size (Acres, 1 unit structure) 0.17 0.23
Median Unit Size 2000.00 2016.62
City Radius (miles) 33.56 34.10
Land area (square miles) 2122.81 2179.01
Time to work (Residential Average) 30.70 29.41
Percent housed in 1 unit structures 58.80% 59.38%
Percent housed in 2-4 unit structures 14.60% 14.71%
Percent housed in 5+ unit structures 26.60% 25.91%

Means of Transportation to Work

Walked 3.30% 3.37%
Public transportation 12.40% 12.94%
Drove alone 69.40% 71.60%
Carpooled 8.70% 9.14%
Other/WFH 4.50% 0.00%
Uber − 2.95%

Types of Trips

Uber share for CBD leisure trips 9.60% 10.17%
Uber share for local trips 2.30% 3.00%

Car Ownership

Total ownership rate 87.10% 89.85%
Car ownership for commuting 78.10% 80.74%
Car ownership for leisure 9.00% 9.11%
The table shows the results of our calibration. The first numerical column shows
actual data for the Chicago urbanized area. The second numerical column shows
the simulated characteristics from our model. Sources for city data in the first
column: American Community Survey 1 year estimates (2010); American Housing
Survey (2009). Sources for car ownership: American Community Survey. Sources
for Uber Trips: Author calculation from Figure A2 according to procedure in text.
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Table 2: Fixed Tax Rates

Scenario Laissez Faire Tax ($0.67 per trip)

Spending No lump sum rebate Lump sum to HH Improve transit Reduce transit fare

Mode Shares: All Trips

Walking 1.18% 1.24% 1.24% 1.24% 1.20%
Total public transit (L train) 5.87% 5.97% 5.97% 6.02% 6.49%
Walking to public transit 4.82% 4.76% 4.76% 4.77% 4.88%
Taking bus to public transit 1.04% 1.22% 1.21% 1.26% 1.61%
Taking Uber to public transit 0.00% 0.00% 0.00% 0.00% 0.00%

Bus to local destinations 4.66% 4.51% 4.51% 4.58% 5.05%
Taking Uber Direct 4.17% 3.22% 3.22% 3.20% 3.02%
Solo driving 80.90% 81.80% 81.80% 81.74% 80.88%
Carpooling 3.21% 3.26% 3.27% 3.22% 3.36%

Uber Outcomes: All Trips

Driving time per trip (minutes) 23.48 24.42 24.42 24.48 24.91
Driving distance per trip (miles) 7.91 8.67 8.68 8.71 9.07
Average Uber price per trip (pre-tax) 16.04 17.09 17.10 17.14 17.60

Car Ownership

Total car ownership rate 89.85% 90.29% 90.29% 90.16% 89.14%
Car ownership rate for commuting 80.74% 81.87% 81.89% 81.84% 81.50%
Car ownership rate for noncommuting trips 9.11% 8.42% 8.41% 8.31% 7.65%

Driving Characteristics

Average speed on highways 45.05 45.45 45.45 45.42 45.46
Average commuting time to work 29.41 29.25 29.26 29.22 29.67
Maximum commuting distance 31.60 31.70 31.70 31.60 31.80
Public transit average waiting time (minutes) 5.00 5.24 5.24 5.18 5.92
Public transit headway (minutes) 10.00 10.00 10.00 9.76 10.00
Downtown driving speed 12.50 13.19 13.19 13.22 13.37
Uber speed near transit 25.00 25.00 25.00 25.00 25.00

Equilibrium in Ride Hail Market

Percent of profit that Uber takes 30.00% 25.11% 25.11% 24.98% 24.44%

Tax Revenue

Aggregate tax revenue (millions) 0.00 115.61 115.58 114.71 108.56

Welfare

Utility per household 1274.93 1276.41 1277.63 1276.13 1275.19
The table shows the model solution for the fixed tax on Uber. The columns correspond sequentially to the no tax case, fixed tax with external spending,
fixed tax with a lump sum return, fixed tax with transit improvements, and fixed tax with reduced public transit fare. The rows represent select
endogenous variables. Other endogenous variables are omitted from the table.
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Table 3: Sales Tax

Scenario Laissez Faire Salestax (9.25%)

Spending No lump sum rebate Lump sum to HH Improve transit Reduce transit fare

Mode Shares: All Trips

Walking 1.18% 1.29% 1.29% 1.27% 1.17%
Total public transit (L train) 5.87% 6.03% 6.02% 6.13% 7.03%

Walking to public transit 4.82% 4.77% 4.76% 4.79% 5.03%
Taking bus to public transit 1.04% 1.26% 1.26% 1.34% 2.00%
Taking Uber to public transit 0.00% 0.00% 0.00% 0.00% 0.00%

Bus to local destinations 4.66% 4.41% 4.39% 4.53% 5.50%
Taking Uber Direct 4.17% 2.90% 2.89% 2.86% 2.63%
Solo driving 80.90% 82.18% 82.16% 82.01% 80.27%
Carpooling 3.21% 3.19% 3.25% 3.20% 3.40%

Uber Outcomes: All Trips

Driving time per trip (minutes) 23.48 24.29 24.31 24.41 25.09
Driving distance per trip (miles) 7.91 8.76 8.77 8.84 9.42
Average Uber price per trip (pre-tax) 16.04 17.16 17.17 17.26 17.98

Car Ownership

Total car ownership rate 89.85% 90.59% 90.62% 90.33% 88.25%
Car ownership rate for commuting 80.74% 81.95% 82.00% 81.93% 81.07%
Car ownership rate for noncommuting trips 9.11% 8.64% 8.62% 8.40% 7.18%

Driving Characteristics

Average speed on highways 45.05 45.42 45.44 45.41 45.83
Average commuting time to work 29.41 29.26 29.32 29.28 29.76
Maximum commuting distance 31.60 31.60 31.70 31.60 31.80
Public transit average waiting time (minutes) 5.00 5.43 5.41 5.28 6.58
Public transit headway (minutes) 10.00 10.00 10.00 9.52 10.00
Downtown driving speed 12.50 14.04 14.04 14.10 14.43
Uber speed near transit 25.00 25.00 25.00 25.00 25.00

Equilibrium in Ride Hail Market

Percent of profit that Uber takes 30.00% 22.23% 22.26% 22.07% 21.21%

Tax Revenue

Aggregate tax revenue (millions) 0.00 246.28 246.46 244.63 233.94

Welfare

Utility per household 1274.93 1276.56 1279.22 1276.10 1274.81
The table shows the model solution for the sales tax on Uber. The columns correspond sequentially to the no tax case, sales tax with external spending, sales tax
with a lump sum return, sales tax with transit improvements, and sales tax with reduced public transit fare. The rows represent select endogenous variables.
Other endogenous variables are omitted from the table.
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Table 4: Subsidy Policies

Scenario Laissez Faire $3 off Uber to transit $3 off Uber to transit 50% Uber to transit Free public transit

Financing No lump sum Lump sum Lump sum Lump sum

Mode Shares: All Trips

Walking 1.18% 1.22% 1.24% 1.23% 1.00%
Total public transit (L train) 5.87% 6.70% 6.76% 6.80% 9.56%
Walking to public transit 4.82% 2.73% 2.74% 3.56% 6.26%
Taking bus to public transit 1.04% 0.00% 0.00% 0.00% 3.30%
Taking Uber to public transit 0.00% 3.97% 4.02% 3.23% 0.00%

Bus to local destinations 4.66% 5.55% 5.61% 5.33% 8.71%
Taking Uber Direct 4.17% 3.59% 3.55% 3.47% 3.03%
Solo driving 80.90% 79.43% 79.41% 79.71% 73.97%
Carpooling 3.21% 3.51% 3.42% 3.46% 3.73%

Uber Outcomes: All Trips

Driving time per trip (minutes) 23.48 15.74 15.73 16.91 25.73
Driving distance per trip (miles) 7.91 4.78 4.76 5.28 9.74
Average Uber price per trip (pre-tax) 16.04 10.98 10.96 11.77 18.33

Car Ownership

Total car ownership rate 89.85% 87.91% 87.77% 88.39% 81.04%
Car ownership rate for commuting 80.74% 80.54% 80.48% 80.39% 77.47%
Car ownership rate for noncommuting trips 9.11% 7.37% 7.30% 8.00% 3.57%

Driving Characteristics

Average speed on highways 45.05 45.67 45.45 45.67 46.47
Average commuting time to work 29.41 29.51 29.60 29.67 31.21
Maximum commuting distance 31.60 31.90 31.80 31.90 32.20
Public transit average waiting time (minutes) 5.00 6.07 6.14 6.36 8.39
Public transit headway (minutes) 10.00 10.00 10.00 10.00 10.00
Downtown driving speed 12.50 12.96 12.97 12.84 13.84
Uber speed near transit 25.00 20.19 20.11 20.95 25.00

Equilibrium in Ride Hail Market

Percent of profit that Uber takes 30.00% 36.84% 36.78% 35.39% 26.14%

Tax Revenue

Aggregate subsidy (millions) 0.00 638.08 646.26 507.70 1008.42

Welfare

Utility per household 1274.93 1272.99 1264.99 1267.63 1259.04
The table shows the model solution for various Uber subsidy policies. The columns correspond sequentially to the no tax/subsidy case, a flat rate subsidy to
transit that is externally financed, a flat rate subsidy on Uber rides to transit, an ad valorem subsidy on Uber rides to transit, and free public transit. The latter
three are financed via lump sum income deductions. The rows represent select endogenous variables. Other endogenous variables are omitted from the table.
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Table 5: Optimal Toll

