

Regional Productivity Network in the EU

Camilla Mastromarco, Laura Serlenga, Yongcheol Shin

Impressum:

CESifo Working Papers ISSN 2364-1428 (electronic version) Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo GmbH The international platform of Ludwigs-Maximilians University's Center for Economic Studies and the ifo Institute Poschingerstr. 5, 81679 Munich, Germany Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de Editor: Clemens Fuest https://www.cesifo.org/en/wp An electronic version of the paper may be downloaded • from the SSRN website: www.SSRN.com

- from the RePEc website: <u>www.RePEc.org</u>
- from the CESifo website: <u>https://www.cesifo.org/en/wp</u>

Regional Productivity Network in the EU

Abstract

We develop a unified stochastic frontier model which controls for the local spatial correlation and the global factor dependence as well as parameter heterogeneity, simultaneously. We then propose the regional productivity network analysis to examine the diffusion impacts of the capital intensity on the labour productivity in the EU. We apply the proposed approach to the dataset consisting of 202 regions in the EU15 countries over 1980-2019, and convincingly unveil that the technological shock diffuses from efficient regions operating on or near the frontier to inefficient regions. This suggests that policies to enhance domestic absorption capacity appear better suited to net receivers of technological shocks whilst policies to attract more R&D investments are appropriate to their transmitters. In this regard we stress the importance of investing European funds in peripheral regions to address regional inequality and polarisation.

JEL-Codes: C130, C330, D240, O470.

Keywords: spatial stochastic frontier model with factors and heterogeneity, CCEX-IV estimator, regional productivity network analysis in the EU, efficiency clusters.

Camilla Mastromarco University of Calabria / Italy camilla.mastromarco@unical.it

Laura Serlenga European Commission Iserlenga@gmail.com Yongcheol Shin University of York / United Kingdom yongcheol.shin@york.ac.uk

May 1, 2023

We gratefully acknowledge many helpful interactions with Jia Chen, Matthew Greenwood-Nimmo, Rui Lin, Chaowen Zheng, and the comments of seminar participants at the University of York. Shin acknowledges partial financial support from the ESRC (Grant Reference: ES/T01573X/1). The usual disclaimer applies.

1 Introduction

An intense debate in the growth literature concerns with which countries/regions, that are increasingly economically integrated with the rest of the world, can maintain a sustainable economic growth (e.g. Jones (2016)). Consequently, there have been a vast number of studies focusing on how to incorporate the role of the global/local interdependence in explaining development and growth. Several studies have emphasised the importance of international technological spillovers as a major engine behind technological progress (e.g. Coe and Helpman, 1995; Eaton and Kortum, 2002; Barro and Sala-i-Martin, 2003; Howitt, 2000; Lucas, 1988, 1993). A few papers have also provided pervasive empirical evidence in favour of the spatial spillover effect and heterogeneity on the productivity and growth (e.g. Ramajo et al., 2008; Vogel, 2013) while the frontier analysis has recognised the importance of spillover effects stemming from either the spatial correlations or the global factor dependence (Mastromarco et al., 2016; Gude et al., 2018).

Output growth is typically explained as the accumulation of factor inputs and the growth of total factor productivity. This can be understood by viewing output growth from the perspective of a production possibility frontier where regions can be operating on or within the frontier, with the distance from the frontier representing inefficiency. A region's frontier can shift over time (technological change) or a region can move towards or away from the frontier (efficiency change). Moreover, a region can move along the frontier by changing inputs. So productivity growth can be made up of three components: technology, efficiency and input changes with the first two being the productivity change (e.g. Koop et al., 1999).

Most studies analysing the effect of spatial spillovers on productivity of countries/regions have employed the neoclassical production function model, e.g. Mankiw et al. (1992) (MRW). Ertur and Koch (2007) develop a spatially-augmented Solow model in cross-section that includes capital externalities (e.g. Arrow, 1962), and spatial externalities of knowledge/idea (e.g. Romer, 1990) so as to model technological interdependence. Shi and Lee (2016) show that the spatial Durbin terms also play an important role in explaining the growth convergence of 26 OECD countries. Fischer (2018) combines an MRW model with a spatial autoregressive specification for investigating the technological interdependence among European regions. Miranda et al. (2017) develop a growth model with interdependencies in the heterogeneous technological progress, capital and stock of knowledge that yields an empirical specification corresponding to the spatial Durbin dynamic panel data model with spatially weighted individual-specific effects, and propose the quasi-maximum likelihood (QML) estimation using a correlated random effects approach. See also Elhorst (2010), Liu et al. (2020) and Galli (2021).

Regarding the literature on the stochastic frontier models, several studies have also emphasised the importance of accommodating the spatial correlation in modelling technical efficiency. The seminal paper proposed by Druska and Horrace (2004), develops the panel data frontier model with autoregressive spatial errors and apply the Schmidt and Sickles (1984) estimator to calculate firm-specific efficiency scores without imposing any distributional assumption on inefficiency terms. Schmidt et al. (2009) show that the failure to control for the presence of cross-sectional correlation in the regional production data, may yield biased results in both direct and indirect impacts of each explanatory variable. Glass et al. (2016) developed a spatial autoregressive stochastic frontier model and propose a multi-stage pseudo MLE. Gude et al. (2018) extend this approach and develop a generalised spatial autoregressive stochastic frontier that influence the degree of the global spatial interaction. All these studies highlight that failure to account for the spatial dependence may result in biased estimates of efficiency scores.

The aforementioned studies do not explicitly accommodate the global cross-section dependence, usually charaterised by unobserved factors. Recently, some progresses have been made in modelling both local and global cross-section correlations through the joint analysis of spatial- and factor-based panel data models. Mastromarco et al. (2016) propose a technique for modelling stochastic frontier panels by combining the exogenous factor-based approach and an endogenous threshold selection mechanism. Bai and Li (2021) develops the QML estimation for a homogeneous spatial panel data model with common shocks. Using a similar model, Yang (2021) develops a consistent estimator that combines the common correlated effects (CCE) and instrumental variable (IV) estimation. See also Shi and Lee (2017), Lu (2022) and Kuersteiner and Prucha (2020).

However, most studies still maintain the assumption that the slope parameters are homogeneous. In a data-rich environment, slope homogeneity is a restrictive assumption, as the strength and direction of spatial dependence between regions may vary over space. For instance, as a regional growth tends to be influenced by neighbours in a complex manner, such interlinkages render unrealistic the assumption of region's homogeneity (e.g. Vogel, 2013). In the analysis of cross-section growth regressions, the parameter homogeneity has been regarded restrictive (e.g. Durlauf, 2001; Canova, 2004; Ertur and Koch, 2007). In the spatial literature, Aquaro et al. (2021) and Shin and Thornton (2021) have explicitly allowed the slope parameters to be heterogeneous and develop the QML and the control functionbased estimators. See also LeSage and Chih (2016) and Sun and Malikov (2018). Recently, Chen et al. (2022) develop the panel data model with the parameter heterogeneity that can accommodate both spatial dependence and common factors, and propose the CCEX-IV estimator that approximates factors by the cross-section averages of regressors and deals with the spatial endogeneity using the internally selected instrumental variables.

In this paper, as a main contribution, we develop a unified stochastic frontier model in which we control for parameter heterogeneity, local spatial dependence and global factor dependence, simultaneously. We then derive the corresponding empirical specification by the spatial Durbin stochastic frontier (SDSF) model with heterogeneous parameters and unobserved factors, in which technological interdependence is spatially dependent but technical inefficiencies are subject to the factor dependence.

We propose the comprehensive regional productivity diffusion network analysis in the EU as follows: First, we estimate the SDSF model consistently by the CCEX-IV estimator advanced by Chen et al. (2022). Next, we propose estimating individual (in)efficiencies using the approach by Cornwell et al. (1990), and construct the five efficiency clusters based on the regional efficiency rankings. Finally, we apply the GCM-based network analysis advanced by Greenwood-Nimmo et al. (2021) and Shin and Thornton (2021) and analyse the diffusion impacts of the capital intensity on the labour productivity across the five clusters.

We demonstrate the utility of our proposed approach with an application to the dataset consisting of 202 regions in the EU15 countries over the period, 1980–2019. From Cambridge Econometrics European Regional Database we collect annual observations on employment, hours worked, gross fixed capital formation and gross value added for NUTS3 EU15 regions. To capture technological proximity across the EU regions, we construct the spatial weighting matrix based on technological distance (e.g. Basile et al., 2012), reflecting the main idea that regions similar in technology proximity, will be more receptive to externally produced knowledge (e.g. Boschma, 2005).

The main empirical findings are summarised as follows: First, all individual coefficients are pronounced heterogeneous and significant, but mostly positive. Overall, there is strong evidence in favor of the positive technology spillover. Second, the higher values of heterogeneous spill-out effects, which capture the impacts of the capital intensity from region i on the labour productivity of all other regions, are concentrated in core regions. By contrast, the higher values of spill-in effects, which collect the impacts of the capital intensity from all other regions on the labour productivity of region i, are observed mostly in peripheral regions. Third, the regional efficiency ranking is broadly consistent with a core-periphery decomposition in the EU. The spatial pattern of efficiency is positively correlated with that of per capita GDP with the correlation at 0.85 in 2019, stronger than 0.74 in 1980. Fourth, polarisation and regional disparities tend to be more persistent recently, while productivity convergence occurs only in core regions with similar technologies. Furthermore, there is no evidence of regional efficiency convergence in the EU. This is in line with the European race for the best location. Finally, we show that the relative position in the dependence/influence space can provide a vivid measure of regional capabilities to spur and absorb productivity spillovers, unveiling that the technological shock diffuses from the efficient regions operating on or near the frontier to inefficient regions.

The proposed regional network analysis is shown to highlight the importance of explicitly modelling the production/efficiency network to better understand the main determinants behind the productivity growth, which will provide a valuable information for policymakers to promote sustainable long-term economic growth and reduce income disparities. Recent developments of endogenous growth theories emphasise the different roles that appropriate institutions and policies may play in either backward or advanced economies as well as the distinction between innovation activities and an adoption of existing technologies from the global production frontier (e.g. Acemoglu et al., 2006; Jones, 2016). In this regard we suggest that policies to enhance domestic absorption capacity appear better suited to technology adoption by net receivers of production technological shocks whilst policies to attract more investments in the high-skilled human capital and R&D are more appropriate to the transmitters of technological shocks. We also stress the importance of investing European funds in peripheral regions to address regional inequality and polarisation, because large differences in the production structure and the highly unequal distribution of technological capabilities in the EU regions would be self-reinforcing and intensifying polarisation and divergence without such coordinated policies.

The rest of the paper is organised as follows. Section 2 develops a unified stochastic frontier model that controls for parameter heterogeneity, local spatial and global factor dependence, simultaneously. Section 3 describes the CCEX-IV estimation methodology and proposes the regional productivity network analysis. Section 4 presents the main empirical results using the dataset for 202 regions in the EU15 countries. Section 5 concludes. The additional simulation and empirical results are relegated to the Online Appendix.

2 The Stochastic Frontier Model with Spatial and Factor Dependence

Following the research trends reviewed in Introduction, we develop the generalised stochastic frontier panel data model with spatial and factor dependence as well parameter heterogeneity. Consider the (heterogeneous) Cobb-Douglas production function in a region i:

$$Y_{it} = A_{it} K_{it}^{\alpha_{Ki}} H_{it}^{\alpha_{Hi}} L_{it}^{1-\alpha_{Ki}-\alpha_{Hi}} \quad \text{for } i = 1, ..., N, \ t = 1, ..., T,$$
(1)

where Y_{it} is the product of a region *i* at time *t*, L_{it} is the labor input, K_{it} is the gross fixed capital stock, H_{it} is the human capital, and A_{it} is the Hicks-neutral factor productivity. Letting the lower case letter be variables normalised by the size of the labor force (i.e. $y_{it} = Y_{it}/L_{it}$), then the production function can be written as

$$y_{it} = A_{it} k_{it}^{\alpha_{Ki}} h_{it}^{\alpha_{Hi}} \text{ for } i = 1, ..., N, \ t = 1, ..., T.$$
(2)

Mankiw et al. (1992) argue that technology created anywhere in the world of regions is immediately available in any region. They assume that $\ln A_{it} = a + \varepsilon_{it}$ where a is a constant term and ε is the iid idiosyncratic error, though they point out that this term reflects not just technology but region-specific influences on growth such as resource endowments, institutions and so on. In this regard, Fischer (2018) proposes the following functional form:

$$A_{it} = \Omega_t k_{it}^{\phi_K} h_{it}^{\phi_H} \prod_{j \neq i}^N A_{jt}^{\rho w_{ij}}$$

$$\tag{3}$$

where Ω_t is technological knowledge, assumed to be identical in all regions and grows at a constant rate. The next two terms suppose that A_{it} of each region increases with per worker physical capital, k_{it} , reflecting the learning-by-doing process emphasised by Arrow (1962) and Romer (1986), and with per worker human capital, h_{it} , reflecting human capital externalities as underlined by Lucas (1988). The last term serves to account for technological interdependence that A_{it} may depend on A_{jt} for i, j = 1, ..., N.

We aim to develop the heterogeneous spatially-augmented stochastic frontier model with unobserved factors by utilising the following extended model for A_{it} :

$$A_{it} = \Omega_{it} k_{it}^{\phi_{Ki}} h_{it}^{\phi_{Hi}} \prod_{j \neq i}^{N} A_{jt}^{\rho_i w_{ij}}.$$
(4)

The level of technology available in region i at time t, depends on unobserved individual/time specific stock of knowledge, (Ω_{it}) , the level of technology embodied in physical and human capital per worker $(k_{it} \text{ and } h_{it})$, and the spatial/network connectivity given by $\prod_{j\neq i}^{N} A_{jt}^{\rho_i w_{ij}}$. Next, we follow the frontier literature (e.g. Färe et al. (1994)), and decompose Ω_{it} into a technical inefficiency, u_{it} , and an idiosyncratic error, v_{it} that captures the stochastic nature of the frontier:

$$\Omega_{it} = \exp\left(-u_{it} + v_{it}\right) \tag{5}$$

Following Mastromarco et al. (2013) and Mastromarco et al. (2016), we propose the factorbased specification for modelling time-varying technical inefficiency as

$$u_{it} = \alpha_i + \lambda'_i \boldsymbol{f}_t, \ i = 1, \dots, N, \ t = 1, \dots, T,$$

$$(6)$$

where α_i is (unobserved) individual effects of region *i* and f_t is an $r \times 1$ vector of unobserved factors, affecting all regions with heterogeneous loadings λ_i . These time-varying factors are supposed to capture an exogenous technological change (e.g. Coelli and Battese, 1995; Ahn et al., 2007), and expected to provide a good proxy for nonlinear and complex trending patterns associated with the global/regional business-cycles.

Taking the log of (2) and combining it with (4)–(6), we show that the product of a region *i* is determined by the levels of per capita physical and human capital, but it also

depends on spatial spillovers among regions as well as global factors. After some algebra, it is straightforward to derive the following heterogeneous stochastic frontier model with both spatial and factor dependence:

$$y_{it} = \rho_i \sum_{j=1}^{N} w_{ij} y_{jt} + \beta_{1i} k_{it} + \beta_{2i} h_{it} + \pi_{1i} \sum_{j=1}^{N} w_{ij} k_{jt} + \pi_{2i} \sum_{j=1}^{N} w_{ij} h_{jt} - u_{it} + v_{it}$$
(7)

This is the empirical specification of the theoretical model given by (2) and (4), and corresponds to the spatial Durbin panel data specification with unobserved factors and heterogeneous parameters, which we refer to as the SDSF model. This approach embodies a data generating process where the level of technology, A_{it} is spatially dependent and the technical inefficiency, u_{it} is subject to global factor dependence. First, spatial knowledge externalities involve technological interdependence among regions such that regions similar in the level of production technology have more capacity to reciprocate the production technology know-how. This similarity serves as channels for the diffusion of technology through $\prod_{j \neq i}^{N} A_{jt}^{\rho_i w_{ij}}$. Next, the capacity to assimilate common production knowledge, captured by efficiency, tends to depend on how each region is globally connected such that global factors drive regional efficiency through $(\alpha_i + \lambda'_i f_t)$. This is in line with the literature emphasising that the international catching-up process (changes in efficiency) are mainly achieved through the channels of global factors (e.g. Coe and Helpman, 1995; Eaton and Kortum, 2002; Caves, 2007; Iyer et al., 2008).

3 Estimation Methodology

For convenience, we rewrite the SDSF model, (7) as

$$y_{it} = \rho_i y_{it}^* + \beta'_i \boldsymbol{x}_{it} + \boldsymbol{\pi}'_i \boldsymbol{x}_{it}^* + \varepsilon_{it}, \ i = 1, ..., N, \ t = 1, ..., T,$$
(8)

where y_{it} is the dependent variable of the *i*th spatial unit at time *t*, \boldsymbol{x}_{it} is a $k \times 1$ vector of regressors with a $k \times 1$ vector of parameters, $\boldsymbol{\beta}_i$. Spatial interdependence across regions are captured via the spatial variables, $y_{it}^* \equiv \sum_{j=1}^N w_{ij}y_{jt} = \boldsymbol{w}'_i\boldsymbol{y}_t$ with $\boldsymbol{y}_t = (y_{1t}, ..., y_{Nt})'$ and $\boldsymbol{x}_{it}^* = (\boldsymbol{w}'_i \otimes \boldsymbol{I}_k) \boldsymbol{x}_t$ with $\boldsymbol{x}_t = (\boldsymbol{x}'_{1t}, ..., \boldsymbol{x}'_{Nt})'$, and $\boldsymbol{w}_i = (w_{i1}, ..., w_{iN})'$ denotes an $N \times 1$ vector of (non-stochastic) spatial weights determined a priori with $w_{ii} = 0$. Notice that ε_{it} is the error components given by

$$\varepsilon_{it} = v_{it} - u_{it} = v_{it} - (\alpha_i + \lambda'_i \boldsymbol{f}_t), \qquad (9)$$

where v_{it} is the idiosyncratic error and u_{it} is the term measuring the (time-varying) technical inefficiency. α_i is (unobserved) region-specific effect and \boldsymbol{f}_t is an $r \times 1$ vector of common factors affecting all regions with heterogeneous loadings $\boldsymbol{\lambda}_i$.

