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Abstract 
 
This paper considers a first-order autoregressive panel data model with individual-specific effects 
and heterogeneous autoregressive coefficients defined on the interval (˗1; 1], thus allowing for 
some of the individual processes to have unit roots. It proposes estimators for the moments of the 
cross-sectional distribution of the autoregressive (AR) coefficients, assuming a random 
coefficient model for the autoregressive coefficients without imposing any restrictions on the 
fixed effects. It is shown the standard generalized method of moments estimators obtained under 
homogeneous slopes are biased. Small sample properties of the proposed estimators are 
investigated by Monte Carlo experiments and compared with a number of alternatives, both under 
homogeneous and heterogeneous slopes. It is found that a simple moment estimator of the mean 
of heterogeneous AR coefficients performs very well even for moderate sample sizes, but to 
reliably estimate the variance of AR coefficients much larger samples are required. It is also 
required that the true value of this variance is not too close to zero. The utility of the heterogeneous 
approach is illustrated in the case of earnings dynamics. 
JEL-Codes: C220, C230, C460. 
Keywords: heterogeneous dynamic panels, neglected heterogeneity bias, short T panels, earnings 
dynamics. 
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1 Introduction

The importance of cross-sectional heterogeneity in panel regressions is becoming increasingly

recognized in the literature. When the time dimension of the panel, T , is short, significant

advances have been made in the case of random coefficient models with strictly exogenous

regressors, for example, Chamberlain (1992), Wooldridge (2005), and Graham and Powell

(2012). A trimmed version of the mean group estimator proposed by Pesaran and Smith

(1995) can also be applied to ultra short T panels when the regressors are strictly exogenous.

See Pesaran and Yang (2023). In contrast, there are only a few papers that consider the

estimation of heterogeneous dynamic panels when the time dimension is short.

There are some limitations to applying existing estimation methods to such heterogeneous

short T dynamic panels. The generalized method of moments (GMM) estimators applied

after first differencing by Anderson and Hsiao (1981, 1982), Arellano and Bond (1991),

Blundell and Bond (1998), and Chudik and Pesaran (2021), allow for intercept heterogeneity

but not for possible heterogeneity in the autoregressive (AR) coefficients, and as shown in

this paper, can lead to biased estimates and distorted inference. Gu and Koenker (2017) and

Liu (2023) consider the estimation of panel AR(1) models with exogenous regressors using

Bayesian techniques. While they assume random coefficients on strictly exogenous regressors,

they still impose homogeneity on the AR coefficients. The mean group estimator and the

hierarchical Bayesian estimator proposed by Hsiao et al. (1999) allow for heterogeneity but

require that T is reasonably large relative to the cross section dimension, n.

For moderate values of T , analytical, Bootstrap and Jackknife bias correction approaches

have also been proposed to deal with the small sample bias of the mean group and other

related estimators. See, for example, Pesaran and Zhao (1999), Okui and Yanagi (2019) and

Okui and Yanagi (2020). Even with bias corrections, n cannot be too large compared with

T , since a valid inference based on the asymptotic distribution often requires nT−c → 0, for

some constant c > 2. In short, none of the above approaches are appropriate and can lead

to seriously biased estimates and distorted inference when T is small and fixed as n → ∞.

Nonetheless, heterogeneity in dynamics can play an important role in many empirical studies
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using short T panel data models. Examples include, earnings dynamics studied by Meghir

and Pistaferri (2004), unemployment dynamics by Browning and Carro (2014), and firm’s

growth by Liu (2023)

This paper considers a relatively simple panel AR(1) model, but allows for both individual

fixed effects and heterogeneous AR coefficients, φi, where some of the individual processes,

{yit}, could have unit roots, φi = 1. We eliminate the fixed effects by first differencing,

∆yit = yit− yi,t−1, and establish conditions under which the mean and variance of φi can be

identified from the autocovariances of ∆yit, averaged over i. We show that existing GMM

estimators of E(φi) = µφ are asymptotically biased, and derive analytical expressions for

their bias in simple cases. We then propose estimators for the moments of φi, in particular,

E(φi) and E(φ2
i ), using cross-sectional averages of the autocorrelation coefficients of the

first differences. In terms of the estimation approach, the most relevant paper to ours is by

Robinson (1978), who considered a random coefficient AR(1) model without fixed effects.

Assuming the “usual” stationary conditions, he proposed identifying the moments of φi as

functions of autocovariances of yit.

In particular, we propose two new estimators for the moments θs = E(φsi ) for s =

1, 2, ..., T − 3. A relatively simple estimator based on autocorrelations of first differences,

denoted by FDAC, and a generalized method of moments (GMM) estimator based on auto-

covariances of first differences, which we denote by HetroGMM. We also consider estimation

of V ar(φi) = σ2
φ = θ2−θ2

1, when the true value of σ2
φ is not too close to zero. We do not make

any assumptions about the fixed effects and allow them to have arbitrary correlations with

φi, but require the underlying AR(1) processes to be stationary after first differencing and

assume φi and the error variances are independently distributed. It is possible to extend our

analysis to higher-order panel AR processes and dynamic panels with exogenous regressors.

However, these important extensions are outside the scope of the present paper.

We compare FDAC and HetroGMM estimators to a kernel-weighted likelihood estimator

proposed by Mavroeidis et al. (2015), MSW. Assuming independently distributed Gaussian

errors with cross-sectional heteroskedasticity, MSW show that the unknown distribution
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of heterogeneous coefficients can be identified, provided the linear operator that maps the

unknown distribution to the joint distribution of data is complete (or “invertible”). They

provide an estimation algorithm for the parametric version of their estimator assuming the

heterogeneous coefficients, including the intercepts and φi, follow a multivariate normal

distribution. The estimation algorithm becomes computationally very demanding if the

parametric assumption about the distribution of φi is relaxed.

We investigate small sample properties of FDAC and HetroGMM estimators using Monte

Carlo (MC) experiments. The simulations show that the relatively simple FDAC estimator

performs better than the HetroGMM estimator uniformly across different sample sizes, and

is robust to non-Gaussian errors and conditional error heteroskedasticity.

We also compare the small sample properties of the FDAC estimator of µφ with several

GMM estimators proposed in the literature for homogenous AR panels, including the pop-

ular Arellano and Bond (1991), AB, and Blundell and Bond (1998), BB, estimators. We

refer to these as HomoGMM estimators, to be distinguished from the HetroGMM estimator

proposed in this paper. The simulation results confirm the neglected heterogeneity bias of

the HomoGMM estimators, and show that the FDAC estimator of µφ performs well for all

values of T = 4, 6, 10 and n = 100, 1, 000 and 5, 000, so long as the underlying processes

are stationary after first differencing. This is true for bias, root mean square errors, and

size. Both FDAC and HetroGMM estimators are robust to the presence of unit roots and

non-Gaussian errors, but can be subject to bias and size distortions if the distribution of

the initial values, yi0, significantly depart from stationarity. Similar comparative outcomes

are also obtained when estimating σ2
φ, except that much larger sample sizes (n and/or T )

are required for reliable estimation and inference. In addition, it is important that the true

value of σ2
φ is not too close to the boundary value of 0. When n and T are not sufficiently

large, estimates of σ2
φ obtained using the plugging estimator, σ̂2

φ = θ̂2 − θ̂
2

1, can be negative.

This occurs with a high frequency when n = 100, and T = 5. The occurrence of negative

estimates declines rapidly when T = 10 and n ≥ 1, 000.

Using Monte Carlo experiments we also provide a limited comparison of the MSW and
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FDAC estimators of µφ, and find that in general, the MSW estimator does not have satisfac-

tory small-sample performance under the data generating process in the paper. As the MSW

estimator depends on the assumed Gaussian distribution of φi, it can be severely biased with

uniformly and categorically distributed φi that we consider in our MC experiments.

Finally, we provide an empirical application using five and ten yearly samples from the

PSID dataset over the 1976–1995 period to estimate the persistence of real earnings. To

this end, we extend the basic panel AR(1) model to allow for linear trends. Following

the empirical literature we report estimates for three educational categories (high school

dropouts, high school graduates and college graduates) and all three categories combined. We

find comparable estimates for the linear trend coefficients across sub-periods and educational

categories, around 2 per cent per annum. The FDAC estimates of mean persistence (µφ) for

the sub-periods 1991–1995 and 1986–1995 fall in the range of 0.570− 0.734, and tend to rise

with the level of educational attainment, with college graduates showing the highest degree

of persistence. No such patterns are observed for other estimates, which are around 0.3, 0.9

and 0.41 for the AB, BB and MSW estimators, respectively. The FDAC estimates of σ2
φ

for all three categories combined are statistically significant and are given by 0.100 (0.042)

and 0.129 (0.023) for the sub-periods 1991–1995 (n = 1, 366) and 1986–1995 (n = 1, 139),

respectively, providing further evidence of heterogeneity in real earnings persistence.

The rest of the paper is set out as follows. Section 2 sets out the model and assumptions.

Section 3 derives the autocovariances of the first differences, ∆yit = yit−yi,t−1, and establishes

conditions under which they are stationary. Section 4 shows that the HomoGMM estima-

tors are biased in the heterogeneous panel AR(1) models. Section 5 establishes conditions

under which the moments of φi can be identified from the autocorrelation functions of first

differences. Section 6 proposes FDAC and HetroGMM estimators of the moments of φi. The

respective asymptotic distributions are also derived. Section 7 evaluates the performance of

FDAC, HetroGMM, HomoGMM, and MSW estimators by Monte Carlo simulations. Section

8 presents the empirical application, and Section 9 concludes. Some of the mathematical

derivations, Monte Carlo evidence and additional empirical results are provided in an online
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supplement.

2 Model and assumptions

We consider the following first-order autoregressive panel data model

yit = αi + φiyi,t−1 + uit, for i = 1, 2, ..., n, (2.1)

where the fixed effects, αi, are restricted, αi = µi (1− φi). This restriction is necessary for

yit to have a fixed mean irrespective of whether φi = 1 or |φi| < 1. If αi is unrestricted,

a linear trend is introduced in yit when φi = 1. The restriction on αi is not binding when

|φi| < 1. We impose the restriction since we will be considering a mixture of processes with

and without unit roots. With αi = µi(1− φi), (2.1) can be written equivalently as

yit − µi = φi (yi,t−1 − µi) + uit, for i = 1, 2, ..., n. (2.2)

Suppose that yit is generated starting at time t = −Mi ≤ 0 with the initial value, yi,−Mi
.

We assume observations on all the n units are available over the periods t = 1, 2, 3, ..., T ,

yielding a total of nT observations {yi1, yi2, ..., yiT , i = 1, 2, ..., n}. The parameters of interest

are first and higher order moments of φi, which we denote by θs = E(φsi ), s = 1, 2, ..., T − 2.

The key feature of our analysis is to allow for a high degree of parameter heterogeneity

when T is short as n → ∞. We allow φi to take any values in the non-explosive interval

[−1 + ε, 1] for some ε > 0, which includes the unit root case, φi = 1 for some of the units,

but rules out a negative unit root, namely it is required that infi(1 +φi) > 0. We are able to

accommodate distributions of φi with a non-zero mass on φi = 1, by basing our estimation of

θs on autocorrelations of first differences, ∆yit = yit− yi,t−1, rather than the autocovariances

of yit considered by Robinson (1978). As examples, we consider a uniform distribution of φi

defined over the interval (−1, 1− ε] with ε > 0, and a categorical distribution where φi takes

two values, φH (high) and φL (low), with probabilities (1− π) and π, respectively. The unit

root case arises when ε = 0 (for the uniform distribution), and φH = 1 with 0 < φL < 1 (for

the categorical distribution). Our analysis does not allow for a negative unit root, namely

when φi = −1.
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The key identification assumption is the stationarity of the first differences. First dif-

ferencing of (2.1) eliminates the fixed effects, αi = µi(1 − φi), but does not remove the

effects of initial values, yi,−Mi
, on the first differences when T is small. Under slope het-

erogeneity, the effects of initial values on first differences do not vanish for processes whose

φi falls in the stable region, −1 < φi < 1, unless they are all initialized at a distant past,

namely only if Mi → ∞, otherwise the realized values yit and/or their first differences

{∆yit, for t = 2, 3, ..., T} will depend on yi,−Mi
− µi. Including the observations yi0 amongst

the realizations does not resolve the problem, since we move one period backward and the

distribution of yi,−1 must still be specified and so on. For processes with unit roots, φi = 1,

we have ∆yit = uit, and initialization will not be an issue, at least not for the unit-root

AR(1) process.

To accommodate the possible mixture of stationary and unit-root processes and achieve

identification of the moments of φi, we make the following assumptions regarding unit-specific

parameters, ψi = (µi, φi, σ
2
i )
′, the error terms, uit, and the initial value deviations, yi,−Mi

−µi

for i = 1, 2, ..., n, where σ2
i = V ar(uit).

Assumption 1 (individual effects) The individual specific means, µi, are bounded, supi |µi| <

C.

Assumption 2 (errors) Conditional on ψi = (µi, φi, σ
2
i )
′, the errors, uit, are cross-sectionally

and serially independent over i and t, with zero means, E(u2
it) = σ2

i , and supi,tE|uit|
4 < C <

∞.

Assumption 3 (error variances) (a) The error variances, σ2
i , are independent draws from a

common probability distribution such that E (σ2
i ) = σ2, where 0 < c < σ2

i , and σ2 < C <∞.

(b) σ2
i are distributed independently of φi.

Assumption 4 (autoregressive coefficients) (a) The autoregressive coefficients, φi, for i =

1, 2, ..., n, are independent draws from a common probability distribution, defined on the

closed interval φi ∈ [−1+ε, 1], for some ε > 0, with mean E(φi) = µφ and variance Var(φi) =

σ2
φ ≥ 0.
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Assumption 5 (initialization) The process {yit} is initialized with yi,−Mi
, where Mi ∈ N =

{0, 1, 2, ...}, and yi,−Mi
− µi is given and bounded, supi |yi,−Mi

− µi| < C.

Assumption 1 imposes minimal restrictions on µi or on the fixed effects αi for |φi| < c < 1.

But as noted earlier, to ensure that yit is not subject to a drift, as it is standard in the unit

root literature, αi is set to 0 when φi = 1. Assumptions 2 and 3 are standard in the

literature on short T dynamic panels. They allow for cross-sectional as well as conditional

time series heteroskedasticity, such as GARCH effects, but rule out unconditional time series

heteroskedasticity. Denoting the available information at time t − 1 by Ii,t−1, E(u2
it |Ii,t−1 )

could be time-varying, so long as E(u2
it) = σ2

i as required by Assumption 2.

Assumptions 4 and 5 ensure that ∆yit is covariance stationary if Mi → ∞, without

requiring yit to be stationary for all n units in the panel.

3 Autocovariances of first differences

Before setting out our approach to the identification of θs = E(φsi ), we need to derive expres-

sions for the autocovariances of ∆yit. Given the available data and after first differencing

(2.1), we have

∆yit = φi∆yi,t−1 + ∆uit, for t = 2, 3, ..., T. (3.1)

Also setting t = 1 and using (2.2) we obtain

∆yi1 = −(1− φi) (yi0 − µi) + ui1. (3.2)

Iterating (3.1) forward from t = 2 and using the above expression for ∆yi1, we obtain

∆yit = uit − (1− φi)
t−1∑
`=1

φ`−1
i ui,t−` − φt−1

i (1− φi) (yi0 − µi) . (3.3)

It is clear that in general, ∆yit depends on yi0 − µi, and Assumption 5 is required if we are

to eliminate the impact of initial values on the autocovariances of ∆yit. Iterating equation

(2.2) forward from yi,−Mi
to t = 0 we have

yi0 − µi = φMi
i (yi,−Mi

− µi) +

Mi−1∑
`=0

φ`iui,−`. (3.4)
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Substituting yi0 − µi from (3.4) in (3.3) now yields

∆yit = uit − (1− φi)
Mi+t−1∑
`=1

φ`−1
i ui,t−` + φtiRi (yi,−Mi

) , for t = 2, 3, ..., T, (3.5)

where Ri (yi,−Mi
) = −φMi−1

i (1 − φi) (yi,−Mi
− µi). For a fixed T , the remainder term, Ri,

does not vanish unless Mi → ∞. Note that under Assumption 5 supi |yi,−Mi
− µi| < C,

and |Ri (yi,−Mi
)| ≤ |φi|

Mi−1 |1− φi| |yi,−Mi
− µi| ≤ C |φi|

Mi−1 |1− φi| , and |Ri (yi,−Mi
)| → 0,

for all i (irrespective of whether φi = 1 or |φi| < 1), if and only if Mi → ∞. Under this

condition

∆yit = uit − (1− φi)
∞∑
`=1

φ`−1
i ui,t−`, (3.6)

and the available first differences, ∆yit for t = 2, 3, ..., T, do not depend on yi0, and can be

used to derive expressions for γ∆(h) = E (∆yit∆yi,t−h) for h = 0, 1, ..., T − 2. But first, we

need to establish that these autocovariances do exist, particularly given that we are allowing

for some yit processes to have unit roots. This requirement is easily established when the

distribution of φi is categorical. In this case we have

γ∆(h) = πE (∆yit∆yi,t−h ||φi| < c < 1) + (1− π)E (∆yit∆yi,t−h |φi = 1) ,

where 0 < π ≤ 1. By application of Minkowski’s inequality to (3.6) we have (for p ≥ 1)

‖∆yit‖p ≤ ‖uit‖p +
∞∑
`=1

[∥∥φ`−1
i

∥∥
p

+
∥∥φ`i∥∥p] ‖ui,t−`‖p ,

where ‖∆yit‖p = E (|∆yit|p)1/p
. By Assumption 2 supi,t ‖uit‖4 < C, and for units with |φi| <

c < 1, we have
∥∥φ`i∥∥p = |φi|

` < c`. Hence, conditional on |φi| < c < 1, we have ‖∆yit‖4 ≤
2C
1−c <∞. Also by Cauchy-Schwarz inequality |E (∆yit∆yi,t−h)| ≤

[
E (∆yit)

2E (∆yi,t−h)
2]1/2,

and supi |E (∆yit∆yi,t−h ||φi| < c < 1)| <∞. In the unit root case

E (∆yit∆yi,t−h |φi = 1) = E(σ2
i ) < C, for h = 0,

= 0, for h > 0,

and overall |γ∆(h)| <∞, for h ≤ T −2. Existence of γ∆(h) when φi is distributed uniformly

over the closed interval [0, 1] involves some algebra and is established in Section S.3 of the

online supplement.
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General expressions for the mean, variance and autocovariances of the first differences

(covering unit root processes) are given in the following lemma and will be used in our

subsequent analysis.

