
   

10524 
2023 

June 2023 
 

Environmental Policy and 
Renewable Energy in an 
Imperfectly Competitive 
Market 
Alexander Haupt 



Impressum: 
 

CESifo Working Papers 
ISSN 2364-1428 (electronic version) 
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo 
GmbH 
The international platform of Ludwigs-Maximilians University’s Center for Economic Studies 
and the ifo Institute 
Poschingerstr. 5, 81679 Munich, Germany 
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de 
Editor: Clemens Fuest 
https://www.cesifo.org/en/wp 
An electronic version of the paper may be downloaded 
· from the SSRN website: www.SSRN.com 
· from the RePEc website: www.RePEc.org 
· from the CESifo website: https://www.cesifo.org/en/wp 

mailto:office@cesifo.de
https://www.cesifo.org/en/wp
http://www.ssrn.com/
http://www.repec.org/
https://www.cesifo.org/en/wp


CESifo Working Paper No. 10524 
 
 
 
Environmental Policy and Renewable Energy in an 

Imperfectly Competitive Market 
 
 

Abstract 
 
This paper analyses an electricity market in which a monopolist that employs fossil-fuel base-load 
and peak-load technologies competes against a fringe of renewable energy (RE) generators. The 
optimal technology and electricity mix can be decentralised by levying technology-dependent 
capacity taxes/subsidies in addition to technology-/state-dependent emission taxes. Whenever 
base-load capacity is taxed (subsidised), peak-load capacity is subsidised (taxed). A decline in RE 
capacity costs and an increase in the share of consumers on real-time prices predominantly raises 
emission taxes and brings them closer to their Pigouvian level, albeit with some qualifications. 
Capacity taxes/subsidies disappear when all consumers are on real-time prices and RE is about to 
fully crowd out conventional base-load capacity. 
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1 Motivation
Reducing fossil-fuel electricity generation and expanding renewable energy supply are
paramount to cutting pollution and tackling global warming. This transition from con-
ventional electricity generation to renewable energy (RE) poses challenges and opens
opportunities. On the one hand, the intermittence of RE sources such as wind and solar
makes it more difficult to balance electricity supply and demand at each point in time.
It requires more flexibility from market participants in their production and consumption
patterns. On the other hand, the smaller scale at which investment in wind and solar en-
ergy is possible, relative to big power stations, enables new firms to shake up traditionally
imperfectly competitive electricity markets. Fossil-fuel incumbents in a previously cosy
market environment are potentially threatened by a competitive fringe. The decline in RE
costs and the distribution of smart meters jointly reinforce this competition. With smart
meters, more customers can ultimately face real-time prices, which provide incentives to
shift demand to windy or sunny periods. Together with decreasing RE costs, more flexible
customers raise the competitive pressure on traditional fossil-fuel based generators.

Intensified competition should simplify the optimal environmental policy. A messy
set of second-best emission and capacity tax and subsidy formulas, which account for
imperfect competition and environmental externalities, should converge towards a simple
Pigouvian emission tax, which fully internalises environmental damage, as markets be-
come more competitive through lower RE costs and more flexible consumers, at least in
principle. This paper analyses whether this reasoning holds on closer inspection.

To this end, a simple analytical model of capacity investment and electricity generation
and consumption is introduced. A monopolist faces a competitive fringe. The monopolist
employs a base-load and a peak-load technology using fossil fuels, while the competitive
fringe consists of RE generators using an intermittent RE source. For simplicity, we refer
to this source as wind, and there are two states of nature, a non-windy and a windy one.
The peak-load technology allows electricity to be dispatched quickly and can be used to
back up base-load capacity when the RE source is unavailable. While some customers
face real-time prices, which depend on the state of nature, others pay a time-invariant
price per electricity unit, irrespective of the state of nature.

In a multi-stage game, the monopolist chooses its base-load and peak-load capacities
before the potential RE firms decide on whether to enter the market and build up RE
capacity. Afterwards, electricity providers and competitive retailers interact in state-
contingent wholesale markets, and retailers interact with consumers in the retail market.
Prior to any decision of the market participants, the government determines the level of
technology-dependent capacity taxes or subsidies in addition to technology- and partly
state-dependent emission taxes. This policy set enables the government to address the
distortions caused by pollution, imperfect competition and strategic investment incentives.

The paper analyses the effects of declining RE capacity costs and increasing consumer
flexibility on optimal policies, with increasing flexibility defined as a rising share of cus-
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tomers on real-time prices. The optimal emission taxes on both base-load and peak-load
electricity generation indeed increase as consumers become more flexible. Fundamen-
tally, and in line with our notion above, growing flexibility shifts electricity demand from
non-windy to windy periods and thus intensifies the competition between the RE tech-
nology on the one hand and the conventional base-load and peak-load technologies on the
other hand. In response to eroding monopoly power, emission taxes move closer to full
internalisation of environmental damage.