Scenario Laissez Faire Optimal congestion tolls

Spending No lump sum rebate Lump sum to HH Improve transit Reduce transit fare

Mode Shares: All Trips

Walking 1.18% 1.44% 1.38% 1.37% 1.13%
Total public transit (L train) 5.87% 7.18% 7.11% 8.15% 11.32%
Walking to public transit 4.82% 5.24% 5.16% 5.41% 6.51%
Taking bus to public transit 1.04% 1.94% 1.95% 2.74% 4.80%
Taking Uber to public transit 0.00% 0.00% 0.00% 0.00% 0.00%

Bus to local destinations 4.66% 4.95% 4.80% 5.79% 9.10%
Taking Uber Direct 4.17% 4.17% 4.08% 3.73% 3.06%
Solo driving 80.90% 74.42% 74.19% 72.98% 67.36%
Carpooling 3.21% 7.84% 8.44% 7.98% 8.03%

Uber Outcomes: All Trips

Driving time per trip (minutes) 23.48 23.24 23.38 24.11 25.76
Driving distance per trip (miles) 7.91 7.98 8.11 8.52 9.71
Average Uber price per trip (pre-tax) 16.04 16.04 16.19 16.79 18.31

Car Ownership

Total car ownership rate 89.85% 89.23% 89.56% 87.39% 80.19%
Car ownership rate for commuting 80.74% 76.63% 77.04% 75.97% 72.44%
Car ownership rate for noncommuting trips 9.11% 12.60% 12.51% 11.42% 7.75%

Driving Characteristics

Average speed on highways 45.05 47.28 47.42 47.51 48.40
Average commuting time to work 29.41 31.65 32.28 32.04 34.15
Maximum commuting distance 31.60 31.90 32.60 32.10 32.60
Public transit average waiting time (minutes) 5.00 7.08 7.05 5.52 9.66
Public transit headway (minutes) 10.00 10.00 10.00 6.95 10.00
Downtown driving speed 12.50 12.33 12.43 12.66 13.66
Uber speed near transit 25.00 25.00 25.00 25.00 25.00

Equilibrium in Ride Hail Market

Percent of profit that Uber takes 30.00% 30.42% 30.22% 28.88% 26.39%

Tax Revenue

Aggregate tax revenue (millions) 0.00 3335.84 3307.15 3141.32 2530.44

Welfare

Utility per household 1274.93 1257.71 1295.47 1257.16 1256.11
The table shows the model solution for the optimal congestion toll. The columns correspond sequentially to the no toll case, the optimal toll with external
funding, the optimal toll with a lump sum return, the optimal toll with transit improvements, and the optimal toll with reduced public transit fare. The rows
represent select endogenous variables. Other endogenous variables are omitted from the table.
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Table 6: Random Benefits of Taking Uber to Transit

Scenario Laissez Faire Fixed tax/rebate Fixed tax/reduce
transit fare

Fixed Subsidy

Mode Shares: All Trips

Walking 1.19% 1.31% 1.21% 1.28%
Total public transit (L train) 6.48% 6.40% 6.92% 8.51%
Walking to public transit 4.84% 4.77% 4.85% 1.82%
Taking bus to public transit 0.96% 1.16% 1.51% 0.00%
Taking Uber to public transit 0.68% 0.48% 0.56% 6.69%

Bus to local destinations 4.38% 4.30% 4.76% 6.19%
Taking Uber direct 4.05% 3.00% 2.85% 2.86%
Solo driving 80.72% 81.79% 80.99% 77.75%
Carpooling 3.17% 3.19% 3.28% 3.41%

Uber Outcomes: All Trips

Driving time per trip (minutes) 20.27 21.51 21.30 12.49
Driving distance per trip (miles) 6.75 7.59 7.64 3.57
Average Uber price per trip (pre-tax) 14.00 15.21 15.17 8.87

Car Ownership

Total car ownership rate 90.47% 90.74% 89.75% 86.52%
Car ownership rate for commuting 79.90% 81.41% 81.09% 80.40%
Car ownership rate for noncommuting trips 10.57% 9.33% 8.66% 6.11%

Driving Characteristics

Average speed on highways 45.25 45.36 45.54 45.50
Average commuting time to work 29.32 29.36 29.54 29.52
Maximum commuting distance 31.60 31.60 31.70 31.80
Public transit average waiting time (minutes) 5.27 5.45 6.03 6.17
Public transit headway (minutes) 10.00 10.00 10.00 10.00
Downtown driving speed 14.26 14.71 15.20 18.34
Uber speed near transit 25.00 25.00 25.00 19.70

Equilibrium in Ride Hail Market

Percent of profit that Uber takes 30.00% 24.27% 23.86% 37.98%

Tax Revenue

Aggregate tax revenue/cost (millions) 0.00 124.84 122.22 1074.49

Welfare

Utility per household 1279.79 1280.79 1279.05 1266.78

The table shows the model solution for a model when individuals receive random benefits, distributed according to a Pareto distribution,
from taking Uber to a rapid transit station. The columns correspond sequentially to the no tax/subsidy case, a fixed tax with a lump sump
rebate, a fixed tax with public transit fare reductions, and the fixed subsidy for Uber to transit financed by a lump sum deducation. The
rows represent select endogenous variables. Other endogenous variables are omitted from the table.
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Table 7: Aggregate Welfare Analysis (Percent of Income)

Panel A: Tax Policies

Policies no rebate lump sum rebate improve transit reduce transit fare

Trip tax (67 cents per trip) -0.09% -0.06% -0.05% -0.13%
Sales (9.75%) -0.08% 0.06% -0.12% -0.26%
Mile tax (20 cents per mile) -0.11% 0.03% -0.11% -0.27%

Pane B: Subsidy Policies

$3 off Uber to transit $3 off Uber to transit 50% Uber to transit Free public transit
externally financed lump sum deduction lump sum deduction lump sum deduction

Subsidy 0.01% -0.46% -0.36% -1.15%

Panel C: Congestion tolls

no rebate lump sum rebate improve transit reduce transit fare

Optimal toll -1.14% 1.06% -1.28% -1.49%
Fixed toll -0.01% 0.02% -0.06% -0.12%

This table shows the welfare effects of each policy. The welfare calculations account for aggregate (residential plus
agricultural) land rent, the welfare of households as measured based on compensating variation, Uber driver profits net of
Uber’s commission. Uber’s profits are not in the welfare calculation as we assume Uber’s profits accrue to shareholders/owners
primarily outside of the city of Chicago. We normalize the welfare numbers to be a percent of aggegate income in Chicago.
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A Online Appendix

A.1 Commuting Mode Choice

Given many of the results hinge on how the transportation cost curves shift or pivot, in this

section we characterize some of the properties of each of these curves. We emphasize the

fixed costs and marginal costs of each mode, which lead to explicit two-dimensional cutoff

rules for mode choice. Here we focus on commuting trips, but similar expressions can easily

be derived for the other two types of trips in the model.

A.1.1 Comparison of the Fixed Costs for Different Commuting Modes

Recall that k represents the distance from the CBD and j represents the distance from the

nearest transit station. We again present the fixed cost portions of total costs to gain some

additional intuition.

The fixed cost for walking is zero,

fcwalk(k, j) = 0. (A1)

The fixed cost for walking to take public transit holding location j constant is

fcwalkpub(k, j) = (τw ·W · (j/Vwalk) + awt · τpub ·W + publicfare) · ncommute. (A2)

The fixed cost for taking bus to public transit holding location j constant is

fcbuspub(k, j) = (τbus · w · (j/Vbus) + tbuswait · τbus · w + busfare) · ncommute. (A3)

The fixed cost for using Uber to public transit holding location j constant is

Tuberpub(k, j) = (f0 + f1j + (f2 + τuberw) · [(j − j̄)/Vres + j̄/V̄res] + awtuber · τuberwait · w

+ awt · τpub · w + publicfare) · ncommute, (A4)

It includes the fixed cost of taking Uber as well as the fixed cost of waiting for the train

and transit fare tickets.

The fixed cost for driving is

fcdrive(k, j) = m0 + parkingCBD · ncommute. (A5)
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The fixed cost for taking Uber directly to work is

fcuber(k, j) = (f0 + awtuber · τuberwait · w) · ncommute. (A6)

The fixed cost for carpooling is

fccarpool(k, j) = m0 + (τcarpool · w · zcarpool + parkingCBD/n) · ncommute. (A7)

Comparing across commuting modes, the fixed cost for walking is the lowest. If j is small,

which means the individual is living close to the public transit station, then the fixed cost of

walking to public transit is lower than taking bus or Uber to the transit station. However,

as j increases, the cost of walking to transit stations increases sharply due to the high time

cost and slow speed of walking. The fixed cost of taking Uber is much lower than the fixed

cost of driving or carpooling. Also, the fixed cost of taking Uber directly to work is lower

than taking Uber to the public transit.

Whether the fixed cost of taking Uber is higher or lower than taking bus or walking to

public transit depends on where location j is. If j is small, because the base fare is higher

than the public transit ticket fare, the fixed cost of taking Uber is higher than walking or

taking bus to public transit. However, as j increases, the time cost of walking increases; thus

the fixed cost of taking bus or Uber becomes lower than walking to take public transit. In

addition, the fixed cost of walking to take transit is lower than driving if living closer to the

transit station, and becomes higher than driving as j increases.

The fixed cost of carpooling is higher than the fixed cost of driving because the additional

carpooling cost is higher than shared parking cost.

A.1.2 Comparison of the Marginal Costs for Different Commuting Modes

The marginal cost per mile for walking is

mcwalk(k, j) = (τw · w · (1/Vwalk)) · ncommute. (A8)

The marginal cost for walking to public transit holding location j constant is

mcwalkpub(k, j) = (τpub · w · (1/Vmetro)) · ncommute. (A9)

The marginal cost for taking the bus to public transit holding location j constant is

mcbuspub(k, j) = (τpub · w · (1/Vmetro)) · ncommute, (A10)
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The marginal cost for using Uber to public transit holding location j constant is

mcuberpub(k, j) = (τpub · w ·
1

Vmetro
) · ncommute. (A11)

The marginal cost for driving is

mcdrive(k, j) = (m1 + pg
1

G(V (k))
· −1

G2
·G′(V (k)) ·V ′(k) + τ ·w · 1

V (k)
· −1

V 2
·V ′(k)) ·ncommute.