3.1 The CCEX-IV estimator

In order to consistently estimate the heterogeneous stochastic frontier panel data model with both spatial and factor dependence in (8), we propose the use of the CCEX-IV estimator advanced by Chen et al. (2022). Stacking (8) over t, we have:

$$\boldsymbol{y}_{i.} = \rho_i \boldsymbol{y}_{i.}^* + \boldsymbol{X}_{i.} \boldsymbol{\beta}_i + \boldsymbol{X}_{i.}^* \boldsymbol{\pi}_i + \boldsymbol{\varepsilon}_{i.} = \boldsymbol{Z}_{i.} \boldsymbol{\theta}_i + \boldsymbol{\varepsilon}_{i.}, \qquad (10)$$

where $\boldsymbol{y}_{i.} = (y_{i1}, \ldots, y_{iT})', \ \boldsymbol{y}_{i.}^* = (\boldsymbol{I}_T \otimes \boldsymbol{w}_i)\boldsymbol{y} = (y_{i1}^*, \ldots, y_{iT}^*)'$ with \boldsymbol{w}_i the *i*-th row of \boldsymbol{W} , $\boldsymbol{X}_{i.} = (\boldsymbol{x}_{i1}, \ldots, \boldsymbol{x}_{iT})', \ \boldsymbol{X}_{i.}^* = (\boldsymbol{x}_{i1}^*, \ldots, \boldsymbol{x}_{iT}^*)', \ \boldsymbol{Z}_{i.} = (\boldsymbol{y}_{i.}^*, \boldsymbol{X}_{i.}, \boldsymbol{X}_{i.}^*), \ \boldsymbol{\theta}_i = (\rho_i, \boldsymbol{\beta}_i', \boldsymbol{\pi}_i')'$ and $\boldsymbol{\varepsilon}_{i.} = (\varepsilon_{i1}, \ldots, \varepsilon_{iT})'.$ Using $\bar{\boldsymbol{x}}_t = N^{-1} \sum_{i=1}^N \boldsymbol{x}_{it}$ as factor proxies, we construct the following de-factorisation matrix:

$$\tilde{\boldsymbol{M}}_{\bar{\boldsymbol{X}}} = \boldsymbol{M}_{\bar{\boldsymbol{X}}} \otimes \boldsymbol{I}_N \text{ with } \boldsymbol{M}_{\bar{\boldsymbol{X}}} = \boldsymbol{I}_T - \bar{\boldsymbol{X}}(\bar{\boldsymbol{X}}'\bar{\boldsymbol{X}})^+ \bar{\boldsymbol{X}}',$$
 (11)

where $\bar{\boldsymbol{X}} = (\bar{\boldsymbol{x}}_1, \ldots, \bar{\boldsymbol{x}}_T)'$ and $(\bar{\boldsymbol{X}}'\bar{\boldsymbol{X}})^+$ is the Moore-Penrose inverse of $\bar{\boldsymbol{X}}'\bar{\boldsymbol{X}}$. We construct the $NT \times \iota$ matrix of instrumental variables, denoted $\tilde{\boldsymbol{Q}} = (\boldsymbol{M}_{\bar{\boldsymbol{X}}} \otimes \boldsymbol{I}_N)\boldsymbol{Q}$, where the IVs can be obtained by $\boldsymbol{X}_{.t} = (\boldsymbol{x}_{1t}, \ldots, \boldsymbol{x}_{Nt})'$ and their higher order spatial lagged terms such that $\boldsymbol{Q}_{NT \times \iota} = (\boldsymbol{Q}'_{.1}, \ldots, \boldsymbol{Q}'_{.T})'$, where $\boldsymbol{Q}_{.t}$ is an $N \times \iota$ ($\iota \geq (k+1)$) matrix consisting of the ι

columns of the IV set $(\boldsymbol{X}_{.t}, \ldots, \boldsymbol{W}^r \boldsymbol{X}_{.t}, \ldots)$ for each t and for $r = 0, 1, 2, \cdots$.

We can consistently estimate θ_i by the individual CCEX-IV estimator given by

$$\hat{\boldsymbol{\theta}}_{i} = \left(\boldsymbol{Z}_{i.}^{\prime} \boldsymbol{\Pi}_{i} \boldsymbol{Z}_{i.}\right)^{-1} \boldsymbol{Z}_{i.}^{\prime} \boldsymbol{\Pi}_{i} \boldsymbol{y}_{i.}, \qquad (12)$$

where $\Pi_i = \tilde{\boldsymbol{Q}}_i (\tilde{\boldsymbol{Q}}'_i \tilde{\boldsymbol{Q}}_i)^{-1} \tilde{\boldsymbol{Q}}'_i$, $\tilde{\boldsymbol{Q}}_i = \boldsymbol{M}_{\bar{\boldsymbol{X}}} (\boldsymbol{I}_T \otimes \boldsymbol{b}'_i) \boldsymbol{Q}$, and \boldsymbol{b}_i is the $N \times 1$ column vector with the *i*-th entry being 1 and 0 otherwise. Chen et al. (2022) show that as $(N, T) \to \infty$ and $T/N^2 \to 0$, then

$$\sqrt{T}(\hat{\boldsymbol{\theta}}_i - \boldsymbol{\theta}_i) \stackrel{d}{\longrightarrow} N(\mathbf{0}, \boldsymbol{\Omega}_i), \ i = 1, ..., N$$

where a consistent estimator for Ω_i is obtained by

$$\hat{\boldsymbol{\Omega}}_{i} = \left(\frac{\boldsymbol{Z}_{i.}^{\prime}\boldsymbol{\Pi}_{i}\boldsymbol{Z}_{i.}}{T}\right)^{-1} \left(\frac{\boldsymbol{Z}_{i.}^{\prime}\tilde{\boldsymbol{Q}}_{i}}{T}\right) \left(\frac{\tilde{\boldsymbol{Q}}_{i}^{\prime}\tilde{\boldsymbol{Q}}_{i}}{T}\right)^{-1} \hat{\boldsymbol{\Sigma}}_{i} \left(\frac{\tilde{\boldsymbol{Q}}_{i}^{\prime}\tilde{\boldsymbol{Q}}_{i}}{T}\right)^{-1} \left(\frac{\tilde{\boldsymbol{Q}}_{i}^{\prime}\boldsymbol{Z}_{i.}}{T}\right) \left(\frac{\boldsymbol{Z}_{i.}^{\prime}\boldsymbol{\Pi}_{i}\boldsymbol{Z}_{i.}}{T}\right)^{-1}$$
(13)

and Σ_i is the robust estimator of Σ_i given by

$$\hat{\boldsymbol{\Sigma}}_{i} = \hat{\boldsymbol{\Sigma}}_{i,0} + \sum_{h=1}^{p_{T}} \left(1 - \frac{h}{p_{T}+1} \right) \left(\hat{\boldsymbol{\Sigma}}_{i,h} + \hat{\boldsymbol{\Sigma}}'_{i,h} \right),$$

where $\hat{\boldsymbol{\Sigma}}_{i,h} = \sum_{t=h+1}^{T} \hat{e}_{it} \hat{e}_{i,t-h} \tilde{\boldsymbol{q}}_{it} \tilde{\boldsymbol{q}}'_{i,t-h}/T$, p_T is the bandwidth of the Bartlett kernel, $\hat{\boldsymbol{e}}_{i.} = \boldsymbol{M}_{\bar{\boldsymbol{X}}}(\boldsymbol{y}_{i.} - \boldsymbol{Z}_{i.} \hat{\boldsymbol{\theta}}_{i}) = (\hat{e}_{i1}, \dots, \hat{e}_{iT})'$, and $\tilde{\boldsymbol{q}}_{it}$ is the $\iota \times 1$ vector of the *t*-th column of $\tilde{\boldsymbol{Q}}'_{i}$.

Next, we consider the CCEX-IV mean group (MG) estimator for $\boldsymbol{\theta} = E(\boldsymbol{\theta}_i)$ given by¹

$$\hat{\boldsymbol{\theta}}_{MG} = \frac{1}{N} \sum_{i=1}^{N} \hat{\boldsymbol{\theta}}_{i}.$$
(14)

Then, it follows that as $(N,T) \rightarrow \infty$,

$$\sqrt{N}\left(\hat{\boldsymbol{\theta}}_{MG}-\boldsymbol{\theta}\right)\overset{d}{\longrightarrow}N\left(\mathbf{0},\boldsymbol{\Omega}_{MG}
ight),$$

where Ω_{MG} can be consistently estimated by the nonparametric estimator (Pesaran, 2006):

$$\hat{\boldsymbol{\Omega}}_{MG} = \hat{\boldsymbol{\Omega}}_{\xi} = \frac{1}{N-1} \sum_{i=1}^{N} (\hat{\boldsymbol{\theta}}_{i} - \hat{\boldsymbol{\theta}}_{MG}) (\hat{\boldsymbol{\theta}}_{i} - \hat{\boldsymbol{\theta}}_{MG})'.$$
(15)

Remark 1. Econometric methods have been developed for dealing with the spatial and factor dependence, separately. The spatial endogeneity can be resolved by using QML (Lee, 2004) or IV/GMM estimation (Kelejian and Prucha, 1998, 1999). The common factors can be approximated by the PC estimates (Bai, 2009) or the cross-section averages of the variables (Pesaran, 2006). A few studies have recently combined both approaches, e.g. Bai and Li (2014, 2021), Mastromarco et al. (2016), Shi and Lee (2017), Kuersteiner and Prucha (2020) and Yang (2021). Here, we follow the CCEX-IV approach by Chen et al. (2022), who suggest the use of $\bar{\mathbf{x}}_t$ only as proxies for unobserved factors. Though they do not consider the spatial Durbin panel data model explicitly, it is straightforward to extend their approach under the maintained assumption of exogeneity of the regressors, \mathbf{x}_{it} . To develop consistent estimation of the $(2k + 1) \times 1$ parameters, $\boldsymbol{\theta}_i = (\rho_i, \boldsymbol{\beta}'_i, \boldsymbol{\pi}'_i)'$ in (10), we should address two sources of endogeneity: the correlation between \mathbf{x}_{it} and factors and the correlation of the spatial lagged term, y_{it}^* with both factors and idiosyncratic error, v_{it} . Notice that the CCEX approach requires the weaker condition, $T/N \to 0$.

3.2 The estimation of technical efficiency

The production frontier is defined as the maximum attainable output given the level of inputs in such that an inefficiency becomes zero by construction. To evaluate the time-varying inefficiency we follow the approach by Schmidt and Sickles (1984) and Cornwell et al. (1990).²

¹Notice that the pooled estimator is inconsistent in the presence of spatial parameter heterogeneity, as shown by Chen et al. (2022).

²Cornwell et al. (1990) propose the following time-varying specification: $y_{it} = \beta' x_{it} + \alpha_{it} + \varepsilon_{it}$ with $\alpha_{it} = \delta'_i w_t$, where $w_t = (1, t, t^2)'$ and $\delta_i = (\delta_{i1}, \delta_{i2}, \delta_{i3})'$. They estimate δ_i by regressing the residual, $(y_{it} - \hat{\beta}' x_{it})$

We proxy unobserved factors by $\bar{\boldsymbol{x}}_t$ and derive the augmented model of (8) by

$$y_{it} = \rho_i y_{it}^* + \beta'_i \boldsymbol{x}_{it} + \boldsymbol{\pi}'_i \boldsymbol{x}_{it}^* + \boldsymbol{\psi}'_i \bar{\boldsymbol{x}}_t + \alpha^*_i + v^*_{it}, \ i = 1, ..., N, \ t = 1, ..., T$$
(16)

Provided that the augmented model (16) is asymptotically equivalent to the model (8), then technical inefficiency can be obtained by

$$e_{it} = \max_{j} (\alpha_{j}^{*} + \psi_{j}^{'} \bar{\boldsymbol{x}}_{t}) - (\alpha_{i}^{*} + \psi_{i}^{'} \bar{\boldsymbol{x}}_{t}), \ i, j = 1, ..., N, \ t = 1, ..., T$$
(17)

To consistently estimate e_{it} , we need to derive consistent estimates of heterogeneous parameters, α_i^* and ψ_i for i = 1, ..., N. Replacing $\theta_i = (\rho_i, \beta'_i, \pi'_i)'$ by $\hat{\theta}_i$ in (16), we obtain:

$$\tilde{y}_{it} = \alpha_i^* + \psi_i' \bar{x}_t + \tilde{v}_{it}, \ i = 1, ..., N, \ t = 1, ..., T$$
(18)

where $\tilde{y}_{it} = y_{it} - \hat{\rho}_i y_{it}^* - \hat{\beta}'_i \boldsymbol{x}_{it} - \hat{\pi}'_i \boldsymbol{x}_{it}^*$, and $\tilde{v}_{it} = v_{it}^* - (\hat{\boldsymbol{\theta}}_i - \boldsymbol{\theta}_i)' \boldsymbol{z}_{it} = v_{it} + o_p(1)$. For sufficiently large T, we can estimate α_i^* and $\boldsymbol{\psi}_i$ consistently by the OLS estimator, denoted $\hat{\alpha}_i^*$ and $\hat{\boldsymbol{\psi}}_i$, from the regression of (18) for each i. Hence, the individual time-varying technical inefficiency can be consistently estimated by

$$\hat{e}_{it} = \max_{j} (\hat{\alpha}_{j}^{*} + \hat{\psi}_{j}' \bar{x}_{t}) - (\hat{\alpha}_{i}^{*} + \hat{\psi}_{i}' \bar{x}_{t}), \ i, j = 1, ..., N, \ t = 1, ..., T$$
(19)

Finally, the time-varying individual and common technical efficiencies, denoted τ_{it} , can be estimated by

$$\hat{\tau}_{it} = \exp(-\hat{e}_{it}) \tag{20}$$

Remark 2. This is the approach adopted by Mastromarco et al. (2016). Here time-varying (in)efficiencies are measured by evaluating individual effects and factors components. By placing the unit with the largest value on the frontier, the individual inefficiency is estimated as the exponential of the difference between the effect of the best performing unit and that of each of the other units in the sample. Importantly, this approach can avoid the restrictive distributional assumption on efficiency and the over-parameterisation (Cornwell et al., 1990). Another advantage lies in that the spatio-temporal behaviour of inefficiency is so flexible that it increases or decreases and its cross-sectional membership changes over time.

3.3 Productivity network analysis

Stacking the individual SDSF regressions, (8) over N, we have the following spatial system representation:

$$\begin{aligned} \boldsymbol{y}_t &= \boldsymbol{P} \boldsymbol{W} \boldsymbol{y}_t + \boldsymbol{B} \boldsymbol{x}_t + \boldsymbol{\Pi} (\boldsymbol{W} \otimes \boldsymbol{I}_k) \boldsymbol{x}_t + \boldsymbol{\varepsilon}_t \\ \boldsymbol{\varepsilon}_t &= \boldsymbol{v}_t - \boldsymbol{u}_t \text{ with } \boldsymbol{u}_t = \boldsymbol{\alpha} + \boldsymbol{\Lambda} \boldsymbol{f}_t \end{aligned}$$
 (21)

on \boldsymbol{w}_t for each *i*. The fitted values provide an estimate of α_{it} , denoted $\hat{\alpha}_{it}$. Then, they propose estimating the time-varying individual technical inefficiency by $\max_j \hat{\alpha}_{jt} - \hat{\alpha}_{it}$ for i, j = 1, ..., N and t = 1, ..., T.

where $\boldsymbol{y}_t = (y_{1t}, ..., y_{Nt})', \ \boldsymbol{x}_t = (\boldsymbol{x}'_{1t}, ..., \boldsymbol{x}'_{Nt})', \ \boldsymbol{f}_t = (f_{1t}, ..., f_{rt})', \ \boldsymbol{\Lambda} = (\boldsymbol{\lambda}_1, ..., \boldsymbol{\lambda}_N)', \ \boldsymbol{W}$ is the $N \times N$ spatial weights matrix, and $\boldsymbol{P} = diag(\rho_1, ..., \rho_N), \ \boldsymbol{B} = diag(\boldsymbol{\beta}'_1, ..., \boldsymbol{\beta}'_N),$ $\boldsymbol{\Pi} = diag(\boldsymbol{\pi}'_1, ..., \boldsymbol{\pi}'_N)$ are diagonal matrices consisting of the heterogeneous parameters.

Notice that the coefficients on the regressors in (8) cannot be interpreted as the marginal effects. For homogeneous static panels, LeSage and Pace (2009) propose an average of the diagonal elements of the matrix of partial derivatives as a summary measure of direct effect whilst the cumulative sum of off-diagonal elements is interpreted as indirect effects. In heterogeneous panels, LeSage and Chih (2016) enrich the interpretation of the elements of the partial derivative matrix, noticing that the off-diagonal elements in the rows are different from those in the columns.

To define a measure of the direct and indirect effects of the regressors on the dependent variable, we consider the following transformation of (21):

$$\boldsymbol{y}_{t} = (\boldsymbol{I}_{N} - \boldsymbol{P}\boldsymbol{W})^{-1} (\boldsymbol{B} + \boldsymbol{\Pi}(\boldsymbol{W} \otimes \boldsymbol{I}_{k})) \boldsymbol{x}_{t} + (\boldsymbol{I}_{N} - \boldsymbol{P}\boldsymbol{W})^{-1} \boldsymbol{\varepsilon}_{t}$$

$$= (\boldsymbol{I}_{N} - \boldsymbol{P}\boldsymbol{W})^{-1} (\boldsymbol{B} + \boldsymbol{\Pi}(\boldsymbol{W} \otimes \boldsymbol{I}_{k})) \boldsymbol{x}_{t} + (\boldsymbol{I}_{N} - \boldsymbol{P}\boldsymbol{W})^{-1} \boldsymbol{v}_{t} - (\boldsymbol{I}_{N} - \boldsymbol{P}\boldsymbol{W})^{-1} (\boldsymbol{\alpha} + \boldsymbol{\Lambda}\boldsymbol{f}_{t})$$

$$(22)$$

where the term $(I - PW)^{-1}$ links the dependent variable to the regressors x_t and inefficiency terms. We construct heterogeneous direct, spill-in and spill-out effects for the *i*th region as

- Heterogeneous Direct Effect (HDE): the direct effect of the inputs on the output, given by the *i*th diagonal element of $(I_N - PW)^{-1} (B + \Pi(W \otimes I_k))$.
- Heterogeneous Spill-in Effect (HSI): the sum of the effects of the inputs from all the other regions on the ouput in the *i*th region, given by *i*th row-sum minus *i*th diagonal element of $(\mathbf{I}_N \mathbf{PW})^{-1} (\mathbf{B} + \mathbf{\Pi}(\mathbf{W} \otimes \mathbf{I}_k))$.
- Heterogeneous Spill-out Effect (HSO): the sum of the effects of the effect from the *i*th region on the output in all the other regions, given by the *i*th column-sum minus *i*th diagonal element of $(I_N PW)^{-1} (B + \Pi(W \otimes I_k))$.

Remark 3. For the network-oriented approach in this section, we need only \sqrt{T} -consistent estimators of the individual heterogeneous parameters. A pooled or mean group estimator will net out heterogeneous signs and, therefore, fails to examine the relative importance of individual nodes beyond what is assumed ex ante via \mathbf{W} . For the mean group estimator, although consistency and asymptotic normality could be established under the random parameter assumption, in many practical applications, there is no economic reason to expect the coefficients of the model to share a common sign (e.g. Shin and Thornton, 2021).

Our approach may operate at two extremes: (i) complete aggregation, where the N(N-1) bilateral linkages among N individual regions are aggregated into the single indices (e.g.