In the same vein, a decline in RE capacity costs also raises the optimal emission taxes
on base-load electricity generation, which faces increasingly fierce competition from RE in
windy periods. In contrast, however, the emission tax on peak-load electricity production
decreases in response to lower RE capacity costs. As explored in detail in the analysis,
a cross-market effect drives this decline, which leads to an even larger gap between envi-
ronmental damage and optimal tax level, while aggregate demand and monopoly power
remain unchanged in the non-windy periods, in which the peak-load technology is em-
ployed, even if RE capacity costs fall.

An optimal policy also needs to counteract a further distortion: the monopolist faces
incentives to strategically over- or underinvest in base-load and peak-load capacities to
crowd RE firms out or, more surprisingly, in, depending on RE capacity costs and con-
sumer flexibility. To this end, capacity taxes and subsidies can be used. Interestingly,
whenever base-load (peak-load) capacity is to be taxed, peak-load (base-load) capacity
is to be subsidised. For intermediate shares of flexible consumers, base-load capacity is
to be taxed (subsidised) if RE costs are sufficiently high (low), while the opposite is true
for peak-load capacity. Similarly, for intermediate RE costs, base-load capacity is to be
taxed (subsidised) if consumer flexibility is sufficiently high (low), while the opposite is
true for peak-load capacity.

However, these capacity taxes and subsidies completely vanish if RE capacity costs are
very low and all consumers face real-time electricity prices. Under these circumstances,
the emission tax on base-load electricity production reaches its maximum and is closest
to its Pigouvian level. Nevertheless, the notion that environmental policy moves towards
a simple Pigouvian emission tax as RE capacity costs decline and consumer flexibility
increases needs to to be qualified, since these changes drive the emission tax on peak-load
electricity generation in the opposite direction.

The underpinning analysis of the optimal technology mix provides some perhaps sur-
prising results. For instance, while an increase in consumer flexibility shifts demand from
non-windy to windy periods, the optimal adjustment requires more fossil-fuel base-load
capacity, and not more RE capacity. Also, the paper clarifies conditions under which
a decline in RE costs and an increase in consumer flexibility causes more, and not less,
environmental damage.

This paper complements the existing literature on environmental policy and the opti-
mal energy mix with intermittent RE sources. Ambec and Crampes (2012) characterise
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the optimal energy mix in a model with a competitive electricity sector employing one
fossil-fuel technology and one or two RE technologies. They show that the optimal so-
lution can be decentralised in a competitive economy with state-dependent prices if all
consumers are, in the terminology of the current paper, flexible. With inflexible con-
sumers, a second-best energy mix can only be decentralised if the government intervenes,
or if both conventional and RE power stations are owned by the same entity. Helm and
Mier (2019) explore the diffusion of renewable energy in perfectly competitive markets
with one fossil-fuel and one RE technology when RE capacity costs decline, assuming that
all consumers are on real-time prices. They conclude that diffusion is efficient and anal-
yse how price caps cause inefficiencies. Garcia et al. (2012) consider a framework with
‘learning-by-doing’ economies of scale in which competitive investors can choose which
sites they invest in and how much they invest in each site. They show that a single feed-
in tariff leads to overinvestment in the most suitable sites, while a renewable portfolio
standard causes underinvestment in the conventional technology.

Ambec and Crampes (2019) and Helm and Mier (2021) add a storage technology
to the technology mix. In particular, they outline how the socially optimal energy mix
can be decentralised under perfect competition without an emission tax using second-best
policies. Ambec and Crampes (2019), who assume that all customers are on time-invariant
retail prices, consider feed-in tariffs, consumption taxes, renewable portfolio standards,
price caps and capacity subsidies in their policy mix, while Helm and Mier (2021), who
assume that all customers are on real-time prices, focus on a combination of consumption
taxes and capacity subsidies.1

In contrast to the papers mentioned so far, the current contribution explicitly distin-
guishes between conventional base-load and peak-load technologies and allows for imper-
fect competition as well as for continuous degrees of flexible and inflexible consumers.
As will be explored in detail, the presence of both base-load and peak-load technologies
critically shapes the competition in an electricity market with intermittent RE sources
and the changes in the optimal environmental policies in response to declining RE costs
and increasing consumer flexibility.

As in the current paper, Twomey and Neuhoff (2010) explore the implications of
market power in electricity markets. However, since they take the RE capacity as given,
their focus is very different from that of the current analysis. They argue that forward
contracting does not mitigate the negative effects of market power.2 Extending Ambec

1Considering a dirty and a clean conventional technology and RE technologies, Abrell et al. (2019)
also explore optimal policies in the absence of an emission tax and evaluate such policies empirically.
Their optimal strategy includes an energy demand tax in addition to either feed-in tariffs or RE output
subsidies. In contrast to Ambec and Crampes (2019) and Helm and Mier (2021), the capacities of the
conventional technologies are not endogenously chosen.