(A12)

The marginal cost for taking Uber is

mcuber(k, j) = (f1 + f2
1

V (k)
· −1

V 2
· V ′(k) + τuber · w ·

1

V (k)
· −1

V 2
· V ′(k)) · ncommute. (A13)

The marginal cost for carpooling is

mccarpool(k, j) = (m1/n+(pg/n)
1

G(V (κ))
·−1

G2
·G′(V (k))·V ′(k)+τcarpool·w

1

V (κ)
·−1

V 2
·V ′(k))·ncommute.

(A14)

In contrast to the fixed costs, the marginal cost for walking is the highest because the

time cost of walking is highest and the speed of walking is lowest. Given zero fixed cost,

if workers live closer to the CBD, the optimal commuting mode is walking. However, as

workers live further away from the CBD, the cost of walking increases rapidly due to steep

marginal cost curve. Therefore, there exists a boundary, kwalk, such that a fraction of people

choose walking within kwalk and no one chooses to walk beyond kwalk. The boundary kwalk

could be solved using

Twalk(k) = Tuber(k). (A15)

Uber has the second highest marginal cost because Uber charges a higher fare per mile,

f1, and fare per minute, f2, compared to the variable maintenance cost and gasoline cost

of owning a car. Because Uber has a lower fixed cost compared to owning a car, even if

the marginal cost is higher, for workers living beyond kwalk but still relatively closer to the

CBD, the total commuting cost of taking Uber could be lower than other commuting modes.

However, if workers live further away from the CBD, it is not cost effective to take Uber

because the total cost increases rapidly due to a high marginal cost. Therefore, there exists

a boundary kuber such that beyond this boundary, there are not any workers choosing to take

Uber. kuber, for individuallys sufficiently far from transit stations, could be solved using

Tdrive(k) = Tuber(k). (A16)
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The marginal cost of carpooling is smaller than the marginal cost of driving because

riders share the maintenance cost and gasoline cost. Because carpooling has a higher fixed

cost and a lower marginal cost compared to driving, there exists a carpooling boundary kpool

such that beyond the boundary, workers will choose carpooling over solo driving. kpool could

be solved using

Tdrive(k) = Tpool(k) (A17)

For households living between kuber and kpool, a fraction of population choose to drive

solo.

The marginal costs of walking to public transit, taking bus to public transit, and taking

Uber to public transit are the same. They are higher than driving because of the slower

speed of trains and buses and the higher time cost. The boundary for public transit will

depend not only on distance from the CBD, but also distance from the transit station.

The prior analysis defines upper bounds such that no one beyond that point will take

the given mode of transit. In the next section, we refine this to capture both distance to the

CBD and distance to transit, in order to define the precise mode choice boundaries.

A.1.3 Optimal Commuting Mode Choice

There exists a boundary j1 such that a fraction of the population living within the boundary

choose to walk to public transit. We can solve for j1 using

Twalkpub(k, j) = Tbuspub(k, j) (A18)

j1 is solved, where

j1 =
tbuswait · τbus · w

τw · w/Vwalk − τbus · w/Vbus
(A19)

At j = 0, right next to the transit station, Uber is not a viable option. As j increases, the

public transit curve starts to shift up as the commuting cost of walking to transit station

increases. For households living beyond j1, taking bus to public transit is more cost effective.

There exists a boundary j2 such that some people living between j1 and j2 choose to take

bus to transit station. j2 could be solved using

Tbuspub(k, j) = Tuber(k, j) = Tdrive(k, j), (A20)

where three expressions are necessary because we need to jointly solve for both k and j in

equilibrium. As soon as j > j2, transit stations become inaccessible and no one takes public

transit to work.
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When the cost curve for walking to public transit passes the point j0 where Twalkpub(k, j) =

Tuber(k, j) = Twalk(k, j), some workers who live closer to the CBD start to take Uber to work.

For workers living within the boundary j0, the dominant public transit commuting mode

is walking to public transit. The walking boundary for each distance j, kwalk(j), is determined

where the cost of walking is equal to the cost of walking to take public transit. Holding j

constant, kwalk(j) is solved as

kwalk(j) =
τw ·W · (j/Vwalk) + awt · τpub ·W + publicfare

τw ·W/Vwalk − τpub ·W/Vmetro
. (A21)

Because the public transit lines end after 15 miles from the CBD, the marginal cost of

taking public transit increases sharply: workers have to walk a longer distance to get to the

transit line if they live more than 15 miles away from the CBD. For any j < j0, the public

transit boundary kwalkpub(j) is determined by the following:

Twalkpub(k, j) = Tdrive(k, j), (A22)

As workers live further away from the public transit beyond j0 but within j1, Uber be-

comes an appealing option. Walking to public transit and taking Uber coexisit. People

choose to take Uber if they live beyond kwalk(j) but within kuber(j) where kuber(j) is deter-

mined by

Twalkpub(k, j) = Tuber(k, j), (A23)

If workers live beyond j̄1, public transit becomes inaccessible by foot. Households start

to choose take a bus to transit. Uber and taking bus to public transit coexist between j1

and j2. For households living between j̄1 and j̄2, The uber boundary kuber(j) is determined

by

Tbuspub(k, j) = Tuber(k, j), (A24)

The boundary for taking the bus to public transit kbuspub(j) is determined by

Tbuspub(k, j) = Tdrive(k, j), (A25)

As j increases, the public transit curve starts to shift up. As soon as the cost curve for

taking bus to public transit pass the point where Tuber(k, j) = Tdrive(k, j), public transit is

no longer an optimal option. Thus for j > j2, taking Uber or driving becomes more cost

effective for workers.

Between 0 mile and j0 away from transit line, households choose to walk if they live

between 0 and kwalk(j) from the CBD, choose to walk to public transit if they live between
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kwalk(j) and kwalkpub(j), choose to drive solo if they live between kwalkpub(j) and kpool, choose

to carpool if they live beyond kpool.

Between j0 and j1 away from transit line, households choose to walk if they live between

0 and kwalk(j) from the CBD, choose to take Uber if they live between kwalk(j) and kuber(j),

choose to walk to public transit if they live between kuber(j) and kwalkpub(j), choose to drive

solo if they live between kwalkpub(j) and kpool, choose to carpool if they live beyond kpool.

Between j1 and j2 away from transit line, households choose to walk if they live between

0 and kwalk(j) from the CBD, choose to take Uber if they live between kwalk(j) and kuber(j),

choose to take the bus to public transit if they live between kuber(j) and kubspub(j), choose

to drive solo if they live between kbuspub(j) and kpool, choose to carpool if they live beyond

kpool.

Beyond j2 away from transit line, households choose to walk if they live between 0 and

kwalk from the CBD, choose to take Uber if they live between kwalk and kuber, choose to drive

solo if they live between kuber and kpool, choose to carpool if they live beyond kpool.

Because taking Uber to public transit has a higher fixed cost as well as a higher marginal

cost compared to other commuting modes, at each distance, taking Uber to transit is domi-

nated by other commuting modes.

Taking Uber to public transit is not an optimal option in our baseline simulation. How-

ever, taking Uber to public transit could become a viable option if subsidy policies target

at taking Uber to public transit. From different subsidy policies, the cost curve for taking

Uber to take public transit shifts downward due to a lower fixed cost or rotates with a flatter

slope due to the reduction in marginal cost.

Different tax policies imposed on Uber change either the fixed cost or marginal cost of

taking Uber. The cost curves for taking Uber directly to work or to transit stations shifts

up due to increased fixed cost or rotates with steeper slope due to the increase in marginal

cost.

A.2 Calibration Details

In this section, we discuss additional parameters not detailed in the text.

Housing Production. For the housing production function, the elasticity of substitution

between structure and land inputs is 0.75, following Larson et al. (2012) and others. The

elasticity of substitution between housing and consumption goods is 0.75, which is commonly

used in the literature.

The distribution parameter for structure inputs is normalized to one. The technology

parameter and the distribution parameter for land input are calibrated to match the data
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on median unit size and median lot size. The median unit size, 2, 000 square feet, and the

median lot size for a 1 unit structure – 0.17 acre – are from the American housing survey in

year 2009 for Chicago metro area. The city radius is taken from the Chicago urbanized area

using the boundaries defined in year 2000 from the Census.

Utility Function. The share parameter for composite goods is normalized to one. From

the consumer expenditure survey conducted by the Bureau of Labor Statistics in 2018, the

income share of housing expenditure is 36.5% and transportation expenditure accounts for

14% of income. According to the ACS (2010), the median income in Chicago is $56, 069. Us-

ing these data, the share parameter for housing consumption is calculated using the following

equation derived from the consumer optimization problem.

β2 = r

[
h

1− T − rh

]1−η
(A26)

This approach is consistent with Muth (1975), Altmann and DeSalvo (1981), and Larson et

al. (2012).

Land Use. Given the lack of detailed data on land use for the Chicago urbanized area

in year 2010, various data sources are combined to approximate the land use allocation in

Chicago. According to Overman et al. (2008), there were 980 square miles of land area used

for residential purposes in 1992. This implies 46% of land is for residential use. Chicago

had 34, 800 miles of local streets and 19, 800 miles of highways in the 1990s according to the

documentation from the Encyclopedia of Chicago. Therefore, local streets account for 64%

and highways account for 36% of the land area used for roads. Based on the report from

the American Society of planning officials using the 1940 census, over 20% of land area is

allocated to roads. Thus, approximately, 15% of the land is used for residential streets and

10% is devoted to highways. These values for land share are close to those used in Muth

(1975) and Altmann and DeSalvo (1981).36

The reservation agriculture land rent per acre is $2,000 based on the data from Davis et

al. (2021). It implies that with a cap rate 4%, the land rent at the city edge is $50,000 per

acre.