Diebold and Yılmaz, 2014), and (ii) no aggregation, where the N(N-1) bilateral linkages are studied at the individual regional level. We follow the GCM approach proposed by Greenwood-Nimmo et al. (2021) and introduce intermediate levels of aggregation by analysing the R(R-1) bilateral linkages among R groups. We express the $N \times N$ matrix, $(\mathbf{I}_N - \mathbf{PW})^{-1} (\mathbf{B} + \mathbf{\Pi}(\mathbf{W} \otimes \mathbf{I}_k))$ as

$$\mathbf{C}_{(N\times N)} = \begin{bmatrix} \phi_{1\leftarrow 1} & \cdots & \phi_{1\leftarrow N_{1}} & \phi_{1\leftarrow N_{1}+1} & \cdots & \phi_{1\leftarrow N_{1}+N_{2}} & \cdots & \phi_{1\leftarrow N} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \phi_{N_{1}\leftarrow 1} & \cdots & \phi_{N_{1}\leftarrow N_{1}} & \phi_{N_{1}\leftarrow N_{1}+1} & \cdots & \phi_{N_{1}\leftarrow N_{1}+N_{2}} & \cdots & \phi_{N_{1}\leftarrow N} \\ \phi_{N_{1}+1\leftarrow 1} & \cdots & \phi_{N_{1}+1\leftarrow N_{1}} & \phi_{N_{1}+1\leftarrow N_{1}+1} & \cdots & \phi_{N_{1}+1\leftarrow N_{1}+N_{2}} & \cdots & \phi_{N_{1}+1\leftarrow N} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \phi_{N_{1}+N_{2}\leftarrow 1} & \cdots & \phi_{N_{1}+N_{2}\leftarrow N_{1}} & \phi_{N_{1}+N_{2}\leftarrow N_{1}+1} & \cdots & \phi_{N_{1}+N_{2}\leftarrow N_{1}+N_{2}} & \cdots & \phi_{N_{1}+N_{2}\leftarrow N} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \phi_{N\leftarrow 1} & \cdots & \phi_{N\leftarrow N_{1}} & \phi_{N\leftarrow N_{1}+1} & \cdots & \phi_{N\leftarrow N_{1}+N_{2}} & \cdots & \phi_{N\leftarrow N} \end{bmatrix} .$$

$$(23)$$

The (k, ℓ) th block in (23), denoted as $\mathbf{B}_{k \leftarrow \ell}$ for $k, \ell = 1, ..., R$, is given by:

$$\mathbf{B}_{k\leftarrow\ell} = \begin{bmatrix} \phi_{\tilde{N}_k+1\leftarrow\tilde{N}_\ell+1} & \cdots & \phi_{\tilde{N}_k+1\leftarrow\tilde{N}_\ell+N_\ell} \\ \vdots & \ddots & \vdots \\ \phi_{\tilde{N}_k+N_k\leftarrow\tilde{N}_\ell+1} & \cdots & \phi_{\tilde{N}_k+N_k\leftarrow\tilde{N}_\ell+N_\ell} \end{bmatrix},$$
(24)

where $\widetilde{N}_k = \sum_{j=1}^{k-1} N_j$ for k = 2, ..., R, and $\widetilde{N}_1 = 0$. We evaluate the sum of the elements of $\mathbf{B}_{k \leftarrow \ell}$ and normalise it by the average number of regions in the pair as:

$$\psi_{k\leftarrow\ell} = \frac{1}{0.5(N_k + N_\ell)} \boldsymbol{\iota}'_{N_k} \mathbf{B}_{k\leftarrow\ell} \boldsymbol{\iota}_{N_\ell},$$
(25)

where $\boldsymbol{\iota}_{N_k}$ is an $N_k \times 1$ column vector of ones. Then, we can construct the following $R \times R$ connectedness matrix at the group level:

$$\mathbf{C}_{R}_{(R\times R)} = \begin{bmatrix} \psi_{1\leftarrow 1} & \psi_{1\leftarrow 2} & \cdots & \psi_{1\leftarrow R} \\ \psi_{2\leftarrow 1} & \psi_{2\leftarrow 2} & \cdots & \psi_{2\leftarrow R} \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{R\leftarrow 1} & \psi_{R\leftarrow 2} & \cdots & \psi_{R\leftarrow R} \end{bmatrix}.$$
(26)

It is straightforward to derive the direct, spill-in and spill-out effects at the group level using (26), denoted GDE, GSI and GSO, by

$$GDE_i = \psi_{i \leftarrow i}; \ GSI_i = \sum_{j=1, j \neq i}^R \psi_{i \leftarrow j}; \ GSO_i = \sum_{j=1, j \neq i}^R \psi_{j \leftarrow i}.$$

We construct the group net effect (GNE) by the difference between GSO and GSI, which enables us to distinguish between net-transmitting and net-receiving groups, respectively.

Finally, we follow Shin and Thornton (2021) and construct the External Motivation (EM) and Systemic Influence (SI) indices given by

$$EM_i = \frac{GSI_i}{ATOT_{i \leftarrow \bullet}}; \quad SI_i = \frac{GNE_i}{TNP_i}, \tag{27}$$

where $ATOT_{i\leftarrow \bullet} = \sum_{j=1}^{R} |\psi_{i\leftarrow j}|$ is the absolute row-sum for group *i*, and $TNP_i = 0.5 \sum_{i=1}^{N} |NE_i|$ is the total absolute net effects. EM_i measures the relative importance and direction of GSI in determining the conditions in the *i*th regional efficiency cluster while SI_i captures the systemic influence of the *i*th group.³

Remark 4. In the empirical application, we apply the regional productivity network analysis to the five efficiency clusters constructed using the regional efficiencies ranking. We demonstrate that the coordinate pair (EM_i, SI_i) will provide a vivid representation of efficiency cluster's relative position in the EU productivity network. The identification of this regional productivity network is important for understanding the main channel of productivity growth. The presence of interconnections between regions plays an important role, functioning as potential propagation mechanism of productivity shocks. We document evidence that there is the tendency for efficiency clusters to gather along a line from northwest to southeast. An efficiency cluster in the northwest (southeast) quadrant would be one for which spill-outs (spill-ins) outweigh spill-ins (spill-outs), leading to a positive (negative) net connectedness which corresponds to the technologically superior (inferior) efficiency cluster.

4 Empirical Results

Our data are sourced from "EUROSTAT, Cambridge Econometrics European Regional Database (ERD)," covering EU27 countries (not including Croatia). While the original EU15 data covers the period 1980-2019, the data for the 12 new member states are only available during 1990-2019. To employ the longer period (1980-2019), we consider the dataset consisting of 202 regions in the EU15 (Austria (AT), Belgium (BE), Germany (DE), Denmark (DK), Greece (EL), Spain (ES), Finland (FI), France (FR), Ireland (IE), Italy (IT), Luxembourg (LU), the Netherlands (NL), Portugal (PT), Sweden (SE), United Kingdom (UK)).

 $^{{}^{3}}EM_{i}$ and SI_{i} stay within [-1, 1]. If $EM_{i} \to 1(-1)$, then the output in group *i* is dominated by positive (negative) GSIs, as opposed to direct effects. If group *i* receives contradictory spill-ins and/or if GSI is small in comparison to direct effects, then $EM_{i} \to 0$. If $0 \leq SI_{i} \leq 1$ $(-1 \leq SI_{i} \leq 0)$, then group *i* is a net shock transmitter (receiver). If SI_{i} is close to zero, then group *i* is neutral with its GSOs matching GSIs.

Regional output is constructed as regional gross value added (GVA) plus taxes less subsidies on products, measured at constant euro price in 2005. Labour is measured as total employment in thousands, and capital (in millions Euros) is constructed using the perpetual inventory method (PIM).⁴ All three variables are logged before we estimate the following spatial Durbin production function with unobserved factors:

$$y_{it} = \rho_i y_{it}^* + \beta_i k_{it} + \pi_i k_{it}^* + \varepsilon_{it},$$

$$\varepsilon_{it} = v_{it} - u_{it} = v_{it} - (\alpha_i + \boldsymbol{\lambda}_i' \boldsymbol{f}_t), \ i = 1, \dots, N; \ t = 1, \dots, T,$$
(28)

where y_{it} is the logged labor productivity (output/labor) and k_{it} the logged capital intensity (capital/labor) for region *i* at time *t*. The spatial lagged term and the Durbin term are given by $y_{it}^* = \sum_{j=1}^N w_{ij}y_{it}$ and $k_{it}^* = \sum_{j=1}^N w_{ij}k_{it}$ with w_{ij} being the (i, j)-th element of the spatial weighting matrix. To capture technological proximity among EU regions we construct the spatial weighting matrix based on technological distance (e.g. Basile et al., 2012). We construct the dissimilarity measure by

$$tech_{ij} = \frac{\sum_{k=1}^{K} |s_{ik} - s_{jk}|}{\sum_{k=1}^{K} (s_{ik} + s_{jk})}, \ i, j = 1, ..., N$$
(29)

where s_{ik} is the employment share of sector k at region i with K = 6.5 In the literature on the economic structure this measure of dissimilarity has been preferred to the Euclidean distance (e.g. De Benedictis and Tajoli, 2007). We then construct the row-sum normalised weights matrix with inverse technological distance, denoted W_{tech} as a measure of technological proximity. The main idea is that regions similar in technology proximity will be more receptive to externally produced knowledge. Several studies suggest that being technologically similar to other regions increases the likelihood to absorb new knowledge produced outside, because

⁴PIM is necessitated by the lack of the capital stock data in all EU regions. For an individual region, the capital stock is constructed as $K_t = K_{t-1} (1 - \theta) + I_t$, where I_t is investment (gross fixed capital formation measured at constant euro price in 2005) and θ is the rate of depreciation assumed to be 6% (e.g. Hall and Jones, 1999; Iyer et al., 2008). Repair and maintenance are assumed to keep the physical production capabilities of an asset constant during its lifetime. Initial capital stocks are constructed, assuming that capital and output grow at the same rate. Specifically, for region with investment data beginning in 1980, we set the initial stock, $K_{1980} = I_{1980}/(g + \theta)$, where g is the 10-year output growth rate from 1980 to 1990. Estimated capital stock includes both residential and non-residential capital.

⁵In the Cambridge Econometrics database, the NACE2 Sectors are aggregated as follows: 1. Agriculture, Forestry and Fishing; 2. Industry - excluding Construction; 3. Construction; 4. Wholesale, Retail, Transport, Accommodation and Food Services, Information and Communication; 5. Financial and Business Services; 6. Non-market Services.

the higher is the likelihood that the production knowledge can be understood and efficiently adopted (e.g. Bode, 2004; Aldieri and Cincera, 2009).

To conduct the regional productivity network analysis, we proceed as follows.

- First, we estimate the spatial Durbin stochastic frontier (SDSF) model, (28) with heterogeneous parameters and unobserved factors by the CCEX individual and MG estimators, using $\hat{F}_t = (1, \bar{k}_t)'$ as proxies for the individual effect and unobserved factors. We then employ $(\tilde{X}, \tilde{X}^*, \tilde{X}^{2*})$ as the IVs for the spatial lagged term, y_{it}^* where $\tilde{X} = (M_{\hat{F}} \otimes I_N) X, \tilde{X}^* = (M_{\hat{F}} \otimes I_N) (I_T \otimes W) X$ and $\tilde{X}^{2*} = (M_{\hat{F}} \otimes I_N) (I_T \otimes W^2) X$ with $M_{\hat{F}} = I_T - \hat{F} (\hat{F}' \hat{F})^{-1} \hat{F}'$ and $X = (X'_{.1}, \ldots, X'_{.T})'$ (see (12) and (14)).
- Next, as the stochastic frontier model implicitly assumes the presence of the common global frontier (all units inside the production set may reach the maximum product given a common technology), we propose estimating individual (in)efficiencies using the MG estimator (see the derivations in (16)-(20)).⁶ Based on the regional efficiency ranking, we construct the five efficiency clusters where the first quintile is the group with the highest efficiencies and the 5th is the group with the lowest efficiencies.
- Finally, we apply the generalised connectedness measure (GCM) and the output network analysis advanced by Greenwood-Nimmo et al. (2021) and Shin and Thornton (2021) to the five efficiency clusters, so as to analyse the diffusion impacts of the capital intensity on the labour productivity in the EU regions (see Section 3.3).

In Table 1 we present the MG estimation results for the SDSF model in (28). For comparison we report the estimation results for the spatial Durbin panel data model with fixed effects only using the spatial FE-IV estimator.⁷ Notice that when computing the MG estimates, we exclude 11 regions with their spatial coefficient outside (-1,1). As an ex-post diagnostic, we report the CD test (Pesaran, 2015) results applied to the residuals and the CSD exponent estimate, denoted α (Bailey et al., 2016). For the spatial FE-IV estimator, the CD test convincingly rejects the null of weak CSD while α is estimated at 0.972, suggesting the presence of strong CSD. On the contrary, the null of weak CSD is not rejected with a much lower estimate of α at 0.5 for the CCEX-IV estimator. Hence, the spatial FE-IV estimation results are likely to be biased and unreliable (e.g. Pesaran, 2006; Bai, 2009). In what follows, we focus on the CCEX-IV estimation results, from which we find that all coefficients are positive and statistically significant. There is strong evidence in favor of the positive spillover ($\hat{\rho}_{MG} = 0.319$). The own regional impact ($\hat{\beta}_{MG} = 0.44$) of the capital

⁶In particular, we obtain: $\tilde{y}_{it} = y_{it} - \hat{\rho}_{MG} y_{it}^* - \hat{\beta}'_{MG} x_{it} - \hat{\pi}'_{MG} x_{it}^*$ in (18). ⁷We first apply the within transformation to get rid of individual effects, and apply the IV estimation using the same set of instruments as in the the CCEX-IV estimator.

intensity on the labour productivity is also substantial and larger than the neighbour impacts $(\hat{\pi}_{MG} = 0.315).$

Table 1 about here

We investigate some stylised patterns of the cross-sectional distributions of the heterogeneous coefficients on y_{it}^* , k_{it} , and k_{it}^* , respectively. Figure 1 displays the kernel densities of the individual coefficients, $\hat{\rho}_i$, $\hat{\beta}_i$ and $\hat{\pi}_i$ while Table 2 presents the descriptive statistics. Out of a total of 202 regions, we observe that $\hat{\rho}_i > 1$ only for 11 regions while they become negative but mostly insignificant (24 out of 30). This implies that most EU regions tend to gain a positive spillover due to technological proximity. Further, we observe that negative and low ρ coefficients are observed mostly in peripheral regions of Ireland, Greece, Norway, Spain, Portugal and Sweden, while the higher spatial coefficients are clustered in central and northern core regions (see Figure 2). This suggests that the positive spatial productivity networks occur across the regions if they share technological proximity. This evidence provides the support for the central role played by core regions in spreading technological innovation and the relatively low productivity of EU peripheries, the latter of which may reflect the fact that relatively poor infrastructure in peripheral regions would create barriers to the technology diffusion.

Table 2 and Figures 1 and 2 about here

Next, we analyse the spatial patterns of the impacts of the (own) capital intensity on the labour productivity (β). They are quite heterogeneous but mostly positive (around 15% are negative, see Figure 1). Negative β coefficients are mostly observed in peripheral regions in Greece, Portugal and Spain (Figure 3), where their poor infrastructure hampers a country's ability to trade in the global economy and adopt the technology diffusion. Interestingly, we find that the impacts of the capital intensity tend to be smaller in some core regions in Germany, the Netherlands, Norway and Sweden than in peripheral regions in Italy and Spain (Figure 3). This may imply that the labour productivity is likely to be largely enhanced by high-tech investments in rich and core regions, that is in line with the evidence that these regions are more likey to adopt R&D intensive production technology. Furthermore, the higher β coefficient combined with the lower ρ coefficient observed for some peripheral regions may suggest that the production technology in these regions is more likely to be dominated by (inferior) domestic production inputs rather than efficient production technology transferred from core regions.

Figure 3 about here

Finally, we analyse the spatial patterns of the impacts of (neighbours) capital intensity on the labour productivity (π). Overall, they are positive but more heterogeneous and volatile than domestic counterparts (β) (see Figure 1). These effects tend to be more positive in the higher income regions of Belgium, Germany, Italy, the Netherlands, Norway and Spain, which are able to adopt advanced production technology (Figure 4).

Figure 4 about here

Notice, however, that the coefficients in the model (28) are no longer interpreted as the marginal impacts. In this regard, we follow LeSage and Chih (2016) and Shin and Thornton (2021), and analyse the cross-sectional distributions of the heterogeneous direct effect (HDE), heterogeneous spill-in effect (HSI), and heterogeneous spill-out effect (HSO) of the capital intensity on the labour productivity, respectively. We display kernel densities of HDE, HSI and HSO in Figure 5, and present their spatial distributions in Figures 6 and 7. The higher direct effects are concentrated in the UK and Spanish regions while the lower HDEs are largely observed in regions in Greece, Portugal, Italy, Sweden and Norway. HSIs show quite a different pattern as the higher effects are displayed in Germany, Italy, Spain, Portugal and Sweden while the UK and Greece produce the lower values. Finally, the spatial pattern of HSO is somewhat similar to that of HDE and core regions in UK, Finland, Germany, France, Spain and Italy display high values. It is important to highlight that the higher values of HSO, which capture the sum of the impacts of the capital intensity from region i on the labour productivity of all other regions, are mostly concentrated in central and northern core regions, whilst the higher values of HSI, which collects the sum of the impacts of the capital intensity from all other regions on the labour productivity of region i, are largely observed in peripheral regions in Italy, Spain and Portugal. This contrasting evidence demonstrates the central role played by core regions in spreading technological innovations to the less productive peripheral regions. Under EU policy agenda, the low income regions have always drawn considerable attention due to their economic and social problems. Recently, however, middle-income trapped regions have also attracted interests (Diemer et al., 2022), because they have experienced lengthy periods of low growth, weak productivity and employment loss. Our evidence may help the policy makers to identify the core regions, which may boost, through technological diffusion, productivity growth to economically trapped regions.

Table 3 and Figures 5–7 about here

We turn to the estimation of technical efficiency as described in Section 3.2. Under the maintained assumption that there is a common EU production frontier, we estimate the SDSF model, (28) by the CEEX-IV MG estimator, and evaluate individual efficiencies as in (19) and (20). According to the average efficiency level of each region over the full sample

period reported in Table 4, we group the regions by the five efficiency clusters in descending order (R = 5). In Figure 8 we display the distribution of the five efficiency clusters across countries. Apart from Luxembourg with the only region, Denmark and Ireland contain the higher proportion of regions belonging to the top quintile. On the other hand, the higher proportions of regions belonging to the bottom quintile, are concentrated in Mediterranean countries, i.e. Portugal, Spain and Greece. Remarkably, this efficiency ranking is broadly consistent with the core-periphery regional decomposition in the EU.

Table 4 and Figure 8 about here

Table 5 presents the MG estimation results of the SDSF model for these 5 efficiency clusters. The impacts of the capital intensity on the labour productivity (β) tend to be in descending order, the strongest (0.55) in the 1st quintile cluster and the weakest (0.17) in the 5th cluster. On the other hand, the reverse pattern is observed for the Durbin coefficients (π). Finally, the spatial coefficients (ρ) exhibit slightly inverse-U shape with the 1st quintile exhibiting the weakest impact (0.2). Combining the patterns of ρ and π , we may conclude that the relatively inefficient clusters are more likely to be influenced by technology spillover from efficiency clusters. This is especially so for peripheral regions of Mediterranean countries, which mostly populate the lowest quintile.