2Murphy and Smeers (2005) and Zöttl (2010) consider market power with investment and output
decisions. They provide a robust analysis of the market equilibrium in Cournot models, assuming that
all consumers are on real-time prices. Since they do not explore any policies and do not consider RE,
their approach and focus substantially differs from the current paper despite a shared interest in strategic
interactions in electricity markets.
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and Crampes (2019) and allowing for consumers on real-time prices, Ambec and Crampes
(2021) conclude that an increase in the share of flexible consumers raises social welfare, but
that the marginal impact on social welfare declines with the share of flexible consumers.3

In contrast to them, the focus of the current analysis is on how changes in the share
of flexible consumers affect optimal policies in the case of imperfect competition. In
the presence of base-load and peak-load technologies, the mechanisms through which
consumer flexibility influences the outcome are different. Then, for instance, increasing
consumer flexibility causes a shift from conventional peak-load to base-load technologies
rather than, as in Ambec and Crampes (2021), from a conventional technology to RE.

Holland et al. (2022) extend the previous models with competitive electricity markets
and all customers on real-time prices to allow for a range of intermittent renewable and
conventional dispatchable generation technologies and for a storage technology in a mul-
tiperiod model. Their comparative statics shows, for instance, that increasing emission
taxes can raise or lower electricity consumption, and that declining RE costs can increase
or decrease emissions. These points are picked up in section 3 below. Holland et al.
(2022) calibrate their model to quantify the long-run policy effects for the USA, but do
not aim at identifying optimal policies.4

The current paper is also related to the literature on the efficiency of electricity mar-
kets with time-invariant retail prices, particularly to Borenstein and Holland (2005). They
analyse a perfectly competitive electricity market with conventional technologies and de-
mand fluctuation, but without pollution. They show that with at least some consumers on
a time-invariant price, both output and capacity is not even second best in a laissez-faire
equilibrium, and that a second-best outcome requires inflexible customers to be taxed
or subsidised. In contrast, in the current setting with supply fluctuations instead of de-
mand fluctuations, inflexible consumers themselves do not prevent second-best output and
capacity levels (as discussed at the end of section 4), but monopoly power and the envi-
ronmental externality obviously do. However, the share of customers on a time-invariant
electricity price indirectly affects monopoly power and thus optimal environmental policy.

The remainder of the paper is organised as follows: In the next section, the model
is presented. Section 3 characterises the socially optimal outcome as a benchmark for
the ensuing analysis and explores how this outcome changes as RE costs decline and
consumer flexibility increases. Afterwards, section 4 explores the market equilibrium and
the government’s optimal environmental policy. Sections 5 and 6 than successively analyse
how the optimal environmental policy responds to a decline in RE costs and an increase
in consumer flexibility. Section 7 summarises the analysis and concludes the paper with
some remarks on a feed-in tariff as an alternative policy instrument.

3The magnitude of the social gains from real-time pricing are contentious. See, for instance, Gam-
bardella et al. (2020) and Borenstein (2005).

4See also Pommeret and Schubert (2022) who provide a dynamic analysis of energy transition paths
and calibrate their model to the Spanish system.
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2 The Energy Sector and the Government

A monopolist incumbent employs two conventional technologies, a base-load technology
A and a peak-load technology B. It competes against a competitive fringe of potential
electricity generators which rely on a renewable energy (RE) technology R. Technology
R uses an intermittent source of energy, such as wind or solar power. This source is only
available in state 1 of nature, in which it is windy or sunny, but is unavailable in state 0
of nature, in which it is non-windy or non-sunny. State 0 of nature prevails in σ ∈ (0, 1)
periods, while state 1 occurs in 1 − σ periods, with all periods exhibiting equal length
and total time normalised to unity. In contrast to the RE technology R, the conventional
technologies A and B rely on fossil fuels, such as gas or coal, as a source of energy and
generate dispatchable electricity.

The monopolist incumbent chooses its capacities KA and KB as well as its electricity
supply QA, QB0 and QB1. Each unit of capacity KA and KB enables the monopolist to
generate up to 1 unit of electricity at each point in time. Technology B can be ramped up
and switched off quickly and can thus produce different levels of electricity QB0 and QB1

in states 0 and 1, respectively. By contrast, technology A cannot be switched on and off
quickly and can only produce the same electricity level QA across the two states of nature.
In line with their flexibility, or lack of flexibility, the technologies A and B are referred to
as base-load technology and peak-load technology, respectively.5 The fixed cost of one unit
of capacity KA (KB) is FA (FB), and the constant variable cost of generating electricity
with technology A (B) is cA (cB). Each unit of electricity generated with technology A

(B) causes environmental damage δA (δB). Assume that costs for base-load and peak-load
capacity and electricity and environmental damage are related as follows:

Assumption 1. Technology and Environmental Damage.
(i) FA > FB, (ii) cA < cB, (iii) δA ≤ δB, (iv) cA + FA < cB + FB, (v) cA + FA

σ
> cB + FB

σ
,

(vi) cA + δA + FA < cB + δB + FB, (vii) cA + δA + FA

σ
> cB + δB + FB

σ
.