Lemma 1 Consider the panel AR(1) model given by (2.2), and suppose that Assumptions

1-5 hold, and Mi →∞ for all units with |φi| < 1. Then for all i = 1, 2, ..., n

E (∆yit) = 0, E
(
∆y2

it

)
= σ2E

(
2

1 + φi

)
, (3.7)

E (∆yit∆yi,t−h) = −σ2E

[(
1− φi
1 + φi

)
φh−1
i

]
, for h = 1, 2, ..., T − 2, (3.8)

and

E (φi∆yit∆yi,t−h) = −σ2E

[(
1− φi
1 + φi

)
φhi

]
, for h = 1, 2, ..., T − 2. (3.9)

A proof is provided in Section S.2 of the online supplement.

Remark 1 Assumption 5 which in effect requires all processes {yit, i = 1, 2, ..., n} with |φi| <

1 are initialized from a distant past, could be restrictive. Although this assumption is required

for our theoretical derivations, we do investigate the implications of relaxing it using Monte

Carlo experiments. See sub-sections 7.5 and S.8.4 in the online supplement.

Our identification and estimation strategy is based on matching sample estimates of

autocorrelations of first differences (denoted as ρh) with first and higher order moments

of φi. But before providing the details of our proposed estimators, we first show that the

HomoGMM estimators of E(φi) that neglect heterogeneity of φi over i are biased even as

n→∞, for any fixed T , and inferences based on them could be misleading. It is recognized

that neglecting heterogeneity in dynamic panels can lead to biased estimates, but to the best

of our knowledge, there is no formal analysis of the extent of the bias for short T panels. In

the case of heterogeneous dynamic panels when both n and T are large, Pesaran and Smith

(1995) provide expressions for asymptotic bias of fixed effects estimators.
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4 Neglected heterogeneity bias

Under homogeneity where φi = φ for all i, φ can be consistently estimated by the method

of moments after eliminating αi, for example by first differencing. We begin our analysis by

showing the HomoGMM estimators are biased when φi are heterogeneous. The extent of

the bias depends on the degree of heterogeneity. To simplify the exposition, without loss of

generality, we consider the case where T = 4, the minimum value required for identification

of µφ = E(φi) under heterogeneity established in Section 5. For the Anderson-Hsiao (AH)

estimator, φ̂AH = (
∑n

i=1 ∆yi4∆yi2) / (
∑n

i=1 ∆yi3∆yi2), and using (3.1) for t = 4 we have

φ̂AH =
n−1

∑n
i=1 φi∆yi3∆yi2

n−1
∑n

i=1 ∆yi3∆yi2
+
n−1

∑n
i=1 ∆ui4∆yi2

n−1
∑n

i=1 ∆yi3∆yi2
. (4.1)

Since E (∆ui4∆yi2) = 0, then under Assumptions 1 to 5 and assuming Mi → ∞ for units

with |φi| < 1, we have (as n→∞)

φ̂AH →p

∑n
i=1E (φi∆yi3∆yi2)∑n
i=1E (∆yi3∆yi2)

,

where E (∆yi3∆yi2) and E (φi∆yi3∆yi2) are given by (3.8) and (3.9), respectively. Using

these results

φ̂AH →p

E
[(

1−φi
1+φi

)
φi

]
E
[(

1−φi
1+φi

)] . (4.2)

In the homogeneous case (φi = φ), we have φ̂AH →p µφ = φ, as expected. Under hetero-

geneity, φ̂AH is clearly not a consistent estimator of E(φi). The extent of the asymptotic

bias of the AH estimator depends on the distribution of φi. Exact expressions for the ne-

glected heterogeneity bias of the AH estimator under uniform and categorical distributions

are summarized in the following proposition.

Proposition 1 Consider the Anderson-Hsiao estimator of µφ, φ̂AH , given by (4.1), and

suppose µφ = E(φi) in the heterogeneous panel AR(1) model given by (2.2). Suppose As-

sumptions 1–5 hold, and Mi →∞ for all i with |φi| < 1. Then φ̂AH is asymptotically biased

as an estimator of µφ. For T = 4, the asymptotic bias of the AH estimator is given by

plimn→∞

(
φ̂AH − µφ

)
=

2
(
1 + µφ

) [
1

1+µφ
− E

(
1

1+φi

)]
E
(

1−φi
1+φi

) , (4.3)
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and plimn→∞φ̂AH ≤ µφ. The equality holds if and only if φi = φ = µφ, for all i.

A proof is provided in Section S.4 of the online supplement.

The asymptotic biases of the AB and BB estimators under heterogeneous slopes are

derived in Section S.5 of the online supplement. The magnitude of the asymptotic bias of

AH, AB and BB estimators depends on the distribution of φi. For example, suppose that φi

are random draws from a uniform distribution centered at E(φi) = µφ > 0, with φi = µφ+vi,

where vi ∼ IIDU [−a, a], a > 0.1 Then

plimn→∞

(
φ̂AH − µφ

)
=

2(1 + µφ)
[
δ − 1

2
ln
(

1+δ
1−δ

)]
ln
(

1+δ
1−δ

)
− a

, (4.4)

where δ = a/(1 + µφ) ≤
(
1− µφ

)
/(1 + µφ) < 1. It is easily seen that φ̂AH − µφ → 0 with

a→ 0. The magnitudes of the asymptotic bias of the AH estimator for µφ ∈ {0.4, 0.5} and

a = 0.5 are around−0.186 and−0.204, respectively, which are very close to the corresponding

simulated bias in Tables S.8 and S.9 in the online supplement.

In the case where φi follows a categorical distribution, φi = φL (0 < φL < 1) with prob-

ability π and φi = φH > φL with probability 1− π, we have

plimn→∞

(
φ̂AH − µφ

)
=

−2π(1− π)(φH − φL)2

π(1− φL)(1 + φH) + (1− π)(1 + φL)(1− φH)
.

As to be expected the asymptotic bias is negative, and its magnitude depends on the degree

of dispersion of φi which is given by V ar(φi) = σ2
φ π(1− π)(φH − φL)2. The unit root case

arises for the units with φH = 1.

Asymptotic bias, even if small, can lead to substantial size distortions when n is suffi-

ciently large. See sub-section 7.3 for Monte Carlo evidence on the bias and size distortions

of AH and other HomoGMM estimators.

5 Identification of moments of the AR coefficients

In this section, we formally establish conditions necessary for identification of E(φsi ) without

making any specific distributional assumptions on φi. Suppose Assumptions 1 to 5 hold.

1To ensure that |φi| ≤ 1 we also require that a ≤ 1− µφ.
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We consider the minimum number of periods needed to consistently estimate E(φsi ), for

s = 1, 2, ..., S. Denote the hth-order autocorrelation coefficients of ∆yit as ρh given by

ρh =
E (∆yit∆yi,t−h)

E
[
(∆yit)

2] , (5.1)

for h = 1, 2, ..., with |ρh| ≤ 1. Since by assumption φi and σ2
i are independently distributed

(see part (b) of Assumption 3), then using the results in Lemma 1 we have

ρh =
E (∆yit∆yi,t−h)

E
[
(∆yit)

2] = −
E
[(

1−φi
1+φi

)
φh−1
i

]
2E
(

1
1+φi

) , (5.2)

for h = 1, 2, ..., with |ρh| ≤ 1.

Suppose that ρh can be consistently estimated by the moment estimators of E (∆yit∆yi,t−h)

and E
[
(∆yit)

2]. Then the identification condition of E(φsi ) can be derived by the system

of equations in (5.2). For h = 1, 2E
(

1
1+φi

)
ρ1 = −E

(
1−φi
1+φi

)
= 1 − 2E

(
1

1+φi

)
, which can

be equivalently written as 2E
(

1
1+φi

)
= 1

1+ρ1
. Using this result and noting that for h = 2,

2E
(

1
1+φi

)
ρ2 = −2 + E (φi) + 2E

(
1

1+φi

)
, we have

E (φi) =
1 + 2ρ1 + ρ2

1 + ρ1

. (5.3)

Similarly, for h = 3 we have 2E
(

1
1+φi

)
ρ3 = −E

(
2φi − 2− φ2

i + 2
1+φi

)
, which yields

E
(
φ2
i

)
=

1 + 2ρ1 + 2ρ2 + ρ3

1 + ρ1

. (5.4)

For h = 4, 2E
(

1
1+φi

)
ρ4 = −E

(
2φ2

i − φ3
i − 2φi + 2− 2

1+φi

)
, and upon using the results of

the lower-order moments we obtain

E
(
φ3
i

)
=

1 + 2ρ1 + 2ρ2 + 2ρ3 + ρ4

1 + ρ1

. (5.5)

Higher-order moments of φi can be obtained similarly. To identify the sth order moment

of φi requires consistent estimation of ρh for h = 1, 2, ..., s + 1. In general, we must have

T ≥ s+ 3, as n→∞ to identify E (φsi ).

Remark 2 Note that under homogeneity where φi = φ for all i, using (5.2) we have

ρh =
E (∆yit∆yi,t−h)

E
[
(∆yit)

2] = −1

2
φh−1 (1− φ) , for h = 1, 2, ..., T − 2. (5.6)
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For h = 1 under homogeneity, ρ1 = −(1−φ)/2 and φ can be estimated by φ̂Homo = 1+2ρ̂1,nT .

In this case for identification of φ, we need T ≥ 2. This result also follows if we let ρh = φρh−1

in (5.3) E (φi) = φ = 1 + ρ1+φρ1
1+ρ1

, which is satisfied when ρ1 = −(1− φ)/2.

6 Estimation of the moments of the AR coefficients

We now turn our attention to consistent estimation of the moments of φi, namely θs = E (φsi ),

for s = 1, 2, and 3. We consider a simple moment estimator which we refer to as the first

differenced autocorrelation (FDAC) estimator, and a GMM-type estimator that we refer to

as HetroGMM to be distinguished from the GMM estimators proposed in the literature for

estimation of the homogeneous AR coefficient assuming φi = φ for all i.

6.1 First differenced autocorrelation (FDAC) estimator

The FDAC estimator uses the sample analogs of autocorrelations of the first differences, ρh

given by (5.1), in equations (5.3), (5.4) and (5.5) to obtain consistent estimators of θs = E(φsi )

for s = 1, 2 and 3, respectively. Specifically, using {∆yit, t = 2, 3, ..., T ; i = 1, 2, ..., n}, ρh can

be consistently estimated by

ρ̂h,nT =
(T − h− 1)−1

∑T
t=h+2 [n−1

∑n
i=1 ∆yit∆yi,t−h]

(T − 1)−1
∑T

t=2

[
n−1

∑n
i=1 (∆yit)

2] , for h = 1, 2, ..., T − 2. (6.1)

Then plugging these estimators in (5.3)–(5.5) we have the following FDAC estimators

θ̂1,FDAC = Ê (φi) =
1 + 2ρ̂1,nT + ρ̂2,nT

1 + ρ̂1,nT

, for T ≥ 4, (6.2)

θ̂2,FDAC = Ê
(
φ2
i

)
=

1 + 2ρ̂1,nT + 2ρ̂2,nT + ρ̂3,nT

1 + ρ̂1,nT

, for T ≥ 5, (6.3)

and

θ̂3,FDAC = Ê
(
φ3
i

)
=

1 + 2ρ̂1,nT + 2ρ̂2,nT + 2ρ̂3,nT + ρ̂4,nT

1 + ρ̂1,nT

, for T ≥ 6. (6.4)

These estimators can also be viewed as moment estimators that place equal weights on the

cross-section averages, n−1
∑n

i=1 ∆yit∆yi,t−h, for different t. This makes sense since under

our assumptions for each t, ∆yit∆yi,t−h are cross-sectionally independent with finite second-

order moments, and by the law of large numbers n−1
∑n

i=1 ∆yit∆yi,t−h →p E (∆yit∆yi,t−h),
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and hence ρ̂h,nT →p E (∆yit∆yi,t−h) /E (∆yit)
2 = ρh as n→∞. Using this result and noting

that 1 + ρ̂1,nT →p 1 + ρ1 > 0, it then readily follows that θ̂1,FDAC → 1+2ρ1+ρ2
1+ρ1

= θ1 = E(φi).

Similarly, θ̂s,FDAC →p E(φsi ), for s = 2 and 3. Since ∆yit∆yi,t−h for h = 1, 2, ..., T − 2 have

second order moments, it also follows that the convergence of θ̂s,FDAC to θs is in the mean

squared error sense which is stronger than convergence in probability.

6.2 Generalized method of moments estimator based on autoco-

variances

The FDAC estimator is a plug-in type estimator and needs not be efficient. An alterna-

tive and arguably more efficient approach would be to base the estimation of θs directly on

the sample moments of E (∆yit∆yi,t−h) and then use standard results from the GMM lit-

erature to obtain asymptotically optimum weighted moment conditions rather than equally

weighted moments which might not be efficient. In practice, the differences between the

two approaches could depend on the degree of heterogeneity and the sampling uncertainty

associated with the GMM weights. The relative performance of FDAC and heterogeneous

GMM estimators of θs will be investigated by Monte Carlo simulations.

6.2.1 Heterogeneous generalized method of moments (HetroGMM) estimator

of E(φi)

Given (5.1), the moment condition (5.3) can be written equivalently as

θ1[E (∆yit)
2 + E (∆yit∆yi,t−1)] = E (∆yit)

2 + 2E (∆yit∆yi,t−1) + E (∆yit∆yi,t−2) , (6.5)

which yields T−3 moment conditions for t = 4, 5, ..., T , requiring that T ≥ 4. These moment

conditions can be written more compactly as

E [Mnt(θ1,0)] = 0, for t = 4, 5, ..., T, (6.6)

where Mnt(θ1,0) = n−1
∑n

i=1mit(θ1,0), mit(θ1,0) = θ1hit − git,

hit = (∆yit)
2 + ∆yit∆yi,t−1, and git = (∆yit)

2 + 2∆yit∆yi,t−1 + ∆yit∆yi,t−2. (6.7)
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To optimally combine the moment conditions in (6.6) set

hiT = (hi4, hi5, ..., hiT )′ , (6.8)

and giT = (gi4, gi5, ..., giT ) . (6.9)

Then MnT (θ1) = (mn,4(θ1),mn,5(θ1), ...,mn,T (θ1))′ = GnT−HnT θ1, where GnT = 1
n

∑n
i=1 giT

and HnT = n−1
∑n

i=1 hiT . Using (6.5), it readily follows that E [MnT (θ1,0)] = 0. The

HetroGMM estimator of θ1 is given by

θ̂1,HetroGMM = argminθ1 (GnT −HnT θ1)′AnT (GnT − θ1HnT ) ,

where AnT is a (T − 3) × (T − 3) positive definite stochastic weight matrix, and for any

T ≥ 4, it tends to a non-stochastic positive definite matrix AT as n → ∞. The most

efficient HetroGMM estimator is given by

θ̂1,HetroGMM (A∗T ) = (H′nTA∗THnT )
−1

H′nTA∗TGnT , (6.10)

where A∗T = S−1
T (θ1) is the optimal weight matrix with

ST (θ1) = V ar
(√

nMnT (θ1)
)

= nV ar (GnT − θ1HnT ) = nV ar

[
n−1

n∑
i=1

(giT − θ1hiT )

]
.

Given (6.5), E (giT − θ1,0hiT ) = 0, and giT − θ1,0hiT are cross-sectionally independent, then

ST (θ1,0) =
1

n

n∑
i=1

E
[
(giT − θ1,0hiT ) (giT − θ1,0hiT )′

]
. (6.11)

It is difficult to derive an analytical expression for ST (θ1,0), but for a given value of θ1, ST (θ1)

can be consistently estimated by its sample mean given by

ŜT (θ1) =
1

n

n∑
i=1

(giT − θ1hiT ) (giT − θ1hiT )′ , for n > T − 3. (6.12)

A standard two-step GMM estimator of θ1 can now be obtained using θ̂1,FDAC given by

(6.2) as an initial estimate to consistently estimate the optimal weight matrix, S−1
T (θ1,0),

in the first step. Substituting θ̂1,FDAC into (6.12) yields the following two-step HetroGMM

estimator

θ̂1,HetroGMM =
[
H′nT Ŝ−1

T

(
θ̂1,FDAC

)
HnT

]−1 [
H′nT Ŝ−1

T

(
θ̂1,FDAC

)
GnT

]
, (6.13)
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where

ŜT

(
θ̂1,FDAC

)
=

1

n

n∑
i=1

(
giT − θ̂1,FDAChiT

)(
giT − θ̂1,FDAChiT

)′
. (6.14)

It is also possible to obtain an iterated version of the above, where θ̂1,HetroGMM is used to

obtain a new estimate of ŜT (θ1), namely ŜT (θ̂1,HetroGMM), and so on. But there seems little

gain in doing so since θ̂1,HetroGMM is asymptotically efficient.

The above results are summarized in the following theorem.

Theorem 1 Consider the panel AR(1) model given by (2.2) and suppose that Assumptions

1–5 hold, T ≥ 4, and Mi → ∞ for all i with |φi| < 1. Then the HetroGMM estimator

of θ1 = E(φi) given by (6.13) is asymptotically efficient. The asymptotic distribution of

θ̂1,HetroGMM is given by

√
n
(
θ̂1,HetroGMM − θ1,0

)
→d N (0, Vθ1) , (6.15)

where θ1,0 is the true value of θ1, V −1
θ1

= plimn→∞
(
H′nTS−1

T (θ1,0)HnT

)
, HnT = 1

n

∑n
i=1 hiT ,

and S−1
T (θ1,0) and hiT are defined by (6.11) and (6.8), respectively. The asymptotic vari-

ance of θ̂1,HetroGMM can be estimated consistently by n−1
[
H′nT Ŝ−1

T

(
θ̂1,FDAC

)
HnT

]−1

, where

ŜT

(
θ̂1,FDAC

)
is given by (6.14).

Our use of the FDAC estimator as an initial estimator for the two-step GMM estimator

is based on the observations that FDAC exploits the stationarity properties of moments in

the first differences and is based on more information as compared to the first step GMM

estimator. As an example, consider the exact identified case when T = 4. Then (see (6.7))

θ̂1,HetroGMM =
n−1

∑n
i=1 (∆yi4)2 + 2n−1

∑n
i=1 ∆yi4∆yi,3 + n−1

∑n
i=1 ∆yi4∆yi,2

n−1
∑n

i=1 (∆yi4)2 + n−1
∑n

i=1 ∆yi4∆yi,3
,

as compared to θ̂1,FDAC given by (6.2) which can be written equivalently

θ̂1,FDAC =

(
1
3

)∑4
t=2

[
1
n

∑n
i=1 (∆yit)

2]+
∑4

t=3

[
1
n

∑n
i=1 ∆yit∆yi,t−1

]
+
[

1
n

∑n
i=1 ∆yi4∆yi,4−2

](
1
3

)∑4
t=2

[
1
n

∑n
i=1 (∆yit)

2]+
(

1
2

)∑4
t=3

[
1
n

∑n
i=1 ∆yit∆yi,t−1

] .