Table 5 about here

Tables 6 and 7 present the regional efficiency rankings at the first (1980) and the last period (2019), respectively. We also display the spatial distributions of efficiency levels in Figure 9. In 1980 the top quintile of efficiency distribution contains mostly core regions from Belgium, Denmark, Germany, Greece, Ireland, Italy, the Netherlands, Sweden and the UK, whereas in 2019, the top quintile consists of core regions from Belgium, France, Germany, Ireland, the Netherlands, Sweden and the UK (the seven regions).⁸ On the other hand, the bottom quintile consists of the border regions from Greece, Italy, Finland, Portugal, Spain, Sweden and the UK in 1980, whilst it manly consists of the regions from Greece, Portugal, Spain and Southern Italy in 2019. This provides a support that inefficient regions have recently become more concentrated in Mediterranean countries. During the whole period, the regions of the major cities did not register any significant change in terms of efficiency ranking, with the exception of the Lisbon region. On the contrary, technical efficiencies showed improvements only for some peripheral areas in Austria, Germany, the UK and the Nordic countries, whilst those in the Mediterranean countries worsened, confirming the growing regional inequality.

⁸Indeed, during this period, the British regions were able to become more productive and diffuse production technological spillovers.

Tables 6–7 and Figure 9 about here

Figure 10 displays the spatial distributions of regional per capita GDP in the first and last periods,⁹ revealing that the level of regional disparities remains high as documented in EU and OECD (2019), OECD (2022). Over the full sample period, the Northern and the UK regions registered the highest growth rates of the labour productivity whereas the Mediterranean regions (especially, Greece) became stagnant even with negative growth rates, see European Commission and Inclusion (2019) and OECD (2021). Globalisation and technological progress have produced important macroeconomic benefits in knowledge-intensive sectors. This has mainly advantaged large cities where the high-value added services became more concentrated OECD (2019). However, this concentration/agglomeration raises equity concerns, making a regional convergence more challenging (Moretti, 2021). A growing literature documents the emergence of subnational economic clubs of development, consisting of regions with wide differences in dynamics of income, employment, industrial composition, education, productivity, innovation, urbanization and demography. This is generating a Europe of different speeds. Labour mobility also fails to reduce territorial inequality. Within-country migration trends in Europe have remained relatively low over the last three decades (Iammarino et al., 2017; European Commission and Inclusion, 2019). The COVID pandemic could also aggravate regional inequalities. For instance, despite a worse sanitary situation in the North, Southern Italian regions recorded the same employment loss during the first pandemic wave (Arbolino and Caro, 2021). The main reason is that poor regions have relatively fewer workers who can telework (IMF, 2020). Fundamentally, due to lessdiversified economies and weaker institutions, these regions may struggle to reallocate the resources, leaving them more exposed to economic shocks.

Figure 10 about here

In Figure 11 we present the evolution of the GDP per capita across the five efficiency clusters. Within each cluster, we evaluate the quintile share ratio (QR) as the ratio of the top 20% to the bottom 20% quintile of the per capita GDP distribution, that represents a measure of the polarisation of income distribution.¹⁰ Remarkably, the most inefficient regions in the 5th quintile are the most polarised. Regional disparities in the EU significantly declined until the global financial crisis, but renewed divergence has been observed in its aftermath, see OECD (2021). Even the regions in the first and the second efficient clusters exhibited an increasing polarisation over the last decade. Hence, we may conclude that this wide-spread

 $^{^{9}}$ Notice that the spatial pattern of efficiency is significantly and positively correlated with that of per capita GDP; 0.74 in 1980 and 0.85 in 2019.

¹⁰It captures the phenomenon of clustering around extreme poles. The more the distribution is polarised, the higher is the quintile share ratio.

polarisation, which started even before the financial crisis but intensified over the last decade, mainly reflects the global/European 'race for the best location'.

Figure 11 about here

To further investigate whether there is any evidence of regional efficiency convergence in the EU, we evaluate the probability of moving from one cluster to the other clusters over time. Figure 12 displays the transition probability matrix.¹¹ Perfect immobility will follow if the transition matrix becomes an identity matrix whilst perfect mobility might determine any matrix with zeros on the diagonal (no one ends where they started) or everyone has an equal probability of winding up in the various possible slots next period, regardless of starting positions. We find very little evidence of mobility across the five clusters, suggesting that there is evidence of a sluggish technological catch-up among the EU regions.

Figure 12 about here

Our findings suggest that polarisation and regional disparities tend to persist among the EU regions, while productivity convergence occurs only among core regions with similar technologies. This is in line with the previous studies, highlighting the importance of detecting the main drivers behind regional productivity growth to spur catching-up process of poorer EU regions (e.g. Quah, 1997; Magrini, 1999; Fiaschi et al., 2018). Moreover, several regions with efficiency level close or below the EU average, seem to be stuck in a "middle-low income trap".¹² The manufacturing sector in these regions is much smaller and weaker while their innovation system is not strong enough (e.g. Iammarino et al., 2017). To improve their performance, multiple changes need to occur at the same time: a stronger exportorientation, a shift into new sectors and activities, a boost to research and innovation, an increase in education and training, and an improvement in the business environment. Our evidence conveys the important policy recommendation: the richer regions may diffuse good management practices and production technological shocks to the poorer ones.

Finally, we conduct the network analysis as described in Section 3.3. We are particularly interested in investigating the productivity connectedness across the EU regions. To this end we apply the CGM network analysis of the causal impacts of the capital intensity

¹¹The transition probability from one state to another is evaluated as $p_{ij} = \Pr(X_t = i | X_{t-1} = j) = \frac{N_{ij}}{\sum_{j=1}^{n} N_{ij}}$, where N_{ij} is the cell count and $\sum_{j=1}^{n} N_{ij}$ is the row sum. ¹²As noticed by Diemer et al. (2022), traps are part of the family of concepts that consider the possibilities

¹²As noticed by Diemer et al. (2022), traps are part of the family of concepts that consider the possibilities for lower-income economies to catch-up with the leaders by virtue of the gradual narrowing of their income and productivity gaps (e.g. Fagerberg, 1994; Fagerberg and Godinho, 2004). Trap models are especially concerned with a particular breakdown of the catch-up process, consisting of growth slowdowns after a period of rapid take-off growth.

on the labour productivity to the five efficiency clusters in the EU. This analysis enables us to examine the role of each efficiency cluster in the diffusion of technological shocks. Table 8 reports the direct, spill-in, spill-out effects of the capital intensity on the labour productivity across the five efficiency clusters. The direct effects are substantially large for all clusters (higher than 60%) except for the 5th cluster (35%). Spill-out effects dominate spillin effects for efficient clusters while the opposite pattern is observed for inefficient clusters. Consequently, the net effect is positive for the 1st and 2nd clusters, close to 0 for the 3rd cluster, but negative for the 4th and 5th clusters. This implies that the more efficient clusters (mostly corresponding to core regions) are the influential transmitter of production input shocks whereas the less efficient clusters become net receivers. Interestingly, we observe that the middle efficiency clusters 3 and 4 are more active in terms of bivariate interactions (the highest SI is observed for cluster 4 while the highest SO for cluster 3).

Table 8 about here

Next, we analyse how dependent is the *i*th efficiency cluster on external conditions from other clusters and to what extent the *i*th cluster influences or is influenced by the system as a whole. EM_i measures the relative importance and direction of spill-in effects in determining the conditions in the *i*th cluster while SI_i captures the systemic influence of the ith cluster, see (27). Figure 13 displays the coordinate pair (EM_i, SI_i) that will provide a vivid representation of the relative position of the five efficiency cluster in the EU regional productivity network. We find that the external motivation is always positive across all clusters. Remarkably, the five efficiency clusters tend to lay along a line from north-west to south-east, since positive spill-ins contribute negatively to a cluster's net effect. For the regions in the top efficient clusters spill-outs dominate spill-ins, which leads to a positive net connectedness. Thus, these clusters are the influential net transmitters of production input shocks. Conversely, the regions in the bottom inefficient clusters become the passive receivers of production shocks since their spill-ins outperform spill-outs, leading to a negative net connectedness. Our regional productivity network analysis can unveil that the technological shock diffuses from the better performing regions operating on or near the production frontier to inefficient regions operating well below the production frontier. This demonstrates that the relative position in the dependence-influence space can make an intuitive measure of capability to spur and absorb productivity spillovers.

Figure 13 about here

Our main empirical findings have the important policy implications. Recent developments of endogenous growth theories emphasise the different roles that appropriate institutions and policies may play in either backward or advanced economies as well as the distinction between innovation activities and an adoption of existing technologies from the global production frontier (e.g. Acemoglu et al., 2006; Jones, 2016). In this regard we suggest that policies to enhance domestic absorption capacity appear better suited to technology adoption by net receivers of technological shocks whilst policies to attract more investments in the highskilled human capital and R&D are more appropriate to the transmitters of production technological shocks (e.g. Vandenbussche et al., 2006).

5 Conclusions

We have developed a unified stochastic frontier model which controls for the local spatial correlation and the global factor dependence as well as parameter heterogeneity, simultaneously, and derived the corresponding empirical specification by the spatial Durbin stochastic frontier (SDSF) model with heterogeneous parameters and unobserved factors, in which technological interdependence is spatially dependent while technical inefficiencies are subject to the global factor dependence.

We proposed the regional productivity diffusion network analysis in the EU as follows: First, we estimate the SDSF model consistently by the CCEX-IV estimator recently advanced by Chen et al. (2022). Next, we propose estimating individual (in)efficiencies using the approach by Cornwell et al. (1990), and construct the five efficiency clusters based on the regional efficiency rankings. Finally, we conduct the GCM-based network analysis, and analyse the diffusion impacts of the capital intensity on the labour productivity in the EU regions. We demonstrate the utility of our proposed approach with an application to the dataset consisting of 202 regions in the EU15 countries over the period, 1980–2019.

The proposed regional network analysis in the EU highlights the importance of explicitly modelling the production/efficiency network to better understand the main determinants behind the sustainable productivity growth. We suggest that policymakers should promote regional productivity growth by establishing the necessary network infrastructure and by providing incentives to support the development of domestic innovative capabilities conducive to absorb new technology advances. We also stress the importance of investing European funds in peripheral regions to address regional inequality and polarisation. Without such coordinated policies, large differences in the production structure and the highly unequal distribution of technological capabilities in the EU regions would be self-reinforcing and intensifying polarisation and divergence. In this regard, the European funding "Next Generation EU" should aim to build a more resilient, sustainable and digital friendly Europe.

References

- Acemoglu, D., Aghion, P., and Zilibotti, F. (2006). Distance to Frontier, Selection, and Economic Growth. *Journal of the European Economic Association*, 4(1):37–74.
- Ahn, S. C., Lee, Y. H., and Schmidt, P. (2007). Stochastic frontier models with multiple time-varying individual effects. *Journal of Productivity Analysis*, 27(1):1–12.
- Aldieri, L. and Cincera, M. (2009). Geographic and technological R&D spillovers within the triad: micro evidence from US patents. *The Journal of Technology Transfer*, 34(2):196– 211.
- Aquaro, M., Bailey, N., and Pesaran, M. H. (2021). Estimation and inference for spatial models with heterogeneous coefficients: An application to us house prices. *Journal of Applied Econometrics*, 36(1):18–44.
- Arbolino, R. and Caro, P. D. (2021). Can the eu funds promote regional resilience at time of covid-19? insights from the great recession. *Journal of Policy Modeling*, 43(1):109–126.
- Arrow, K. J. (1962). The economic implications of learning by doing. The Review of Economic Studies, 29(3):155–173.
- Bai, J. (2009). Panel data models with interactive fixed effects. *Econometrica*, 77(4):1229–1279.
- Bai, J. and Li, K. (2014). Spatial panel data models with common shocks. mimeo., University of Columbia.
- Bai, J. and Li, K. (2021). Dynamic spatial panel data models with common shocks. *Journal of Econometrics*, 224(1):134–160. Annals Issue: PI Day.
- Bailey, N., Kapetanios, G., and Pesaran, M. H. (2016). Exponent of Cross-Sectional Dependence: Estimation and Inference. *Journal of Applied Econometrics*, 31(6):929–960.
- Barro, R. J. and Sala-i-Martin, X. (2003). *Economic Growth, 2nd Edition*, volume 1 of *MIT Press Books*. The MIT Press.
- Basile, R., Capello, R., and Caragliu, A. (2012). Technological interdependence and regional growth in europe: proximity and synergy in knowledge spillovers. *Papers in Regional Science*, 91:697–722.
- Bode, E. (2004). The spatial pattern of localized r&d spillovers: An empirical investigation for germany. *Journal of Economic Geography*, 4:43–64.

- Boschma, R. (2005). Proximity and innovation: A critical assessment. *Regional Studies*, 39(1):61–74.
- Canova, F. (2004). Testing for convergence clubs in income per capita: A predictive density approach. *International Economic Review*, 45(1):49–77.
- Caves, R. E. (2007). *Multinational Enterprise and Economic Analysis*. Cambridge Surveys of Economic Literature. Cambridge University Press, 3 edition.
- Chen, J., Shin, Y., and Zheng, C. (2022). Estimation and inference in heterogeneous spatial panels with a multifactor error structure. *Journal of Econometrics*, 229(1):55–79.
- Coe, D. and Helpman, E. (1995). International r&d spillovers. *European Economic Review*, 39(5):859–887.
- Coelli, T. and Battese, G. (1995). A model for technical inefficiency effects in a stochastic frontier production function for panel data. *Empirical Economics*, 20:325–32.
- Cornwell, C., Schmidt, P., and Sickles, R. C. (1990). Production frontiers with cross-sectional and time-series variation in efficiency levels. *Journal of Econometrics*, 46(1):185–200.
- De Benedictis, L. and Tajoli, L. (2007). Economic integration and similarity in trade structures. *Empirica*, 34:117–137.
- Diebold, F. X. and Yılmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. *Journal of Econometrics*, 182(1):119–134.
- Diemer, A., Iammarino, S., Rodríguez-Pose, A., and Storper, M. (2022). The regional development trap in europe. *Economic Geography*, 98(5):487–509.
- Druska, V. and Horrace, W. C. (2004). Generalized moments estimation for spatial panel data: Indonesian rice farming. *American Journal of Agricultural Economics*, 86(1):185– 198.
- Durlauf, S. (2001). Manifesto for a growth econometrics. *Journal of Econometrics*, 100(1):65–69.
- Eaton, J. and Kortum, S. (2002). Technology, geography, and trade. *Econometrica*, 70(5):1741–1779.
- Elhorst, J. P. (2010). Applied spatial econometrics: Raising the bar. *Spatial Economic Analysis*, 5(1):9–28.

- Ertur, C. and Koch, W. (2007). Growth, technological interdependence and spatial externalities: Theory and evidence. *Journal of Applied Econometrics*, 22(6):1033–1062.
- European Commission, Directorate-General for Employment, S. A. and Inclusion (2019). Employment and social developments in Europe 2019 : sustainable growth for all : choices for the future of Social Europe. Publications Office.
- Fagerberg, J. (1994). Technology and international differences in growth rates. Journal of Economic Literature, 32(3):1147–1175.
- Fagerberg, J. and Godinho, M. (2004). Innovation and Catching-Up, pages 514–544. Oxford University Press.
- Fiaschi, D., Gianmoena, L., and Parenti, A. (2018). Spatial club dynamics in european regions. *Regional Science and Urban Economics*, 72:115–130. New Advances in Spatial Econometrics: Interactions Matter.
- Fischer, M. M. (2018). Spatial externalities and growth in a mankiw-romer-weil world: Theory and evidence. *International Regional Science Review*, 41(1):45–61.
- Färe, R., Grosskopf, S., Norris, M., and Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. *The American Economic Review*, 84(1):66–83.
- Galli, F. (2021). A spatial durbin stochastic frontier model introducing spillover effects in the determinants of firms' efficiency. Working Paper 3924100, SRNN.
- Glass, A. J., Kenjegalieva, K., and Sickles, R. C. (2016). A spatial autoregressive stochastic frontier model for panel data with asymmetric efficiency spillovers. *Journal of Econometrics*, 190(2):289–300.
- Greenwood-Nimmo, M., Nguyen, V. H., and Shin, Y. (2021). Measuring the connectedness of the global economy. *International Journal of Forecasting*, 37(2):899–919.
- Gude, A., Alvarez, I., and Orea, L. (2018). Heterogeneous spillovers among Spanish provinces: a generalized spatial stochastic frontier model. *Journal of Productivity Analysis*, 50(3):155–173.
- Hall, R. E. and Jones, C. I. (1999). Why do some countries produce so much more output per worker than others? Working Paper 6564, NBER.
- Howitt, P. (2000). Endogenous growth and cross-country income differences. *American Economic Review*, 90(4):829–846.

- Iammarino, S., Rodríguez-Pose, A., and Storper, M. (2017). Why regional development matters for europe's economic future, regional and urban policy. Working Paper 07/2017, EU.
- IMF (2020). Front matter. IMF Staff Country Reports, 2020(324).
- Iyer, K. G., Rambaldi, A. N., and Tang, K. K. (2008). Efficiency externalities of trade and alternative forms of foreign investment in oecd countries. *Journal of Applied Econometrics*, 23(6):749–766.
- Jones, C. (2016). Chapter 1 the facts of economic growth. In Taylor, J. B. and Uhlig, H., editors, *Handbook of Macroeconomics*, volume 2, pages 3–69. Elsevier.
- Kelejian, H. H. and Prucha, I. R. (1998). A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. *Journal of Real Estate Finance and Economics*, 17:99–121.
- Kelejian, H. H. and Prucha, I. R. (1999). A generalized moments estimator for the autoregressive parameter in a spatial model. *International Economic Review*, 40:509–533.
- Koop, G., Osiewalski, J., and Steel, M. F. J. (1999). The components of output growth: A stochastic frontier analysis. Oxford Bulletin of Economics and Statistics, 61(4):455–487.
- Kuersteiner, G. M. and Prucha, I. R. (2020). Dynamic spatial panel models: Networks, common shocks, and sequential exogeneity. *Econometrica*, 88(5):2109–2146.
- Lee, L.-F. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. *Econometrica*, 72:1899–1925.
- LeSage, J. and Pace, R. K. (2009). *Introduction to spatial econometrics*. Chapman and Hall/CRC.
- LeSage, J. P. and Chih, Y.-Y. (2016). Interpreting heterogeneous coefficient spatial autoregressive panel models. *Economics Letters*, 142:1–5.
- Liu, X., Sun, T., and Feng, Q. (2020). Dynamic spatial spillover effect of urbanization on environmental pollution in china considering the inertia characteristics of environmental pollution. Sustainable Cities and Society, 53:101903.
- Lu, L. (2022). Simultaneous spatial panel data models with common shocks. Journal of Business & Economic Statistics, 0(0):1–16.