Compared with the peak-load technology B, the base-load technology A exhibits
higher fixed costs but lower variable costs, and it causes weakly lower environmental
damage (properties (i)-(iii)). Technology A allows the monopolist to generate electricity
at lower private and social costs if employed at full capacity across both states of nature
(properties (iv) and (vi)), but would be more expansive if used at full capacity only in the
non-windy state (properties (v) and (vii)). That is, technologies A and B exhibit all the
characteristics associated with base-load and peak-load technologies.6 For later reference,

5Most contributions related to the current analysis make the strong assumptions of fully flexible
conventional technologies (see references above). A notable exception is Eisenack and Mier (2019). They
also distinguish between different forms of dispatchability, but their take on the optimal technology choice
with intermittent power sources is very different from the current approach.

6See, for instance, Borenstein (2012) for a discussion of different technologies and their economic
implications. As a result of the cost structures described in assumption 1, technology A would be anyway
employed across the two states of nature, whereas technology B would only be used in the non-windy
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assumption 1 encompasses a comprehensive set of inequalities, although some of them are
redundant. For instance, properties (iii) and (iv) imply property (vi).

The competitive fringe consists of a continuum of potential firms with mass N using
an intermittent RE source to generate electricity. For simplicity, let us use the example
of wind power. Each of these potential fringe firms decides whether it enters the market.
If it does so, it installs one unit of RE capacity KR. Each RE capacity unit can generate
up to 1 unit of electricity at each point in time in each of the 1 − σ windy periods (state
1) at a production cost of zero. Thus, in the windy periods, the instantaneous aggregate
RE electricity supply is QR = KR if the RE firms choose to fully utilise their capacity.
RE firms cannot supply any electricity in the σ non-windy periods (state 0).

The fixed capacity cost of one unit of RE capacity consists of two elements. The first
element is the basic investment cost H(α), which captures the cost of a wind turbine for
a given state of technology α and is firm-independent. The second element is the firm-
specific set-up cost h, which reflects firm-specific management and technological know-
how, a firm’s location-specific construction costs (e.g., of onshore and offshore wind parks)
and costs of connecting the installation to the electricity network (e.g., because of locations
being more or less remote), among other things.7

Let us assume that these firm-specific costs are uniformly distributed over the support[
0, h

]
, where the lower bound is set to zero for simplicity. Then, ranking the potential

RE firms in ascending order of their capacity costs, the capacity-cost function g(k; α) =
H(α) + hk/N represents the relationship between the k-th firm (or, equivalently, the k-th
RE capacity unit) and its fixed capacity cost H(α)+hk for given technology parameter α.
The functions g(KR; α) = H(α) + hKR/N and G(KR; α) =

∫KR
0 g(k; α)dk = H(α)KR +

hK2
R/ (2N) show the capacity cost at the margin and the aggregate capacity costs of KR

units, respectively, with the aggregate capacity KR being equal to the mass of RE firms
in the market.

An increase in the parameter α captures an improvement in RE technology that strictly
reduces the fixed investment cost H(α), with the upper and lower boundary of the tech-
nology parameter α denoted by αmin and αmax, respectively. That is, ∂H(α)/∂α < 0,
with H(αmin) > H(α) > H(αmax).

Taking the arguments together, the derivatives of the capacity cost at the margin
show the following properties: ∂g(KR; α)/∂KR = h/N =: ĥ > 0, ∂

2
g(KR; α)/∂K2

R = 0,
∂g(KR; α)/∂α = ∂H(α)/∂α < 0 and ∂

2
g(KR; α)/∂KR∂α = 0. Additionally, let us assume

that the conditions H(αmin) > (1 − σ) (cA + δA + FA) and h + H(αmax) ≤ (1 − σ) cA are
satisfied. These conditions state that, in principle, RE might not be competitive against
the base-load technology and vice versa. Later, the analysis focuses on the range of cost
parameter α that captures the relevant situation in which each technology is employed in

state, even if technology A could quickly be ramped up and switched off. The dispatchability assumption
about technology A, however, helps to streamline some technical arguments later on without affecting
the results.

7Heterogeneous RE capacity costs are often assumed. See, e.g., Ambec and Crampes (2019).
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some state of nature. In any case, RE generation causes no environmental damage.
A consumer’s gross benefit, or willingness-to-pay, for electricity is captured by the in-

stantaneous utility function U(Q), which is identical for all individuals. This continuously
differentiable function is non-negative, strictly increasing and strictly concave over the rel-
evant range of electricity consumption. That is, U(Q) ≥ 0, U ′(Q) > 0 and U ′′(Q) < 0. Ad-
ditionally, the conditions U ′(0) > cB + δB + (FB/σ) and U ′(N) <

[
h + H(αmax)

]
/ (1 − σ)

are satisfied. This means that on the one hand, marginal utility is sufficiently high for low
consumption levels to make the peak-load technology economically viable. On the other
hand, the marginal utility is sufficiently low for high consumption levels to ensure that
neither the entry of all RE firms nor the infinite consumption of base-load or peak-load
electricity can constitute a socially optimal solution or a market equilibrium.