Both estimators converge to θ1,0 at the rate of
√
n, but θ̂1,FDAC exploits the stationary

properties of the (∆yit)
2 and ∆yit∆yi,t−1 more effectively. Specifically, n−1

∑n
i=1 (∆yi4)2

and (1/3)
∑4

t=2

[
n−1

∑n
i=1 (∆yit)

2] converge to the same limit, but the latter makes use
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of (∆yi2)2 and (∆yi3)2 obervations as well as (∆yi4)2. Similarly, 2n−1
∑n

i=1 ∆yi4∆yi3 and∑4
t=3 [n−1

∑n
i=1 ∆yit∆yi,t−1] converge to the same limit, but the latter makes use of ∆yi3∆yi2

in addition to ∆yi4∆yi3.

Remark 3 Both FDAC and HetroGMM estimators should work fine asymptotically under

E(u2
it) = σ2

it, so long as the time variations of σ2
it is stationary, in a sense that E(σ2

it) = σ2
i .

One important example is when uit has a stationary GARCH specification. This property is

illustrated in the Monte Carlo simulations where we consider the properties of the proposed

estimators with and without GARCH effects.

6.2.2 Generalized method of moments estimator of E(φ2
i )

Similarly, the HetroGMM estimator of θ2 = E
(
φ2
i

)
can be obtained based on the equation

below for t = 5, 6, ..., T ,

θ2

[
E
[
(∆yit)

2]+ E (∆yit∆yi,t−1)
]

(6.16)

=E
[
(∆yit)

2]+ 2E (∆yit∆yi,t−1) + 2E (∆yit∆yi,t−2) + E (∆yit∆yi,t−3) .

Let

h2,iT = (h2,i5, h2,i6, ..., h2,iT )′ (6.17)

and g2,iT = (g2,i5, g2,i6, ..., g2,iT )′ (6.18)

with h2,it = (∆yit)
2 + ∆yit∆yi,t−1 and g2,it = (∆yit)

2 + 2∆yit∆yi,t−1 + 2∆yit∆yi,t−2 +

∆yit∆yi,t−3. Denote G2,nT = n−1
∑n

i=1 g2,iT , and H2,nT = n−1
∑n

i=1 h2,iT , where G2,nT

and H2,nT are (T − 4) × 1 vectors (with T > 4). Then, the two-step HetroGMM estimator

of the second moment can be derived as

θ̂2,HetroGMM =
[
H′2,nT Ŝ−1

2,T

(
θ̂2,FDAC

)
H2,nT

]−1 [
H′2,nT Ŝ−1

2T

(
θ̂2,FDAC

)
G2,nT

]
, (6.19)

where the initial estimator can be the FDAC estimator of θ2 given by equation (6.3), and

Ŝ2,T (θ2) = 1
n

∑n
i=1 (g2,iT − θ2h2,iT ) (g2,iT − θ2h2,iT )′. Finally, the asymptotic distribution

of θ̂2,HetroGMM is given by

√
n
(
θ̂2,HetroGMM − θ2,0

)
→d N (0, Vθ2) , (6.20)
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where θ2,0 is the true value of θ2, and Vθ2 can be consistently estimated by

V̂θ2 =
[
H′2,nT Ŝ−1

2,T

(
θ̂2,HetroGMM

)
H2,nT

]−1

. (6.21)

6.3 Plug-in estimator of σ2
φ

Consider now the estimation of σ2
φ = V ar(φi), and recall that in terms of θ = (θ1, θ2)′ we

have σ2
φ = θ2 − θ2

1. Therefore, a plug-in estimator of σ2
φ is given by

σ̂2
φ = θ̂2 −

(
θ̂1

)2

, (6.22)

which is an asymptotically valid estimator of σ2
φ if θ̂2 −

(
θ̂1

)2

> 0. This condition will

be met for n sufficiently large, noting that θ̂ =
(
θ̂1, θ̂2

)′
is a consistent estimator of

θ0 = (θ1,0, θ2,0)′. The asymptotic distribution of θ̂ = (θ̂1, θ̂2)′,
√
n(θ̂ − θ0) →d N (0,Vθ)

is derived in Section S.6 of the online supplement. Then using the Delta method it fol-

lows that
√
n
(
σ̂2
φ − σ2

φ,0

)
→d N (0, Vσ2), where σ2

φ,0 = θ2,0 − θ2
10 denotes the true value

of σ2
φ, and Vσ2 = (−2θ1,0, 1) Vθ (−2θ1,0, 1)′. Vσ2 can be consistently estimated by V̂σ =(

−2θ̂1, 1
)

V̂θ

(
−2θ̂1, 1

)′
, where V̂θ is a consistent estimator of Vθ given by (S.13) in the

online supplement. However, it is important to bear in mind that the asymptotic distribu-

tion of σ̂2
φ is valid only in the locality of the true value of σ2

φ, and only if this true value is

sufficiently away from the boundary value of 0. In practice, we recommend using the plug-in

estimator of σ2
φ only when n is large, in excess of 1, 000, judging by the Monte Carlo evidence

to be discussed below.

7 Monte Carlo experiments

7.1 Data generating process of Monte Carlo experiments

For each i = 1, 2, ..., n, the process {yit} is generated starting at time t = −Mi + 1, with the

initial value yi,−Mi
using

yit = µi(1− φi) + φiyi,t−1 + hitεit, for t = −Mi + 1,−Mi + 2, ..., 0, 1, 2, ..., T. (7.1)

We experiment with two distributions to generate φi ∈ (−1, 1]: (a) uniform and (b) catego-
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rial. Under the former we set φi = µφ + vi, with vi ∼ IIDU [−a, a]. To distinguish between

cases when |φi| < 1 for all i and when φi ∈ [−1 + ε, 1] for some ε > 0 with φi = 1 for

some i, we fix a = 0.5 and consider the values of µφ = 0.4 and 0.5, with E(φi) = µφ and

σ2
φ = a2/3 = 0.083. Under case (b), we generate φi = φH (high) and φi = φL (low) with

probabilities 1−π and π, respectively. Two sets of parameter values for (φH , φL, π) are con-

sidered: (0.8, 0.5, 0.85) with |φi| < 1 for all i, and (1, 0.5, 0.95) with φi ∈ (−1, 1] for all i. Then

µφ = E(φi) = φLπ+φH(1−π) = 0.545 and 0.525, and σ2
φ =

[
φ2
Lπ + φ2

H(1− π)
]
−µ2

φ = 0.011

and 0.012, respectively. The individual-specific means of {yit} are generated as µi = φi + ηi

with ηi ∼ IIDN(0, 1), allowing for a non-zero correlation between µi and φi.

We consider two choices when generating εit: Gaussian εit ∼ IIDN(0, 1), and non-

Gaussian εit = (eit − 2) /2, with eit ∼ IIDχ2
2, where χ2

2 is a chi-squared variate with two

degrees of freedom, for all i and t. {hit} is generated as a GARCH(1, 1) process, namely

h2
it = σ2

i (1 − ψ0 − ψ1) + ψ0h
2
i,t−1 + ψ1(hi,t−1εi,t−1)2, with σ2

i ∼ IID (0.5 + 0.5z2
i ) and zi ∼

IIDN(0, 1). We set ψ0 = 0.6 and ψ1 = 0.2, with the initial values hi,−Mi
= σi.

2 The

case where errors are conditionally homoskedastic over time is obtained as a special case by

setting ψ0 = ψ1 = 0.

We generate the initial values of {yit} as (yi,−Mi
− µi) ∼ IIDN(b, κσ2

i ) with b = 1 and

κ = 2 for all i. Again the choice of Mi is set depending on whether |φi| < 1 or φi = 1. For the

former case, we set Mi = 100, which applies to all the units when φi is uniformly distributed

as it is not known which φi = 1, and units with φi < 1 in the case of categorical-distributed

φi. For draws with φi = 1 in the categorical distribution, we set Mi = 1 such that yit for

t = 1, 2, ..., T has finite moments as T is fixed in our design.

To check the robustness of the results to non-stationary initialization for |φi| < 1, when

the processes start from a finite date in the past, we conduct two sets of experiments, one

set with Mi = 1, and another set with Mi = 3 for all i.

The estimation of the moments of φi, µφ = E(φi) and σ2
φ = V ar(φi), are based on

2Our approach also allows the coefficients of the GARCH(1, 1) model to be heterogeneous across i, so
long as they are drawn from the same common distribution. But to keep the MC design simple, we are only
reporting for the case where ψ0 and ψ1 are homogeneous.
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{y(r)
it , for i = 1, 2, ..., n; t = 1, 2, ..., T}, where r denotes the rth replication of DGP in (7.1).

We carry out 2, 000 replications for the experiments that compare the small sample perfor-

mances of FDAC, HetroGMM, and a number of estimators proposed in the literature for the

homogeneous slope case (denoted by HomoGMM), specifically, the estimators proposed by

Anderson and Hsiao (1981, 1982) (AH), Arellano and Bond (1991) (AB), Blundell and Bond

(1998) (BB), and the augmented Anderson-Hsiao (AAH) estimator proposed by Chudik and

Pesaran (2021), as well as the FDLS estimator due to Han and Phillips (2010).3 For exper-

iments that compare our proposed estimator with the MSW estimator in Mavroeidis et al.

(2015), we use 1, 000 replications as it takes a substantial amount of time to compute the

MSW estimator.4 To save space, the tables summarize the results of the MC experiments

are all included in the online supplement.

7.2 Comparison of FDAC and HetroGMM estimators

7.2.1 MC results for estimation of µφ

Bias, root mean square errors (RMSE), and size of tests of FDAC and HetroGMM estimators

of µφ = E(φi) with uniformly distributed φi are summarized in Table S.1 in the online

supplement. The results with categorically distributed φi are shown in Table S.2 in the online

supplement. These tables provide results for the sample size combinations T = 4, 5, 6, 10 and

n = 100, 1000, 5000, in the case of Gaussian errors without GARCH effects. The parameters

of distributions are chosen to distinguish between cases where |φi| < 1 and φi ∈ (−1, 1], with

the related results displayed in the left and right panels of the tables, respectively.

In line with our theoretical results, both FDAC and HetroGMM estimators offer reliable

estimates for µφ in the case of heterogeneous short T panels under both uniform and cat-

egorical distributions. The categorical distribution yields marginally lower RMSEs, which

3We have downloaded the codes of the AH, AB, BB, and AAH estimators from the supplementary materi-
als of Chudik and Pesaran (2021) using the link: https://www.econ.cam.ac.uk/people-files/emeritus/
mhp1/fp21/CP_AAH_paper_July_2021_codes_and_data.zip. We are grateful to Alexander Chudik for
making the codes publicly available.

4We have downloaded the codes of the MSW estimator used in empirical applications from the sup-
plementary materials of Mavroeidis et al. (2015) using the link: https://drive.google.com/file/d/

1hdRFpcWo3r88YV_5Kc40ur-siCYGSBDN/view?usp=sharing. We are grateful to Yuya Sasaki for also sharing
the codes of the MSW estimator used in their Monte Carlo experiments by private correspondence.
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is largely due to the fact that σ2
φ is much smaller under the categorical distribution around

0.012, as compared to 0.083 under the uniform distribution. More importantly, the magni-

tudes of bias, RMSE, and size are very similar irrespective of whether |φi| < 1 or φi ∈ (−1, 1].

This result holds even if a fixed proportion of units have unit roots, as is the case with the

categorical distribution where φi = 1 in the case of 5 per cent of all units in the sample. The

empirical power functions for FDAC and HetroGMM estimators of µφ are displayed in Figure

S.1 of the online supplement for the uniformly distributed AR coefficients with φi ∈ (−1, 1]

in the baseline case (Gaussian errors and no GARCH effects). The power functions for the

other experiments are very similar and can be obtained from the authors upon request.

Compared with the HetroGMM estimator, the FDAC estimator has uniformly smaller

biases across all sample size combinations, lower RMSE, and greater power for T = 4, 5, 6,

and n = 100, 1000, and 5000. The differences between the two estimators of µφ become

negligible only when T = 10. In the light of our discussion in sub-section 6.2, this could

be because the FDAC estimator uses averages of the individual sample moments both over

time and across all units given the stationary properties of the autocovariances of the first

differences, and thus it is not subject to the many moment problem that could adversely

impact the HetroGMM estimator. Consequently, tests based on the FDAC estimator are not

adversely affected as T is increased with n small, and its size is mostly around the nominal

size of five per cent. However, tests based on the HetroGMM estimator tend to over-reject

slightly as T is increased when n is relatively small (n = 100). For example, for the uniform

distribution with φi ∈ (−1, 1] and n = 100, the size of the tests of µφ = 0.5 based on the

HetroGMM estimator rises from 5.7 to 10.5 per cent when T is increased from 4 to 10.

These findings are in line with the results obtained in the literature when GMM is applied

to homogeneous dynamic panels.5

As can be seen from the empirical power functions in Figure S.1, the tests based on FDAC

and HetroGMM estimators can not reject µφ = 1 with 100 per cent certainty due to the small

5For GMM estimators with many moment conditions, some of the moment conditions can be weak. The
small-sample bias associated with the weak moments will result in substantial size distortions, which become
more severe with greater weights on the weak moments. See also Section 6 of Chudik and Pesaran (2021).
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sample sizes with n = 100. But as n and T increase, the empirical power functions become

steeper, illustrating an enhanced ability to discern deviations from the null hypothesis.

7.2.2 MC results for estimation of σ2
φ

As discussed in sub-section 6.3, the FDAC and HetroGMM estimators of σ2
φ are consistent

so long as the true value of σ2
φ, namely θ2,0 − θ2

0,1 is not too close to the boundary value

of zero. Also to avoid negative estimates of the plug-in estimator of σ2
φ given by (6.22) we

need n to be sufficiently large. Table S.3 in the online supplement summarizes the number of

replications, out of 2, 000, with negative or close to zero estimates (defined as estimates below

0.0001) for the baseline experiments and sample size combinations n = 100, 1000, 2500, 5000

and T = 5, 6, 10. The frequencies of the HetroGMM estimator are noticeably higher than

those of the FDAC estimator for small T and n. When n = 100, a sizeable proportion

of the estimates of σ2
φ are negative, suggesting that n = 100 is not sufficiently large for

the asymptotic properties to hold. However, as to be expected, the number of negative

estimates declines rapidly as n and T are increased. Accordingly, we only focus on samples

with n ≥ 1000, and report the bias and RMSE of the estimates of σ2
φ for sample size

combinations n = 1000, 2500, 5000 and T = 5, 6, 10. The results for the positive estimates

are summarized in Table S.4 of the online supplement for uniformly distributed φi. For

these sample size combinations, we only encounter very few negative estimates and none

when n = 5000 and T ≥ 6.6

Overall, both FDAC and HetroGMM estimators of σ2
φ perform well when T = 10 or n is

large, with comparable performances whether |φ| < 1 or φi ∈ (−1, 1]. However, the FDAC

estimator performs much better for smaller values of T and n, as can be seen from the larger

bias and RMSE of the HetroGMM estimator.

The empirical power functions for FDAC and HetroGMM estimators of σ2
φ are shown

in Figure S.2 of the online supplement for the uniformly distributed AR coefficients with

φi ∈ (−1, 1] in the baseline case (Gaussian errors and no GARCH effects). The empirical

6We did not consider estimating σ2
φ under the categorical distributions of φi since the associated true

values of σ2
φ are too close to zero.
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power functions are flat around the true value of σ2
φ for T = 5 and n small. When T = 5, large

values of n are required to achieve reasonable power in the locality of the null hypothesis.

The power improves rapidly as T and n are increased and, in line with the earlier results,

the FDAC estimator performs better than the HetroGMM estimator.

7.2.3 Robustness

The FDAC estimators seem to be reasonably robust to departures from Gaussian errors

and the presence of GARCH effects. Table S.5 of the online supplement provides results

for the four combinations of error distributions, Gaussian and non-Gaussian, without and

with GARCH effects for estimation of µφ. This table reports the results for the uniformly

distributed AR coefficients with φi ∈ (−1, 1] and µφ = 0.5. We obtain similar results when

we generate φi following a categorical distribution. The RMSE and size distortions of the

FDAC estimator increase only slightly as we move from Gaussian to non-Gaussian errors

and as we allow for GARCH effects. In contrast, the HetroGMM estimator is much more

adversely affected by departures from Gaussian errors. Its bias and RMSE are much higher,

with large size distortions, particularly with small n (n = 100). The performances of both

estimators are adversely affected when non-Gaussian errors are combined with GARCH

effects. Estimation of σ2
φ is similarly adversely affected when we allow for non-Gaussian

errors as well as GARCH effects. The related simulation results are summarized in Table

S.6 of the online supplement.

Overall, the FDAC estimator outperforms the HetroGMM estimator and seems to be

reasonably robust to non-Gaussian errors and GARCH effects. It is also simple to compute.

In what follows we focus on the estimation of µφ and compare the FDAC estimator with the

HomoGMM estimators as well as the MSW estimator that allows for slope heterogeneity.

7.3 Comparison of FDAC and HomoGMM estimators

Tables S.8 and S.9 in the online supplement summarize the results comparing the FDAC

estimator with FDLS, AH, AAH, AB and BB estimators, where φi is uniformly distributed,

φi = µφ + vi and vi ∼ IIDU [−a, a] with a = 0.5 and µφ = 0.4 (|φi| < 1) and µφ = 0.5
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(φi ∈ (−1, 1]). We use the sample size combinations, T = 4, 6, 10, and n = 100, 1000, 5000,

in the baseline case where the errors are Gaussian without GARCH effects. The simulation

results with the other error processes are available upon request.

In line with our theoretical derivations, the HomoGMM estimators that neglect hetero-

geneity are severely biased and show large size distortions, whilst the bias of the FDAC

estimator is close to zero and its size is around the five per cent nominal level, irrespective

of whether |φi| < 1 or φi ∈ (−1, 1]. Also, with increases in n and/or T , the biases of the

HomoGMM estimators do not shrink to zero and, as a result, the size distortions of the

HomoGMM estimators become even more pronounced. The simulation results also confirm

the magnitude of the asymptotic bias of the AH estimator given by (4.4) in Section 4, and

those of AB and BB estimators provided in Section S.5 of the online supplement.