- Lucas, R. E. (1988). On the mechanics of economic development. *Journal of Monetary Economics*, 22(1):3–42.
- Lucas, R. E. (1993). Making a miracle. *Econometrica*, 61(2):251–272.
- Magrini, S. (1999). The evolution of income disparities among the regions of the european union. *Regional Science and Urban Economics*, 29(2):257–281.
- Mankiw, N. G., Romer, D., and Weil, D. N. (1992). A Contribution to the Empirics of Economic Growth. *The Quarterly Journal of Economics*, 107(2):407–437.
- Mastromarco, C., Serlenga, L., and Shin, Y. (2013). Globalisation and technological convergence in the EU. *Journal of Productivity Analysis*, 40(1):15–29.
- Mastromarco, C., Serlenga, L., and Shin, Y. (2016). Modelling technical efficiency in cross sectionally dependent stochastic frontier panels. *Journal of Applied Econometrics*, 31(1):281–297.
- Miranda, K., Martínez-Ibañez, O., and Manjón-Antolín, M. (2017). Estimating individual effects and their spatial spillovers in linear panel data models: Public capital spillovers after all ? *Spatial Statistics*, 22:1–17.
- Moretti, E. (2021). The effect of high-tech clusters on the productivity of top inventors. American Economic Review, 111(10):3328–75.
- OECD (2019). OECD Regional Outlook 2019: Leveraging Megatrends for Cities and Rural Areas. OECD.
- OECD (2021). OECD Regional Outlook 2021: No Ordinary Recovery Navigating the Transition. OECD.
- OECD (2022). OECD Regions and Cities at a Glance 2022. OECD.
- Pesaran, M. H. (2006). Estimation and inference in large heterogeneous panels with a multifactor error structure. *Econometrica*, 74(4):967–1012.
- Pesaran, M. H. (2015). Testing weak cross-sectional dependence in large panels. *Econometric Reviews*, 34(6):1089–1117.
- Quah, D. T. (1997). Empirics for growth and distribution: Stratification, polarization, and convergence clubs. *Journal of Economic Growth*, 2(1):27–59.

- Ramajo, J., Márquez, M. A., Hewings, G. J., and Salinas, M. M. (2008). Spatial heterogeneity and interregional spillovers in the european union: Do cohesion policies encourage convergence across regions? *European Economic Review*, 52(3):551–567.
- Romer, P. M. (1986). Increasing returns and long-run growth. *Journal of Political Economy*, 94(5):1002–1037.
- Romer, P. M. (1990). Endogenous technological change. *Journal of Political Economy*, 98(5):S71–S102.
- Schmidt, A. M., Moreira, A. R. B., Helfand, S. M., and Fonseca, T. C. O. (2009). Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency. *Journal of Productivity Analysis*, 31(2):101–112.
- Schmidt, P. and Sickles, R. C. (1984). Production frontiers and panel data. Journal of Business & Economic Statistics, 2(4):367–374.
- Shi, W. and Lee, L.-f. (2016). Identification of spatial durbin panel models. *Journal of* Applied Econometrics, 31(1):133–162.
- Shi, W. and Lee, L.-f. (2017). Spatial dynamic panel data models with interactive fixed effects. *Journal of Econometrics*, 197(2):323–347.
- Shin, Y. and Thornton, M. (2021). Dynamic network analysis via diffusion multipliers. Working paper, University of York.
- Sun, Y. and Malikov, E. (2018). Estimation and inference in functional-coefficient spatial autoregressive panel data models with fixed effects. *Journal of Econometrics*, 203(2):359– 378.
- Vandenbussche, J., Aghion, P., and Meghir, C. (2006). Growth, distance to frontier and composition of human capital. *Journal of Economic Growth*, 11(2):97–127.
- Vogel, J. (2013). Regional Convergence in Europe: A Dynamic Heterogeneous Panel Approach. Mpra paper, University Library of Munich, Germany.
- Yang, C. F. (2021). Common factors and spatial dependence: an application to us house prices. *Econometric Reviews*, 40(1):14–50.

		FE-IV MG	
y^*	0.016	(0.003)	
k	0.460	(0.001)	
k^*	0.252	(0.001)	
	Direct	Indirect	Total
	0.441	0.286	0.729
CD	357.3	[0.001]	
α	[0.941]	0.972	[1.00]
	С	CEX-IV M	G
y^*	0.319	(0.004)	
k	0.440	(0.005)	
k^*	0.315	(0.009)	
	Direct	Indirect	Total
	0.438	0.758	1.197
CD	12.64	[0.025]	
α	[0.435]	0.501	0.556

Table 1: Estimation results for the SDSF model for EU Regions over 1980-2019

Notes: We report the estimation results for the SDSF model (28). The spatial fixed effects instrumental variables (FE-IV) estimator takes into account the two-way additive error components, $u_{it} = \alpha_i + \theta_t + \varepsilon_{it}$ whilst the spatial CCEX-IV estimator accommodates the interactive effects, $u_{it} = \alpha_i + \lambda'_i \theta_t + \varepsilon_{it}$. To deal with the endogeneity of the spatial lagged term, y_{it}^* , we employ the de-factored spatial lagged term of the regressor k_t and its square as the IVs for both FE-IV and CCEX-IV estimators. The MG estimators are computed by excluding 17 and 11 regions with $|\hat{\rho}_i| > 1$, for the FE-IV and CCE-IV estimators, respectively. Standard errors are presented in (). *CD* denotes the CSD test proposed by Pesaran (2015), with p-value in [] while α is the CSD exponent, proposed by Bailey et al. (2016), with confidence interval at 10% significance in [].

Table 2: Descriptive Statistics for CCEX-IV estimates of the SDSF model for EU Regions over 1980–2019

	Median	Mean	SD
ρ	0.350	0.383	0.453
β	0.414	0.439	0.547
π	0.339	0.291	1.110

Notes: Median, mean and standard deviation of individual coefficients are obtained from the CEE-IV estimation results for the SDSF model (28) for the EU Regions over 1980–2019.

Table 3: Descriptive Statistics for HDE, HSI and HSO

	Median	Mean	SD
HDE	0.385	0.418	0.551
HSI	0.850	0.720	1.095
HSO	0.706	0.719	0.489

Notes: Median, mean and standard deviation of heterogeneous direct effects (HDE), heterogeneous spill-in (HSI) and heterogeneous spill-out (HSO) are obtained from the CEE-IV estimation results for the SDSF model (28) for the EU Regions over 1980–2019.

$NUTS2_{EU}$	eff	$NUTS2_{EU}$	eff	$NUTS2_{EU}$	eff	$NUTS2_{EU}$	eff
UKI3	1	UKD3	0.3125	UKE1	0.2884	PT17	0.2624
LU00	0.6043	FRJ1	0.3125	BE32	0.2883	EL41	0.2607
BE10	0.5230	DE92	0.3123	EL64	0.2881	AT12	0.2606
NL11	0.4525	ITH4	0.3101	IE04	0.2879	FI19	0.2603
IE06	0.4441	DEA4	0.3101	FRI2	0.2879	ES13	0.2602
UKM7	0.4317	BE24	0.3095	BE25	0.2878	ES41	0.2601
DE60	0.4172	UKK1	0.3090	FRG0	0.2861	DE22	0.2599
UKI4	0.4156	UKF1	0.3089	FRI3	0.2859	ITI3	0.2594
DK01	0.4018	UKL2	0.3071	BE23	0.2851	EL43	0.2590
UKI7	0.3965	AT33	0.3065	FRJ2	0.2851	ES11	0.2589
SE11	0.3918	UKM9	0.3063	NL21	0.2846	FRD2	0.2588
DE71	0.3872	UKE4	0.3052	NL42	0.2842	DE94	0.2583
UKI6	0.3867	ITH5	0.3045	UKE2	0.2838	NL34	0.2582
NL32	0.3867	SE33	0.3037	SE31	0.2827	UKD1	0.2562
IE05	0.3808	AT34	0.3034	DE73	0.2826	ES52	0.2560
UKJ2	0.3710	ES21	0.3016	UKG2	0.2822	ES12	0.2559
ITI4	0.3694	UKJ3	0.3015	FRB0	0.2807	ITI2	0.2558
FR10	0.3681	DE91	0.3014	FRF3	0.2799	UKC1	0.2545
NL31	0.3652	SE23	0.3010	UKM5	0.2792	EL30	0.2522
DE50	0.3603	DEB3	0.3006	BE33	0.2791	FRC2	0.2521
BE21	0.3597	FRL0	0.3001	FRK1	0.2784	UKF3	0.2521
DEA2	0.3517	DE14	0.2996	SE12	0.2784	NL12	0.2515
DK05	0.3510	ITC1	0.2989	ES51	0.2780	UKM8	0.2483
UKD6	0.3509	EL42	0.2987	NL22	0.2780	AT11	0.2472
DEA1	0.3508	DEC0	0.2983	UKH3	0.2779	ES62	0.2462
DE11	0.3493	DEA3	0.2983	ES23	0.2778	ITG1	0.2460
DK04	0.3482	DEA5	0.2980	FRI1	0.2776	BE34	0.2459
ITH1	0.3472	UKK4	0.2971	FRF2	0.2772	UKK3	0.2447
DK03	0.3412	AT31	0.2971	DE24	0.2769	ITF3	0.2446
DE12	0.3399	FRF1	0.2971	FI1D	0.2765	EL63	0.2424
ITH2	0.3377	DE25	0.2968	ITF4	0.2755	ES70	0.2399
DE21	0.3351	DE13	0.2968	AT21	0.2750	ITF2	0.2391
UKJ4	0.3339	ES30	0.2965	DEB1	0.2746	DE93	0.2390
FI1B	0.3339	UKE3	0.2960	DE72	0.2746	PT18	0.2390
UKJ1	0.3331	SE22	0.2957	FRE2	0.2743	ES42	0.2379
A'I'13	0.3322	UKK2	0.2957	AT22	0.2727	ITF6	0.2361
NL33	0.3313	TTI1 DIVee	0.2950	ES22	0.2718	UKM6	0.2354
ITC4	0.3293	DK02	0.2943	ES24	0.2686	ES61	0.2335
AT32	0.3286	TTF5	0.2941	DEF0	0.2679	EL53	0.2228
ITH3	0.3261	TTC2	0.2931	DEB2	0.2677	PTH	0.2190
UKH2	0.3252	FIIC	0.2925	DE27	0.2669	PT15	0.2186
UKI5 DE01	0.3252	UKLI	0.2913	NL13	0.2665	EL62	0.2169
BE31	0.3251	FRK2	0.2909	FRDI	0.2665	ES43	0.2153
UKGI	0.3247	UKHI	0.2903	SE21	0.2657	TTG2	0.2106
UKD4	0.3205	SE32	0.2901	DE23	0.2655	P110	0.2037
IIFI EDMO	0.3199	FRHU	0.2900	BE35	0.2654	EL51 EL54	0.2032
FRMU UKC2	0.3190	11C3	0.2894	E503	0.2044	EL54 UZNO	0.1967
UNG3	0.3189	UKC2	0.2893	FREI	0.2044	UKINU	0.1950
F120 NL 41	0.3100	UKD7 DE26	0.2889	BE22 FPC1	0.2037	EL52 FL61	0.1900
INL41 UKE9	0.3103	DE20	0.2009	FRUI	0.2027	FLGE	0.1601
UNF 2	0.3100					ET09	0.1781

Table 4: Regional efficiency ranking over 1980–2019

Notes: eff is the time average of individual efficiency estimated by (20). See the Appendix for the NUTS2 regions. See also Notes to Table 1.

Table 5: CCEC-IV MG estimation results for the five efficiency clusters in the EU over $1980{-}2019$

	ρ	β	π	Direct	Indirect	Total
1	0.200	0.547	0.246	0.547	0.079	0.626
	(0.009)	(0.012)	(0.026)			
2	0.352	0.488	0.221	0.488	0.093	0.581
	(0.008)	(0.012)	(0.020)			
3	0.385	0.490	0.334	0.490	0.121	0.611
	(0.006)	(0.014)	(0.016)			
4	0.354	0.444	0.493	0.444	0.143	0.587
	(0.006)	(0.010)	(0.022)			
5	0.349	0.169	0.531	0.170	0.151	0.321
	(0.014)	(0.014)	(0.031)			

Notes: Originally each cluster includes 40 regions but the fifth which contains 42. In order to compute the MG estimates, we exclude the 11 regions with $|\rho_i| > 1$. In particular one region is excluded in the first, the third and the fourth cluster while eight regions are excluded in the fifth cluster. See also Notes to Table 1.

$NUTS2_{EU}$	eff	$NUTS2_{EU}$	eff	$NUTS2_{EU}$	eff	$NUTS2_{EU}$	eff
UKI3	1	FRL0	0.36	ES41	0.319	DE27	0.283
NL11	0.873	ITH4	0.36	FRC1	0.319	BE34	0.282
LU00	0.595	ITC1	0.359	NL22	0.318	AT22	0.281
BE10	0.592	DEA5	0.358	DK02	0.318	UKM8	0.281
UKM5	0.568	ES21	0.356	ES11	0.318	UKG2	0.278
SE11	0.526	DEB2	0.356	UKE3	0.317	FI1D	0.278
DE60	0.511	BE32	0.354	ES13	0.316	SE31	0.278
IE06	0.503	FRI2	0.353	BE23	0.316	SE12	0.277
UKI6	0.477	AT13	0.352	SE23	0.316	UKD1	0.277
DK01	0.476	ES23	0.352	SE32	0.315	DE93	0.276
DK05	0.471	UKD3	0.351	BE35	0.314	FI1C	0.275
NL32	0.463	AT32	0.351	BE25	0.313	ES62	0.275
UKI4	0.455	UKJ4	0.349	ITI1	0.312	ES42	0.274
EL42	0.454	ITC4	0.349	AT34	0.311	EL30	0.274
ITH2	0.453	DE14	0.349	SE22	0.31	BE22	0.271
DK04	0.434	NL21	0.347	AT31	0.31	UKC1	0.269
ITH1	0.433	NL41	0.345	ITC2	0.31	UKF3	0.268
EL64	0.431	DEC0	0.344	FRF1	0.309	UKE2	0.267
ITF1	0.43	FRI3	0.343	FRE2	0.308	EL53	0.267
ITI4	0.429	FRH0	0.343	UKM7	0.308	EL51	0.266
BE21	0.429	DE25	0.341	NL34	0.308	DE23	0.265
DEA2	0.421	FRK1	0.341	UKJ3	0.306	AT11	0.265
FR10	0.417	SE33	0.34	UKL2	0.305	AT12	0.265
DEA1	0.417	UKG1	0.338	ES22	0.305	UKD6	0.263
IE05	0.415	UKF1	0.337	ES24	0.304	ES61	0.263
DE50	0.414	FI19	0.334	DE73	0.303	ITI3	0.26
DE11	0.414	FRJ2	0.334	AT21	0.302	UKH3	0.258
DE71	0.413	AT33	0.333	DE26	0.302	FRM0	0.256
UKI5	0.412	FRD1	0.332	UKK1	0.3	PT16	0.254
DE12	0.405	UKC2	0.332	DEF0	0.3	ITI2	0.252
DK03	0.399	EL63	0.331	UKK2	0.299	DE22	0.252
EL41	0.397	UKG3	0.33	ES51	0.298	ITF6	0.25
FRK2	0.396	ES12	0.33	UKE4	0.298	UKD7	0.25
ITH3	0.393	PT17	0.329	ITF4	0.296	EL62	0.247
NL31	0.393	UKF2	0.328	FI1B	0.295	ES70	0.246
NL33	0.392	BE24	0.327	NL42	0.294	FI20	0.245
EL43	0.391	DE91	0.327	ES52	0.294	PT15	0.239
BE31	0.389	ES30	0.326	FRD2	0.294	ITF2	0.238
UKD4	0.387	ITH5	0.325	ITC3	0.293	ITF3	0.238
DE21	0.385	DEB1	0.325	FRC2	0.292	ITG1	0.237
DEB3	0.382	FRI1	0.324	DE72	0.291	EL54	0.236
UKI7	0.382	FRJ1	0.324	UKH1	0.289	UKK3	0.235
FRF2	0.376	UKK4	0.323	UKJ1	0.287	SE21	0.234
IE04	0.376	UKL1	0.322	DE24	0.286	ES43	0.225
DEA3	0.375	UKM9	0.322	UKM6	0.284	EL61	0.222
NL13	0.371	ES53	0.321	FRF3	0.284	EL52	0.215
DE92	0.368	FRB0	0.321	DE94	0.284	ITG2	0.193
UKJ2	0.366	FRG0	0.321	NL12	0.283	EL65	0.179
DEA4	0.365	PT18	0.321	PT11	0.283	UKN0	0.131
ITF5	0.362	BE33	0.32	FRE1	0.283		
DE13	0.36	UKH2	0.319	UKE1	0.283		

Table 6: Regional efficiency ranking at 1980

Notes: See Notes to Table 4.

$NUTS2_{EU}$	eff	$NUTS2_{EU}$	eff	$NUTS2_{EU}$	eff	$NUTS2_{EU}$	eff
UKI3	1.000	BE31	0.267	DE73	0.239		
LU00	0.511	DK04	0.267	ITC3	0.239	IE04	0.209
UKI4	0.414	SE23	0.266	FRG0	0.238	EL30	0.208
BE10	0.411	NL41	0.266	BE23	0.237	ITG1	0.208
IE06	0.406	UKM5	0.265	ES30	0.237	BE35	0.208
IE05	0.390	UKD7	0.263	FRK2	0.237	ITF3	0.207
UKI7	0.355	NL33	0.262	DE13	0.237	FRI2	0.206
FRM0	0.353	UKI5	0.261	UKK4	0.237	ITI2	0.206
UKJ1	0.344	UKE2	0.261	FI1D	0.237	NL12	0.205
UKD6	0.343	DE92	0.260	ITH3	0.236	ES24	0.205
UKJ2	0.335	DE26	0.260	AT21	0.236	FRE2	0.203
DK01	0.332	SE32	0.259	DE27	0.235	FRF3	0.202
NL32	0.329	UKE1	0.259	UKL1	0.235	PT17	0.201
SE11	0.320	DEA5	0.257	DEA3	0.234	FRC2	0.201
FR10	0.317	DEA4	0.256	FRI1	0.234	NL13	0.199
DE50	0.311	SE22	0.256	NL21	0.234	ITF1	0.199
UKH2	0.306	UKF1	0.256	NL22	0.232	ES13	0.198
NL31	0.306	ITI4	0.256	DE72	0.232	ES12	0.198
DE71	0.304	AT33	0.256	ITH2	0.231	ES41	0.196
DE60	0.302	SE12	0.256	FRE1	0.230	ES53	0.196
UKD3	0.292	SE33	0.256	BE33	0.230	DE93	0.195
UKI6	0.292	ES21	0.255	AT12	0.229	ES23	0.194
UKG3	0.291	ITH1	0.255	FRH0	0.229	UKM9	0.192
DE91	0.291	NL42	0.255	ITH4	0.229	DEB2	0.192
NL11	0.289	UKK2	0.254	BE22	0.229	ES52	0.187
DEA1	0.289	DEC0	0.254	FRD2	0.227	ITF2	0.186
DE11	0.286	DE25	0.254	ES51	0.225	ITF6	0.186
FI1B	0.285	UKG2	0.254	ES22	0.225	ITG2	0.185
UKK1	0.284	UKN0	0.253	DEB1	0.225	BE34	0.183
UKG1	0.283	FI1C	0.252	UKK3	0.224	ES43	0.180
AT32	0.283	UKC2	0.252	UKC1	0.224	ES62	0.179
BE21	0.283	DE24	0.251	ITC2	0.224	ES70	0.179
DE21	0.282	UKD1	0.250	FRJ1	0.223	EL42	0.179
AT34	0.281	UKH1	0.250	FRI3	0.223	ES61	0.175
UKJ4	0.280	AT22	0.250	BE32	0.223	ES42	0.171
DEA2	0.280	DE14	0.249	FRF1	0.222	PT15	0.166
UKE4	0.279	FI20	0.249	DE94	0.222	EL62	0.166
UKM7	0.277	UKE3	0.249	ITC1	0.220	PT18	0.159
UKJ3	0.277	UKM8	0.248	DEF0	0.219	EL65	0.159
AT13	0.277	DE22	0.247	FRB0	0.218	PT16	0.156
UKD4	0.276	ITH5	0.247	ITI3	0.218	PT11	0.156
DK03	0.275	DK05	0.247	FRF2	0.218	EL53	0.155
UKF2	0.273	DK02	0.245	FRK1	0.218	EL43	0.153
BE24	0.271	FRJ2	0.244	FRC1	0.216	EL63	0.147
UKL2	0.270	DE23	0.243	ITF5	0.216	EL52	0.143
ITC4	0.269	ITI1	0.242	ITF4	0.215	EL41	0.141
SE21	0.269	DEB3	0.241	AT11	0.215	EL54	0.141
UKH3	0.268	FI19	0.241	ES11	0.213	EL64	0.140
DE12	0.268	UKM6	0.240	NL34	0.212	EL51	0.138
SE31	0.268	FRL0	0.240	UKF3	0.212	EL61	0.137
AT31	0.267	BE25	0.240	FRD1	0.209		

Table 7: Regional efficiency ranking at 2019

Notes: See Notes to Table 4.