Time Cost Parameters. The commonly used value for the time cost of driving is between

30% and 50% of the wage. We set the value of driving time to 30% of the wage rate. The

time cost of other commuting modes is calibrated to match the share of the population using

36For a description of some land use regulations in Chicago, see Jacob and McMillen (2015).
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each mode to commute. The time cost of riding in Uber is assumed to be lower than the cost

of solo driving, as riders may work in the vehicle. The time cost of driving while carpooling,

τcarpool, is assumed the same as time cost of driving solo, which is 30% of wage rate.

The time cost of taking public transit or buses, τpub, is 54% of the wage rate. For walking,

the time cost τw is 40.5% the wage rate. The time cost of coordinating carpool is 86.4% of

the wage rate. The time cost of taking Uber is 21% of the wage rate.

Commuting Cost Parameters. To simplify, traffic congestion on residential streets is

assumed to be constant at 25 mph, however, we allow for Uber to congest residential road

speed within only a few tenths of a mile from transit stations. Downtown congestion only

starts within the CBD boundaries.

The CBD parking fee for commuting purposes is set at 215 dollars per month based on

monthly parking rates on SpotHero.com and is set to 10 per trip for leisure purposes.

Parameters for the fuel economy of gasoline car as a function of velocity and the conges-

tion parameter c are borrowed from Larson et al. (2012). The fuel economy of gasoline cars is

a function of speed. The congestion parameters b and c are calculated based on equation (6).

The maximum speed on the highway, vhigh, is set at 45 mph when there is no traffic. Given

vhigh = 1/a, this implies that a = 1/vhigh. The minimum speed, assumed as 5 mph, occurs

at the CBD edge with the heaviest traffic when all workers drive to the CBD. Equation (6)

implies that vlow = 1
a+b(N/R(CBD))c

, which allows us to back out b given population N and

road capacity at the CBD, R(CBD). The time cost of waiting for Uber τuberwait is assumed

to be the same as the time cost of taking Uber.

For buses, the waiting time for bus is set at 10 minutes based on the data on the bus

scheduling from Chicago Transit Authority. The time cost of waiting for a bus is calibrated

to be the same as taking the metro, which is 54% of the wage rate. Wait times are set to

10 minutes, which is longer than the L-train wait times for commuting purposes. The speed

for bus is set at 10 miles per hour, which is a higher speed than walking. Based on the data

from Chicago Transit Authority, the bus fare is $2.25 per trip and passengers only need to

pay an additional $0.25 dollar if they choose to transfer to the metro.

Congestion Parameters for Residential/CBD Roads. We assume the maximum

speed on residential road is 25 mph when there is no traffic and that the minimum speed is 1

mph when all workers use the residential road to get to transit. We set cres = c. Therefore,

ares = 1/V max
res = 1/25, and V min

res = 1
ares+bres(N/Rres)c

, which allows us to back out bres.

The calibration for congestion parameters for CBD roads follows a similar process. Again,

we assume the maximum speed in CBD is 25 mph when there is no traffic and the minimum
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speed is 1 mph when half of the workers are driving in the CBD. We set cres = c to simplify.

Therefore, ales = 1/V max
CBD = 1/25, and V min

CBD = 1
ales+bles(0.5·N/RCBD)c

, which allows us to back

out bles.

Elasticity of Transit Improvements. For public transit improvement, we calculate the

elasticity of waiting times (transit improvements) with respect to the transit budget using the

“National Transit Database 2019 Operating Expenses”. We calculate the average operating

cost per vehicle revenue hour (VRM). Assuming the routes stay the same, VRM scales

proportionally to the frequency (inverse of the headway). We then assume that any increase

in operating expenses implies that transit operators will use it to increase service. We repeat

this procedure for an earlier year of data (2016). We then use changes in spending and

changes in VRM to then back out how much investment is necessary to change headway.

Obviously, the estimate depends on the time, horizon of changes and whether or not we

include infrastructure investments as transit improvements, but we check the robustness to

using elasticities calculated over a one-year horizon. This yields an elasticity of −0.3092.

The average waiting time is 5 minutes.

Floor-Area Ratio. Define the floor-area ratio as q(k, j). Then, the critical value of q

for each structure type is calibrated to match the average fraction of housing units for each

structure type in Chicago. The structure type is single-family detached if q ∈ [0, 0.23],

single-family attached if q ∈ [0.23, 0.345], 2-4 unit multifamily if q ∈ [0.345, 0.42], and 5+

unit multifamily when q is above 0.42.

A.3 Additional Tables and Figures

In this section of the appendix, we present additional tables and figures, each of which is

discussed in the text of the paper.
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Figure A1: Population by Distance to CBD

This figure shows population as a function of the distance to the Chicago city center, which is given
by the location of City Hall. Source: U.S. Census Bureau, Census 2010 and Census 2000.
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Figure A2: Share of Ride-hail Trips by Origin or Destination

This figure shows the number of trips that either originate from or go to the downtown zone in
Chicago. Additionally, the figure shows the number of trips within the downtown zone or entirely
outside of the downtown zone. These data come from the Chicago Data Portal: Transportation
Network Providers - Trips. The data were processed by and the figure made by Alex Mucci.
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Figure A3: Different Policies and Commuting Mode
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This figure shows the equilibrium share of individuals using each transportation mode. We pool all
commuting, CBD leisure, and other leisure trips. Each panel shows a different tax scheme, with a
row denoting various modifications. To see the effects of the policies, one can compare the shares
to the “no tax” line in each figure.
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Figure A4: Labor Market
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This figure shows the labor market effects following an increase in the flat rate Uber tax. The effects
in red indicate the effect of the tax, holding constant the Uber commission. The green effects show
re-equilibration of the market via adjustment in the Uber commission. In the flat tax scenario
with a lump sum rebate, the increase in the Uber tax shifts downward demand for Uber (A to C).
This lowers revenue that drivers can earn, causing a downward movement along the labor supply
curve (A to B). Given our calibration, this movement is larger than the demand shift and there
is a shortage (holding constant the Uber commission). The market re-equilibrates by lowering the
commission rate (B to C). But it is clear that at point C, the net revenue for the drivers is still
below that of point A, so that drivers are worse off.
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Table A1: Simulation Parameters

Parameter Baseline Description Source
Value

City Income and Size
W 56,069 Annual earnings American Community Survey(2010)
N 3,012,005 Households American Community Survey(2010)
Housing Production
1/(1 − ρ) 0.75 Elasticity of substitution Altmann and DeSalvo (1981)
α1 1 Structure share Muth (1975); Altmann and DeSalvo (1981)
α2 0.167 Land share Calibrated
A 0.225 Technology parameter Calibrated
Household Utility
1/(1 − η) 0.75 Elasticity of substitution Larson et al. (2012)
β1 1 Numéraire share Numéraire
β2 0.659 Housing share Bureau of Labor Statistics (2018)
Land Use
θ 0.46 Fraction of land used for housing Overman et al. (2008)
θR 0.1 Fraction of land used for highways Encyclopedia of Chicago
θs 0.10 Fraction of land used for local streets Encyclopedia of Chicago
k 2.5 Radius of the CBD Boundaries for the CBD from the City of Chicago Dataset
pal 2000 Reservation agricultural land rent per acre Davis (2021)
Driving
vlow 5 Minimum commuting speed Larson et al. (2012)
vhigh 45 Maximum commuting speed Larson et al. (2012)
a 0.018 congestion parameter for highway Calibrated
b 7.53e-13 congestion parameter for highway Calibrated
c 1.75 Parameter in speed function Larson et al. (2012)
parkingCBD 215 Monthly parking fee in dollar Web search
τ 0.3 Commuting time cost of driving Muth (1975)
pg 2.5 Gasoline price (USD) per gallon Energy Information Administration
m1 0.222 USD per mile of depreciation American Automobile Association
Vres 25 Driving speed limit on residential streets Statutory speed limit in Chicago
Carpooling
τcarpool 0.3 Time cost of driving during carpool Calibrated
τschedule 0.864 Time cost of coordinating carpool Calibrated
zcarpool 17 Time for coordinating carpool in minutes Calibrated
Walking
Vwalk 3 Average walking speed Assumed
τw 0.405 Time cost of walking Calibrated
Public Transit
Γ 15 Public transit headway (minutes) Chicago Transit Authority
publicfare 2.5 Metro ticket per trip Chicago Transit Authority
Vmetro 20 Average metro speed(miles per hour) Chicago Transit Authority
τpub 0.54 Time cost of taking public transit Calibrated
tbuswait 10 Bus waiting time(minutes) Chicago Transit Authority
Vbus 10 Average bus speed (miles per hour) Chicago Transit Authority
τbus 0.54 Time cost of taking bus Calibrated
busfare 2.25 One way bus fare Chicago Transit Authority
transferfare 0.25 Transfer fare from bus to metro Chicago Transit Authority
εmetro -0.3092 Elasticity of transit improvement Calculated
Uber
f0 3.64 Uber basefare per trip Uber
f1 0.81 Uber cost per mile Uber
f2 0.28 Uber cost per minute Uber
τuber 0.21 Time cost of commuting using Uber Calibrated
Uber Labor Market
εlabor 1.72 Uber supply elasticity Chen et al. (2019)
πuber 30% Fraction of Uber takes from drivers’ revenue Angrist et al. (2017)
Transportation
ncommute 625 Number of commuting trips per household per year Calculated
nleisure 295 Number of leisure trips per household per year National Household Travel Survey data(2018)
nLocal 859 Number of local trips per household per year National Household Travel Survey data(2018)
Vnorush 55 Highway speed during non-rush hours
ares 0.04 congestion parameter for residential roads Calibrated
bres 2.1e-09 congestion parameter for residential roads Calibrated
ales 0.04 congestion parameter for CBD Calibrated
bles 1.34e-11 congestion parameter for CBD Calibrated
parkingpertrip 10 parking feel per trip in downtown (dollars) Web search
Pareto Parameters
α1 1.29 Parameter for pareto distribtuion of random parking cost Calibrated
α2 1.29 Parameter for pareto distribtuion of random bus waiting cost Calibrated
α3 0.92 Parameter for pareto distribtuion of random Uber benefit Calibrated