Since it is not known if the heterogeneity bias is serious, it is natural to ask if the FDAC

estimator continues to perform equally well under homogeneity (φi = µφ = 0.5 for all i),

and if its performance under homogeneity is comparable to those of HomoGMM estimators

of φ. Accordingly, we also computed bias, RMSE, and size of the FDAC and HomoGMM

estimators under slope homogeneity (a = 0) with µφ = 0.5. The results for Gaussian errors

without GARCH effects are summarized in Table S.10 of the online supplement. As can be

seen, the FDAC estimator continues to perform well even under slope homogeneity. Its bias

is close to zero and shows only a small degree of size distortions when n = 100. In terms

of assumptions, the FDAC estimator is closest to the FDLS estimator under homogeneity.

Figure S.3 in the online supplement compares the empirical power functions of FDAC and

FDLS estimators. Compared to the FDLS estimator, the FDAC estimator makes use of

higher order autocorrelation of first differences that are not needed for identification of µφ

under homogeneity. As a result, the FDLS estimator is marginally more powerful than the

FDAC for small T = 4, while the opposite is the case for T = 10.

When comparing the FDAC and the other HomoGMM estimators (such as AAH, BB, or

AB) one needs to be cautious however, since these estimators do allow for the distribution of

yi0 to depart from the steady state distribution of {yit}. With this in mind, we note that the
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FDAC estimator performs well when compared to AH, AAH and AB estimators, although it

is marginally less efficient when compared to the BB estimator. Also, the FDAC estimator

has less size distortion and better power performance compared to all HomoGMM estimators

as T is increased. In short, these results demonstrate the FDAC estimator is reliable and

has desirable small-sample performance even in homogeneous panels with stationary outcome

processes.

Figure S.4 in the online supplement shows the empirical power functions for the FDAC

estimator under homogeneity with φi = µφ = 0.5 for all i and heterogeneity with uniformly

distributed φi ∈ (−1, 1] (µφ = 0.5), in the cases of Gaussian and non-Gaussian errors without

GARCH effects. The empirical power functions for the FDAC estimator in the cases of

Gaussian errors without and with GARCH effects are displayed in Figure S.5 of the online

supplement. The power functions become steeper as n and T increase. In general, the power

of the FDAC estimator is similar under heterogeneous and homogeneous φi. Consistent

with the previous findings, with non-Gaussian errors and/or GARCH effects, particularly

for small n = 100, the power functions become noticeably flatter, and the size distortions

become more pronounced.

7.4 Comparison of FDAC and MSW estimators

This section compares the small-sample performance of the FDAC estimator with the MSW

estimator by Mavroeidis et al. (2015). Table S.11 in the online supplement reports bias,

RMSE, and size of the FDAC and MSW estimators for µφ for T = 4, 6, 10, and n = 100, 1000,

with uniformly distributed φi and Gaussian errors without GARCH effects. The left and

right panels of the table report results for µφ = 0.4 (|φi| < 1) and µφ = 0.5 (φi ∈ (−1, 1]),

respectively. The performance of the FDAC estimator is in line with the ones already

discussed and as noted earlier is not affected by whether some φi = 1 or not. In contrast,

the MSW estimator performs rather poorly in the presence of a high degree of heterogeneity

in φi and shows large biases and substantial size distortions across the examined sample

sizes. In the case of φi ∈ (−1, 1], the MSW estimator shows greater bias, RMSE, and size
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distortions.

7.5 Non-stationary initializations

Since the first differences of yit do not depend on the initial values when φi = 1, non-

stationary initialization matters only if |φi| < 1. In this case, using (3.4) it is clear initial

values matter only when Mi is small. Therefore, to investigate the robustness of the FDAC

estimator to different initializations we consider relatively small values of Mi = 1 and 3 for

all i, compared with the baseline case where we set Mi = 100 for all units with |φi| < 1.

The initial values are generated as (yi,−Mi
− µi) ∼ IIDN(b, κσ2

i ) with b = 1 and κ = 2,

compared to their steady state values of b = 0 and κi = 1/(1 − φ2
i ), respectively. When φi

are generated from a categorical distribution we set Mi = 1 for all units with φH = 1.

We consider both uniformly and categorically distributed φi . The results for the uni-

formly distributed φi under the three initializations Mi ∈ {100, 3, 1} are summarized in Table

S.12 of the online supplement. Similar results when φi follow the categorical distribution

is given in Table S.13 of the online supplement. It is clear that the FDAC estimator is

adversely affected when Mi = 1 and displays bias and substantial size distortions. As to be

expected, the magnitude of the bias is not affected by n but falls sharply with T . As a result

when Mi = 1 we observe substantial size distortions when n is large. Comparing the upper

and lower panels, as the first differences of a unit root process are not affected by the initial

values, having some φi being close to one mitigates the negative impact of non-stationary

initializations on the FDAC estimator. These impacts are more pronounced for categorically

distributed φi where the variances of φi are smaller, as shown in Table S.13 versus Table

S.12. More importantly, as to be expected, the bias and size distortion of FDAC disappear

as Mi is increased. When moving from Mi = 1 to Mi = 3, the bias and size distortion shrink

fast, with only a slight size distortion observed when Mi = 3.

We also consider the relative performance of the FDAC and HomoGMM estimators under

different initialization scenarios, for both cases of homogeneous and heterogeneous panels.

Results for the homogenous case when φi = µφ = 0.5 are summarized in Table S.14, and
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results for the heterogenous case are provided in Tables S.15 and S.16 for cases where µφ = 0.4

(|φi| < 1) and µφ = 0.5 (φi ∈ (−1.1]), respectively. In the homogeneous case, when Mi = 1,

the FDAC, FDLS, and BB estimators all show sizeable bias and size distortions that do not

vanish as n increases. Also, as to be expected, under homogeneity, the AH, AAH, and AB

estimators are robust to non-stationary initialization and have similar performances across

different values of Mi. In the case of heterogeneous panels, the performance of the FDAC

estimator is as discussed above. For the HomoGMM estimators, the magnitude of neglected

heterogeneity bias is smaller with less serious size distortions when Mi = 1 or 3, as compared

to Mi = 100 (which approximately corresponds to the stationary case). The AH estimator

seems to be an exception. Nonetheless, the HomoGMM estimators exhibit substantial size

distortions across most of the considered sample sizes, leading to incorrect inference.

In short, for moderate values of Mi (in the case of our experiments when Mi > 3),

the performance of the FDAC estimator is satisfactory even when yi0 − µi are not drawn

from the steady distribution of the underlying processes, {yit − µi}. Comparisons of the

FDAC and HomoGMM estimators also highlight the trade-off that exists between the “non-

stationary initialization” bias of the FDAC estimator and the neglected heterogenous bias of

the HomoGMM estimator. It remains a challenge to simultaneously deal with heterogeneity

of φi and the non-stationarity of the initial values.

8 Empirical application: heterogeneity in earnings dy-

namics

8.1 Literature review of estimation of earnings dynamics

Estimating earnings equations is crucial for answering some of the most important economic

questions.7 Variance of earnings has been modeled and decomposed to measure income

uncertainties in Lillard and Weiss (1979), MaCurdy (1982), Carroll and Samwick (1997),

Meghir and Pistaferri (2004), Altonji et al. (2013) and to quantify earnings mobility in

7See p. 58 in Guvenen (2009) for a brief summary of several economic inquiries hinging on the estimation
of earnings functions.
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Lillard and Willis (1978) and Geweke and Keane (2000). The covariance structures between

earnings and other households’ characteristics, for example, work hours, consumptions and

savings, have been studied by Abowd and Card (1989), Hubbard et al. (1995), Guvenen

(2007), and Alan et al. (2018).

Among these studies, a homogeneous AR or ARMA process is often used as a component

when modeling innovations in earnings processes. Based on the Restricted Income Profiles

model that assumes homogenous linear trends proposed in MaCurdy (1982), MaCurdy (1982)

and Hubbard et al. (1995), obtained close to unit root estimates for the AR(1) coefficient,

ranging from 0.946 to 0.998.8 Following this literature, a unit root assumption was imposed in

Carroll and Samwick (1997) and Meghir and Pistaferri (2004). On the other hand, using the

Heterogeneous Income Profiles, by assuming unit-specific linear trends, Lillard and Weiss

(1979) obtained estimates of the AR(1) coefficient (assumed to be homogeneous) ranging

from 0.153 to 0.860 for a sample with PhD degrees. Guvenen (2009) using PSID data

obtained estimates ranging from 0.809 to 0.899.9

There are also a number of studies that allow for heterogeneity in the AR(1) coefficients.

Prominent examples are Browning et al. (2010), Alan et al. (2018), Browning et al. (2010),

and Gu and Koenker (2017). These studies are typically based on panels with a moderate

time dimension and make parametric assumptions regarding the distribution of the AR(1)

coefficients; often using a Bayesian framework.10 The application of the FDAC estimator

to earnings equation allows for heterogeneity in the AR(1) coefficients without making any

strong parametric assumptions, even when T is as small as 5. Also because of first differ-

encing prior to estimation, the FDAC estimator is robust to unobserved individual-specific

characteristics and is not subject to misspecification bias that could arise when log real

wages are filtered for individual-specific characteristics before investigating the dynamics of

the earnings process.

8See Table 5 on p. 111 in MaCurdy (1982) using an ARMA(1,1) process. See Table 2 on p. 380 in
Hubbard et al. (1995) based on an AR(1) process.

9See Tables 2, 4, 6 and 7 in Lillard and Weiss (1979), Table 1 on p. 64 in Guvenen (2009), and the
abstract of Gu and Koenker (2017).

10See pp. 227–232 in Browning and Ejrnæs (2013) for a comprehensive survey of heterogeneity in param-
eters of earnings functions.
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8.2 A heterogeneous panel AR(1) model of earnings dynamics

with linear trends

We consider estimating the earnings equation with fixed effects, heterogeneous autoregressive

coefficients, without imposing any restrictions on the joint distributions of αi, φi, and yi0.

However, to accommodate growth in real earnings we extend our baseline model in (2.1) to

allow for linear trends:

yit = αi + gi(1− φi)t+ φiyi,t−1 + uit, (8.1)

where yit = log(earningsit/pt), earningsit is the reported earnings of individual i in year t,

pt is a general price, and gi is the growth rate of real earnings for individual i. (8.1) can be

written equivalently as

ỹit(gi) = bi + φiỹi,t−1(gi) + uit,

with ỹit(gi) = yit − git and bi = αi − giφi. For |φi| < 1, the steady state distribution of yit

can now be derived using

yit = bi + git+
∞∑
s=0

φsiui,t−s. (8.2)

When T is sufficiently large, individual-specific growth rates, gi, can be estimated
√
T -

consistently by running individual least squares regressions of yit on an intercept and a

linear trend, and then using the residuals from these regressions to estimate the moments of

φi. This approach requires n and T to be both large. In the case of the present empirical

application where T is short (5 or 10), we provide estimates of the moments of φi assuming

that gi = g for individuals within a given group, but allow g to differ across groups, classified

by the educational attainment levels.
√
n-consistent estimators of g can be obtained either

from the pooled regression of yit on fixed effects and a common linear trend, namely

ĝFE =

[
T∑
t=1

(
t− (T + 1)

2

)2
]−1 [ T∑

t=1

(ȳ◦t − ȳ◦◦)t

]
, (8.3)

with ȳ◦t = n−1
∑n

i=1 yit and ȳ◦◦ = T−1
∑T

t=1 ȳ◦t, or after first differencing of (8.2) by

ĝFD =

∑T
t=2

∑n
i=1 ∆yit

n(T − 1)
. (8.4)
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For small T there is little to choose between these two estimators, and they are identical

when T = 2. Given either of the above estimators, generically denoted by ĝ, ỹit(ĝ) = yit− ĝt

can now be used to estimate the moments of φi using the FDAC or MSW procedures.11

In addition to the FDAC estimates, we also present estimates based on four estimation

methods assuming homogeneous slope coefficients, namely AAH, AB, and BB estimators

proposed by Chudik and Pesaran (2021), Arellano and Bond (1991), and Blundell and Bond

(1998), and the MSW estimator of Mavroeidis et al. (2015). Following Meghir and Pistaferri

(2004), individuals in each time series sample are divided into three education categories,

where “HSD” refers to high school dropouts with less than 12 years of education, “HSG”

refers to high school graduates with at least 12 but less than 16 years of education, and

“CLG” refers to college graduates with at least 16 years of education.12 To allow for possible

time variations in the estimates of mean earnings persistence we provide estimates for five

and ten yearly non-overlapping sub-periods. The five yearly samples are 1976–1980, 1981–

1985, 1986–1990, and 1991–1995. The ten yearly samples are 1976–1985, 1981–1990 and

1991–1995. For each sub-period, we provide estimates for all categories combined, as well

as separate estimates for the three educational sub-categories.13 To save space, the results

for the last five and ten yearly samples are given in the paper. The estimates for the earlier

sub-periods are provided in the online supplement.

Table 1 gives the estimates of mean earnings persistence, µφ = E(φi), and the common

linear trend coefficient, g, for the sub-periods 1991–1995 (T = 5) and 1986–1995 (T = 10).

The estimates of g are on average around 2 per cent per annum with some modest variations

across the sub-samples and educational categories. The HomoGMM estimates (AAH, AB

and BB) differ a great deal, both over sub-periods and across educational categories. The

AAH estimates are all around 0.50 and show little variations across the two sub-periods and

11Consistent estimation of E(φi) in the presence of heterogeneity in both φi and gi requires moderate
to large values of T . The approach used in the empirical literature whereby yit are first de-meaned and
de-trended for each i prior to the estimation of E(φi) is subject to Nickell (1981) bias in the case of short T
panels, even if E(φi) = φ.

12The sample for all individuals in both 5 and 10 yearly samples covered 3, 113 individuals with consecutive
observations of nine years or more, and 36,325 individual-year observations.

13From 1997 PSID data are updated every two years. We confine our analysis to the years 1976 to 1995
to construct panels with 5 and 10 consecutive years.
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the educational categories. The AB estimates tend to be quite low and are not statistically

significant for two of the educational categories in the shorter sub-period (T = 5). In

contrast, the BB estimates are much larger and in many instances are close to unity. For

example, for the sub-period 1986–1995 (T = 10), the BB estimates of earnings persistence

for the three educational categories HSD, HSG and CLG are 0.923 (0.003), 0.914 (0.003)

and 0.992 (0.004), respectively, with standard errors in brackets.

Table 1: Estimates of mean persistence (µφ = E(φi)) of log real earnings in a panel AR(1)
model with a common linear trend using PSID data over 1991–1995 and 1986–1995

1991–1995, T = 5 1986–1995, T = 10
All Category by education All Category by education

categories HSD HSG CLG categories HSD HSG CLG
Homogeneous slopes

AAH 0.526 0.490 0.547 0.447 0.546 0.569 0.535 0.522
(0.046) (0.072) (0.061) (0.072) (0.028) (0.024) (0.033) (0.038)

AB 0.278 0.105 0.320 -0.013 0.311 0.310 0.335 0.232
(0.081) (0.147) (0.097) (0.133) (0.039) (0.045) (0.044) (0.070)

BB 0.488 0.872 0.602 0.964 0.880 0.923 0.914 0.992
(0.059) (0.031) (0.042) (0.074) (0.004) (0.003) (0.003) (0.004)

Heterogeneous slopes
FDAC 0.586 0.582 0.567 0.635 0.636 0.580 0.611 0.734

(0.042) (0.132) (0.056) (0.065) (0.023) (0.071) (0.028) (0.040)
MSW 0.437 0.431 0.436 0.452 0.458 0.459 0.452 0.460

(0.040) (0.044) (0.043) (0.045) (0.054) (0.038) (0.046) (0.063)

Common linear trend 0.023 0.008 0.027 0.020 0.019 0.024 0.020 0.013
n 1,366 127 832 407 1,139 109 689 341

Notes: The estimates are based on yit = αi+g(1−φi)t+φiyi,t−1 +uit, where yit = log(earningsit/pt) using

the PSID data over the sub-periods 1991–1995 and 1986–1995. “HSD” refers to high school dropouts with

less than 12 years of education, “HSG” refers to high school graduates with at least 12 but less than 16 years

of education, and “CLG” refers to college graduates with at least 16 years of education. ĝFD is computed

by (8.4), then µφ is estimated based on ỹit = yit− ĝFDt. “AAH”, “AB”, and “BB” denote the 2-step GMM

estimators by Chudik and Pesaran (2021), Arellano and Bond (1991), and Blundell and Bond (1998). The

FDAC estimator is calculated by (6.2). “MSW” denotes the estimator by Mavroeidis et al. (2015).

We also find sizeable differences in the estimates of mean earnings persistence when we

consider the FDAC and MSW estimators. The MSW estimates are all around 0.45 and

do not vary with the level of educational attainment. In contrast, the FDAC estimates

are somewhat larger (lie in the range of 0.570–0.734) and rise with the level of educational

attainment. This pattern can be seen in both sub-periods. For example, for the longer sub-

period (1986-1995), the mean persistence for HSD, HSG and CLG categories are estimated
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to be 0.580 (0.071), 0.611 (0.028) and 0.735 (0.040), respectively. Similar results are obtained

for the other sub-periods. See Tables S.19 and S.20 of the supplement. Interestingly, the

higher earnings persistence of the college graduate category is a prominent feature of the

FDAC estimates for all sub-periods. This result is also in line with a number of theoretical

arguments in the literature in terms of higher mobility of college graduates and their relative

job stability, for example, Carroll and Samwick (1997) and Carneiro et al. (2023).

Although we have not developed a formal statistical test of the heterogeneity φi, the

estimates of σ2
φ provide a good indication of the degree of within-group heterogeneity. Esti-

mates of σ2
φ based on MSW and FDAC procedures for the various sub-periods are given in

Tables S.21–S.23 of the online supplement. The FDAC estimates are much larger than the

MSW estimates. For example, for the sub-period 1986–1995 the MSW estimates of σ2
φ are all

around 0.011 with standard errors in the range of 0.005–0.011, whilst the FDAC estimates

of σ2
φ for the same sub-period are 0.122 (0.06), 0.12 (0.031) and 0.141 (0.036) for the three

educational categories of HSD, HSG and CLG, respectively. The degree of within-group

heterogeneity also seems to vary over time. For example, for the shorter sub-period (1991-

1995), the FDAC estimates of σ2
φ are generally smaller with larger standard errors for the

two categories of HSG and CLG.

9 Conclusion

This paper considers the estimation of heterogeneous panel AR(1) models with short T ,

as n → ∞. It allows for individual fixed effects and proposes estimating the moments

of the AR(1) coefficients, E(φsi ), for s = 1, 2, ..., S, using the autocorrelation functions of

first differences. It is shown that the standard GMM estimators proposed in the literature

for short T homogeneous panels are inconsistent in the presence of slope heterogeneity.

Analytical expressions for the bias are derived and shown to be very close to estimates

obtained from stochastic simulations.