	Quintile Connectedness Matrix						
	1	2	3	4	5		
1	0.591	0.100	0.114	0.100	0.058		
2	0.130	0.648	0.173	0.170	0.098		
3	0.151	0.194	0.692	0.198	0.122		
4	0.176	0.216	0.226	0.664	0.144		
5	0.137	0.160	0.176	0.178	0.351		
QSI	0.372	0.570	0.665	0.762	0.650		
QSO	0.594	0.670	0.688	0.646	0.421		
QNE	0.222	0.100	0.023	-0.116	-0.229		

Table 8: Quintile Direct, Spill-in, Spill-out effects of production input

Notes: QSI is the spill-in effect, QSO is the spill-out effect and QNE is the net effect defined as difference between QSO and QSI across the five efficiency clusters.

Figure 1: Kernel density of $\rho,\,\beta$ and π

Figure 2: The spatial distribution of $\hat{\rho}_i$ among EU regions

Figure 3: The spatial distribution of $\hat{\beta}_i$ among EU regions

Figure 4: The spatial distribution of $\hat{\pi}_i$ among EU regions

Figure 5: Kernel density of HDE, HSI and HSO

Figure 7: The spatial distribution of HSI and HSO of capital intensity on labour productivity among EU regions

Figure 8: The distribution of the five efficiency clusters across countries

Notes: 1-5 denote the five efficiency clusters from the best (1) to the worst (5).

Figure 9: The spatial distribution of technical efficiency among EU regions

Figure 10: The spatial distribution of per capita GDP among EU regions

Figure 11: GDP per capita Quintile Ratios (QR) across the five efficiency clusters

The QR are calculated for each efficiency cluster, from the most efficient (1) to the least efficient (5) and show the ratio of the GDP of the regions with the highest GDP (the top quintile, the 20%) to that of the regions with the lowest GDP (the bottom quintile, the 20%).

Figure 12: The transition probability matrix (TM) across the five efficiency clusters

The transition probability matrix shows the probability of the regions of moving across five efficiency cluster over time. The TM becomes an identity matrix in case of perfect immobility (probability equal to one) and a matrix with zeros on the diagonal in case of perfect mobility (probability equal to zero).

Figure 13: The GCM analysis of the five efficiency clusters

Notes: EM is External Motivation, SI denotes Systemic Influence for five clusters from the most efficient 1 to the least efficient 5.

6 Appendix

Codes	Names	Codes	Names
AT11	Burgenland	DK01	Hovedstaden
AT12	Niederösterreich	DK02	Siælland
AT13	Wien	DK03	Syddanmark
AT21	Kärnton	DK04	Midtivlland
AT 21		DK04	Nandialland
ATZZ	Stelermark	DK05	Nordjynand
AT31	Oberosterreich	EL30	Attiki
AT32	Salzburg	EL41	Voreio Aigaio
AT33	Tirol	EL42	Notio Aigaio
AT34	Vorarlberg	EL43	Kriti
BE10	Région de Bruxelles-Capitale	EL51	Anatoliki Makedonia, Thraki
BE21	Prov. Antwerpen	EL52	Kentriki Makedonia
BE22	Prov. Limburg	EL53	Dytiki Makedonia
BE23	Prov. Oost-Vlaanderen	EL54	Ineiros
BE24	Prov. Vlaame Brabant	FL61	Theselia
DE24 DE25	Prov. West Vlaanderen	FL62	Incesana Jonio Nicio
DE20 DE21	Dress Brokent weller	ELC2	Destile: Elle de
DE31	Prov. Brabant wallon	EL05	Dytiki Ellada
BE32	Prov. Hainaut	EL64	Sterea Ellada
BE33	Prov. Liège	EL65	Peloponnisos
BE34	Prov. Luxembourg	ES11	Galicia
BE35	Prov. Namur	ES12	Principado de Asturias
DE11	Stuttgart	ES13	Cantabria
DE12	Karlsruhe	ES21	País Vasco
DE13	Freiburg	ES22	Comunidad Foral de Navarra
DE14	Tübingen	ES23	La Rioia
DE21	Oberbayern	ES24	Aragón
DE21	Niederbayern	ES30	Comunidad do Madrid
DE22 DE23	Oberpfalz	ES30 FS41	Costillo y Loón
DE23	Oberplaiz	ES41	Castilla la Manaha
DE24 DE25	Mittalfamlan	E542	E tama luna
DE25 DE26	Mittelfranken	E543	Extremadura
DE26	Unterfranken	ES51	Cataluna
DE27	Schwaben	ES52	Comunidad Valenciana
DE50	Bremen	ES53	Illes Balears
DE60	Hamburg	ES61	Andalucía
DE71	Darmstadt	ES62	Región de Murcia
DE72	Gießen	ES70	Canarias
DE73	Kassel	FI19	Länsi-Suomi
DE91	Braunschweig	FI1B	Helsinki-Uusimaa
DE92	Hannover	FI1C	Etelä-Suomi
DE93	Lüneburg	FIID	Pohiois- ja Itä-Suomi
DE04	Wesen Eme	FID	Å land
DE94	weser-Ems	F120	Aland
DEA1	Düsseldorf	FR10	Ile de France
DEA2	Köln	FRB0	Centre - Val de Loire
DEA3	Münster	FRC1	Bourgogne
DEA4	Detmold	FRC2	Franche-Comté
DEA5	Arnsberg	FRD1	Basse-Normandie
DEB1	Koblenz	FRD2	Haute-Normandie
DEB2	Trior	FRE1	Nord-Pas-de-Calais
DEB2	Rhoinhosson Pfalz	FRF2	Picardio
DECO	Seerland	FREZ FDF1	Alcoco
DECO	Galian in Halatain	FRFI	Alsace Olamon Andreas
DEFU	Schleswig-Holstein	FRF2	Unampagne-Ardenne

Table 9: Names and codes of the 202 NUTS2 regions $% \left({{{\rm{NUTS2}}}} \right)$