The table lists the model parameters, the values we use in our baseline simulations, and the source for these values.
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Table A2: Fixed Tax – All Trips

Scenario Laissez Faire Tax ($0.67 per trip)

Spending No lump sum rebate Lump sum to HH Improve transit Reduce transit fare

Mode Shares: Commuting Trips

Walking 3.37% 3.53% 3.53% 3.53% 3.42%
Public transit 12.94% 13.32% 13.32% 13.41% 14.32%

Walking to public transit 10.14% 10.01% 10.01% 10.00% 10.01%
Taking bus to public transit 2.80% 3.31% 3.31% 3.42% 4.31%
Taking Uber to public transit 0.00% 0.00% 0.00% 0.00% 0.00%

Taking Uber Direct 2.95% 1.27% 1.27% 1.22% 0.76%
Solo driving 71.60% 72.59% 72.59% 72.67% 71.93%
Carpooling 9.14% 9.28% 9.30% 9.17% 9.57%

Mode Shares: CBD Leisure Trips

Public transit 7.98% 7.79% 7.79% 7.91% 8.80%
Walking to public transit 7.62% 7.48% 7.48% 7.58% 8.21%
Taking bus to public transit 0.36% 0.31% 0.31% 0.34% 0.59%
Taking Uber to public transit 0.00% 0.00% 0.00% 0.00% 0.00%

Taking Uber Direct 10.17% 9.54% 9.53% 9.52% 9.38%
Solo driving 81.84% 82.67% 82.68% 82.57% 81.82%

Mode Shares: Local Trips

Public transit (bus) 9.65% 9.35% 9.34% 9.48% 10.45%
Taking Uber Direct 3.00% 2.46% 2.46% 2.46% 2.48%
Solo driving 87.34% 88.19% 88.19% 88.06% 87.07%

Share of Uber Trips

For commuting purposes 24.85% 13.90% 13.89% 13.37% 8.90%
For downtown leisure purposes 40.41% 49.16% 49.16% 49.41% 51.50%
For local leisure purposes 34.74% 36.94% 36.95% 37.22% 39.61%

Average Uber Trip Distance

For commuting purposes 3.87 3.54 3.54 3.53 3.53
For downtown leisure purposes 11.05 11.27 11.27 11.28 11.50
For local leisure purposes 7.15 7.15 7.15 7.15 7.15

The table shows the model solution’s for all types of trips. The columns correspond sequentially to the no tax case, fixed tax with external spending, fixed tax
with a lump sum return, fixed tax with transit improvements, and fixed tax with reduced public transit fare. The rows represent select endogenous variables for
various trip types.
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Table A3: Sales Tax – All Trips

Scenario Laissez Faire Salestax (9.25%)

Spending No lump sum rebate Lump sum to HH Improve transit Reduce transit
fare

Mode Shares: Commuting Trips

Walking 3.37% 3.68% 3.66% 3.62% 3.34%
Public transit 12.94% 13.59% 13.55% 13.75% 15.44%

Walking to public transit 10.14% 10.12% 10.09% 10.07% 10.14%
Taking bus to public transit 2.80% 3.47% 3.46% 3.68% 5.30%
Taking Uber to public transit 0.00% 0.00% 0.00% 0.00% 0.00%

Taking Uber Direct 2.95% 0.79% 0.79% 0.70% 0.15%
Solo driving 71.60% 72.87% 72.74% 72.81% 71.40%
Carpooling 9.14% 9.08% 9.26% 9.12% 9.67%

Mode Shares: CBD Leisure Trips

Public transit 7.98% 7.60% 7.58% 7.84% 9.70%
Walking to public transit 7.62% 7.35% 7.33% 7.53% 8.84%
Taking bus to public transit 0.36% 0.25% 0.25% 0.30% 0.87%
Taking Uber to public transit 0.00% 0.00% 0.00% 0.00% 0.00%

Taking Uber Direct 10.17% 8.83% 8.82% 8.78% 8.51%
Solo driving 81.84% 83.57% 83.60% 83.38% 81.78%

Mode Shares: Local Trips

Public transit (bus) 9.65% 9.12% 9.10% 9.38% 11.39%
Taking Uber Direct 3.00% 2.39% 2.39% 2.39% 2.41%
Solo driving 87.34% 88.49% 88.51% 88.23% 86.20%

Share of Uber Trips

For commuting purposes 24.85% 9.57% 9.54% 8.65% 1.96%
For downtown leisure purposes 40.41% 50.57% 50.55% 50.94% 53.76%
For local leisure purposes 34.74% 39.86% 39.91% 40.41% 44.27%

Average Uber Trip Distance

For commuting purposes 3.87 3.34 3.34 3.35 3.12
For downtown leisure purposes 11.05 11.06 11.08 11.11 11.52
For local leisure purposes 7.15 7.15 7.15 7.15 7.15

The table shows the model solution’s for all types of trips. The columns correspond sequentially to the no tax case, sales tax with external spending, sales tax
with a lump sum return, sales tax with transit improvements, and sales tax with reduced public transit fare. The rows represent select endogenous variables for
various trip types.
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Table A4: Mile Tax

Scenario Laissez Faire Tax ($0.20 per mile)

Spending No lump sum rebate Lump sum to HH Improve transit Reduce transit fare

Mode Shares: All Trips

Walking 1.18% 1.27% 1.26% 1.26% 1.17%
Total public transit (L train) 5.87% 6.02% 6.01% 6.08% 7.11%
Walking to public transit 4.82% 4.82% 4.81% 4.82% 5.07%
Taking bus to public transit 1.04% 1.20% 1.20% 1.27% 2.03%
Taking Uber to public transit 0.00% 0.00% 0.00% 0.00% 0.00%

Bus to local destinations 4.66% 4.38% 4.37% 4.48% 5.55%
Taking Uber Direct 4.17% 2.97% 2.97% 2.94% 2.62%
Solo driving 80.90% 82.19% 82.20% 82.06% 80.16%
Carpooling 3.21% 3.17% 3.19% 3.19% 3.39%

Uber Outcomes: All Trips

Driving time per trip (minutes) 23.48 23.58 23.59 23.63 24.51
Driving distance per trip (miles) 7.91 8.34 8.35 8.41 9.11
Average Uber price per trip (pre-tax) 16.04 16.56 16.57 16.64 17.53

Car Ownership

Total car ownership rate 89.85% 90.66% 90.67% 90.44% 88.14%
Car ownership rate for commuting 80.74% 81.67% 81.70% 81.69% 80.77%
Car ownership rate for noncommuting trips 9.11% 8.99% 8.97% 8.75% 7.37%

Driving Characteristics

Average speed on highways 45.05 45.42 45.42 45.42 45.83
Average commuting time to work 29.41 29.21 29.23 29.23 29.81
Maximum commuting distance 31.60 31.60 31.60 31.60 31.80
Public transit average waiting time (minutes) 5.00 5.43 5.42 5.21 6.67
Public transit headway (minutes) 10.00 10.00 10.00 9.48 10.00
Downtown driving speed 12.50 14.39 14.41 14.42 14.87
Uber speed near transit 25.00 25.00 25.00 25.00 25.00

Equilibrium in Ride Hail Market

Percent of profit that Uber takes 30.00% 21.70% 21.65% 21.59% 20.19%

Tax Revenue

Aggregate tax revenue (millions) 0.00 265.96 265.65 265.05 255.78

Welfare

Utility per household 1274.93 1276.24 1279.28 1276.06 1274.55
The table shows the model solution for a mileage tax for Uber trips. The columns correspond sequentially to the no toll case, the mileage tax with external
spending, the mileage tax with a lump sum return, the mileage tax with transit improvements, and the mileage tax with reduced public transit fare. The rows
represent select endogenous variables. Other endogenous variables are omitted from the table.
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Table A5: Mile Tax – All Trips

Scenario Laissez Faire Tax ($0.20 per mile)

Spending No lump sum rebate Lump sum to HH Improve transit Reduce transit fare

Mode Shares: Commuting Trips

Walking 3.37% 3.60% 3.60% 3.58% 3.33%
Public transit 12.94% 13.58% 13.57% 13.67% 15.61%
Walking to public transit 10.14% 10.27% 10.26% 10.20% 10.25%
Taking bus to public transit 2.80% 3.31% 3.31% 3.48% 5.37%
Taking Uber to public transit 0.00% 0.00% 0.00% 0.00% 0.00%

Taking Uber Direct 2.95% 1.14% 1.14% 1.06% 0.29%
Solo driving 71.60% 72.63% 72.62% 72.62% 71.13%
Carpooling 9.14% 9.04% 9.08% 9.07% 9.64%

Mode Shares: CBD Leisure Trips

Public transit 7.98% 7.51% 7.50% 7.71% 9.79%
Walking to public transit 7.62% 7.29% 7.28% 7.44% 8.90%
Taking bus to public transit 0.36% 0.22% 0.22% 0.27% 0.89%
Taking Uber to public transit 0.00% 0.00% 0.00% 0.00% 0.00%

Taking Uber Direct 10.17% 8.54% 8.53% 8.51% 8.17%
Solo driving 81.84% 83.95% 83.97% 83.78% 82.04%

Mode Shares: Local Trips

Public transit (bus) 9.65% 9.06% 9.05% 9.28% 11.50%
Taking Uber Direct 3.00% 2.39% 2.39% 2.39% 2.41%
Solo driving 87.34% 88.55% 88.56% 88.33% 86.09%