Acting as price takers, consumers purchase electricity in the retail market, which
connects electricity generators with final customers. A share θ of consumers pay real-time
retail prices. As explored below, these consumers face either price p0 or p1, depending on
whether the state of nature is 0 (non-windy) or 1 (windy), and consume the corresponding
electricity, either Q0 or Q1. The other consumers, whose share is 1−θ, pay a time-invariant
retail price p and consume Q irrespective of the state of nature. Normalising the number
of consumers to unity, the shares θ and 1 − θ also stand for the number, or mass, of
customers in the two groups.

Competitive firms in the retail sector buy electricity from the monopolist and RE
generators in the wholesale market and sell electricity to consumers in the retail market.
Let us assume that these retailers face no other costs than the wholesale price of electricity.
They purchase electricity for each point in time in state-contingent wholesale markets.
Competing in Bertrand fashion in the retail market, the firms of the retail sector choose
prices p0, p1 and p.

The government has technology-specific capacity taxes in addition to technology- and
state-specific emission taxes at its disposal. The capacity taxes τA and τB are to be
paid for each unit of base-load and peak-load capacity, respectively. The emission taxes
tA0 (tB0) and tA1 (tB1) are levied on each electricity unit generated by the base-load
(peak-load) technology in the non-windy and windy periods, respectively.8 In section
7, feed-in tariffs are briefly discussed as alternative policy instrument. While firms and
consumers aim at profit and utility maximisation, respectively, the government’s objective
is to maximise the aggregate benefit from electricity consumption net of total fixed and
variable generation costs and of environmental damage, as detailed in the next section.

Firms, consumers and the government are engaged in a four-stage game. The govern-
ment chooses its policies in the first stage. In the second stage, the monopolist decides
on its base-load and peak-load capacities. In the third stage, the potential RE firms si-
multaneously and non-cooperatively decide whether they enter the market and invest in

8If emissions per output unit are constant in output, then each tax per emission unit can obviously
be converted into a tax per output unit. The latter interpretation is adopted for notational convenience.
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one unit of RE capacity each. Market interactions in the wholesale and retail markets
take place in the fourth stage. This game is solved for its subgame-perfect Nash (SPN)
equilibrium.

3 Welfare Optimum in a Changing Environment
Before the equilibrium of the game is determined, let us explore the socially optimal
outcome and how it changes as the RE capacity costs decline and consumer flexibility
increases. The welfare-maximising outcome serves as a benchmark and enables us to
determine optimal policies.

3.1 Optimal Capacities and Electricity Generation

As stated above, and explored in section 4, some costumers pay a time-invariant retail
price and thus consume a constant amount of electricity across states of nature in mar-
ket equilibrium. To have a meaningful socially optimal outcome as benchmark, let us
determine the welfare optimum that is second-best in the sense that the share 1 − θ of
individuals consuming electricity Q invariantly across states of nature is taken as given.
Moreover, let us focus on the range of cost parameter α for which each of the three tech-
nologies A, B and R is used in at least one state of nature. (Lemma 2 below proves that
such a relevant range exists.) Obviously, the RE technology R only generates electricity
in the windy state of nature. By contrast, the peak-load technology B is only used in
the non-windy state of nature when the RE technology R is not available (i.e., QB1 = 0).
This follows directly from the fact that when employed permanently, the base-load tech-
nology A can produce electricity at lower social costs than the peak-load technology B.
Then, the aggregate benefit from electricity consumption net of total fixed and variable
generation costs and of environmental damage is given by the welfare function

W = σ
[
θU(Q0) + (1 − θ) U(Q) − (cA + δA) QA − (cB + δB) QB0

]
+ (1 − σ)

[
θU(Q1) + (1 − θ) U(Q) − (cA + δA) QA

]
(1)

− FAKA − FBKB − G(KR; α)
s.t.

QA ≤ KA, QB0 ≤ KB, QR ≤ KR,

θQ0 + (1 − θ) Q = QA + QB0, θQ1 + (1 − θ) Q = QA + QR. (2)

The right-hand side of the first line of function (1) captures the welfare generated in
the σ non-windy periods. The first two terms in the square brackets show the utility from
electricity consumption of the shares θ and 1 − θ of individuals who consume Q0 in the
non-windy state of nature and Q time-invariantly. The remaining two terms contain the
variable costs and environmental damage of generating electricity QA and QB0. Similarly,
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the second line captures the welfare from electricity consumption in the 1 − σ windy
periods. Then, only the use of the base-load technology causes variable costs. The third
line shows the fixed costs of building up the base-load, peak-load and RE capacities.
Finally, the first line of eq. (2) contains the capacity constraints of electricity generation,
while the second line states that consumption must equal output at each point in time in
both windy and non-windy periods.