FRG0Pays-de-la-LoirePT18AlentejoFR10BretagneSE11StockholmFR11AquitaineSE11StockholmFR12LimousinSE21Stra MellansverigeFR13Poitou-CharentesSE22SydsverigeFR14Languedoc-RoussillonSE23Stra MellansverigeFR15Languedoc-RoussillonSE23Weitersta NortlandFRK1AuvergneSE33Övre NorralandFRK2Rhône-AlpesSE33Övre NorrlandFRK0Provence-Alpes-Côte d'AzurUKC2Northumberland and Tyne and WearCorseUKC2Northumberland and Tyne and WearCumbriaFR60SouthernUKD3Greater ManchesterIE06Eastern and MidlandUKD4Greater ManchesterIE072Valle d'Aosta/Vallée d'AosteUKE1East YorkshireTTC1PiemonteUKE2Nort NorkshireTTF2MoliseUKE3South YorkshireTTF4PugliaUKF1Derbyshire and NottinghamshireTTF5BasilicataUKF3Leicestershire, Rutland and NorthamptonshireITF6CalabriaUKF3Leicestershire, Rutland and NorthamptonshireTTF5BasilicataUKF3SectorshireTTF4PugliaUKF3SectorshireTTF4PugliaUKF3Inner London - WestTTF1Provincia Autonoma di Bolzano/BozenUKH1East AngliaTTH1Provincia Autonoma di Bolzano/BozenUKH1East Angli	FRF3	Lorraine	PT17	Área Metropolitana de Lisboa
FRHI Aquitaine SE11 Stockholm FRII Aquitaine SE12 Småland med öarna FRI3 Poiton-Charentes SE23 Svästverige FRJ3 Poiton-Charentes SE23 Västsverige FRJ2 Midi-Pyrénées SE31 Norra Meilansverige FRK1 Auvergne SE33 Övre Norrland FRK0 Provence-Alpes-Côte d'Azur UKC1 Tess Valley and Durham FRM0 Forvence-Alpes-Côte d'Azur UKC2 Northumberland and Tyne and Wear IE04 Northern and Western UKD1 Cumbria IE05 Southern UKD3 Greater Manchester IE06 Eastern and Midland UKE1 Lancashire ITC2 Valle d'Aoste UKE1 East Yorkshire ITC3 Liguria UKE2 Nort Nychshire ITF4 Abruzzo UKE3 South Yorkshire ITF5 Galabria UKF1 Derbyshire and Nortinghamshire ITF4 Puglia UKF3 Licocstershire, Rutland and Northamptonshire ITF5 Basilicata UKF3	FRG0	Pays-de-la-Loire	PT18	Alentejo
FFR11AquitaineSE12Östra MellansverigeFR12LimousinSE21SydsverigeFR13Languedoc-RoussillonSE23SydsverigeFR14Languedoc-RoussillonSE23VästsverigeFR151Languedoc-RoussillonSE23Welststa NorrlandFR162Rhône-AlpesSE33Mellersta NorrlandFR162Rhône-Alpes-Côte d'AzurUKC1Tees Valley and DurhamFR160Provence-Alpes-Côte d'AzurUKC1Tees Valley and DurhamFR160Foroence-Alpes-Côte d'AcurUKC1Tees Valley and DurhamFR160Foroence-Alpes-Côte d'AcurUKC2Northumberland and Tyne and WearE064SouthernUKD3Creater ManchesterE1055SouthernUKD4LancashireTTC2Valle d'Aosta/Vallée d'AosteUKD6MerseysideTTC3LiguriaUKE3South YorkshireTTF4AbruzzoUKE3South YorkshireTTF5BasilicataUKF1Derbyshire and NorthamptonshireTTF6CalabriaUKF2LincolnshireTTF6SiciliaUKG2Shropshire and StaffordshireTTF14Provincia Autonoma di Bolzano/BozenUKH2BedfordshireTTH4Provincia Autonoma di Bolzano/BozenUKH3Inner London - EastTTH4Fuli-Venezia GiuliaUKK14Inner London - SouthTTH4VeneziaUKK14Inner London - SouthTTH4VeneziaUKK14Inner London - SouthTTH4 <t< td=""><td>FRH0</td><td>Bretagne</td><td>SE11</td><td>Stockholm</td></t<>	FRH0	Bretagne	SE11	Stockholm
FR12LimousinSE21Småland med öarnaFR13Poitou-CharentesSE23VästsverigeFR14Languedoc-RoussillonSE3VästsverigeFR152Midi-PyrénéesSE31Norra MellansverigeFRK2Rhône-AlpesSE33Övre NorrlandFRK0Provence-Alpes-Côte d'AzurUKC1Tese Valey and DurhamFRK0NorseUKC2Northumberland and Tyne and WearED4Northern and WesternUKD1CumbriaED6SouthernUKD3Greater ManchesterED6SouthernUKD4LancashireTC2Valle d'Aosta/Vallée d'AosteUKD6Greater ManchesterTC3LiguriaUKE1East YorkshireTC4LombardiaUKE2North YorkshireTF12MoliseUKE4South YorkshireTF24MoliseUKF1Derbyshire and Northern LincolnshireTF45PugliaUKF2North YorkshireTF47UgliaUKF3LincolnshireTF56GalabriaUKF3LincolnshireTF76GalabriaUKF3Inner London - WestTF11Provincia Autonoma di Bolzano/BozenUKH1East AngliaTF14PueziaUkG2Shropshire and StaffordshireTF12UmbriaUkG4UkG4StaffordshireTF45GalabriaUKF3Inner London - WestTF14PugliaUkG4StaffordshireTF45UgliaUthataEast AngliaTF	FRI1	Aquitaine	SE12	Östra Mellansverige
FR13Poitou-CharentesSE22SydsverigeFRJ1Languedoc-RoussillonSE23VästsverigeFRJ1Languedoc-RoussillonSE31Norra MellansverigeFRK1AuvergneSE33Övre NorrlandFRK2Rhône-AlpesSE33Övre NorrlandFRK0CorseUKC1Tees Valley and DurhamFRM0CorseUKC1Tees Valley and DurhamFRM0CorseUKC1Tees Valley and DurhamIE04Northern and WesternUKD1CumbriaIE05SouthernUKD3Greater ManchesterIE06Eastern and MidlandUKD4LancashireITC1PiemonteUKD4LancashireITC2Valle d'Aosta/Vallée d'AosteUKE1East VorkshireITC3LiguriaUKE2South YorkshireITC4LombardiaUKE2South YorkshireITF1AbruzzoUKE4West YorkshireITF5BasilicataUKF2Leicestershire, Rutland and NorthamptonshireITF6CalabriaUKG1Herefordshire, Worcestershire and WarwickshireITF1AbruzoUKG3West MidlandsITH1Provincia Autonoma di Bolzano/BozenUKH3Herefordshire, West and North EastITH3CalabriaUKG3Inner London - EastITH4Friulia-RomagnaUK14Inner London - EastITH5BasilicataUK15Outer London - SouthITH4Friulia-RomagnaUK14Inner London - SouthITH5<	FRI2	Limousin	SE21	Småland med öarna
FFJ1 Languedoc-Roussillon SE23 Västsveräge FRJ2 Midi-Pyrfenées SE31 Norra Mellansverige FRK1 Auvergne SE32 Mellersta Norrland FRK2 Rhône-Alpes SE33 Övre Norrland FRK0 Foree-Alpes-Côte d'Azur UKC1 Tees Valley and Durham FRM0 Corse UKC1 Tees Valley and Durham FRM0 Corse UKC2 Northumberland and Tyne and Wear IE04 Northern and Western UKD1 Cumbria IE05 Southern UKD3 Greater Manchester ITC2 Valle d'Aosta/Vallée d'Aoste UKD6 Cheshire ITC3 Liguria UKE1 East Yorkshire and Northern Lincolnshire ITF2 Molise UKE3 South Yorkshire ITF1 Abruzzo UKE3 South Yorkshire ITF2 Molise UKF4 Weet Yorkshire ITF4 Puglia UKF3 Lincolnshire ITF5 Galabria UKG2 Shropshire and Staffordshire ITF4 Puglia UKG2 Shropshire and Staffo	FRI3	Poitou-Charentes	SE22	Sydsverige
FR12Midi-PyrénéesSE31Norra MéllansverigeFRK1AuvergneSE33Óvre NorrlandFRK2Rhône-AlpesSE33Óvre NorrlandFRL0Provence-Alpes-Côte d'AzurUKC1Tees Valley and DurhamFRM0CorseUKC2Northumberland and Tyne and WearIE04Northern and WesternUKD1CumbriaIE05SouthernUKD1CumbriaIE06Eastern and MidlandUKD4LancashireITC1PiemonteUKD7MerseysideITC2Valle d'Aosta/Vallée d'AosteUKD7MerseysideITC3LiguriaUKE2North YorkshireITC4LombardiaUKE2North YorkshireITF1AbruzzoUKE4West YorkshireITF5BasilicataUKF2Leicestershire, Rutland and NorthamptonshireITF6CalabriaUKG1Herefordshire, Worcestershire and WarwickshireITF1AbruzzoUKG3West MidlandsITH1Provincia Autonoma di Bolzano/BozenUKH2StordfordshireITH3CanganaUKG3West MidlandsITH4Fruilia-RomagnaUK15Outer London - SeastITH3Emilia-RomagnaUK16Outer London - SouthITH4Fruilia-RomagnaUK17Outer London - SouthITH3Dennia-RomagnaUK13Inner London - SouthITH4Fruilia-RomagnaUK14Inner London - SouthITH3CalabriaUK15Outer London - SouthITH4	FRJ1	Languedoc-Roussillon	SE23	Västsverige
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FRJ2	Midi-Pyrénées	SE31	Norra Mellansverige
FRK2Rhône-AlpesSE33Övre Norrland Tees Valley and DurhamFRL0Provence-Alpes-Côte d'AzurTees Valley and DurhamFRM0CorseUKC1IE04Northern and WesternUKD1CumbriaCumbriaIE05SouthernUKD3Greater ManchesterCumbriaIE06Eastern and MidlandUKD4LancashireCheshireITC1PiemonteUKD6CheshireUKD7MerseysideUKE1ITC3LiguriaUTC4LombardiaUTC4LombardiaUTC5JuguriaUKE2North YorkshireTF1AbruzzoUKE4West YorkshireTF5AsilcataUKF1Derbyshire and NorthemptonshireITF4PugliaUKF2Lefcestershire, Rutland and NorthamptonshireITF5BasilcataUKF3South YorkshireTTF4Provincia Autonoma di Bolzano/BozenUKF3EssexTTH4Provincia Autonoma di TrentoUKH2Bedfordshire and North EastTTH4Fiuli-Venezia GiuliaTTH5Emilia-RomagnaUK14Umer London - SouthTTH4Friuli-Venezia GiuliaTTH4EssexTTH5Emilia-RomagnaUK14Umer London - SouthTTH5Emilia-RomagnaUK14Umer London - SouthTTH4Friuli-Venezia GiuliaTTH5Emilia-RomagnaUK15Outer	FRK1	Auvergne	SE32	Mellersta Norrland
FR10Provence-Alpes-Côte d'AzurUKC1Taes Valley and DurhamFRM0CorseNorthumberland and Tyne and WearEP4Northern and WesternUKD1LE06Eastern and MidlandUKD3Greater ManchesterLancashireTTC1PiemonteUKD6CheshireCheshireTTC2Valle d'Aosta/Vallée d'AosteUKD7MerseysideUKE1EastYorkshire and Northern LincolnshireTTC4LombardiaUKE2TTF4AbruzzoUKE3South YorkshireSouth YorkshireTTF5MoliseUKF1Derbyshire and NorthamptonshireUKF3TTF6CalabriaUKF2LiferiaUKG2Shropshire and StaffordshireUKF3LincolnshireUKF3LincolnshireUKF3LincolnshireUKF3LincolnshireUKF3LincolnshireUKF4VenetoUKH3Lincolnshire and StaffordshireTTF4Provincia Autonoma di Bolzano/BozenLTH3VenetoUKH3EssexLTH4Friul-Venezia GiuliaLTH4UkT6Uter London - KestLTH4Friul-Venezia GiuliaLTH4UkT6Uter London - KestLTH4Friul-Venezia GiuliaLTH4UkT6Uter London - KestLTH4Friul-Venezia GiuliaLTH4Friul-Venezia GiuliaLTH5Emilia-RomagnaUK16Outer Lond	FRK2	Bhône-Alpes	SE33	Övre Norrland
FRM0CorseUKC2Northumberland and Tyne and WearIE04Northern and WesternUKD1CumbriaIE05SouthernUKD3Greater ManchesterIE06Eastern and MidlandUKD4LancashireIE07Valle d'Aosta/Vallée d'AosteUKD6CheshireITC1PiemonteUKD7MerseysideITC3LiguriaUKE1East Yorkshire and Northern LincolnshireITC4LombardiaUKE2North YorkshireITC4LombardiaUKE2North YorkshireITF3CampaniaUKE4West Yorkshire and Northern LincolnshireITF4PugliaUKF1Derbyshire and NorthernshireITF5BasilicataUKF2Lincolnshire, Worcestershire and VarwickshireITF6SiciliaUKG2Shropshire and StaffordshireITF1Provincia Autonoma di Bolzano/BozenUKH1East AngliaITH4Friuli-Venezia GiuliaUKH3EasexITH4Friuli-Venezia GiuliaUKH3East AngliaITH4Friuli-Venezia GiuliaUK15Outer London - SouthIT11ToscanaUK17Outer London - SouthIT13MarcheUK13Inner London - SouthIT14Friuli-Venezia GiuliaUK17Outer London - SouthIT13DrentheUK13Gucestershire, and North WestIT14GoingenUK13Inner London - SouthIT13MarcheUK14East and West SussexIT14IzaioUK15Out	FRLO	Provence-Alpes-Côte d'Azur	UKC1	Tees Valley and Durham
TheodOrbitern and WesternUKD1CumbriaIE04SouthernUKD1Greater ManchesterIE06Eastern and MidlandUKD4IZC1PiemonteUKD6TTC2Valle d'Aosta/Vallée d'AosteUKD7MerseysideUKE1East ParkTTC3LiguriaUKE1TTC4LombardiaUKE2TTC5MoliseUKE4TF71AbruzzoUKE3South YorkshireDerbyshire and Northern LincolnshireTTF4BasilicataUKF1Derbyshire and NottinghamshireLincolnshireTTF5BasilicataUKF2Licestershire, Rutland and NorthamptonshireLincolnshireTTF6CalabriaUKG2Shropshire and StaffordshireUKG3TTH2Provincia Autonoma di Bolzano/BozenUKH3TTH4Provincia Autonoma di TrentoUKH3TTH4Friuli-Venezia GiuliaUKH3TTH2Inser London - EastTTH3VenetoUKH4UmbriaUK15UuristaUK16Outer London - Seat and North EastTT13MarcheUK17UuristaUK31IgeniandUK42Surrey, East and West SussexTT14LaxioUN0LuxembourgUK13Greatershire, Wittshire and Bristol/Bath areaU14LazioU15Outer London - West and North WestTT14FrislandUK15Gouestershire, Wittshire and Bristol/Bath area<	FRMO	Corse	UKC2	Northumberland and Type and Wear
InterfInterfOttoGreater ManchesterIE06Eastern and MidlandUKD3Greater ManchesterIE06Eastern and MidlandUKD4LancashireITC1PiemonteUKD6CheshireITC2Valle d'Aosta/Vallée d'AosteUKD7MerseysideITC3LiguriaUKE1East Yorkshire and Northern LincolnshireITC4LombardiaUKE2North YorkshireITF2MoliseUKE3South YorkshireITF4PugliaUKF2Leicestershire, Rutland and NorthamptonshireITF5BasilicataUKF3LincolnshireITF6CalabriaUKG3West MidlandsITF1Provincia Autonoma di Bolzano/BozenUKH3EssexITH1Provincia Autonoma di TrentoUKH3EssexITH2Provincia Autonoma di TrentoUKH3Inner London - WestITH3VenetoUK17Outer London - East and North EastITH4Friuli-Venezia GiuliaUK17Outer London - West and North WestIT11ToscanaUKJ1Berkshire, Buckinghamshire and OxfordshireIT12UmbriaUKJ3UKJ2Surrey, East and North WestIT14LazoiUKJ3Inner London - West and NorthWestIT14LazoiUKJ4Gloucestershire, Wiltshire and Bristol/Bath areaIT14CorigselUKJ4KentIT14GorigselUKJ4Cornwall and Isle of ScillyIT14LazoiUKJ4Inner London - West and North West<	IE04	Northern and Western	UKD1	Cumbria
IncomeDistrictDistrictIE06Eastern and MidlandUKD4LancashireITC1PiemonteUKD4LancashireITC2Valle d'Aosta/Vallée d'AosteUKD7MerseysideITC3LiguriaUKE1East Yorkshire and Northern LincolnshireITC4LombardiaUKE2North YorkshireITF1AbruzzoUKE3South YorkshireITF2MoliseUKE4West YorkshireITF3CampaniaUKF1Derbyshire and NorthamptonshireITF5BasilicataUKF2Leicestershire, Rutland and NorthamptonshireITF6CalabriaUKG2Shropshire and StaffordshireITG1SiciliaUKG2Shropshire and HertfordshireITH1Provincia Autonoma di Bolzano/BozenUKH3East AngliaITH2Provincia Autonoma di TrentoUKH3East AngliaITH3VenetoUKH3East AngliaITH4Friuli-Venezia GiuliaUKH3Inner London - WestIT11ToscanaUKH7Outer London - SustIT12UmbriaUKJ3Hampshire and OxfordshireUL00LuxembourgUKJ3Hampshire and SeidyNL11GroningenUKJ3Hampshire and SeidyNL22GelerlandUKK3Cornwall and Isles of ScillyNL31UtechtUKK4DevonNL32Noord-HollandUKK4DevonNL33Zui-HollandUKK4DevonNL34ZeelandUKK4North Easte	IE05	Southern	UKD3	Greater Manchester
TroiPiemonteUKD6CheshireTrC1PiemonteUKD6CheshireTrC2Valle d'Aosta/Vallée d'AosteUKD7MerseysideTrC3LiguriaUKE1East Yorkshire and Northern LincolnshireTrC4LombardiaUKE2North YorkshireTrF1AbruzzoUKE3South YorkshireTFF2MoliseUKE4West YorkshireTrF3CampaniaUKF1Derbyshire and NorthamptonshireTrF4PugliaUKF2Leicestershire, Rutland and NorthamptonshireTrF5BasilicataUKG1Herefordshire, Worcestershire and WarwickshireTrG1SiciliaUKG2Shropshire and StaffordshireTrH1Provincia Autonoma di Bolzano/BozenUKH1East AngliaTrH2Provincia Autonoma di Bolzano/BozenUKH1East AngliaTrH3VenetoUKH3Inner London - WestTrH4Friuli-Venezia GiuliaUKH3Inner London - WestTrH3VenetoUKH3Inner London - East and North EastTrH4Friuli-Venezia GiuliaUK15Outer London - SouthTrH3MarcheUKJ3Hampshire and OxfordshireTrH4ErieslandUKJ3Hampshire and Sitsol/Bath areaTrH3MarcheUKJ3Surrey, East and West SussexNL11GroningenUKJ3Hampshire and Sitsol/Bath areaNL21OverijsselUKK4Dorset and SomesetNL21GelderlandUKK4Dorset and SomesetNL32 <t< td=""><td>IE06</td><td>Eastern and Midland</td><td>UKD4</td><td>Lancashire</td></t<>	IE06	Eastern and Midland	UKD4	Lancashire
TriceValle d'Aosta/Vallée d'AosteUKD7MerseysideTriceLiguriaUKD7MerseysideTrC4LombardiaUKE1East Yorkshire and Northern LincolnshireTrF1AbruzzoUKE2North YorkshireTFF2MoliseUKE3South YorkshireTFF3CampaniaUKF1Derbyshire and NottinghamshireTFF4PugliaUKF2Leicestershire, Rutland and NorthamptonshireTFF5BasilicataUKF2LincolnshireTFF6CalabriaUKG2Shropshire and StaffordshireTG1SiciliaUKG2Shropshire and StaffordshireTFF5BasilicataUKG3West MidlandsTH11Provincia Autonoma di Bolzano/BozenUKH1EastTH4Friuli-Venezia GiuliaUKH2Bedfordshire and HertfordshireTH4Friuli-Venezia GiuliaUKH3EasexTT11ToscanaUKI4Inner London - WestTT14LazioUKI3Inner London - SouthTT14LazioUKJ1Outer London - SouthTT14LazioUKJ3Barkshire, Buckinghamshire and Bristol/Bath areaNL12FrieslandUKX3Cornwall and Isles of ScillyNL13DrentheUKK4UKK3NL14Nord-BrabantUKK4NL22GelderlandUKK4NL33Zuid-HollandUKK4NL44Nord-BrabantUKK4NL45SouthNL53Zuid-HollandUKK4Nu33	ITC1	Piemonte	UKD6	Cheshire
11C2Value G AbsteOKD1Metry State11C3LiguriaUKE1East Yorkshire and Northern Lincolnshire11C4LombardiaUKE2North Yorkshire11C5LiguriaUKE3South Yorkshire11F1AbruzzoUKE4West Yorkshire11F5BasilicataUKF1Derbyshire and Nottinghamshire11F5BasilicataUKF1Leicestershire, Rutland and Northamptonshire11F6GalabriaUKF3Liecestershire, Rutland and Northamptonshire11F6SiciliaUKG2Shropshire and Staffordshire11F1Provincia Autonoma di Bolzano/BozenUKG3West Midlands11F14Provincia Autonoma di TrentoUKH2Bedfordshire and Hertfordshire11F14Provincia Autonoma di TrentoUKH3Inner London - Vest11F14Provincia Autonoma di UKI3Inner London - EastMorth West11F14Friuli-Venezia GiuliaUKI4Inner London - East and North East11F15Emilia-RomagnaUKI3Outer London - South11F14LazioUKJ7Outer London - South11F13MarcheUKJ2Surrey, East and West Sussex11F14LazioUKJ3Hampshire and Isle of Wight11F14LazioUKJ3Surrey, East and Susfordshire11F15Goloucestershire, Witshire and Bristol/Bath areaNL2111F14LazioUKK3Cornwall and Isles of Scilly11F14LazioUKK3Cornwall and Isles of Scilly11F14	ITC2	Vallo d'Aosta /Vallóa d'Aosta	UKD7	Morsovsido
IncolDigitalUKE1Disk for kalme and Northern EntromanteITC4LombardiaUKE2North YorkshireITF1AbruzzoUKE3South YorkshireITF2MoliseUKE4West YorkshireITF3CampaniaUKF1Derbyshire and NorthighamshireITF4PugliaUKF1Derbyshire and NorthighamshireITF5BasilicataUKF3LincolnshireITF6CalabriaUKG1Herefordshire, Worcestershire and WarwickshireITG1SiciliaUKG3West MidlandsITH1Provincia Autonoma di Bolzano/BozenUKH1East AngliaITH2Provincia Autonoma di Delzano/BozenUKH3EssexITH4Friuli-Venezia GiuliaUKH3EssexITH4Friuli-Venezia GiuliaUKH3EssexIT11ToscanaUKI5Outer London - WestIT12UmbriaUKI5Outer London - SouthIT13MarcheUKJ2Surrey, East and North WestU00LuxembourgUKJ3Hampshire and Isle of WightNL11GronigenUKX1Gloucestershire, Wiltshire and Bristol/Bath areaNL22GelderlandUKK4DevonNL31UtrechtUKK4WestNL32Noord-HollandUKK1NL32Zuid-HollandUKK2NL44Northe Satern ScotlandNL42LinburgUKK4PT15AlgarveUKM9Southern ScotlandUKK4PT15AlgarveUK	ITC2	Liguria	UKE1	Fast Vorkshiro and Northern Lincolnshiro
TiP1AbruzzoUKE3South YorkshireTIF2MoliseUKE3South YorkshireTIF3CampaniaUKF4West YorkshireTIF4PugliaUKF1Derbyshire and NottinghamshireITF5BasilicataUKF3Liccastershire, Rutland and NorthamptonshireITF6CalabriaUKF3Liccostershire, Rutland and NorthamptonshireTIT61SiciliaUKG2Shropshire and StaffordshireTG22SardegnaUKG3West MillandsTTH2Provincia Autonoma di Bolzano/BozenUKH1East AngliaTH4Provincia Autonoma di TrentoUKH1East AngliaTH4Friuli-Venezia GiuliaUKI3Inner London - WestTT11ToscanaUKI4Inner London - EastTT12UmbriaUKI6Outer London - SouthTT12UmbriaUKI6Outer London - SouthTT14LazioUKJ1Berkshire, Buckinghamshire and OxfordshireLU00LuxembourgUKJ2Surrey, East and West SussexNL11GroningenUKJ4KentNL12FrieslandUKK1Gloucestershire, Wiltshire and Bristol/Bath areaNL21OverijsselUKK2Dorset and SomersetNL32Noord-HollandUKK1West West West SussexNL33Zuid-HollandUKK1West West Wales and IslandsNL34ZeelandUKK4DevonNL34ZeelandUKK4Northe East ProcolandNL44Noord-BrabantUKM6N	ITC4	Lombardia	UKE2	North Yorkshire