Share of Uber Trips

For commuting purposes 24.85% 13.51% 13.49% 12.64% 3.86%
For downtown leisure purposes 40.41% 47.64% 47.64% 48.04% 51.74%
For local leisure purposes 34.74% 38.85% 38.88% 39.31% 44.39%

Average Uber Trip Distance

For commuting purposes 3.87 3.34 3.34 3.32 3.14
For downtown leisure purposes 11.05 10.73 10.75 10.78 11.24
For local leisure purposes 7.15 7.15 7.15 7.15 7.15

The table shows the model solution’s for all types of trips. The columns correspond sequentially to the no tax case, mile tax with external spending, mile tax
with a lump sum return, mile tax with transit improvements, and mile tax with reduced public transit fare. The rows represent select endogenous variables for
various trip types.
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Table A6: Subsidy – All Trips

Scenario Laissez Faire $3 off Uber to transit $3 off Uber to tran-
sit

50% off Uber to
transit

Free public transit

Spending No lump sum deduc-
tion

Lump sum deduc-
tion

Lump sum deduc-
tion

Lump sum deduc-
tion

Mode Shares: Commuting Trips

Walking 3.37% 3.46% 3.53% 3.50% 2.86%
Public transit 12.94% 14.56% 14.67% 15.05% 19.67%
Walking to public transit 10.14% 5.61% 5.61% 7.11% 12.06%
Taking bus to public transit 2.80% 0.00% 0.00% 0.00% 7.61%
Taking Uber to public transit 0.00% 8.96% 9.06% 7.94% 0.00%

Taking Uber Direct 2.95% 1.44% 1.32% 1.05% 0.00%
Solo driving 71.60% 70.55% 70.74% 70.55% 66.85%
Carpooling 9.14% 9.99% 9.74% 9.85% 10.62%

Mode Shares: CBD Leisure Trips

Public transit 7.98% 9.56% 9.69% 9.09% 15.96%
Walking to public transit 7.62% 4.59% 4.64% 6.42% 12.21%
Taking bus to public transit 0.36% 0.00% 0.00% 0.00% 3.75%
Taking Uber to public transit 0.00% 4.97% 5.06% 2.67% 0.00%

Taking Uber Direct 10.17% 9.76% 9.74% 9.84% 9.00%
Solo driving 81.84% 80.68% 80.56% 81.07% 75.04%

Mode Shares: Local Trips

Public transit (bus) 9.65% 11.50% 11.63% 11.05% 18.03%
Taking Uber Direct 3.00% 3.04% 3.05% 3.03% 3.19%
Solo driving 87.34% 85.45% 85.32% 85.92% 78.78%

Share of Uber Trips

For commuting purposes 24.85% 48.27% 48.16% 47.17% 0.00%
For downtown leisure purposes 40.41% 32.30% 32.42% 30.97% 49.23%
For local leisure purposes 34.74% 19.43% 19.43% 21.86% 50.77%

Average Uber Trip Distance

For commuting purposes 3.87 1.63 1.60 1.73 0.00
For downtown leisure purposes 11.05 8.06 8.01 9.37 12.41
For local leisure purposes 7.15 7.15 7.15 7.15 7.15

The table shows the model solution’s for all types of trips. The columns correspond sequentially to the tax/subsidy case, a flat rate subsidy to transit that is
externally financed, a flat rate subsidy on Uber rides to transit, an ad valorem subsidy on Uber rides to transit, and free public transit. The latter three are
financed via lump sum income deductions. The rows represent select endogenous variables for various trip types.
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Table A7: Optimal Toll – All Trips

Scenario Laissez Faire Optimal congestion tolls

Spending No lump sum rebate Lump sum to HH Improve transit Reduce transit fare

Mode Shares: Commuting Trips

Walking 3.37% 4.09% 3.94% 3.91% 3.22%
Public transit 12.94% 16.42% 16.36% 18.42% 24.34%
Walking to public transit 10.14% 11.11% 10.98% 11.06% 12.53%
Taking bus to public transit 2.80% 5.31% 5.37% 7.36% 11.80%
Taking Uber to public transit 0.00% 0.00% 0.00% 0.00% 0.00%

Taking Uber Direct 2.95% 2.85% 2.66% 1.70% 0.00%
Solo driving 71.60% 54.31% 53.03% 53.27% 49.57%
Carpooling 9.14% 22.32% 24.01% 22.70% 22.87%

Mode Shares: CBD Leisure Trips

Public transit 7.98% 8.49% 8.21% 10.12% 16.69%
Walking to public transit 7.62% 8.07% 7.83% 9.20% 12.74%
Taking bus to public transit 0.36% 0.41% 0.38% 0.92% 3.95%
Taking Uber to public transit 0.00% 0.00% 0.00% 0.00% 0.00%

Taking Uber Direct 10.17% 10.34% 10.24% 10.03% 9.15%
Solo driving 81.84% 81.18% 81.55% 79.85% 74.16%

Mode Shares: Local Trips

Public transit (bus) 9.65% 10.25% 9.93% 11.99% 18.84%
Taking Uber Direct 3.00% 3.02% 3.01% 3.05% 3.21%
Solo driving 87.34% 86.74% 87.06% 84.95% 77.96%

Share of Uber Trips

For commuting purposes 24.85% 24.03% 22.88% 15.99% 0.00%
For downtown leisure purposes 40.41% 41.07% 41.55% 44.52% 49.50%
For local leisure purposes 34.74% 34.90% 35.57% 39.49% 50.50%

Average Uber Trip Distance

For commuting purposes 3.87 4.16 4.15 4.20 0.00
For downtown leisure purposes 11.05 10.92 11.11 11.30 12.33
For local leisure purposes 7.15 7.15 7.15 7.15 7.15

The table shows the model solution’s for all types of trips. The columns correspond sequentially to the no tax case, optimal toll with external spending, optimal
toll with a lump sum return, optimal toll with transit improvements, and optimal toll with with reduced public transit fare. The rows represent select
endogenous variables for various trip types.
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Table A8: Fixed Toll

Scenario Laissez Faire Fixed toll rate

Spending No lump sum rebate Lump sum to HH Improve transit Reduce transit fare

Mode Shares: All Trips

Walking 1.18% 1.20% 1.19% 1.19% 1.18%
Total public transit (L train) 5.87% 5.91% 5.93% 5.97% 6.44%
Walking to public transit 4.82% 4.84% 4.85% 4.86% 4.98%
Taking bus to public transit 1.04% 1.07% 1.08% 1.12% 1.46%
Taking Uber to public transit 0.00% 0.00% 0.00% 0.00% 0.00%

Bus to local destinations 4.66% 4.67% 4.67% 4.74% 5.24%
Taking Uber Direct 4.17% 4.23% 4.22% 4.18% 3.94%
Solo driving 80.90% 80.61% 80.57% 80.47% 79.67%
Carpooling 3.21% 3.39% 3.44% 3.44% 3.54%

Uber Outcomes: All Trips

Driving time per trip (minutes) 23.48 23.36 23.38 23.46 23.79
Driving distance per trip (miles) 7.91 7.87 7.88 7.93 8.24
Average Uber price per trip (pre-tax) 16.04 15.96 15.98 16.05 16.42

Car Ownership

Total car ownership rate 89.85% 89.83% 89.84% 89.67% 88.60%
Car ownership rate for commuting 80.74% 80.46% 80.46% 80.48% 80.27%
Car ownership rate for noncommuting trips 9.11% 9.37% 9.38% 9.19% 8.33%

Driving Characteristics

Average speed on highways 45.05 45.27 45.29 45.29 45.52
Average commuting time to work 29.41 29.39 29.44 29.46 29.73
Maximum commuting distance 31.60 31.60 31.70 31.70 31.80
Public transit average waiting time (minutes) 5.00 5.03 5.07 5.00 5.75
Public transit headway (minutes) 10.00 10.00 10.00 9.76 10.00
Downtown driving speed 12.50 12.48 12.49 12.52 12.72
Uber speed near transit 25.00 25.00 25.00 25.00 25.00

Equilibrium in Ride Hail Market

Percent of profit that Uber takes 30.00% 30.25% 30.24% 30.13% 29.40%

Tax Revenue

Aggregate tax revenue (millions) 0.00 115.00 115.00 115.00 115.00

Welfare

Utility per household 1,274.93 1274.17 1,275.54 1,273.89 1,273.66
The table shows the model solution for the fixed congestion toll. The toll is fixed such that it raises the same amount of revenue as the flat rate Uber tax. The
columns correspond sequentially to the no toll case,the fixed toll with external spending, the fixed toll with a lump sum return, the fixed toll with transit
improvements, and the fixed toll with reduced public transit fare. The rows represent select endogenous variables. Other endogenous variables are omitted from
the table.
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Table A9: Fixed Toll – All Trips

Scenario Laissez Faire Fixed toll rate

Spending No lump sum rebate Lump sum to HH Improve transit Reduce transit fare

Mode Shares: Commuting Trips

Walking 3.37% 3.41% 3.37% 3.39% 3.35%
Public transit 12.94% 13.04% 13.09% 13.16% 14.05%
Walking to public transit 10.14% 10.17% 10.19% 10.17% 10.22%
Taking bus to public transit 2.80% 2.87% 2.90% 2.99% 3.83%
Taking Uber to public transit 0.00% 0.00% 0.00% 0.00% 0.00%

Taking Uber Direct 2.95% 3.09% 3.07% 2.97% 2.34%
Solo driving 71.60% 70.82% 70.67% 70.69% 70.19%
Carpooling 9.14% 9.64% 9.79% 9.80% 10.08%

Mode Shares: CBD Leisure Trips

Public transit 7.98% 8.00% 7.99% 8.14% 9.08%
Walking to public transit 7.62% 7.64% 7.63% 7.73% 8.40%
Taking bus to public transit 0.36% 0.37% 0.36% 0.41% 0.68%
Taking Uber to public transit 0.00% 0.00% 0.00% 0.00% 0.00%