In optimum, a technology may be used in only one of the two states of nature, but if
it is employed in a period, then always at full capacity. Leaving some capacity completely
idle in all states of nature would be a waste of resources. Thus, capacity constraints are
binding when technologies are used, i.e., QA = KA, QB0 = KB and QR = KR. Plugging
these constraints into the second line of eq. (2) gives consumption levels Q0 and Q1 as
functions of capacities KA, KB and KR and of consumption level Q:

Q0 = 1
θ

[
KA + KB − (1 − θ) Q

]
and Q1=

1
θ

[
KA + KR − (1 − θ) Q

]
(3)

Taking account of the binding capacity constraints and the resulting consumption
levels (3), maximising welfare (1) yields the first-order conditions9

∂W

∂Q
= (1 − θ)

[
U ′(Q) − σU ′(Q0) − (1 − σ) U ′(Q1)

]
= 0, (4)

∂W

∂KR

= (1 − σ) U ′(Q1) − g(KR; α) = 0, (5)

∂W

∂KA

= σU ′(Q0) + (1 − σ) U ′(Q1) − (cA + δA) − FA = 0, (6)

∂W

∂KB

= σ [U ′(Q0) − (cB + δB)] − FB = 0. (7)

The interpretation of these conditions is straightforward. Condition (4) means that the
marginal utility U ′(Q) of individuals with time-invariant consumption has to be equal
to the weighted marginal utilities σU ′(Q0) + (1 − σ) U ′(Q1) of those with time-variant
consumption, with weights given by the total length of non-windy and windy periods.
This condition guarantees that consumption is efficiently allocated between these two
groups of consumers.

The remaining three conditions (5), (6) and (7) ensure socially optimal capacity and
output levels. In the case of the peak-load technology, the social costs of marginally
increasing capacity and thus electricity generation at each point in time in the non-windy
periods, i.e., σ (cB + δB)+FB, have to equal the marginal utility of electricity consumption
in these periods, i.e., σU ′(Q0). Similarly, the marginal benefit in the windy periods,
i.e., (1 − σ) U ′(Q1), has to match the cost of marginally increasing RE capacity and
thus electricity generation in these periods, i.e., g(KR; α). As the base-load technology
is employed at each point in time, its marginal social costs of capacity and electricity

9The second-order conditions are satisfied.
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generation, i.e., cA + δA + FA, needs to be equal to the marginal utility across non-windy
and windy periods, i.e., σU ′(Q0) + (1 − σ) U ′(Q1).

Rearranging the first-order conditions gives

U ′(Q) = cA + δA + FA, (8)

U ′(Q0) = cB + δB + FB

σ
, (9)

U ′(Q1) = 1
1 − σ

[
cA + δA + FA − σ

(
cB + δB + FB

σ

)]
, (10)

cA + δA + FA = σ
(

cB + δB + FB

σ

)
+ g(KR; α). (11)

These alternative characterisations provide some additional insights and prove to be con-
venient for the following comparative statics. Condition (11) characterises the efficient
choice of technology for any given output level. To understand this condition, recall that
marginally increasing electricity generation with the base-load technology induces social
generation and capacity costs of cA + δA + FA. To keep total electricity output constant,
both peak-load and RE generators need to marginally cut their output at each point in
time at which these technologies are employed. The reduction in peak-load and RE gen-
eration and capacity costs amount to σ(cB + δB) + FB + g(KR; α). In social optimum,
these cost savings equal the additional cost of generating base-load electricity, as stated
in condition (11).

This condition implies that the cost parameters of the base-load and peak-load tech-
nologies fix the RE capacity cost at the margin. They also fully determine the shadow
prices U ′(Q0), U ′(Q1) and U ′(Q) of consumption and thus the individual consumption
levels Q0, Q1 and Q, as shown in conditions (8), (9) and (10). These model properties
simplify the otherwise unwieldy comparative-statics analysis below.10

3.2 RE Capacity Costs and Consumer Flexibility

Having derived the optimality conditions above, the impact of a decline in RE capacity
costs (i.e., an increase of the cost parameter α) and of the growth of consumer share θ

on the socially optimal outcome can be analysed. For brevity, the θ individuals whose
electricity consumption is time-variant are referred to as flexible consumers, the remaining
1 − θ are referred to as inflexible ones. Let us start with some preliminary considerations.
Conditions (8) to (10) directly imply lemma 1.

Lemma 1. Independence of Individual Consumption Levels.
In the socially optimal outcome, individual consumption levels Q0, Q1and Q are inde-

10These conditions also show that the costs of electricity generation varies widely between the tech-
nologies in social optimum, simply reflecting the fact that these technologies are imperfect substitutes.
As Joskow (2011) stresses, comparing costs of intermittent and dispatchable technologies is of limited
meaning. The same is true for comparing costs of dispatchable base-load and peak-load technologies, as
highlighted by Borenstein (2012).
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pendent of RE capacity cost parameter α and the share θ of flexible consumers (i.e.,
dQi/dα = dQ/dα = dQi/dθ = dQ/dθ = 0, i = 0, 1), and so are the shadow prices U ′(Q0),
U ′(Q1) and U ′(Q).