We propose two moment based estimators. A simple estimator based on autocorrelations

of first differences, denoted by FDAC, and a GMM estimator based on autocovariances of
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first differences denoted by HetroGMM. Both estimators allow for some of the cross section

units to have unit roots.

The small sample properties of the proposed estimators are investigated using Monte

Carlo experiments. It is shown that the FDAC estimators of µφ and σ2
φ perform much better

than the corresponding HetroGMM estimator. We also find that quite large samples might

be required for reliable estimation of σ2
φ, assuming that the true value of σ2

φ is not too close

to zero.

The simulation results also show that the FDAC estimator of µφ is robust to different

distributions of autoregressive coefficients and error processes. Further, we find that the

FDAC estimator performs well even under homogeneous AR(1) coefficients. The magnitudes

of bias and RMSE of the FDAC estimator are comparable to the HomoGMM estimators, and

the size of the tests based on the FDAC estimator is mostly around the 5 per cent nominal

level. But when initializations of the outcome processes deviate from their associated steady

state distributions, the FDAC estimator could suffer from bias and size distortions. There is

a trade-off between heterogeneity bias and the bias due to the non-stationary initializations.

The utility of the FDAC estimators of µφ and σ2
φ is illustrated by an empirical application

using 1976–1995 PSID data to estimate heterogeneous AR(1) panels in log real earnings

with a common linear trend. We provide estimates of µφ and σ2
φ over a number of 5 and 10

yearly sub-periods, with 3 educational groupings. The estimates of µφ differ systematically

across the education groups, with the mean persistence of real earnings rising with the

level of educational attainments (high school dropouts, high school graduates, and college

graduates). The estimates of σ2
φ differ across periods and levels of educational attainment

but do not display any particular patterns.

It is important to acknowledge that the scope of the present paper is limited, with a

number of remaining challenges: (a) allowing for individual-specific time-varying covariates,

and (b) simultaneously dealing with heterogeneity and non-stationary initializations. It is

not clear that such extensions will be possible without relaxing the assumption that T is

short and fixed, as n→∞. But these are clearly important topics for future research.
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S.1 Introduction

This online supplement is organized as follows. Section S.2 provides a proof of Lemma

1 under the stationarity of the first differences, ∆yit = yit − yi,t−1. Section S.3 further

illustrates the convergence property with uniformly distributed autoregressive coefficients,

φi. Section S.5 derives expressions for the analytical bias of the AB and BB estimators under

heterogeneity of φi when T = 4. Section S.6 derives the asymptotic covariance matrix for

the HetroGMM estimator of the first two moments and its consistent estimator. Section S.7

provides formulae for empirical power functions of the tests based on our proposed estimators

in the Monte Carlo simulations. Section S.8 provides additional Monte Carlo evidence.

Section S.9 describes the sample (1976–1995) of the Panel Study of Income Dynamics (PSID)

data used in the empirical application, and provides estimation results for a number of sub-

periods in addition to the ones reported in the main paper.

S.2 Proof of Lemma 1: Existence of autocovariances of first dif-

ferences

We first establish conditions under which first differences, ∆yit, are covariance stationary for

any given t and i. Consider the result (3.5) in the main paper which we reproduce here for

convenience:

∆yit = uit − (1− φi)
Mi+t−1∑
`=1

φ`−1
i ui,t−` − φMi+t−1

i (1− φi) (yi,−Mi
− µi) , (S.1)

for t = 2, 3, ..., T, where Ri (yi,−Mi
) = −φMi−1

i (1− φi) (yi,−Mi
− µi). Assuming φi and uit are

independently distributed and since the initial values, yi,−Mi
− µi, are given, we have

E |yit| ≤ E |uit|+
Mi+t−1∑
`=1

E
∣∣φ`−1
i (1− φi)

∣∣E |ui,t−`|+ E
[∣∣φMi+t−1

i (1− φi)
∣∣] |yi,−Mi

− µi| .

Also since φi ∈ (−1, 1], then E |φsi (1− φi)| ≤ cs, for some c < 1, and we have

sup
i,t
E [|yit| |(yi,−Mi

− µi) ] ≤ sup
i,t
|uit|

[
1 +

1− cMi+t−1

1− c

]
+ cMi+t−1 |yi,−Mi

− µi| < C <∞.
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Hence, E |yit| exists for all values of φi ∈ (−1, 1] and is given by

E (yit |yi,−Mi
− µi ) = −E

[
φMi+t−1
i (1− φi)

]
(yi,−Mi

− µi) .

It is clear that, since t = 1, 2, ..., T and T is finite, then E (yit) varies with t and in general

depends on the initial values, yi,−Mi
. E (yit |yi,−Mi

− µi ) is time-invariant if and only if

Mi →∞, and hence unconditionally we have E(yit) = 0, for all i and t, if Mi →∞.

By Cauchy-Schwarz inequality |γ∆(h)| = |E (∆yit∆yi,t−h)| ≤
[
E (∆yit)

2E (∆yi,t−h)
2] 1

2 ,

thus for the existence of autocovariances of ∆yit, it is sufficient to show that E (∆yit)
2 <∞.

Using (3.6) in the main paper, it readily follows that

E (∆yit)
2 = E

[
E
(
(∆yit)

2
∣∣φi, σ2

i

)]
= E

(
σ2
i

)
+ E

[
(1− φi)2

∞∑
`=1

φ
2(`−1)
i σ2

i

]
, (S.2)

and given the independence of σ2
i and φi (see Assumption 3 in the main paper) we have

E (∆yit)
2 = σ2 + σ2

∞∑
`=1

E
[
(1− φi)2φ

2(`−1)
i

]
≤ σ2 + σ2

∞∑
s=0

E
[
(1− φi)2φ2s

i

]
.

We now show that
∑∞

s=0E
[
(1− φi)2φ2s

i

]
is convergent for any probability distribution of φi

defined over the interval (−1,+1]. Note that for any finite M

M∑
s=0

E
[
(1− φi)2φ2s

i

]
= E

[
M∑
s=0

(1− φi)2φ2s
i

]
= E

[
(1− φi)2

(
1− φ2M+2

i

)
1− φ2

i

]

= E

[
(1− φi)

(
1− φ2M+2

i

)
1 + φi

]
,

where 1 + φi > ε > 0, and −1 < φi ≤ 1.

(1− φi)
(
1− φ2M+2

i

)
1 + φi

≤ (1/ε)(1 + |φi|+
∣∣φ2M+2
i

∣∣+
∣∣φ2M+3
i

∣∣).
Hence,

M∑
s=0

E
[
(1− φi)2φ2s

i

]
≤ (1/ε)(1 + |φi|+

∣∣φ2M+2
i

∣∣+
∣∣φ2M+3
i

∣∣).
But since φi ∈ (−1, 1], E

∣∣φ`i∣∣ ≤ 1 for any ` = 0, 1, ..., and it follows that
∑M

s=0E
[
(1− φi)2φ2s

i

]
≤ 4/ε for any finite M and as M →∞. Therefore, it follows that |γ∆(h)| < C, as required.

Having established the existence of γ∆(h), using (S.2) and recalling that under Assump-
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tion 3) in the main paper φi and σ2
i are independently distributed we have

V ar(∆yit) = γ∆(0) = E

[
σ2
i + (1− φi)2

∞∑
`=1

φ
2(`−1)
i σ2

i

]

= E

[
σ2
i +

(1− φi)2

1− φ2
i

σ2
i

]
= 2σ2E

(
1

1 + φi

)
.

Similarly, to derive γ∆(h) = E (∆yit∆yi,t−h) we first note that Mi →∞, then using (S.2) we

have

∆yit = uit − (1− φi)
∞∑
`=1

φ`−1
i ui,t−`,

∆yi,t−h = ui,t−h − (1− φi)
∞∑
`=1

φ`−1
i ui,t−`−h,

and for h = 1, 2, ...,

E (∆yit∆yi,t−h) = E

[
(1− φi)2

(
∞∑
`=1

φ`−1
i ui,t−`

)(
∞∑
`=1

φ`−1
i ui,t−`−h

)]

−E

[
(1− φi)

(
∞∑
`=1

φ`−1
i ui,t−`ui,t−h

)]
.

First, we consider the second term, and note that

E

[
(1− φi)

(
∞∑
`=1

φ`−1
i ui,t−`ui,t−h

)]
= E

[
σ2
i (1− φi)φh−1

i

]
.

Also

E

[
(1− φi)2

(
∞∑
`=1

φ`−1
i ui,t−`

)(
∞∑
`=1

φ`−1
i ui,t−`−h

)]
= E

[
σ2
i (1− φi)2

(
φhi + φh+2

i + φh+4
i + ...

)]
.

Hence

E(∆yit∆yi,t−h) = −E
[
σ2
i (1− φi)φh−1

i

]
+ E

[
σ2
i (1− φi)2

(
φhi + φh+2

i + φh+4
i + ...

)]
,

and since φi and σ2
i are independently distributed we have

E(∆yit∆yi,t−h) = −E
(
σ2
i

)
E
[
(1− φi)φh−1

i − (1− φi)2
(
φhi + φh+2

i + φh+4
i + ...

)]
,

As before, for all φi ∈ (−1, 1], we have E
∣∣(1− φi)2φh+s

i

∣∣ ≤ E
∣∣∣(1− φi)2 |φi|

h+s
∣∣∣ ≤ ch+s, where
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c < 1, and the series is convergent, and we have

E(∆yit∆yi,t−h) = −E
(
σ2
i

)
E

[
(1− φi)φh−1

i − (1− φi)φhi
1 + φi

]
,

or

E(∆yit∆yi,t−h) = −E
(
σ2
i

)
E

[
(1− φi)φh−1

i

1 + φi

]
, for h = 1, 2, ..., (S.3)

as required. Similarly

E (φi∆yit∆yi,t−h) = −E
(
σ2
i

)
E

[
(1− φi)φhi −

(1− φi)φh+1
i

1 + φi

]
= −E

(
σ2
i

)
E

[
(1− φi)φhi

1 + φi

]
, for h = 1, 2, ....

The results of Lemma 1 are now established noting that E (σ2
i ) = σ2.

S.3 Examples: uniform distributions

It is also instructive to consider the important case where φi is uniformly distributed. First

suppose that φi ∼ Uniform(0, a] for 0 < a ≤ 1, then E
(
φ`i
)

= a`

`+1
, and

E
[
(1− φi)2φ2s

i

]
=

a2s

2s+ 1
− 2a2s+1

2s+ 2
+

a2s+2

2s+ 3
.

Hence
∞∑
s=0

E
[
(1− φi)2φ2s

i

]
=
∞∑
s=0

(
a2s

2s+ 1
− 2a2s+1

2s+ 2
+

a2s+2

2s+ 3

)
.

When a < 1, all the three individual sums in the above expression are bounded by C/(1 −

a2). However, this does not follow when a = 1, and the series
∑∞

s=0
1

2s+1
,
∑∞

s=0
2

2s+2
,

and
∑∞

s=0
1

2s+3
, diverge individually. Hence, to investigate the convergence property of∑∞

s=0 E
[
(1− φi)2φ2s

i

]
when a = 1, we need to consider all the terms together. For a = 1,

∞∑
s=0

E
[
(1− φi)2φ2s

i

]
=
∞∑
s=0

(
1

2s+ 1
− 2

2s+ 2
+

1

2s+ 3

)
,

and after some algebra we have

1

2s+ 1
− 2

2s+ 2
+

1

2s+ 3
=

2

(2s+ 1) (2s+ 2) (2s+ 3)
,
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∞∑
s=0

E
[
(1− φi)2φ2s

i

]
=
∞∑
s=0

2

(2s+ 1) (2s+ 2) (2s+ 3)
< C <∞.

Similarly, for φi ∼ Unifrom(−1 + ε, 0] we have E
(
φ`i
)

= − (−1)`(1−ε)`
`+1

, and we have

E
[
(1− φi)2φ2s

i

]
=

(1− ε)2s

2s+ 1
+

2 (1− ε)2s+1

2s+ 2
+

(1− ε)2s+2

2s+ 3
,

and
∑∞

s=0E
[
(1− φi)2φ2s

i

]
is convergent for ε > 0, and diverges if ε = 0. The latter case is

ruled out under Assumption 4 in the main paper, which establishes the necessity of ruling

out the boundary value of φi = −1.

S.4 Proof of Proposition 1: Neglected heterogeneity bias of the

AH estimator

Result (4.3) follows directly from (4.2), after subtracting E (φi) from both sides. Also, since

φi ∈ [−1 + ε, 1], for some ε > 0, then 1 + E(φi) > 0, and E
(

1−φi
1+φi

)
> 0. Since 1/(1 + φi) is

a convex function of φi on [−1 + ε, 1], then by Jensen inequality E
(

1
1+φi

)
≥ 1

1+E(φi)
, and it

follows that plimn→∞φ̂AH ≤ E(φi) = µφ. Since 1 + µφ = 1 +E(φi) > 0, the asymptotic bias

is zero if and only if 1
1+µφ

= E
(

1
1+φi

)
, and due to the convexity of 1/(1 + φi), this condition

is met only if φi = µφ for all i.

S.5 Neglected heterogeneity bias in AB and BB estimators

The AB estimator proposed by Arellano and Bond (1991) is based on the following moment

conditions:S1

E(yis∆uit) = 0, for i = 1, 2, ..., n, s = 1, 2, ..., t− 2, and t = 3, 4, ..., T, (S.4)

which can also be written as E[yis(∆yit − φi∆yi,t−1)] = 0, with (T − 1)(T − 2)/2 moment

conditions in total. When T = 4, under homogeneity of φi, the AB moment conditions are

given by E[yi1(∆yi3 − φ∆yi2)] = 0, E[yi1(∆yi4 − φ∆yi3)] = 0, and E[yi2(∆yi4 − φ∆yi3)] = 0.

S1See equation (8) on p. 5 in Chudik and Pesaran (2021).
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With a fixed weight matrix WAB, the AB estimator can be written as

φ̂AB = (z̄′naW ABz̄na)
−1

(z̄′naW ABz̄nb) , (S.5)

where z̄na = n−1 (
∑n

i=1 yi1∆yi2,
∑n

i=1 yi1∆yi3,
∑n

i=1 yi2∆yi3)
′
, and

z̄nb = n−1 (
∑n

i=1 yi1∆yi3,
∑n

i=1 yi1∆yi4,
∑n

i=1 yi2∆yi4)
′
.

Using (2.2) in the main paper

yit = µi + φMi+t
i (yi,−Mi

− µi) +

Mi+t−1∑
`=0

φ`iui,t−`, (S.6)

and assuming that µi is distributed independently of {uit} (as assumed under AB) then

using (3.5) in the main paper and (S.6) we have

E
(
yi,t−h∆yit|αi, φi, σ2

i

)
=E

[(
µi + φMi+t−h

i (yi,−Mi
− µi) +

Mi+t−h−1∑
`=0

φ`iui,t−h−`

)

×

(
uit − (1− φi)

Mi+t−1∑
`=1

φ`−1
i ui,t−` − φMi+t−1

i (1− φi) (yi,−Mi
− µi)

)∣∣∣∣∣αi, φi, σ2
i

]

=E

[
−(1− φi)

(
Mi+t−h−1∑

`=0

φh−1+2`
i u2

i,t−h−`

)
− (1− φi)φ2Mi+2t−h−1

i (yi,−Mi
− µi)

∣∣∣∣∣φi, σ2
i

]

As Mi →∞ for |φi| < 1 (with finite Mi for φi = 1),

E
(
yi,t−h∆yit|αi, φi, σ2

i

)
=

 0, for φi = 1 and h = 2, 3, ...,

−σ2
iφ
h−1
i

1+φi
, for |φi| < 1 and h = 1, 2, ....

(S.7)

Given (S.7), if Pr(φi = 1) = 0 and φi ∈ (−1, 1], we have

za = plim
n→∞

z̄na = −
(
E

(
σ2
i

1 + φi

)
, E

(
σ2
iφi

1 + φi

)
, E

(
σ2
i

1 + φi

))′
,

and zb = plim
n→∞

z̄nb = −
(
E

(
σ2
iφi

1 + φi

)
, E

(
σ2
iφ

2
i

1 + φi

)
, E

(
σ2
iφi

1 + φi

))′
.

Since φi is distributed independently of σ2
i , for uniformly distributed φi = µφ + vi with vi
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∼ IIDU(−a, a), a > 0 and φi ∈ (−1, 1],

plim
n→∞

(
φ̂AB − E(φi)

)
= (z′aW ABza)

−1
(z′aW ABzb)− µφ, (S.8)

where za = −σ2(cφ, 1− cφ, cφ)′ and za = −σ2(1− cφ, µφ − 1 + cφ, 1− cφ)′ with σ2 = E(σ2
i )

and cφ = E
(

1
1+φi

)
= 1

2a
ln
(

1+µφ+a

1+µφ−a

)
.

In addition to (S.4), consider the following moment conditions, used in the system GMM

estimator proposed by Blundell and Bond (1998), and note that under homogeneity we

haveS2

E [∆yi,t−1(µi(1− φi) + uit)] = E[∆yi,t−1(yit−φyi,t−1) = 0, for i = 1, 2, ..., n, and t = 3, 4, ..., T.

(S.9)

For T = 4, with a given weight matrix WBB, the BB estimator based on the moment

conditions in (S.4) and (S.9) is given by

φ̂BB = (z̄′ncWBBz̄nc)
−1

(z̄′ncWBBz̄nd) , (S.10)

where

z̄nc = n−1

(
n∑
i=1

yi1∆yi2,
n∑
i=1

yi1∆yi3,
n∑
i=1

yi2∆yi3,
n∑
i=1

yi2∆yi2,
n∑
i=1

yi3∆yi3

)′
,

and z̄nd = n−1

(
n∑
i=1

yi1∆yi3,
n∑
i=1

yi1∆yi4,
n∑
i=1

yi2∆yi4,
n∑
i=1

yi3∆yi2,
n∑
i=1

yi4∆yi3

)′
.

Using (3.5) in the main paper and (S.6), similarly, we can derive the following equations as

Mi →∞ for |φi| < 1,

E (yit∆yi,t−h) = E

(
σ2
iφ

h
i

1 + φi

)
, for h = 0, 1, 2, ..., (S.11)

and for φi = 1 and finite Mi, E(∆yi,t−1yit) = E(∆yi,t−1yi,t−1) = σ2
i . In the case of Pr(φi =

S2See equation (9) on p. 5 in Chudik and Pesaran (2021).
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1) = 0 with φi ∈ (−1, 1], it follows that

zc = plim
n→∞

z̄nc =

(
−E

(
σ2
i

1 + φi

)
,−E

(
σ2
iφi

1 + φi

)
,−E

(
σ2
i

1 + φi

)
, E

(
σ2
i

1 + φi

)
, E

(
σ2
i

1 + φi

))′
,

zd = plim
n→∞

z̄nd

=

(
−E

(
σ2
iφi

1 + φi

)
,−E

(
σ2
iφ

2
i

1 + φi

)
,−E

(
σ2
iφi

1 + φi

)
, E

(
σ2
i −

σ2
i

1 + φi

)
, E

(
σ2
i −

σ2
i

1 + φi

))′
.