Taking Uber Direct 10.17% 10.19% 10.18% 10.14% 9.97%
Solo driving 81.84% 81.81% 81.83% 81.72% 80.94%

Mode Shares: Local Trips

Public transit (bus) 9.65% 9.68% 9.66% 9.83% 10.84%
Taking Uber Direct 3.00% 3.00% 3.00% 3.01% 3.03%
Solo driving 87.34% 87.32% 87.33% 87.17% 86.13%

Share of Uber Trips

For commuting purposes 24.85% 25.71% 25.59% 24.97% 20.85%
For downtown leisure purposes 40.41% 39.97% 40.02% 40.26% 42.01%
For local leisure purposes 34.74% 34.31% 34.39% 34.76% 37.15%

Average Uber Trip Distance

For commuting purposes 3.87 3.92 3.92 3.94 3.99
For downtown leisure purposes 11.05 11.04 11.05 11.09 11.30
For local leisure purposes 7.15 7.15 7.15 7.15 7.15

The table shows the model solution’s for all types of trips. The columns correspond sequentially to the no tax case, fixed toll with external spending, fixed toll
with a lump sum return, fixed toll with transit improvements, and fixed toll with reduced public transit fare. The rows represent select endogenous variables for
various trip types.
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Table A10.1: Robustness Analysis: Fixed Tax Rate with Fare Reduction

Scenario Baseline (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Mode Shares: All Trips

Walking 0.02 0.03 0.03 0.00 0.01 0.06 0.02 0.03 0.04 -0.08 0.01 0.11
Total public transit (L train) 0.62 0.63 0.28 0.86 0.85 0.32 0.71 0.51 0.61 1.08 0.73 1.59
Walking to public transit 0.05 0.05 -0.09 0.14 0.17 -0.08 0.08 0.04 0.05 0.75 0.06 0.72
Taking bus to public transit 0.57 0.58 0.37 0.72 0.69 0.41 0.63 0.48 0.56 0.33 0.67 0.87
Taking Uber to public transit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bus to local destinations 0.39 0.39 0.33 0.40 0.44 0.36 0.49 0.42 0.37 0.60 0.44 0.97
Taking Uber Direct -1.15 -1.22 -1.04 -1.18 -1.23 -1.36 -1.13 -1.14 -1.13 -1.29 -1.17 -1.02
Solo driving -0.02 0.06 0.29 -0.19 -0.13 0.42 -0.15 0.08 0.06 -0.52 -0.16 -0.55
Carpooling 0.15 0.10 0.11 0.10 0.06 0.18 0.07 0.10 0.05 0.21 0.15 -1.11

Uber Outcomes: All Trips

Driving time per trip (minutes) 1.43 1.52 1.48 1.55 1.54 1.24 1.34 1.39 1.64 1.12 1.36 0.95
Driving distance per trip (miles) 1.16 1.18 1.15 1.19 1.20 0.95 1.12 1.04 1.23 1.01 1.17 0.69
Average Uber price per trip (pre-tax) 1.56 1.61 1.57 1.64 1.63 1.32 1.48 1.43 1.69 1.30 1.53 1.02

Car Ownership

Total car ownership rate -0.71 -0.73 -0.58 -0.74 -0.82 -0.66 -0.81 -0.75 -0.70 -0.98 -0.70 -1.83
Car ownership rate for commuting 0.76 0.88 1.32 0.21 0.38 2.00 0.59 1.24 0.70 0.18 0.63 -1.90
Car ownership rate for noncommuting trips -1.47 -1.61 -1.91 -0.95 -1.20 -2.66 -1.40 -1.99 -1.40 -1.16 -1.33 0.06

Driving Characteristics

Average speed on highways 0.41 0.19 0.19 0.58 0.36 0.40 0.36 0.20 0.16 0.47 0.40 -0.24
Average commuting time to work 0.26 0.37 0.19 0.16 0.27 0.19 0.22 0.31 0.31 0.55 0.31 -1.91
Maximum commuting distance 0.20 0.10 0.10 0.10 0.00 0.20 0.00 0.10 0.00 0.30 0.20 -3.10
Public transit average waiting time (minutes) 0.92 0.96 0.27 0.46 0.62 0.31 0.89 0.65 0.93 0.00 0.93 0.15
Public transit headway (minutes) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Downtown driving speed 0.87 0.89 0.88 0.88 0.90 0.96 0.94 0.95 0.89 1.00 0.89 0.33
Uber speed near transit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equilibrium in Ride Hail Market

Percent of profit that Uber takes -5.56 -5.50 -6.10 -5.77 -5.53 -3.48 -4.17 -4.19 -6.51 -2.25 -4.04 -4.05

Tax Revenue

Aggregate tax revenue (millions) 108.55 109.18 103.19 107.47 109.08 123.46 112.99 116.41 103.69 127.14 114.04 121.38

Welfare

Utility per household 0.26 -0.20 -0.51 0.67 0.05 0.07 -0.30 -0.42 -0.44 -0.16 0.25 -186.81

This table shows robustness to increasing various model parameters by 10%. For this scenario, we focus on the flat Uber tax with a fare reduction relative to the
untaxed equilibrium. Each column represents the effect of the policy (each column is the model solution with the policy minus the model solution in the laissez
faire situation). The “baseline” column shows the same change for the results in the text. The subsequent columns increase each of the following parameters by
10%: (1) length of transit lines, (2) number of transit lines, (3) transit capacity, (4) headway, (5) the central business district parking fee, (6) residential road
speed, (7) time cost of driving, (8) time cost of taking Uber, (9) time cost of public transit, (10) time cost of walking/walking to transit, (11) income. Technically,
a 10% increase in the number of transit lines would not be an integer, so we round this parameter change to the nearest integer.
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Table A10.2: Robustness Analysis: Fixed Tax Rate with Fare Reduction

Scenario Baseline (12) (13) (14) (15) (16) (17) (18) (19) (20) (21)

Mode Shares: All Trips

Walking 0.02 0.05 -0.01 0.01 0.01 0.02 0.01 -0.01 0.02 -0.01 0.04
Total public transit (L train) 0.62 0.42 1.17 0.65 0.58 0.73 0.64 0.89 0.62 0.85 0.87
Walking to public transit 0.05 -0.03 0.22 0.00 0.01 0.08 0.07 0.21 0.05 0.85 0.24
Taking bus to public transit 0.57 0.45 0.95 0.65 0.57 0.66 0.57 0.68 0.57 0.00 0.63
Taking Uber to public transit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bus to local destinations 0.39 0.38 1.14 0.45 0.49 0.38 0.40 0.45 0.39 0.52 0.82
Taking Uber Direct -1.15 -1.27 -1.37 -1.12 -1.17 -0.97 -1.03 -1.26 -1.15 -1.19 -1.07
Solo driving -0.02 0.32 -1.21 -0.15 -0.06 -0.22 -0.11 -0.21 -0.02 -0.26 -0.66
Carpooling 0.15 0.11 0.28 0.15 0.15 0.06 0.09 0.15 0.15 0.09 0.00

Uber Outcomes: All Trips

Driving time per trip (minutes) 1.43 1.40 2.04 1.40 1.25 1.61 1.37 1.49 1.43 1.16 1.22
Driving distance per trip (miles) 1.16 1.06 1.65 1.16 1.07 1.22 1.10 1.14 1.16 0.96 0.97
Average Uber price per trip (pre-tax) 1.56 1.46 2.18 1.53 1.41 1.63 1.48 1.57 1.56 1.29 1.33

Car Ownership

Total car ownership rate -0.71 -0.68 -2.33 -0.71 -0.83 -0.72 -0.73 -0.84 -0.71 -1.01 -1.65
Car ownership rate for commuting 0.76 1.54 0.48 0.76 1.09 0.52 0.41 0.43 0.76 0.40 0.17
Car ownership rate for noncommuting trips -1.47 -2.22 -2.81 -1.47 -1.92 -1.24 -1.15 -1.27 -1.47 -1.41 -1.82

Driving Characteristics

Average speed on highways 0.41 0.19 0.61 0.41 0.42 0.36 0.39 0.41 0.41 0.41 0.37
Average commuting time to work 0.26 0.28 0.25 0.31 0.22 0.23 0.18 0.38 0.26 0.39 0.17
Maximum commuting distance 0.20 0.10 0.30 0.20 0.20 0.00 0.10 0.20 0.20 0.10 0.00
Public transit average waiting time (minutes) 0.92 0.48 -1.72 0.88 0.77 0.86 0.88 0.62 0.92 0.07 1.13
Public transit headway (minutes) 0.00 0.00 -4.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Downtown driving speed 0.87 0.96 1.18 0.93 1.08 0.90 0.86 0.92 0.87 0.94 0.78
Uber speed near transit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equilibrium in Ride Hail Market

Percent of profit that Uber takes -5.56 -4.65 -6.38 -3.99 -3.37 -5.09 -5.76 -5.21 -5.56 -4.62 -5.34

Tax Revenue

Aggregate tax revenue (millions) 108.55 114.66 100.68 114.06 118.07 107.46 105.49 112.49 108.55 117.79 111.46

Welfare

Utility per household 0.26 -0.63 -1.02 -0.43 -0.18 0.01 0.44 0.12 0.26 0.58 2.70

This table shows robustness to increasing various model parameters by 10%. For this scenario, we focus on the flat Uber tax with a fare reduction relative to the
untaxed equilibrium. Each column represents the effect of the policy (each column is the model solution with the policy minus the model solution in the laissez
faire situation). The “baseline” column shows the same change for the results in the text. The subsequent columns increase each of the following parameters by
10%: (12) fixed cost of owning a car, (13) elasticity of transit improvements, (14) number of local trips, (15) number of downtown leisure trips, (16) distance for
local trips, (17) FAR restrictions, (18) bus waiting times, (19) length of travel where there is congestion around transit stations. In column (17) we impose a FAR
restriction of 0.5. Column (20) eliminates buses from the commuting and CBD leisure trips and column (21) is a partial equilibrium analysis. To obtain the
partial equilibrium solution, we hold fixed location and housing consumption.
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Table A11.1: Robustness Analysis: Flat Rate Subsidy