The proofs of all lemmas, propositions and corollaries are relegated to the appendix.
As lemma 1 clarifies, a decline in RE capacity costs or an increase in the share of flex-
ible consumers does not shape the optimal outcome through its impact on individual
consumption levels of the two consumer types. Such changes can thus only influence the
optimal allocation through its effect on the pattern of electricity generation and aggregate
consumer behaviour. To confirm this notion, let us first explore the role of RE capacity
costs. Recall that an increase in cost parameter α reduces the RE capacity cost at the
margin, i.e., ∂g(k; α)/∂α = ∂H(α)/∂α < 0, as outlined in section 2.

Lemma 2. Threshold Values of RE Capacity Cost Parameter α.
(i) For RE capacity cost parameter α, threshold levels α and α exist such that (a) KA > 0
and KB = 0 if α = α, (b) KA > 0 and KB > 0 if α ∈ (α, α), and (c) KA = 0 and KB > 0
if α = α.
(ii) Capacity, production and individual consumption levels are ranked as follows: for all
α ∈ [α, α], QB0 = KB < QR = KR and Q0 < Q < Q1.

The first part of lemma 2 establishes that there indeed exists a range of parameter
values of α so that the capacities of all technologies are positive in the socially optimal
outcome. The intuition of lemma 2’s conclusions is best explained after, and in conjunction
with, proposition 1.

Proposition 1. Impact of a Decline in RE Capacity Costs.
Consider the case with α ∈ [α, α]. As RE capacity costs decline (i.e., as parameter α

increases from α to α), the socially optimal capacity, consumption and environmental
damage levels adjust as follow:
(i) RE capacity KR increases. Formally, dKR/dα > 0.
(ii) Base-load capacity KA decreases by the same amount as RE capacity KR increases.
Formally, dKA/dα = −dKR/dα < 0.
(iii) Peak-load capacity KB increases by the same amount as RE capacity KR increases.
Formally, dKB/dα = dKR/dα > 0.
(iv) Aggregate electricity consumption remains constant in each state of nature, and
so does total electricity consumption across the two states of nature. More precisely,
d (KA + KB) /dα = d (KA + KR) /dα = 0 and d [σ (KA + KB) + (1 − σ) (KA + KR)] /

dα = 0.
(v) Total environmental damage D, with D = δAKA + σδBKB, will decrease (increase)
if, and only if, the pollution parameter δA of the base-load technology is greater (smaller)
than the threshold level σδB. Formally, dD/dα ⋚ 0 ⇔ δA ⋛ σδB.
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The comparative-statics results in proposition 1 are straightforward. A decline in RE
capacity costs raises RE capacity and electricity generation, crowding out base-load ca-
pacity and power by the very same amount in the optimal solution. The associated decline
in electricity generation in the non-windy state of nature is, in turn, fully compensated
by the induced increase in peak-load capacity and electricity. The fact that base-load
capacity declines by the same amount as RE and peak-load capacities increase directly
follows from lemma 1. For given consumer share θ, individual and aggregate consumption
levels stay the same across the two states of nature, simply reflecting that capacity and
generation costs do not change at the margin in either state of nature in optimum. As
RE capacity costs decline, RE capacity has to increase to restore its initial cost level at
the margin. Base-load and peak-load capacities adjust accordingly to maintain the un-
changed optimal consumption levels. In social optimum, only the capacity composition
adjusts in response to declining RE costs, but not aggregate electricity generation.

The environmental implications of a decline in RE capacity are ambiguous. Dirty
base-load electricity is replaced with clean RE electricity in the windy state of nature, but
with potentially even dirtier peak-load electricity in the non-windy state of nature. Total
environmental damage will only fall if the peak-load technology is not too dirty relative
to the base-load technology (i.e., δB < δA/σ). Otherwise, total environmental damage
increases.11 In this case, cost-saving considerations are the key driver for employing more
RE technology, and not the fact that RE is cleaner. With RE costs falling, any amount of
electricity can be produced at lower overall costs by replacing base-load capacity with RE
and peak-load capacities, even if the impact on the environment is negative, as implied
by condition (11) and the corresponding discussion above.

The comparative-statics analysis above already indicates that all technologies are
employed only for a bounded interval of α values. For α = α, RE costs are so low
that base-load capacity is just about to be completely crowded out. By contrast, for
α = α, base-load electricity alone is still so prominent that the shadow value U ′(Q0),
with Q0 = (1/θ)

[
KA − (1 − θ) Q

]
, just equals the marginal social generation and capac-

ity costs of the peak-load technology, i.e., cB + δB + (FB/σ). At this point, employing the
peak-load technology becomes just viable in optimum, and only for α ∈ (α, α) capacities
of all technologies will be positive. Not surprisingly, for the whole interval α ∈ [α, α], a
flexible individual always consumes more electricity than an inflexible individual in the
windy state of nature (i.e., Q1 > Q), and less in the non-windy state (i.e., Q0 < Q). Since
both the consumption of inflexible consumers and the amount of base-load electricity are
state-independent, peak-load capacity and electricity generation can only fall short of RE
capacity and energy generation (i.e., QB0 = KB < QR = KR).