Since φi is distributed independently of σ2
i , for uniformly distributed φi = µφ + vi with vi

∼ IIDU(−a, a), a > 0 and φi ∈ (−1, 1],

plimn→∞

[
φ̂BB − E(φi)

]
= (z′cWBBzc)

−1
(z′cWBBzd) , (S.12)

where zc = σ2(−cφ,−1+cφ,−cφ, cφ, cφ)′ and zd = σ2(cφ−1, 1−µφ−cφ,−1+cφ, 1−cφ, 1−cφ)′,

with E(σ2
i ) = σ2, and cφ = E

(
1

1+φi

)
= 1

2a
ln
(

1+µφ+a

1+µφ−a

)
.

To approximate the values of the asymptotic bias of AB and BB estimators correspond-

ing to our Monte Carlo experiments, we replace W AB and WBB by the simulated weight

matricesS3 with a = 0.5, µφ ∈ {0.4, 0.5}, and Gaussian errors without GARCH effects for

T = 4, and n = 5, 000. In this case, the biases of AB and BB estimators are around -0.055

and -0.045 for µφ = 0.4, and -0.062 and -0.044 for µφ = 0.5, respectively. These results are

close to the simulated bias of these estimators reported in Tables S.8 (µφ = 0.4) and S.9

(µφ = 0.5) for T = 4 and n = 5, 000.

S.6 Asymptotic variances of the first two moments

Suppose that Assumptions 1–5 in the main paper hold, T ≥ 5, and Mi →∞. The asymptotic

distribution of θ̂HetroGMM = (θ̂1,HetroGMM , θ̂2,HetroGMM)′ is given by

√
n(θ̂HetroGMM − θ0)→d N(0,Vθ),

S3The simulated weight matrices are calculated as the average of the weight matrices used in calculating
the two-step AB and BB estimators across 2,000 replications.
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with θ0 = (θ1,0, θ2,0)′, and

V−1
θ = plimn→∞(H′θ,nTS−1

θ,T (θ0)Hθ,nT ),

where Hθ,nT = 1
n

∑n
i=1 Hθ,iT ,

Hθ,iT =

 hiT 0(T−3)×1

0(T−4)×1 h2,iT

 ,

Sθ,T (θ0) = 1
n

∑n
i=1(gθ,iT −Hθ,iTθ0)(gθ,iT −Hθ,iTθ0)′, gθ,iT = (g′iT ,g

′
2,iT )′, and hiT , h2,iT , giT

and g2,iT are given by (6.8), (6.17), (6.9) and (6.18) in the main paper, respectively. Vθ can

be consistently estimated by

V̂θ =
(
H′θ,nT Ŝ−1

θ,T (θ̂HetroGMM)Hθ,nT

)−1

, (S.13)

with

Ŝθ,T (θ̂HetroGMM) =
1

n

n∑
i=1

(gθ,iT −Hθ,iT θ̂HetroGMM)(gθ,iT −Hθ,iT θ̂HetroGMM)′.

S.7 Empirical power functions

The test statistics for µφ = E(φi) and σ2
φ = V ar(φi) are given by

SN,µ
(
µφ
)

=
µ̂φ − µφ[
̂V ar(µ̂φ)

]1/2
and SN,σ

(
σ2
φ

)
=

σ̂2
φ − σ2

φ[
̂V ar
(
σ̂2
φ

)]1/2
,

respectively, where FDAC and HetroGMM estimators of µ̂φ = θ̂1 are given by (6.2) and

(6.13) in the main paper, respectively. σ̂2
φ is computed as the plug-in estimator given by

(6.22) in the main paper. In the Monte Carlo experiments, the empirical power functions

(EPF) are computed as the simulated rejection frequencies for replications r = 1, 2, ..., R:

EPFR(µφ) = R−1

R∑
r=1

I


∣∣∣∣∣∣∣∣∣

µ̂
(r)
φ − µφ[

̂V ar
(
µ̂φ
)(r)
]1/2

∣∣∣∣∣∣∣∣∣ > 1.96

 ,
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and

EPFR(σ2
φ) = R−1

R∑
r=1

I


∣∣∣∣∣∣∣∣∣
(
σ̂2
φ

)(r) − σ2
φ[

̂V ar
(
σ̂2
φ

)(r)
]1/2

∣∣∣∣∣∣∣∣∣ > 1.96

 .

S.8 Monte Carlo evidence

S.8.1 Comparison of FDAC and HetroGMM estimators

Tables S.1 and S.2 summarize bias, RMSE, and size of FDAC and HetroGMM estimators

of µφ = E(φi) with uniformly and categorically distributed φi, respectively, in the case of

Gaussian errors without GARCH effects for the sample size combinations n = 100, 1000, 5000

and T = 4, 5, 6, 10. The empirical power functions of FDAC and HetroGMM estimators of

µφ with uniformly distributed φi ∈ [−1 + ε, 1] for some ε > 0 are shown in Figure S.1.

Table S.3 reports the frequency where FDAC and HetroGMM estimates of σ2
φ are ei-

ther negative or very close to zero, using the threshold
(
σ̂2
φ

)(r)
< 0.0001, for replication

r = 1, 2, ..., 2000, respectively, with uniformly distributed φi and Gaussian errors without

GARCH effects for n = 100, 1000, 2500, 5000 and T = 5, 6, 10. Table S.4 summarizes sim-

ulated outcomes with positive estimates of σ2
φ = V ar(φi) with uniformly distributed φi

in the case of Gaussian errors without GARCH effects for the sample size combinations

n = 100, 1000, 5000 and T = 5, 6, 10. The empirical power functions of FDAC and Het-

roGMM estimators of σ2
φ (for simulated outcomes of positive estimates) are shown in Figure

S.2 with n = 1000, 2500, 5000 and T = 5, 6, 10.

For the four combinations of error distributions, Gaussian and non-Gaussian, without

and with GARCH effects, Tables S.5 and S.6 summarize simulation results of the estimation

of µφ and σ2
φ (for simulated outcomes of positive estimates), respectively, for uniformly

distributed φi ∈ [−1 + ε, 1] for some ε > 0 with µφ = 0.5. Table S.7 reports the frequency

where estimates of σ2
φ are not positive.
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Table S.1: Bias, RMSE, and size of FDAC and HetroGMM estimators of µφ = E(φi) in a
heterogeneous panel AR(1) model with uniformly distributed φi and Gaussian errors without
GARCH effects

Bias RMSE Size (×100) Bias RMSE Size (×100)

Hetro Hetro Hetro Hetro Hetro Hetro

T n FDAC GMM FDAC GMM FDAC GMM FDAC GMM FDAC GMM FDAC GMM

µφ = 0.4 with |φi| < 1 µφ = 0.5 with φi ∈ [−1 + ε, 1] for some ε > 0

4 100 -0.008 -0.043 0.174 0.297 7.0 5.2 0.003 -0.013 0.176 0.264 7.6 5.7

4 1,000 0.000 -0.004 0.057 0.086 5.1 5.8 0.000 0.003 0.057 0.080 5.1 5.2

4 5,000 0.000 -0.002 0.025 0.038 3.8 4.5 0.001 0.002 0.026 0.036 5.4 5.4

5 100 -0.003 0.006 0.134 0.163 6.3 7.3 -0.003 0.008 0.134 0.157 7.1 8.5

5 1,000 0.000 0.001 0.043 0.052 5.1 5.1 -0.001 0.002 0.042 0.051 5.1 5.8

5 5,000 0.000 0.000 0.019 0.023 4.4 4.9 0.001 0.002 0.019 0.022 4.3 4.3

6 100 -0.004 0.010 0.111 0.120 6.3 7.4 -0.004 0.009 0.112 0.119 7.1 8.6

6 1,000 -0.001 0.001 0.037 0.040 5.8 5.2 -0.002 0.001 0.035 0.039 4.5 6.2

6 5,000 0.000 0.000 0.016 0.018 4.4 5.2 0.000 0.001 0.016 0.017 4.7 4.9

10 100 0.000 0.013 0.078 0.077 6.5 10.8 -0.003 0.009 0.079 0.077 6.3 10.5

10 1,000 0.000 0.001 0.026 0.026 5.8 6.5 -0.001 0.001 0.025 0.026 4.8 5.7

10 5,000 0.000 0.000 0.011 0.012 5.3 5.4 0.000 0.001 0.011 0.012 5.3 5.8

Notes: The DGP is given by yit = µi(1 − φi) + φiyi,t−1 + hitεit for i = 1, 2, ..., n, and t = −99,−98, ..., T ,

with εit ∼ IIDN(0, 1) and cross-sectional heteroskedasticity, hit = σi, where σ2
i ∼ IID(0.5 + 0.5z2i ) and

zi ∼ IIDN(0, 1). The heterogeneous AR(1) coefficients are generated by uniform distributions: φi = µφ+vi,

with vi ∼ IIDU [−a, a], a = 0.5 and µφ ∈ {0.4, 0.5}. The initial values are generated as (yi,−100 − µi) ∼
IIDN(b, κσ2

i ) with b = 1 and κ = 2 for all i. For each experiment, (αi, φi, σi)
′ are generated differently

across replications. FDAC and HetroGMM estimators of µφ are computed based on (6.2) and (6.13) in the

main paper, respectively. The asymptotic variances are estimated by the Delta method. The estimation is

based on {yi1, yi2, ..., yiT } for i = 1, 2, ..., n. The nominal size of the tests is set to 5 per cent. The number

of replications is 2, 000.
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Table S.2: Bias, RMSE, and size of FDAC and HetroGMM estimators of µφ = E(φi) in
a heterogeneous panel AR(1) model with categorically distributed φi and Gaussian errors
without GARCH effects

Bias RMSE Size (×100) Bias RMSE Size (×100)
Hetro Hetro Hetro Hetro Hetro Hetro

T n FDAC GMM FDAC GMM FDAC GMM FDAC GMM FDAC GMM FDAC GMM
µφ = 0.545 with |φi| < 1 µφ = 0.525 with φi ∈ [−1 + ε, 1] for some ε > 0

4 100 0.000 -0.034 0.164 0.264 7.5 6.8 -0.002 -0.028 0.169 0.267 7.4 6.7
4 1,000 -0.001 -0.005 0.053 0.077 5.2 5.0 0.001 -0.002 0.054 0.074 6.2 4.5
4 5,000 0.000 0.000 0.025 0.035 5.1 5.4 0.001 0.002 0.025 0.033 5.8 4.9

5 100 0.001 0.004 0.118 0.144 7.0 7.0 -0.003 0.003 0.118 0.142 5.9 7.0
5 1,000 -0.001 -0.002 0.037 0.045 4.4 4.7 0.001 0.001 0.039 0.046 6.4 5.1
5 5,000 -0.001 0.000 0.017 0.021 4.9 5.2 0.001 0.002 0.017 0.021 5.8 5.2

6 100 -0.001 0.006 0.099 0.108 6.9 8.6 -0.001 0.007 0.097 0.107 6.4 7.8
6 1,000 0.000 -0.001 0.031 0.034 5.1 5.1 0.001 0.002 0.032 0.035 5.3 5.9
6 5,000 0.000 0.000 0.014 0.016 4.8 5.7 0.001 0.001 0.014 0.016 6.0 5.5

10 100 -0.001 0.004 0.064 0.064 5.9 8.8 0.000 0.006 0.066 0.067 5.4 10.8
10 1,000 0.000 0.000 0.021 0.021 4.2 5.3 0.001 0.002 0.021 0.021 4.6 5.4
10 5,000 0.000 0.000 0.009 0.010 5.0 5.7 0.000 0.001 0.010 0.010 5.4 4.9

Notes: The DGP is given by yit = µi(1− φi) + φiyi,t−1 + hitεit, for i = 1, 2, ..., n, and t = −Mi + 1,−Mi +

2, ..., T , featuring Gaussian standardized errors with cross-sectional heteroskedasticity. The heterogeneous

AR(1) coefficients are generated by categorical distributions: Pr(φi = φL) = π and Pr(φi = φH) = 1 − π,

where (φH , φL, π) = (0.8, 0.5, 0.85) with |φi| < 1 for all i and (1, 0.5, 0.95) with φi ∈ [−1 + ε, 1] for some

ε > 0 and all i. The initial values are given by (yi,−Mi
− µi) ∼ IIDN(b, κσ2

i ) with b = 1 and κ = 2, where

Mi = 100 for units with |φi| < 1, and Mi = 1 for units with φi = 1. For each experiment, (αi, φi, σi)
′

are generated differently across replications. FDAC and HetroGMM estimators of µφ are computed based

on (6.2) and (6.13) in the main paper, respectively. The asymptotic variances are estimated by the Delta

method. The estimation is based on {yi1, yi2, ..., yiT } for i = 1, 2, ..., n. The nominal size of the tests is set

to 5 per cent. The number of replications is 2, 000.
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Figure S.1: Empirical power functions for FDAC and HetroGMM estimators of µφ = E(φi)
(µφ,0 = 0.5) in a heterogeneous AR(1) panel with uniformly distributed φi ∈ [−1 + ε, 1] for
some ε > 0 and Gaussian errors without GARCH effects
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Table S.3: Frequency of FDAC and HetroGMM estimators of σ2
φ = V ar(φi) being negative

with uniformly distributed φi and Gaussian errors without GARCH effects

σ2
φ = 0.083 σ2

φ = 0.083 with
with |φi| < 1 φi ∈ [−1 + ε, 1] (ε > 0)

Hetro Hetro
T n FDAC GMM FDAC GMM
5 100 34.4 42.1 33.4 45.2
5 1,000 5.9 21.3 6.4 20.6
5 2,500 0.8 9.9 0.7 9.8
5 5,000 0.0 2.8 0.0 2.0

6 100 28.2 34.3 28.1 36.3
6 1,000 1.9 8.4 1.7 8.2
6 2,500 0.1 1.8 0.2 1.4
6 5,000 0.0 0.2 0.0 0.1

10 100 15.6 20.6 15.4 19.9
10 1,000 0.1 0.0 0.1 0.2
10 2,500 0.0 0.0 0.0 0.0
10 5,000 0.0 0.0 0.0 0.0

Notes: The DGP is given by yit = µi(1−φi)+φiyi,t−1 +hitεit, for i = 1, 2, ..., n, and t = −99,−Mi+2, ..., T ,

featuring Gaussian standardized errors with cross-sectional heteroskedasticity. The heterogeneous AR(1)

coefficients are generated by uniform distributions: φi = µφ + vi, with vi ∼ IIDU [−a, a], a = 0.5 and

µφ ∈ {0.4, 0.5}. The initial values are given by (yi,−100 − µi) ∼ IIDN(b, κσ2
i ) with b = 1 and κ = 2 for all

i. For each experiment, (αi, φi, σi)
′ are generated differently across replications. The FDAC estimator of

σ2
φ is computed by plugging (6.2) and (6.3) into (6.22) in the main paper, and the HetroGMM estimator of

σ2
φ is computed by plugging (6.13) and (6.19) into (6.22) in the main paper. The asymptotic variances are

estimated by the Delta method. The estimation is based on {yi1, yi2, ..., yiT } for i = 1, 2, ..., n. The figure

in the cell denotes the frequency (multiplied by 100) of occurrences where the estimate of σ2
φ is negative or

close to zero,
(
σ̂2
φ

)(r)
< 0.0001, for replication r over 2,000 replications.
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Table S.4: Bias, RMSE, and size of FDAC and HetroGMM estimators of σ2
φ = V ar(φi)

in a heterogeneous panel AR(1) model with uniformly distributed φi and Gaussian errors
without GARCH effects

Bias RMSE Size (×100) Bias RMSE Size (×100)

Hetro Hetro Hetro Hetro Hetro Hetro

T n FDAC GMM FDAC GMM FDAC GMM FDAC GMM FDAC GMM FDAC GMM

σ2
φ = 0.083 with |φi| < 1 and µφ = 0.4 σ2

φ = 0.083 with φi ∈ [−1 + ε, 1] for ε > 0 and µφ = 0.5

5 1,000 0.005 0.032 0.047 0.079 3.0 3.2 0.006 0.029 0.047 0.076 2.0 2.6

5 2,500 0.000 0.012 0.033 0.053 4.6 2.9 0.000 0.010 0.031 0.053 4.0 2.8

5 5,000 -0.001 0.002 0.024 0.041 4.9 2.8 0.000 0.003 0.023 0.041 4.9 3.7

6 1,000 0.001 0.007 0.038 0.052 3.8 3.0 0.002 0.008 0.038 0.050 4.5 2.4

6 2,500 0.000 0.001 0.026 0.036 5.5 3.7 0.000 0.001 0.025 0.035 5.1 3.3

6 5,000 0.000 0.000 0.018 0.027 5.8 5.0 0.001 0.001 0.018 0.026 5.1 5.1

10 1,000 -0.001 -0.002 0.023 0.027 4.0 5.0 0.000 -0.002 0.024 0.027 5.3 5.4

10 2,500 0.000 -0.001 0.015 0.017 5.2 6.0 0.000 -0.001 0.015 0.017 4.6 5.2

10 5,000 0.000 -0.001 0.011 0.012 5.4 5.8 0.000 0.000 0.010 0.012 4.4 4.5

Notes: The DGP is given by yit = µi(1 − φi) + φiyi,t−1 + hitεit for i = 1, 2, ..., n, and t = −99,−98, ..., T ,

featuring Gaussian standardized errors with cross-sectional heteroskedasticity without GARCH effects, where

the heterogeneous AR(1) coefficients are generated by uniform distributions. The FDAC estimator of σ2
φ

is computed by plugging (6.2) and (6.3) into (6.22), and the HetroGMM estimator of σ2
φ is computed by

plugging (6.13) and (6.19) into (6.22) in the main paper. The asymptotic variances are estimated by the

Delta method. The estimation is based on {yi1, yi2, ..., yiT } for i = 1, 2, ..., n. The nominal size of the tests is

set to 5 per cent. The total number of replications is 2, 000. But the reported results are based on simulated

outcomes with
(
σ̂2
φ

)(r) ≥ 0.0001. The frequencies with negative outcomes, by sample sizes and estimation

method, are reported in Table S.3 of the online supplement. See also the footnotes to Table S.1 for further

details of the DGP used.
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Figure S.2: Empirical power functions for FDAC and HetroGMM estimators of σ2
φ = V ar(φi)