ITF2NotizeOKEsOKEsTTF2MoliseUKE4West YorkshireTTF3CampaniaUKF1Derbyshire and NottinghamshireTTF4PugliaUKF1Leicestershire, Rutland and NorthamptonshireTTF5BasilicataUKF3LincolnshireTTF6CalabriaUKG1Herefordshire, Worcestershire and WarwickshireTTG1SiciliaUKG3West MidlandsTTH2Provincia Autonoma di Bolzano/BozenUKH1East AngliaTTH1Provincia Autonoma di TrentoUKH3East AngliaTTH4Friuli-Venezia GiuliaUK13Inner London - WestTTH5Emilia-RomagnaUKI5Outer London - EastTT11ToscanaUKI7Outer London - SouthTT13MarcheUKJ7Outer London - West and North WestTT14LazioUKJ1Berkshire, Buckinghamshire and OxfordshireLU00LuxembourgUKJ3Hampshire and Isle of WightNL11GroningenUKJ3Hampshire and Isle of WightNL22GelderlandUKK2Dorset and SomersetNL21OverijsselUKK4DevonNL32Noord-HollandUKK4DevonNL33Zuid-HollandUKK4North Eastern ScotlandNL44Noord-BrabantUKM6Tighlands and IslandsNL44Nord-BrabantUKM6Tornwall and IslandsNL44Nord-BrabantUKM8West Central ScotlandNH44FriesonUKM8West Central Sc	ITF1	Abruzzo	UKE3	South Vorkshire
Int2IndiacUKL1West FusionTTF3CampaniaUKF1Derbyshire and NottinghamshireTTF4PugliaUKF2Leicestershire, Rutland and NorthamptonshireTTF5BasilicataUKF2LicconshireTTF6CalabriaUKG1Herefordshire, Worcestershire and WarwickshireTTG1SiciliaUKG2Shropshire and StaffordshireTTG2SardegnaUKG3West MidlandsTTH1Provincia Autonoma di Bolzano/BozenUKH1East AngliaTTH2Provincia Autonoma di TrentoUKH2Bedfordshire and HertfordshireTTH3VenetoUKH2Bedfordshire and HertfordshireTTH4Friuli-Venezia GiuliaUK13Inner London - WestTT11ToscanaUKI5Outer London - EastTT12UmbriaUK16Outer London - SouthTT13MarcheUKJ1Berkshire, Buckinghamshire and OxfordshireLU00LuxembourgUKJ3Hampshire and Isle of WightNL11GroningenUKJ4KentNL21OverijsselUKK2Dorset and SomersetNL21OverijsselUKK2Dorset and SomersetNL33Zuid-HollandUKK4DevonNL33Zuid-HollandUKK4West Wales and The ValleysNL34ZeelandUKM6North Eastern ScotlandNL44Noord-BrabantUKM6West Central ScotlandNL44NordeUKM7East ValesNL44LinburgUKM6Northern Ire	ITF2	Molise	UKE4	West Vorkshire
1110Orally and PugliaUKPDerivy sinter and NotonignationTTF4PugliaUKP2Leicestershire, Rutland and NorthamptonshireTTF5BasilicataUKF3LincolnshireTTF6CalabriaUKG1Herefordshire, Worcestershire and WarwickshireTTG1SiciliaUKG2Shropshire and StaffordshireTTG2SardegnaUKG3West MidlandsTTH1Provincia Autonoma di Bolzano/BozenUKH1East AngliaTTH2Provincia Autonoma di TrentoUKH3Inner London - WestTTH3VenetoUKH3Inner London - WestTTH5Emilia-RomagnaUKI4Inner London - East and North EastTT11ToscanaUKI6Outer London - SouthTT13MarcheUKJ1Outer London - West and North WestTT14LazioUKJ2Surrey, East and West SussexNL11GroningenUKJ3Hampshire and Isle of WightNL12FrieslandUKK1Gloucestershire, Wiltshire and Bristol/Bath areaNL21OverijsselUKK4DevonNL32Noord-HollandUKK4DevonNL33Zuid-HollandUKK4North Eastern ScotlandNL44Nord-BrabantUKM6North Eastern ScotlandNL44Nord-BrabantUKM6North Eastern ScotlandNL41Nord-BrabantUKM6Northern IrelandNu44NorteUKM8West Central ScotlandNu44LincohanUKM8West Central ScotlandN	ITF3	Campania	UKF1	Derbyshire and Nottinghamshire
1114LughtUK12Decession C, furthall and Northampton sinceTTF5BasilicataUKF3LincolnshireTTG1SiciliaUKG1Herefordshire, Worcestershire and WarwickshireTTG2SardegnaUKG3West MidlandsTTH1Provincia Autonoma di Bolzano/BozenUKG1Bedfordshire and StaffordshireTTH2Provincia Autonoma di TrentoUKH2Bedfordshire and HertfordshireTTH3VenetoUKH3East AngliaTTH4Friuli-Venezia GiuliaUKI3Inner London - WestTTH5Emilia-RomagnaUKI5Outer London - East and North EastTT12UmbriaUKI6Outer London - SouthTT14AarcheUKI7Outer London - West and North WestTT12UmbriaUKI7Outer London - West and North WestTT14FrieslandUKJ3Berkshire, Buckinghamshire and OxfordshireLu000LuxembourgUKJ3Hampshire and Isle of WightNL11GroningenUKK3Cornwall and Isles of ScillyNL13DrentheUKK4Dorset and SomersetNL21OverijselUKK4DevonNL32Noord-HollandUKK4DevonNL33Zuid-HollandUKK4North Eastern ScotlandNL44InburgUKM6North Eastern ScotlandNL41Nord-BrabantUKM6WK44PT11NorteUKM8West Central ScotlandPT15AlgarveUKM9Southern ScotlandPT16Centro </td <td>ITE4</td> <td>Puglia</td> <td>UKF2</td> <td>Leicestershire, Butland and Northamptonshire</td>	ITE4	Puglia	UKF2	Leicestershire, Butland and Northamptonshire
1110DistributionUKG1Harefordshire, Worcestershire and Warwickshire1TF6CalabriaUKG1UKG2Shropshire and Staffordshire1TG2SardegnaUKG3West Midlands1TH1Provincia Autonoma di Bolzano/BozenUKH1East Anglia1TH2Provincia Autonoma di TrentoUKH3Bedfordshire and Hertfordshire1TH3VenetoUKH3Inner London - West1TH4Friuli-Venezia GiuliaUK13Inner London - East1TH5Emilia-RomagnaUK16Outer London - South1T11ToscanaUK16Outer London - South1T12UmbriaUK17Outer London - South1T13MarcheUK17Outer London - South1T14LazioUKJ3Hampshire and Isle of WightNL11GroningenUKJ4KentNL12OverijsselUKK3Cornwall and Isle of ScillyNL21OverijsselUKK3Cornwall and Isles of ScillyNL32Noord-HollandUKL2East WalesNL33Zuid-HollandUKK5North Eastern ScotlandNL41Noord-BrabantUKM7Eastern ScotlandNL41NorteUKM8West Central ScotlandNL41NorteUKM8West Central ScotlandNL41InoreUKM8West Central ScotlandNL41NorteUKM8West Central ScotlandNL42LinburgUKM8West Central ScotlandNL44LinburgUKM8West Central Scotland	ITF5	Basilicata	UKF3	Lincolnshire
1110CharmaCharmaITG1SiciliaUKG2Shropshire and StaffordshireITG2SardegnaUKG3West MidlandsITH1Provincia Autonoma di Bolzano/BozenUKH3East AngliaITH2Provincia Autonoma di TrentoUKH3EssexITH3VenetoUKH3EssexITH4Friuli-Venezia GiuliaUK13Inner London - WestITH5Emilia-RomagnaUKI4Inner London - EastIT11ToscanaUKI5Outer London - SouthIT12UmbriaUKI7Outer London - SouthIT14LazioUKJ1Berkshire, Buckinghamshire and OxfordshireLU00LuxembourgUKJ3Surrey, East and West SussexNL11GroningenUKJ3Hampshire and Isle of WightNL12FrieslandUKK1Gloucestershire, Wiltshire and Bristol/Bath areaNL21OverijsselUKK2Dorset and SomersetNL32Noord-HollandUKK4DeronNL33Zuid-HollandUKK2North Eastern ScotlandNL44Noord-BrabantUKM5North Eastern ScotlandNL41NorteUKM8West Central ScotlandPT11NorteUKM8West Central ScotlandPT15AlgarveUKM0Northern Ireland	ITE6	Calabria	UKG1	Herefordshire Worcestershire and Warwickshire
HG1DichaDickHG2SardegnaUKG3West MillandsITH2Provincia Autonoma di Bolzano/BozenUKH1East AngliaITH2Provincia Autonoma di TrentoUKH1East AngliaITH2Provincia GiuliaUKH3EssexITH4Friuli-Venezia GiuliaUKH3Inner London - WestITH5Emilia-RomagnaUKI6Outer London - East and North EastIT11ToscanaUKI7Outer London - SouthIT12UmbriaUKJ1Berkshire, Buckinghamshire and OxfordshireIT14LazioUKJ2Surrey, East and West SussexNL11GroningenUKJ3Hampshire and Isle of WightNL12OverijsselUKK4Gloucestershire, Wiltshire and Bristol/Bath areaNL21OverijsselUKK3Cornwall and Isles of ScillyNL33Zuid-HollandUKK4DevonNL34ZeelandUKK4DevonNL34ZeelandUKK5North Eastern ScotlandNL41Noord-BrabantUKM7Eastern ScotlandNL41NorteUKM8West Central ScotlandPT11NorteUKM8West Central ScotlandPT15AlgarveUKN0Northern Ireland	ITC1	Sicilia	UKC2	Shropehiro and Staffordehiro
ITH1Provincia Autonoma di Bolzano/BozenIKH1East AngliaITH2Provincia Autonoma di TrentoUKH1East AngliaITH3VenetoUKH2Bedfordshire and HertfordshireITH4Friuli-Venezia GiuliaUKH3Inner London - WestITH5Emilia-RomagnaUKI4Inner London - EastIT11ToscanaUKI6Outer London - East and North EastIT12UmbriaUKI7Outer London - West and North WestIT13MarcheUKI7Outer London - West and North WestIT14LazioUKJ1Berkshire, Buckinghamshire and OxfordshireL000LuxembourgUKJ2Surrey, East and West SussexNL11GroningenUKJ4KentNL12FrieslandUKK2Dorset and SomersetNL22GelderlandUKK3Cornwall and Isles of ScillyNL33Zuid-HollandUKL1West Wales and The ValleysNL34ZeelandUKM5North Eastern ScotlandNL44InnerUKM6Highlands and IslandsNL42LimburgUKM6Highlands and IslandsNL44LordUKM6HighlandsNL44Nord-BrabantUKM6Highlands and IslandsNL44LimburgUKM8West Central ScotlandPT11NorteUKM8West Central ScotlandPT15AlgarveUKN0Northern Ireland	ITG2	Sardegna	UKG3	West Midlands
ITH2Frovincia Autonoma di TrentoUKH2EakfordITH3VenetoUKH3EssexITH4Friuli-Venezia GiuliaUKI3Inner London - WestITH5Emilia-RomagnaUKI4Inner London - EastIT11ToscanaUKI5Outer London - East and North EastIT12UmbriaUKI7Outer London - SouthIT13MarcheUKI7Outer London - SouthIT14LazioUKJ1Berkshire, Buckinghamshire and OxfordshireLU00LuxembourgUKJ2Surrey, East and West SussexNL11GroningenUKJ4KentNL12FrieslandUKK2Dorset and SomersetNL22GelderlandUKK4DevonNL32Noord-HollandUKK4DevonNL33Zuid-HollandUKK4DevonNL34ZeelandUKM5North Eastern ScotlandNL41Noord-BrabantUKM6Highlands and IslandsNL42LimbrgUKM7Eastern ScotlandNL41NorteUKM8West Central ScotlandPT11NorteUKM8West Central ScotlandPT15AlgarveUKM0Northern Ireland	ITH1	Provincia Autonoma di Bolzano/Bozon	UKH1	Fast Anglia
ITH2From the information of the formationITH3VenetoUKH3ITH4Friuli-Venezia GiuliaUKH3ITH5Emilia-RomagnaUKI3ITH5Imilia-RomagnaUKI4IT11ToscanaUKI5Outer London - EastUKI6IT12UmbriaUKI6Outer London - SouthUKI7IT14LazioUK00LuxembourgUKJ2Surrey, East and North WestIT14GroningenNL11GroningenNL12PreslandVL13DrentheNL21OverijsselNL22GelderlandNL33UtrechtNL33Voord-HollandNL34ZeelandNL34ZeelandNL44Noord-BrabantNL41Noord-BrabantNL42LimpsVL33UKM5NL44LimpsNL44NorthPT11NortePT15AlgarvePT16CentroVK0Norther Ireland	ITH2	Provincia Autonoma di Trento	UKH2	Badfordshire and Hertfordshire
InitionUnitedUK13Inner London - WestITH4Fruili-Venezia GiuliaUK13Inner London - EastITH5Emilia-RomagnaUK14Inner London - EastIT11ToscanaUK15Outer London - East and North EastIT12UmbriaUK16Outer London - SouthIT13MarcheUK17Outer London - West and North WestIT14LazioUKJ1Berkshire, Buckinghamshire and OxfordshireLU00LuxembourgUKJ2Surrey, East and West SussexNL11GroningenUKJ3Hampshire and Isle of WightNL12FrieslandUKK1Gloucestershire, Wiltshire and Bristol/Bath areaNL22GelderlandUKK3Cornwall and Isles of ScillyNL33UtrechtUKK4DevonNL33Zuid-HollandUKL2East WalesNL34ZeelandUKM6Highlands and IslandsNL42LimburgUKM6Highlands and IslandsNL42LimburgUKM7Eastern ScotlandPT11NorteUKM8West Central ScotlandPT15AlgarveUKM0Northern Ireland	ITH3	Veneto	UKH3	Feer
IniteIniteIniteIondonWestITH5Emilia-RomagnaUK14Inner London - EastIT11ToscanaUK15Outer London - EastIT12UmbriaUK16Outer London - SouthIT13MarcheUK17Outer London - West and North WestIT14LazioUKJ1Berkshire, Buckinghamshire and OxfordshireLU00LuxembourgUKJ2Surrey, East and West SussexNL11GroningenUKJ4Hampshire and Isle of WightNL12FrieslandUKK2Dorset and SomersetNL21OverijsselUKK3Cornwall and Isles of ScillyNL32GelderlandUKK4DevonNL33Zuid-HollandUKK4DevonNL34ZeelandUKM5North Eastern ScotlandNL44LimbyUKM6Highlands and IslandsNL42LimbyUKM6HighlandsNL44Loord-BrabantUKM6Highlands and IslandsNL44LimbyUKM7Eastern ScotlandPT11NorteUKM8West Central ScotlandPT15AlgarveUKN0Northern Ireland	ITH4	Friuli Vonozia Ciulia	UKIS	Inner London West
Initial TonscanaUKI5Outer London - EastITI1ToscanaUKI5Outer London - SouthITI2UmbriaUKI6Outer London - SouthITI3MarcheUKI7Outer London - West and North WestITI4LazioUKJ1Berkshire, Buckinghamshire and OxfordshireLU00LuxembourgUKJ2Surrey, East and West SussexNL11GroningenUKJ3Hampshire and Isle of WightNL12FrieslandUKK1Gloucestershire, Wiltshire and Bristol/Bath areaNL21OverijsselUKK2Dorset and SomersetNL31UtrechtUKK4DevonNL32Noord-HollandUKL2East WalesNL33Zuid-HollandUKK4DevonNL34ZeelandUKM5North Eastern ScotlandNL41Noord-BrabantUKM7Eastern ScotlandNL42LimbyUKM8West Central ScotlandPT11NorteUKM8West Central ScotlandPT15AlgarveUKN0Northern ScotlandPT16CentroUKM0Northern Scotland	ITH5	Emilia-Romagna	UKIA	Inner London - East
InitDottingOtherDotton LotsITI2UmbriaUK16Outer London - SouthITI3MarcheUK17Outer London - West and North WestITI4LazioUKJ1Berkshire, Buckinghamshire and OxfordshireLU00LuxembourgUKJ2Surrey, East and West SussexNL11GroningenUKJ3Hampshire and Isle of WightNL12FrieslandUKK1Gloucestershire, Wiltshire and Bristol/Bath areaNL21OverijsselUKK2Dorset and SomersetNL22GelderlandUKK3Cornwall and Isles of ScillyNL31UtrechtUKK4DevonNL33Zuid-HollandUKL2East WalesNL34ZeelandUKM6Highlands and IslandsNL42LimburgUKM7Eastern ScotlandNL42LimburgUKM8West Central ScotlandPT11NorteUKM8West Central ScotlandPT15AlgarveUKN0Northen Island	ITI1	Toscana	UK15	Outer London - East and North East
IT13MarcheUK17Outer London - West and North WestIT14LazioUKJ7Outer London - West and North WestLU00LuxembourgUKJ2Surrey, East and West SussexNL11GroningenUKJ3Hampshire and Isle of WightNL12FrieslandUKJ4KentNL13DrentheUKK2Dorset and SomersetNL22GelderlandUKK3Cornwall and Isles of ScillyNL31UtrechtUKK4DevonNL33Zuid-HollandUKK5North Eastern ScotlandNL44LiedandUKM6Highlands and IslandsNL42LimburgUKM7Eastern ScotlandNL42LimburgUKM7Eastern ScotlandPT11NorteUKM8West Central ScotlandPT15AlgarveUKN0Northern Ireland	ITI2	Umbria	ŬKI6	Outer London - South
1119DifferUKJ1Berkshire, Buckinghamshire and OxfordshireLU00LuxembourgUKJ1Berkshire, Buckinghamshire and OxfordshireNL11GroningenUKJ2Surrey, East and West SussexNL12FrieslandUKJ3Hampshire and Isle of WightNL13DrentheUKJ4KentNL21OverijsselUKK2Dorset and SomersetNL22GelderlandUKK4Gornwall and Isles of ScillyNL33UtrechtUKK4DevonNL34ZeelandUKL2East WalesNL34ZeelandUKM5North Eastern ScotlandNL41Noord-BrabantUKM7Eastern ScotlandNL42LimburgUKM8West Central ScotlandPT11NorteUKM8West Central ScotlandPT15AlgarveUKM0Northern ScotlandPT16CentroUKM0Northern Scotland	ITI3	Marche	UKI7	Outer London - West and North West
L110LumbUKJ2Surrey, East and West SussexNL11GroningenUKJ2Surrey, East and West SussexNL12FrieslandUKJ3Hampshire and Isle of WightNL13DrentheUKK1Gloucestershire, Wiltshire and Bristol/Bath areaNL21OverijsselUKK2Dorset and SomersetNL32GelderlandUKK3Cornwall and Isles of ScillyNL31UtrechtUKK4DevonNL33Zuid-HollandUKL2East Wales and The ValleysNL34ZeelandUKM6Highlands and IslandsNL42LimburgUKM7Eastern ScotlandNL42LimburgUKM8West Central ScotlandPT11NorteUKM9Southern ScotlandPT15AlgarveUKM0Northern Ireland	ITI4	Lazio	UK II	Berkshire Buckinghamshire and Oxfordshire
NullGroningenUKJ3Hampshire and Isle of WightNL12FrieslandUKJ4KentNL13DrentheUKK1Gloucestershire, Wiltshire and Bristol/Bath areaNL21OverijsselUKK2Dorset and SomersetNL22GelderlandUKK3Cornwall and Isles of ScillyNL31UtrechtUKK4DevonNL33Zuid-HollandUKL2East Wales and The ValleysNL34ZeelandUKM6Highlands and IslandsNL42LimburgUKM6Highlands and IslandsNL42LimburgUKM7Eastern ScotlandPT11NorteUKM8West Central ScotlandPT15AlgarveUKM0Northern Ireland	LUOO	Luxembourg	UKJ2	Surrey East and West Sussex
NL12FrieslandUKJ4KentNL13DrentheUKJ4KentNL21OverijsselUKK2Dorset and SomersetNL22GelderlandUKK2Dorset and SomersetNL31UtrechtUKK4DevonNL32Noord-HollandUKL2East WalesNL34ZeelandUKK4DevonNL34ZeelandUKK5North Eastern ScotlandNL41Noord-BrabantUKM6Highlands and IslandsNL42LimburgUKM7Eastern ScotlandPT11NorteUKM8West Central ScotlandPT15AlgarveUKM0Northern ScotlandPT16CentroUKN0Northern Scotland	NL11	Groningen	UKJ3	Hampshire and Isle of Wight
NL13DrentheUKK1Gloucestershire, Wiltshire and Bristol/Bath areaNL21OverijsselUKK2Dorset and SomersetNL22GelderlandUKK2Dorset and SomersetNL31UtrechtUKK4DevonNL32Noord-HollandUKL1West Wales and The ValleysNL33Zuid-HollandUKL2East WalesNL34ZeelandUKK6Highlands and IslandsNL42LimburgUKM7Eastern ScotlandNL42LimburgUKM8West Central ScotlandPT11NorteUKM9Southern ScotlandPT15AlgarveUKM0Northern Ireland	NL12	Friesland	ŬKJ4	Kent
NL21OverijsselUKK2Dorset and SomersetNL22GelderlandUKK3Cornwall and Isles of ScillyNL31UtrechtUKK4DevonNL33Zuid-HollandUKL1West Wales and The ValleysNL34ZeelandUKK2East WalesNL34LimburgUKK6Highlands and IslandsNL42LimburgUKM7Eastern ScotlandPT11NorteUKM8West Central ScotlandPT15AlgarveUKM9Southern Ireland	NL13	Drenthe	UKK1	Gloucestershire Wiltshire and Bristol/Bath area
NL22GelderlandUKK3Cornwall and Isles of ScillyNL31UtrechtUKK4DevonNL32Noord-HollandUKL1West Wales and The ValleysNL33Zuid-HollandUKL2East WalesNL34ZeelandUKM5North Eastern ScotlandNL41Noord-BrabantUKM6Highlands and IslandsNL42LimburgUKM7Eastern ScotlandPT11NorteUKM8West Central ScotlandPT15AlgarveUKM9Southern ScotlandPT16CentroUKN0Northern Ireland	NL21	Overijssel	ŬKK2	Dorset and Somerset
NL31UtrechtUKK4DevonNL32Noord-HollandUKL1West Wales and The ValleysNL33Zuid-HollandUKL2East WalesNL34ZeelandUKM5North Eastern ScotlandNL41Noord-BrabantUKM6Highlands and IslandsNL42LimburgUKM7Eastern ScotlandPT11NorteUKM9Southern ScotlandPT15AlgarveUKM9Southern ScotlandPT16CentroUKN0Northern Ireland	NL22	Gelderland	ŬKK3	Cornwall and Isles of Scilly
NL32Nord-HollandUKL1West Wales and The ValleysNL33Zuid-HollandUKL2East WalesNL34ZeelandUKD5North Eastern ScotlandNL41Noord-BrabantUKM6Highlands and IslandsNL42LimburgUKM7Eastern ScotlandPT11NorteUKM8West Central ScotlandPT15AlgarveUKM9Southern ScotlandPT16CentroUKN0Northern Ireland	NL31	Utrecht	UKK4	Devon
NL33Zuid-HollandUKL2East WalesNL34ZeelandUKL2East WalesNL41Noord-BrabantUKM6Highlands and IslandsNL42LimburgUKM7Eastern ScotlandPT11NorteUKM8West Central ScotlandPT15AlgarveUKM9Southern ScotlandPT16CentroUKN0Northern Ireland	NL32	Noord-Holland	ŬKL1	West Wales and The Valleys
NL34ZeelandUKM5North Eastern ScotlandNL41Noord-BrabantUKM6Highlands and IslandsNL42LimburgUKM7Eastern ScotlandPT11NorteUKM8West Central ScotlandPT15AlgarveUKM9Southern ScotlandPT16CentroUKN0Northern Ireland	NL33	Zuid-Holland	UKL2	East Wales
NL41Nord-BrabantUKM6Highlands and IslandsNL42LimburgUKM7Eastern ScotlandPT11NorteUKM7Eastern ScotlandPT15AlgarveUKM9Southern ScotlandPT16CentroUKN0Northern Ireland	NL34	Zeeland	ŬKM5	North Eastern Scotland
NL42 Limburg UKM7 Eastern Scotland PT11 Norte UKM8 West Central Scotland PT15 Algarve UKM9 Southern Scotland PT16 Centro UKN0 Northern Ireland	NL41	Noord-Brabant	UKM6	Highlands and Islands
PT11NorteUKM8West Central ScotlandPT15AlgarveUKM9Southern ScotlandPT16CentroUKN0Northern Ireland	NL42	Limburg	UKM7	Eastern Scotland
PT15 Algarve UKM9 Southern Scotland PT16 Centro UKN0 Northern Ireland	PT11	Norte	ŬKM8	West Central Scotland
PT16 Centro UKN0 Northern Ireland	PT15	Algarve	UKM9	Southern Scotland
	PT16	Centro	UKN0	Northern Ireland

Table 10: Names and codes of the 202 NUTS2 regions continued