Scenario Baseline (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Mode Shares: All Trips

Walking 0.06 0.04 0.08 0.02 0.04 0.09 0.05 0.09 0.05 0.02 0.07 -0.07
Total public transit (L train) 0.89 0.83 0.60 1.12 1.12 0.55 1.04 0.82 0.83 1.95 1.09 1.69
Walking to public transit -2.09 -2.09 -2.44 -2.05 -2.26 -2.38 -2.03 -2.27 -2.08 -1.60 -1.70 -1.90
Taking bus to public transit -1.04 -0.98 -1.04 -1.04 -0.82 -1.41 -1.03 -1.26 -1.08 0.00 -1.63 -0.21
Taking Uber to public transit 4.02 3.90 4.08 4.22 4.20 4.34 4.11 4.34 4.00 3.56 4.42 3.80

Bus to local destinations 0.95 0.91 0.91 0.98 0.94 0.91 1.03 1.13 0.84 1.72 1.33 0.84
Taking Uber Direct -0.63 -0.61 -0.57 -0.60 -0.67 -0.62 -0.69 -0.66 -0.57 -1.08 -0.71 -0.77
Solo driving -1.49 -1.39 -1.24 -1.77 -1.63 -1.15 -1.64 -1.54 -1.30 -2.55 -1.86 -1.81
Carpooling 0.21 0.21 0.23 0.26 0.21 0.23 0.20 0.16 0.15 -0.06 0.08 0.13

Uber Outcomes: All Trips

Driving time per trip (minutes) -7.75 -7.52 -8.32 -7.94 -7.85 -7.14 -7.55 -7.87 -7.86 -6.29 -7.56 -7.45
Driving distance per trip (miles) -3.15 -3.05 -3.51 -3.23 -3.19 -2.91 -3.12 -3.19 -3.26 -2.70 -3.30 -2.89
Average Uber price per trip (pre-tax) -5.07 -4.91 -5.55 -5.19 -5.12 -4.65 -4.96 -5.14 -5.20 -4.17 -5.13 -4.72

Car Ownership

Total car ownership rate -2.08 -1.99 -1.97 -2.12 -2.05 -1.97 -2.31 -2.47 -1.83 -3.01 -2.65 -1.92
Car ownership rate for commuting -0.26 -0.13 0.31 -0.85 -0.72 0.56 -0.36 0.13 -0.31 -2.40 -0.68 -1.72
Car ownership rate for noncommuting trips -1.82 -1.86 -2.28 -1.28 -1.33 -2.53 -1.96 -2.60 -1.53 -0.61 -1.97 -0.19

Driving Characteristics

Average speed on highways 0.40 0.48 0.29 0.70 0.45 0.53 0.42 0.24 0.24 0.57 0.40 0.82
Average commuting time to work 0.18 0.09 0.17 0.07 0.23 -0.06 0.23 0.20 0.17 -0.24 0.15 0.02
Maximum commuting distance 0.20 0.20 0.20 0.30 0.20 0.10 0.10 0.10 0.10 -0.10 0.00 0.20
Public transit average waiting time (minutes) 1.14 1.09 0.54 0.66 0.88 0.45 1.19 0.83 1.13 0.25 1.16 0.40
Public transit headway (minutes) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Downtown driving speed 0.47 0.43 0.44 0.43 0.43 0.46 0.56 0.52 0.41 0.25 0.43 0.47
Uber speed near transit -4.89 -4.65 -5.00 -5.31 -5.30 -5.52 -7.56 -5.11 -4.92 -6.86 -8.03 -4.80

Equilibrium in Ride Hail Market

Percent of profit that Uber takes 6.78 6.89 6.40 7.28 7.20 9.23 7.78 7.88 6.29 6.21 7.60 6.91

Tax Revenue

Aggregate subsidy (millions) 646.26 627.11 656.32 677.99 675.09 697.15 660.00 697.02 642.02 571.44 710.51 610.35

Welfare

Utility per household -9.94 -9.26 -10.57 -9.39 -9.85 -10.15 -10.82 -11.45 -9.73 -13.10 -17.61 -7.41

This table shows robustness to increasing various model parameters by 10%. For this scenario, we focus on the flat rate subsidy on rides to transit stations
relative to the untaxed equilibrium. Each column represents the effect of the policy (each column is the model solution with the policy minus the model solution
in the laissez faire situation). The “baseline” column shows the same change for the results in the text. The subsequent columns increase each of the following
parameters by 10%: (1) length of transit lines, (2) number of transit lines, (3) transit capacity, (4) headway, (5) the central business district parking fee, (6)
residential road speed, (7) time cost of driving, (8) time cost of taking Uber, (9) time cost of public transit, (10) time cost of walking/walking to transit, (11)
income. Technically, a 10% increase in the number of transit lines would not be an integer, so we round this parameter change to the nearest integer.
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Table A11.2: Robustness Analysis: Flat Rate Subsidy

Scenario Baseline (12) (13) (14) (15) (16) (17) (18) (19) (20) (21)

Mode Shares: All Trips

Walking 0.06 0.07 0.06 0.07 0.09 0.05 0.04 0.03 0.05 -0.29 0.03
Total public transit (L train) 0.89 0.65 0.89 0.94 0.91 0.93 0.90 1.31 0.87 0.71 1.58
Walking to public transit -2.09 -2.26 -2.09 -1.87 -2.12 -2.00 -2.08 -2.31 -2.09 -3.17 -2.10
Taking bus to public transit -1.04 -1.42 -1.04 -1.01 -1.06 -1.06 -0.97 -0.39 -1.04 0.00 -1.04
Taking Uber to public transit 4.02 4.33 4.02 3.82 4.09 3.98 3.95 4.01 4.00 3.88 4.73

Bus to local destinations 0.95 0.99 0.95 1.12 1.21 0.87 0.94 1.05 0.95 -4.52 2.39
Taking Uber Direct -0.63 -0.60 -0.63 -0.70 -0.71 -0.64 -0.48 -0.84 -0.61 2.84 -0.17
Solo driving -1.49 -1.28 -1.49 -1.52 -1.56 -1.38 -1.55 -1.83 -1.51 0.70 -3.83
Carpooling 0.21 0.18 0.21 0.11 0.05 0.17 0.15 0.27 0.26 0.55 0.00

Uber Outcomes: All Trips

Driving time per trip (minutes) -7.75 -7.64 -7.75 -6.99 -7.01 -8.19 -8.02 -7.38 -7.73 -4.96 -8.38
Driving distance per trip (miles) -3.15 -3.14 -3.15 -3.07 -3.06 -3.33 -3.38 -2.93 -3.14 -1.91 -3.53
Average Uber price per trip (pre-tax) -5.07 -5.01 -5.07 -4.76 -4.79 -5.37 -5.36 -4.75 -5.05 -3.39 -5.60

Car Ownership

Total car ownership rate -2.08 -2.16 -2.08 -2.11 -2.41 -1.89 -2.05 -2.28 -2.06 1.26 -5.20
Car ownership rate for commuting -0.26 0.37 -0.26 -0.50 -0.33 -0.36 -0.63 -0.72 -0.22 1.05 -2.03
Car ownership rate for noncommuting trips -1.82 -2.53 -1.82 -1.61 -2.09 -1.53 -1.41 -1.56 -1.84 0.21 -3.16

Driving Characteristics

Average speed on highways 0.40 0.27 0.40 0.43 0.41 0.43 0.43 0.47 0.48 0.72 0.57
Average commuting time to work 0.18 0.11 0.18 0.04 -0.08 0.15 0.04 0.37 0.18 0.67 -0.29
Maximum commuting distance 0.20 0.10 0.20 0.10 0.00 0.10 0.10 0.30 0.30 0.50 0.00
Public transit average waiting time (minutes) 1.14 0.59 1.14 1.14 1.04 0.99 1.11 1.11 1.10 0.52 1.59
Public transit headway (minutes) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Downtown driving speed 0.47 0.51 0.47 0.42 0.47 0.48 0.43 0.52 0.47 0.86 0.16
Uber speed near transit -4.89 -5.32 -4.89 -7.64 -7.51 -4.95 -4.80 -4.87 -4.84 -5.15 -5.54

Equilibrium in Ride Hail Market

Percent of profit that Uber takes 6.78 8.31 6.78 7.07 7.70 6.24 6.58 6.81 6.82 17.88 8.91

Tax Revenue

Aggregate subsidy (millions) 646.26 695.38 646.26 643.60 667.99 639.57 635.04 644.78 643.06 623.29 760.23

Welfare

Utility per household -9.94 -11.21 -9.94 -17.64 -17.09 -9.96 -9.27 -10.25 -9.77 -13.74 -7.29

This table shows robustness to increasing various model parameters by 10%. For this scenario, we focus on the flat rate subsidy on rides to transit stations
relative to the untaxed equilibrium. Each column represents the effect of the policy (each column is the model solution with the policy minus the model solution
in the laissez faire situation). The “baseline” column shows the same change for the results in the text. The subsequent columns increase each of the following
parameters by 10%: (12) fixed cost of owning a car, (13) elasticity of transit improvements, (14) number of local trips, (15) number of downtown leisure trips,
(16) distance for local trips, (17) FAR restrictions, (18) bus waiting times, (19) length of travel where there is congestion around transit stations. In column (17)
we impose a FAR restriction of 0.5. Column (20) eliminates buses from the commuting and CBD leisure trips and column (21) is a partial equilibrium analysis.
To obtain the partial equilibrium solution, we hold fixed location and housing consumption.
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