(σ2
φ,0 = 0.083) in a heterogeneous AR(1) panel with uniformly distributed φi ∈ [−1 + ε, 1]

for some ε > 0 and Gaussian errors without GARCH effects

S16



Table S.5: Bias, RMSE, and size of FDAC and HetroGMM estimators of µφ = E(φi) = 0.5
in a heterogeneous panel AR(1) model with uniformly distributed φi ∈ [−1 + ε, 1] for some
ε > 0 under different error processes

Bias RMSE Size (×100) Bias RMSE Size (×100)

Hetro Hetro Hetro Hetro Hetro Hetro

T n FDAC GMM FDAC GMM FDAC GMM FDAC GMM FDAC GMM FDAC GMM

Gaussian errors without GARCH effects Non-Gaussian errors without GARCH effects

4 100 0.003 -0.013 0.176 0.264 7.6 5.7 -0.008 -0.113 0.214 0.607 9.5 8.3

4 1,000 0.000 0.003 0.057 0.080 5.1 5.2 0.002 -0.008 0.071 0.116 5.8 5.6

4 5,000 0.001 0.002 0.026 0.036 5.4 5.4 0.000 -0.002 0.031 0.050 5.2 5.2

5 100 -0.003 0.008 0.134 0.157 7.1 8.5 -0.005 0.019 0.151 0.189 7.4 11.1

5 1,000 -0.001 0.002 0.042 0.051 5.1 5.8 0.001 0.004 0.051 0.064 5.4 5.8

5 5,000 0.001 0.002 0.019 0.022 4.3 4.3 0.000 0.002 0.023 0.029 5.0 5.1

6 100 -0.004 0.009 0.112 0.119 7.1 8.6 -0.002 0.027 0.125 0.134 6.5 11.5

6 1,000 -0.002 0.001 0.035 0.039 4.5 6.2 0.001 0.006 0.042 0.047 5.5 6.4

6 5,000 0.000 0.001 0.016 0.017 4.7 4.9 0.000 0.001 0.019 0.021 5.6 5.1

10 100 -0.003 0.009 0.079 0.077 6.3 10.5 -0.001 0.023 0.085 0.081 6.4 14.4

10 1,000 -0.001 0.001 0.025 0.026 4.8 5.7 0.002 0.006 0.028 0.028 5.9 7.1

10 5,000 0.000 0.001 0.011 0.012 5.3 5.8 0.000 0.001 0.013 0.013 4.9 5.0

Gaussian errors with GARCH effects Non-Gaussian errors with GARCH effects

4 100 0.000 -0.017 0.205 0.306 9.0 6.4 -0.028 -0.082 0.302 1.029 13.5 8.3

4 1,000 0.000 0.002 0.069 0.095 5.7 5.2 -0.002 -0.016 0.117 0.181 6.1 5.7

4 5,000 0.000 0.001 0.031 0.043 6.2 5.4 -0.001 -0.003 0.059 0.087 5.1 4.3

5 100 -0.004 0.010 0.159 0.178 9.1 8.9 -0.015 0.008 0.215 0.251 11.1 12.3

5 1,000 -0.001 0.003 0.051 0.061 5.3 6.2 -0.001 0.004 0.085 0.092 6.7 5.9

5 5,000 0.000 0.002 0.023 0.027 4.7 4.9 0.000 0.001 0.045 0.045 5.3 4.9

6 100 -0.006 0.009 0.133 0.137 8.1 10.5 -0.007 0.017 0.181 0.166 10.5 14.0

6 1,000 -0.002 0.002 0.042 0.046 4.6 6.0 0.000 0.002 0.072 0.065 5.7 6.9

6 5,000 0.000 0.002 0.019 0.021 5.0 4.9 -0.001 -0.001 0.038 0.034 5.4 6.0

10 100 -0.005 0.008 0.095 0.087 6.9 13.2 -0.005 0.008 0.130 0.104 9.4 19.4

10 1,000 -0.001 0.001 0.031 0.030 4.9 6.3 0.001 -0.001 0.053 0.040 6.0 9.7

10 5,000 0.000 0.001 0.014 0.014 5.7 6.1 0.000 -0.002 0.027 0.020 5.4 5.9

Notes: The DGP is given by yit = µi(1 − φi) + φiyi,t−1 + hitεit, for i = 1, 2, ..., n, and t = −99,−98, ..., T ,

where the heterogeneous AR(1) coefficients are generated by the uniform distribution: φi = µφ + vi, with

vi ∼ IIDU [−a, a], a = 0.5 and µφ = 0.5. The standardized errors, εit, are generated as Gaussian, εit ∼
IIDN(0, 1), or non-Gaussian, εit = (eit − 2) /2 with eit ∼ IIDχ2

2. The GARCH effect is generated as

h2it = σ2
i (1 − ψ0 − ψ1) + ψ0h

2
i,t−1 + ψ1(hi,t−1εi,t−1)2, with σ2

i ∼ IID
(
0.5 + 0.5z2i

)
and zi ∼ IIDN(0, 1),

where ψ0 = 0.6 and ψ1 = 0.2, with hi,−Mi
= σi. In the case of no GARCH effects, ψ0 = ψ1 = 0. The initial

values are given by (yi,−100 − µi) ∼ IIDN(b, κσ2
i ) with b = 1 and κ = 2 for all i. For each experiment,

(αi, φi, σi)
′ are generated differently across replications. The FDAC estimator is calculated based on (6.2) in

the main paper, and its asymptotic variance is estimated by the Delta method. The HetroGMM estimator

and its asymptotic variance are calculated by (6.13) and (6.14) in the main paper. The estimation is based

on {yi1, yi2, ..., yiT } for i = 1, 2, ..., n. The nominal size of the tests is set to 5 per cent. The number of

replications is 2, 000.
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Table S.6: Bias, RMSE, and size of FDAC and HetroGMM estimators of σ2
φ = V ar(φi) =

0.083 in a heterogeneous panel AR(1) model with uniformly distributed φi ∈ [−1 + ε, 1] for
some ε > 0 under different error processes

Bias RMSE Size (×100) Bias RMSE Size (×100)
Hetro Hetro Hetro Hetro Hetro Hetro

T n FDAC GMM FDAC GMM FDAC GMM FDAC GMM FDAC GMM FDAC GMM
Gaussian errors without GARCH effects Non-Gaussian errors without GARCH effects

5 1,000 0.006 0.029 0.047 0.076 2.0 2.6 0.005 0.039 0.047 0.088 2.3 4.4
5 2,500 0.000 0.010 0.031 0.053 4.0 2.8 0.000 0.013 0.033 0.059 5.0 4.1
5 5,000 0.000 0.003 0.023 0.041 4.9 3.7 0.001 0.004 0.024 0.046 4.4 3.0

6 1,000 0.002 0.008 0.038 0.050 4.5 2.4 -0.001 0.011 0.038 0.055 3.3 3.4
6 2,500 0.000 0.001 0.025 0.035 5.1 3.3 -0.002 -0.001 0.026 0.039 5.5 2.6
6 5,000 0.001 0.001 0.018 0.026 5.1 5.1 0.000 -0.002 0.018 0.030 5.1 4.2

10 1,000 0.000 -0.002 0.024 0.027 5.3 5.4 -0.002 -0.003 0.024 0.029 5.2 6.3
10 2,500 0.000 -0.001 0.015 0.017 4.6 5.2 -0.001 -0.002 0.015 0.018 5.1 5.8
10 5,000 0.000 0.000 0.010 0.012 4.4 4.5 0.000 -0.001 0.011 0.013 5.6 5.9

Gaussian errors with GARCH effects Non-Gaussian errors with GARCH effects
5 1,000 0.012 0.043 0.054 0.093 2.2 3.0 0.024 0.080 0.076 0.151 3.4 5.1
5 2,500 0.002 0.016 0.037 0.061 2.9 3.3 0.010 0.046 0.056 0.101 3.4 4.8
5 5,000 0.001 0.008 0.028 0.047 4.3 3.5 0.004 0.025 0.044 0.076 4.3 3.5

6 1,000 0.004 0.016 0.044 0.059 3.3 2.4 0.011 0.032 0.058 0.087 2.8 3.8
6 2,500 0.000 0.004 0.029 0.041 4.6 2.8 0.003 0.014 0.044 0.059 4.1 3.9
6 5,000 0.001 0.003 0.022 0.031 4.8 4.6 0.002 0.006 0.034 0.046 4.9 3.8

10 1,000 0.000 -0.002 0.029 0.031 6.1 5.1 0.001 -0.002 0.039 0.039 4.4 6.0
10 2,500 0.000 -0.001 0.018 0.021 4.8 5.3 0.000 -0.002 0.028 0.028 6.0 5.9
10 5,000 0.000 0.000 0.013 0.014 5.0 4.6 0.001 -0.001 0.021 0.021 5.5 5.2

Notes: The DGP is given by yit = µi(1 − φi) + φiyi,t−1 + hitεit, for i = 1, 2, ..., n, and t = −99,−98, ..., T ,

where the heterogeneous AR(1) coefficients are generated by the uniform distribution: φi = µφ + vi, with

vi ∼ IIDU [−a, a], a = 0.5 and µφ = 0.5. The standardized errors, εit, are generated as Gaussian, εit ∼
IIDN(0, 1), or non-Gaussian, εit = (eit − 2) /2 with eit ∼ IIDχ2

2. The GARCH effect is generated as

h2it = σ2
i (1 − ψ0 − ψ1) + ψ0h

2
i,t−1 + ψ1(hi,t−1εi,t−1)2, with σ2

i ∼ IID
(
0.5 + 0.5z2i

)
and zi ∼ IIDN(0, 1),

where ψ0 = 0.6 and ψ1 = 0.2, with hi,−Mi
= σi. In the case of no GARCH effects, ψ0 = ψ1 = 0. The initial

values are given by (yi,−100 − µi) ∼ IIDN(b, κσ2
i ) with b = 1 and κ = 2 for all i. For each experiment,

(αi, φi, σi)
′ are generated differently across replications. The FDAC estimator of σ2

φ is calculated by plugging

(6.2) and (6.3) into (6.22) in the main paper. The HetroGMM estimator of σ2
φ is calculated by plugging

(6.13) and (6.19) into (6.22) in the main paper. The asymptotic variances are estimated by the Delta method.

The estimation is based on {yi1, yi2, ..., yiT } for i = 1, 2, ..., n. The nominal size of the tests is set to 5 per

cent. The number of replications is 2, 000. But the reported results are based on simulated outcomes with(
σ̂2
φ

)(r) ≥ 0.0001. The frequencies with negative outcomes, by sample sizes and estimation method, are

reported in Table S.7.

S18



Table S.7: Frequency of FDAC and HetroGMM estimators of σ2
φ = V ar(φi) = 0.083 being

negative with uniformly distributed φi ∈ [−1 + ε, 1] for some ε > 0 under different error
processes

Without GARCH effects With GARCH effects
Gaussian Non-Gaussian Gaussian Non-Gaussian

Hetro Hetro Hetro Hetro
T n FDAC GMM FDAC GMM FDAC GMM FDAC GMM
5 1,000 6.3 20.6 6.7 27.2 10.4 24.6 18.6 32.9
5 2,500 0.7 9.8 1.4 15.6 2.2 12.9 8.8 26.0
5 5,000 0.0 1.9 0.0 7.2 0.1 4.7 3.4 17.8

6 1,000 1.7 8.2 2.4 13.4 3.6 11.1 11.5 19.4
6 2,500 0.1 1.3 0.1 3.6 0.4 2.8 3.9 10.6
6 5,000 0.0 0.0 0.0 0.4 0.0 0.3 1.7 4.8

10 1,000 0.1 0.2 0.0 0.4 0.3 0.6 2.8 2.7
10 2,500 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.4
10 5,000 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

Notes: The DGP is given by yit = µi(1−φi) +φiyi,t−1 +hitεit, for i = 1, 2, ..., n, and t = −99,−Mi+ 2, ..., T

where the heterogeneous AR(1) coefficients are generated by uniform distributions with φi ∈ [−1 + ε, 1] for

some ε > 0 and all i. The estimation is based on {yi1, yi2, ..., yiT } for i = 1, 2, ..., n. The figure denotes

the frequency (multiplied by 100) of occurrences where the estimate of σ2
φ is negative or close to zero,(

σ̂2
φ

)(r)
< 0.0001, for replication r over 2,000 replications. See also the footnotes to Table S.6.

S.8.2 Comparison of the FDAC estimator with FDLS, AH, AAH, AB, and BB

estimators

Tables S.8–S.9 report bias, RMSE, and size of the FDAC, FDLS, AH, AAH, AB, and BB

estimators with φi = µφ + vi, vi ∼ IIDU(−a, a), µφ ∈ {0.4, 0.5}, a = 0.5, and Gaussian

errors without GARCH effects. Table S.10 summarizes simulation results of FDAC and the

above HomoGMM estimators with homogeneous φi = µφ = 0.5 and Gassuain errors without

GARCH effects.

Figure S.3 compares the empirical power functions of FDAC and FDLS estimators under

homogeneity of φi for T = 4, 10, and n = 5, 000. Figures S.4 and S.5 plot the empirical power

functions of the FDAC estimator in homogeneous (φi = µφ = 0.5 for all i) and heterogeneous

panel AR(1) panels, where the heterogeneous AR(1) coefficients are generated by the above

uniform distribution with φi ∈ (−1, 1] and µφ = 0.5, under different error processes for

T = 4, 10 and n = 100, 1000, 5000.
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Figure S.3: Empirical power functions for FDAC and FDLS estimators of φ0 = 0.5 in a
homogeneous AR(1) panel with Gaussian errors without GARCH effects
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Figure S.4: Empirical power functions for the FDAC estimator of µφ = E(φi) (µφ,0 = 0.5)
in homogeneous and heterogeneous AR(1) panels with Gaussian and non-Gaussian error
processes without GARCH effects
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Figure S.5: Empirical power functions for the FDAC estimator of µφ = E(φi) (µφ,0 = 0.5)
in homogeneous and heterogeneous AR(1) panels with Gaussian errors without and with
GARCH effects
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S.8.3 Comparison of FDAC and MSW estimator

Table S.11 summarizes bias, RMSE, and size of FDAC and MSW estimators of µφ = E(φi)

with uniformly distributed φi in the case of Gaussian errors without GARCH effects for the

sample size combinations n = 100, 1000 and T = 4, 6, 10.

Table S.11: Bias, RMSE, and size of FDAC and MSW estimators of µφ = E(φi) in het-
erogeneous panel AR(1) models with uniformly distributed φi and Gaussian errors without
GARCH effects

µφ = 0.4 with |φi| < 1 µφ = 0.5 with φi ∈ [−1 + ε, 1] for some ε > 0

Bias RMSE Size (×100) Bias RMSE Size (×100)

T n FDAC MSW FDAC MSW FDAC MSW FDAC MSW FDAC MSW FDAC MSW

4 100 -0.005 -0.145 0.177 0.157 8.0 82.0 -0.005 -0.207 0.175 0.221 8.7 84.3

4 1,000 0.000 -0.128 0.056 0.130 4.7 100.0 0.000 -0.194 0.056 0.196 5.0 100.0

6 100 -0.004 -0.144 0.113 0.155 5.7 79.3 -0.004 -0.202 0.111 0.215 5.5 81.2

6 1,000 -0.001 -0.129 0.037 0.130 6.3 100.0 -0.001 -0.187 0.036 0.189 5.2 100.0

10 100 -0.001 -0.146 0.079 0.158 6.4 71.2 -0.001 -0.198 0.079 0.213 6.7 74.3

10 1,000 0.000 -0.141 0.026 0.143 5.7 100.0 -0.001 -0.192 0.025 0.194 5.9 100.0

Notes: The DGP is given by yit = µi(1−φi)+φiyi,t−1 +hitεit, for i = 1, 2, ..., n, and t = −99,−98, ..., T , fea-

turing Gaussian standardized errors with cross-sectional heteroskedasticity without GARCH effects, where

the heterogeneous AR(1) coefficients are generated by uniform distributions. The FDAC estimator is cal-

culated by (6.2) in the main paper. The asymptotic variance is estimated by the Delta method. “MSW”

denotes the estimator proposed by Mavroeidis et al. (2015). The estimation is based on {yi1, yi2, ..., yiT } for

i = 1, 2, ..., n. The nominal size of the tests is set to 5 per cent. Due to the extensive computations required

for the implementation of the MSW estimator, the number of replications is 1, 000. See also footnotes to

Table S.1.
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S.8.4 Simulation results with different initializations

Tables S.12 and S.13 summarize the bias, RMSE, and size of the FDAC estimator of E(φi)

with uniformly and categorically distributed φi, respectively, under different initializations

Mi = 100, 3, 1 for all i, (except a case of categorically distributed φi where Mi = 100 for units

with φi = φL = 0.5 and Mi = 1 for units with φi = φH = 1). Table S.14 reports the bias,

RMSE, and sizes of the FDAC, FDLS, AH, AAH, AB, and BB estimators in homogeneous

panels for Mi = 100, 3, 1 for all i. The simulation results for heterogeneous panels with

uniformly distributed φi are shown in Table S.15 for µφ = 0.4, and Table S.16 for µφ = 0.5.

Table S.17 summarizes results of FDAC and MSW estimators in both homogeneous and

heterogeneous panels for different initializations with Mi = 100, 1 for all i. .
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Table S.12: Bias, RMSE, and size of the FDAC estimator of µφ = E(φi) in a heterogeneous
panel AR(1) model with uniformly distributed φi, Gaussian errors without GARCH effects,
and different initializations

Bias RMSE Size (×100)

T n/Mi 100 3 1 100 3 1 100 3 1

µφ = 0.4 with |φi| < 1

4 100 -0.008 0.004 0.052 0.174 0.180 0.194 7.0 7.9 8.5

4 1,000 0.000 0.016 0.063 0.057 0.060 0.087 5.1 5.6 18.2

4 5,000 0.000 0.014 0.062 0.025 0.029 0.068 3.8 8.5 64.8

5 100 -0.003 0.008 0.041 0.134 0.136 0.147 6.3 7.2 8.8

5 1,000 0.000 0.014 0.048 0.043 0.046 0.066 5.1 6.5 19.0

5 5,000 0.000 0.012 0.048 0.019 0.023 0.052 4.4 9.2 65.2

6 100 -0.004 0.007 0.034 0.111 0.113 0.124 6.3 6.2 8.8

6 1,000 -0.001 0.011 0.038 0.037 0.038 0.054 5.8 5.1 16.4

6 5,000 0.000 0.010 0.038 0.016 0.019 0.042 4.4 9.0 60.9

10 100 0.000 0.005 0.015 0.078 0.082 0.084 6.5 7.2 7.0

10 1,000 0.000 0.007 0.020 0.026 0.026 0.033 5.8 6.6 12.8

10 5,000 0.000 0.006 0.021 0.011 0.013 0.024 5.3 7.5 41.9

µφ = 0.5 with φi ∈ [−1 + ε, 1] for some ε > 0

4 100 0.003 0.008 0.050 0.176 0.174 0.191 7.6 7.8 9.0

4 1,000 0.000 0.012 0.058 0.057 0.057 0.084 5.1 5.2 17.0

4 5,000 0.001 0.013 0.057 0.026 0.029 0.063 5.4 7.8 57.9

5 100 -0.003 0.007 0.039 0.134 0.136 0.145 7.1 6.7 8.5

5 1,000 -0.001 0.010 0.044 0.042 0.044 0.063 5.1 6.2 17.1

5 5,000 0.001 0.010 0.044 0.019 0.022 0.048 4.3 9.8 59.2

6 100 -0.004 0.003 0.030 0.112 0.114 0.121 7.1 7.3 9.2

6 1,000 -0.002 0.007 0.035 0.035 0.037 0.051 4.5 6.2 15.9

6 5,000 0.000 0.008 0.035 0.016 0.018 0.039 4.7 8.8 56.6

10 100 -0.003 0.001 0.016 0.079 0.078 0.083 6.3 5.9 8.1

10 1,000 -0.001 0.004 0.019 0.025 0.026 0.032 4.8 5.9 11.9

10 5,000 0.000 0.005 0.019 0.011 0.012 0.022 5.3 7.3 36.6

Notes: The DGP is given by yit = µi(1 − φi) + φiyi,t−1 + hitεit, for i = 1, 2, ..., n, and t = −Mi +

1,−Mi + 2, ..., T , featuring Gaussian standardized errors with cross-sectional heteroskedasticity without

GARCH effects. The heterogeneous AR(1) coefficients are generated by the uniform distribution: φi =

µφ + vi, with vi ∼ IIDU [−a, a], a = 0.5 and µφ ∈ {0.4, 0.5} The initial values are given by (yi,−Mi − µi) ∼
IIDN(b, κσ2

i ) with b = 1 and κ = 2, where Mi ∈ {100, 3, 1} for all i. For each experiment, (αi, φi, σi)
′ are

generated differently across replications. The FDAC estimator is calculated based on (6.2) in the main paper,

and its asymptotic variance is estimated by the Delta method. The HetroGMM estimator and its asymptotic

variance are calculated by (6.13) and (6.14) in the main paper. The estimation is based on {yi1, yi2, ..., yiT }
for i = 1, 2, ..., n. The nominal size of the tests is set to 5 per cent. The number of replications is 2, 000.
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Table S.13: Bias, RMSE, and size of the FDAC estimator of µφ = E(φi) in a heterogeneous
panel AR(1) model with categorically distributed φi, Gaussian errors without GARCH ef-
fects, and different initializations

Bias RMSE Size (×100)

T n/Mi 100 3 1 100 3 1 100 3 1

µφ = 0.545 with |φi| < 1

4 100 0.000 0.010 0.079 0.164 0.168 0.193 7.5 8.0 11.1

4 1,000 -0.001 0.012 0.081 0.053 0.055 0.099 5.2 5.9 30.1

4 5,000 0.000 0.012 0.082 0.025 0.027 0.085 5.1 7.8 91.1

5 100 0.001 0.008 0.058 0.118 0.121 0.138 7.0 6.6 10.5

5 1,000 -0.001 0.009 0.061 0.037 0.040 0.073 4.4 5.8 33.0

5 5,000 -0.001 0.009 0.060 0.017 0.020 0.063 4.9 9.0 91.7

6 100 -0.001 0.008 0.046 0.099 0.101 0.112 6.9 6.8 10.2

6 1,000 0.000 0.007 0.048 0.031 0.033 0.058 5.1 6.3 32.4

6 5,000 0.000 0.008 0.047 0.014 0.016 0.049 4.8 8.1 89.2

10 100 -0.001 0.004 0.024 0.064 0.065 0.072 5.9 5.2 7.4

10 1,000 0.000 0.004 0.025 0.021 0.021 0.034 4.2 5.6 22.4

10 5,000 0.000 0.004 0.025 0.009 0.010 0.027 5.0 7.0 75.0

µφ = 0.525 with φi ∈ [−1 + ε, 1] for some ε > 0

4 100 -0.002 0.003 0.068 0.169 0.165 0.182 7.4 7.6 8.7

4 1,000 0.001 0.003 0.072 0.054 0.055 0.091 6.2 6.2 25.2

4 5,000 0.001 0.005 0.073 0.025 0.024 0.077 5.8 5.5 83.9

5 100 -0.003 0.001 0.051 0.118 0.117 0.132 5.9 6.6 9.6

5 1,000 0.001 0.002 0.050 0.039 0.039 0.064 6.4 5.4 25.3

5 5,000 0.001 0.003 0.051 0.017 0.017 0.054 5.8 5.7 82.6

6 100 -0.001 0.001 0.037 0.097 0.100 0.106 6.4 7.2 8.2

6 1,000 0.001 0.001 0.038 0.032 0.032 0.050 5.3 6.0 23.2

6 5,000 0.001 0.002 0.039 0.014 0.014 0.041 6.0 5.5 76.4

10 100 0.000 0.002 0.016 0.066 0.066 0.066 5.4 5.9 5.7

10 1,000 0.001 0.001 0.020 0.021 0.021 0.029 4.6 5.7 14.9

10 5,000 0.000 0.001 0.020 0.010 0.010 0.022 5.4 5.8 55.8

Notes: The DGP is given by yit = µi(1 − φi) + φiyi,t−1 + hitεit, for i = 1, 2, ..., n, and t = −Mi +

1,−Mi + 2, ..., T , featuring Gaussian standardized errors with cross-sectional heteroskedasticity without

GARCH effects. The heterogeneous AR(1) coefficients are generated by the categorical distribution: Pr(φi =

φL) = π and Pr(φi = φH) = 1−π, where (φH , φL, π)′ = (0.8, 0.5, 0.85)′ with |φi| < 1 for all i and (1, 0.5, 0.95)′

with φi ∈ [−1 + ε, 1] for some ε > 0 and all i. The initial values are given by (yi,−Mi
− µi) ∼ IIDN(b, κσ2

i )

with b = 1 and κ = 2, where Mi ∈ {100, 3, 1} for all i, except a case with Mi = 100 for units with

φi = φL = 0.5 and Mi = 1 for units with φi = φH = 1. For each experiment, (αi, φi, σi)
′ are generated

differently across replications. The FDAC estimator is calculated based on (6.2) in the main paper, and

its asymptotic variance is estimated by the Delta method. The HetroGMM estimator and its asymptotic

variance are calculated by (6.13) and (6.14) in the main paper. The estimation is based on {yi1, yi2, ..., yiT }
for i = 1, 2, ..., n. The nominal size of the tests is set to 5 per cent. The number of replications is 2, 000.
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Table S.17: Bias, RMSE, and size of FDAC and MSW estimators of µφ = E(φi) in heteroge-
neous and homogeneous panel AR(1) models with Gaussian errors without GARCH effects
and different initializations

Bias RMSE Size (×100)

FDAC MSW FDAC MSW FDAC MSW

T n/Mi 100 1 100 1 100 1 100 1 100 1 100 1

µφ = 0.4 with uniformly distributed |φi| < 1 for all i

4 100 -0.005 0.054 -0.145 -0.092 0.177 0.190 0.157 0.113 8.0 7.8 82.0 42.4

4 1,000 0.000 0.062 -0.128 -0.082 0.056 0.086 0.130 0.086 4.7 18.1 100.0 98.3

6 100 -0.004 0.038 -0.144 -0.073 0.113 0.121 0.155 0.097 5.7 8.7 79.3 27.6

6 1,000 -0.001 0.038 -0.129 -0.064 0.037 0.053 0.130 0.068 6.3 16.7 100.0 91.5

10 100 -0.001 0.021 -0.146 -0.059 0.079 0.084 0.158 0.090 6.4 7.3 71.2 17.5

10 1,000 0.000 0.020 -0.141 -0.055 0.026 0.033 0.143 0.060 5.7 12.4 100.0 76.1

µφ = 0.5 with uniformly distributed φi ∈ [−1 + ε, 1] for some ε > 0 and all i

4 100 -0.005 0.049 -0.207 -0.130 0.175 0.187 0.221 0.148 8.7 7.7 84.3 54.4

4 1,000 0.000 0.057 -0.194 -0.119 0.056 0.081 0.196 0.122 5.0 15.3 100.0 99.9

6 100 -0.004 0.031 -0.202 -0.102 0.111 0.118 0.215 0.124 5.5 7.4 81.2 36.2

6 1,000 -0.001 0.034 -0.187 -0.091 0.036 0.050 0.189 0.094 5.2 16.2 100.0 97.9

10 100 -0.001 0.015 -0.198 -0.077 0.079 0.083 0.213 0.107 6.7 6.4 74.3 21.2

10 1,000 -0.001 0.017 -0.192 -0.072 0.025 0.031 0.194 0.076 5.9 10.4 100.0 87.1

φi = µφ = 0.5 for all i

4 100 0.002 0.067 -0.201 -0.155 0.166 0.184 0.208 0.164 7.4 10.4 98.1 86.7

4 1,000 -0.001 0.080 -0.182 -0.135 0.054 0.097 0.183 0.137 5.7 29.7 100.0 100.0

6 100 0.002 0.038 -0.199 -0.132 0.097 0.105 0.205 0.143 7.4 9.0 98.5 75.0

6 1,000 -0.001 0.041 -0.185 -0.121 0.031 0.052 0.186 0.123 4.4 25.8 100.0 100.0

10 100 0.002 0.017 -0.198 -0.111 0.065 0.067 0.205 0.126 7.7 7.4 95.6 50.5

10 1,000 -0.001 0.020 -0.194 -0.106 0.020 0.029 0.195 0.108 4.8 16.4 100.0 99.9

Notes: The DGP is given by yit = µi(1 − φi) + φiyi,t−1 + hitεit, for i = 1, 2, ..., n, and t = −Mi +

1,−Mi + 2, ..., T , featuring Gaussian standardized errors with cross-sectional heteroskedasticity without

GARCH effects. The heterogeneous AR(1) coefficients are generated by uniform distributions: φi = µφ + vi,

with vi ∼ IIDU [−a, a], a = 0.5 and µφ ∈ {0.4, 0.5}. In the homogeneous case, φi = µφ = 0.5 for all i. The

initial values are given by (yi,−Mi
− µi) ∼ IIDN(b, κσ2

i ) with b = 1 and κ = 2, where Mi ∈ {100, 1} for

all i. For each experiment, (αi, φi, σi)
′ are generated differently across replications. The FDAC estimator is

calculated by (6.2) in the main paper, and its asymptotic variance is estimated by the Delta method. “MSW”

denotes the estimator proposed by Mavroeidis et al. (2015). The estimation is based on {yi1, yi2, ..., yiT } for

i = 1, 2, ..., n. The nominal size of the tests is set to 5 per cent. Due to the extensive computations required

for the implementation of the MSW estimator, the number of replications is 1, 000.
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S.9 Empirical results for other sub-periods of the PSID

Table S.18 shows the distribution of cross-sectional observation numbers by year based on

the sample selection criterion in Meghir and Pistaferri (2004). For different sub-periods,

Tables S.19 and S.20 report the estimates of mean persistence of log real earnings in a panel

AR(1) model with a common linear trend, and Tables S.21–S.23 report the estimates of σ2
φ

of the heterogeneous persistence parameters, φi.

Table S.18: Distribution of individual observation numbers by year

Year Number of observations

1976 1,600

1977 1,663

1978 1,706

1979 1,773

1980 1,800

1981 1,868

1982 1,884

1983 1,933

1984 1,972

1985 2,012

1986 2,053

1987 2,083

1988 2,091

1989 2,008

1990 1,907

1991 1,831

1992 1,711

1993 1,576

1994 1,471

1995 1,384

Total 36,325

Notes: The sample selection criteria of Meghir and Pistaferri (2004) are summarized as the following. (i)

Individuals are from the “core” sample, i.e., the 1968 SRC cross-section sample and the 1968 Census sample.

(ii) Individuals are continuously heads of their families. (iii) Over the respective observed period, the range of

individuals’ ages is 25 to 55. (iv) Individuals are males. (v) Individuals have nine years or more observations

of usable (non-zero and not top-coded) money income of labor earningsit. (vi) Individuals have no missing

records of education or race over their sample periods. (vii) Observations with only self-employed status are

dropped. (viii) Observations of outcome variables yit = log(earningsit/pt) with outlying deviations ∆yit > 5

or ∆yit < −1 are dropped.
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Table S.20: Estimates of mean persistence (µφ = E(φi)) of log real earnings in a panel AR(1)
model with a common linear trend using the PSID data over the sub-periods 1976–1985 and
1981–1990

1976–1985, T = 10 1981–1990, T = 10

All Category by education All Category by education

categories HSD HSG CLG categories HSD HSG CLG

Homogeneous slopes

AAH 0.615 0.532 0.587 0.632 0.579 0.545 0.529 0.654

(0.044) (0.040) (0.045) (0.027) (0.030) (0.038) (0.027) (0.043)

AB 0.471 0.402 0.391 0.348 0.265 0.261 0.273 0.388

(0.048) (0.054) (0.061) (0.051) (0.041) (0.053) (0.038) (0.059)

BB 0.960 0.922 0.962 1.001 0.958 0.956 0.961 0.978

(0.002) (0.004) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Heterogeneous slopes

FDAC 0.643 0.554 0.637 0.766 0.628 0.614 0.600 0.734

(0.028) (0.052) (0.041) (0.054) (0.025) (0.057) (0.033) (0.042)

MSW 0.443 0.397 0.443 0.474 0.458 0.453 0.446 0.541

(0.060) (0.047) (0.067) (0.062) (0.030) (0.041) (0.025) (0.064)

Common linear trend 0.024 0.026 0.021 0.029 0.023 0.031 0.019 0.025

n 885 201 458 226 1,046 170 620 256

Notes: The estimates are based on the heterogeneous panel AR(1) model with a common linear trend,

yit = αi + g(1 − φi)t + φiyi,t−1 + uit, where yit = log(earningsit/pt) using the PSID data over the sub-

periods 1976–1985 and 1981–1990. “HSD” refers to high school dropouts with less than 12 years of education,

“HSG” refers to high school graduates with at least 12 but less than 16 years of education, and “CLG” refers

to college graduates with at least 16 years of education. The common trend, g, is estimated by ĝFD =

n−1(T − 1)−1
∑n
i=1

∑T
t=2 ∆yit. Then the estimation for µφ is based on ỹit = yit − ĝFDt for t = 1, 2, ..., T .

“AAH”, “AB”, and “BB” denote different 2-step GMM estimators proposed by Chudik and Pesaran (2021),

Arellano and Bond (1991), and Blundell and Bond (1998). The FDAC estimator is calculated by (6.2), and

its asymptotic variance is estimated by the Delta method. “MSW” denotes the kernel-weighted estimator

in Mavroeidis et al. (2015) and is calculated based on a parametric assumption that (αi, φi)|yi1 follows

a multivariate normal distribution N(µ,V ) with initial values given by µ = (5, 0.5), σα = 2, σφ = 0.4,

corr(αi, φi) = 0.5 with σu = 0.5. .
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Table S.21: Estimates of variance of heterogeneous persistence (σ2
φ) of log real earnings in a

panel AR(1) model with a common linear trend using the PSID data over the sub-periods
1991–1995 and 1986–1995

1991–1995, T = 5 1986–1995, T = 10

All Category by education All Category by education

categories HSD HSG CLG categories HSD HSG CLG

FDAC 0.100 0.204 0.081 0.091 0.129 0.122 0.120 0.141

(0.042) (0.100) (0.054) (0.090) (0.023) (0.060) (0.031) (0.036)

MSW 0.012 0.011 0.011 0.010 0.015 0.010 0.011 0.014

(0.003) (0.009) (0.004) (0.007) (0.005) (0.011) (0.005) (0.011)

n 1,366 127 832 407 1,139 109 689 341

Notes: The estimates are based on the heterogeneous panel AR(1) model with a common linear trend,

yit = αi + g(1 − φi)t + φiyi,t−1 + uit, where yit = log(earningsit/pt) using the PSID data over the sub-

periods 1991–1995 and 1986–1995. “HSD” refers to high school dropouts with less than 12 years of education,

“HSG” refers to high school graduates with at least 12 but less than 16 years of education, and “CLG” refers

to college graduates with at least 16 years of education. The common trend, g, is estimated by ĝFD =

n−1(T − 1)−1
∑n
i=1

∑T
t=2 ∆yit. Then the estimation for σ2

φ is based on ỹit = yit − ĝFDt for t = 1, 2, ..., T .

The The FDAC estimator of σ2
φ is calculated by (6.22), and its asymptotic variance is estimated by the Delta

method. “MSW” denotes the kernel-weighted maximum likelihood estimator in Mavroeidis et al. (2015).

Table S.22: Estimates of variance of heterogeneous persistence (σ2
φ) of log real earnings in a

panel AR(1) model with a common linear trend using the PSID data over the sub-periods
1976–1985 and 1981–1990

1976–1985, T = 10 1981–1990, T = 10

All Category by education All Category by education

categories HSD HSG CLG categories HSD HSG CLG

FDAC 0.095 0.139 0.100 0.001 0.150 0.104 0.171 0.113

(0.028) (0.049) (0.043) (0.046) (0.022) (0.058) (0.026) (0.046)

MSW 0.016 0.013 0.013 0.013 0.011 0.011 0.010 0.014

(0.007) (0.010) (0.010) (0.013) (0.003) (0.008) (0.003) (0.012)

n 885 201 458 226 1,046 170 620 256

Notes: The estimates are based on the heterogeneous panel AR(1) model with a common linear trend,

yit = αi + g(1 − φi)t + φiyi,t−1 + uit, where yit = log(earningsit/pt) using the PSID data over the sub-

periods 1976–1985 and 1981–1990. “HSD” refers to high school dropouts with less than 12 years of education,

“HSG” refers to high school graduates with at least 12 but less than 16 years of education, and “CLG” refers

to college graduates with at least 16 years of education. The common trend, g, is estimated by ĝFD =

n−1(T − 1)−1
∑n
i=1

∑T
t=2 ∆yit. Then the estimation for σ2

φ is based on ỹit = yit − ĝFDt for t = 1, 2, ..., T .

The FDAC estimator is calculated by (6.22), and its asymptotic variance is estimated by the Delta method.

“MSW” denotes the estimator proposed by Mavroeidis et al. (2015). See also the notes to Table S.20.
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