As the next proposition establishes, an increase in consumer flexibility, which can be
enabled through the spread of smart meters, leads to effects that are in contrast to those

11In a similar vein, Holland et al. (2022) argue that lower RE capital costs can in general lead to more
or less emissions. In the current analysis, the conditions for these outcomes to occur in social optimum
are specified.
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explained above.

Proposition 2. The Impact of an Increase in Consumer Flexibility.
As the share θ of flexible consumers increases, the socially optimal capacity, consumption
and environmental damage levels adjust as follow:
(i) RE capacity KR remains constant. Formally, dKR/dθ = 0.
(ii) Base-load capacity KA increases. Formally, dKA/dθ > 0.
(iii) Peak-load capacity KB decreases. Formally, dKB/dθ < 0.
(iv) Aggregate electricity consumption decreases in the non-windy state, while it increases
in the windy state. Formally, d (KA + KB) /dθ < 0 and d (KA + KR) /dθ > 0.
(v) Total electricity consumption across the two states of nature will increase (decrease)
if the marginal utility, or demand, function is convex (concave). Formally,
d [σ (KA + KB) + (1 − σ) (KA + KR)] /dθ ⋛ 0 if U ′′′(Q) ⋛ 0.
(vi) Total environmental damage D = δAKA + σδBKB will decrease (increase) if, and
only if, the pollution parameter δA of the base-load technology is smaller (greater) than
the threshold level σδB (Q1 − Q0) /

(
Q1 − Q

)
. Formally, dD/dθ ⋚ 0 ⇔ δA ⋚ σδB(Q1 −

Q0)/(Q1 − Q).

A flexible response of consumers to changing supply situations is often seen as a pre-
requisite for a more widespread use of intermittent RE technologies. Indeed, an increase
in the share θ of flexible households shifts socially optimal electricity consumption and
production from the non-windy state of nature to the windy one, as expected. However,
this shift leaves the optimal RE capacity unaffected in the current model. Instead, it
should be achieved by employing more base-load and less peak-load capacity, enabling
an overall less expensive electricity generation.12 Thereby, the technology mix changes
without affecting social generation and capacity costs at the margin.

This reasoning, which underpins the conclusions in parts (i) to (iv) of proposition 2,
clearly follows again from condition (11). Just assume that instead of base-load capacity,
RE capacity would be increased as consumer share θ grows. Such an adjustment would
drive up RE costs and bring condition (11) out of balance. The technology choice would
not be optimal anymore, as any amount of electricity could be produced at lower social
costs by using more base-load capacity and less peak-load and RE capacities.13

Total electricity consumption across the two states of nature rises (falls) in response
to a higher share θ if the marginal utility function is convex (concave), as stated in part

12This conclusion underlines the importance of distinguishing between base-load and peak-load tech-
nologies, since the adjustment would obviously be different in a model with only one conventional tech-
nology (see Ambec and Crampes, 2021).

13Analysing competitive electricity markets in which stochastic demand and supply are partly correlated
with each other and can lead to outage, Chao (2011) conducts simulations that yield a similar result:
moving all customers from time-invariant to real-time prices reduces (increases) electricity generation with
a conventional peak-load (base-load) technology, despite the presence of RE. However, Chao’s (2011) and
the current model are not directly comparable. In the current, simpler model, the impact of marginal
changes in the share of flexible consumers on capacities can be determined analytically and explained
without relying on simulations.
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(v) of proposition 2. To understand this conclusion, let us take a linear marginal utility,
or demand, function as benchmark. In this benchmark, the ‘new’ flexible individuals
consume as much more electricity in the windy periods as they consume less in the non-
windy periods, compared to their consumption as inflexible consumers, thus leaving their
total consumption unaltered. With a convex utility function instead of a linear one, and
starting from the inflexible consumption level Q, the shadow value U ′(Q) decreases less
rapidly as Q increases, and increases more rapidly as Q decreases. As a result, the optimal
additional consumption of the ‘new’ flexible individuals in the windy periods is higher, and
the optimal reduction in their consumption in the non-windy periods is curbed, compared
to the benchmark case of a linear marginal utility curve. Consequently, overall electricity
consumption increases. For the case of concave utility functions, this reasoning can simply
be reversed, leading to the conclusion that overall consumption decreases.

The impact of a larger share θ of flexible consumers on total environmental damage is
ambiguous, since there are again opposing effects on pollution at work. More base-load
electricity raises pollution, while less peak-load capacity reduces pollution. In contrast to
the conclusion of proposition 1, total environmental damage will now decrease only if the
peak-load technology is sufficiently dirty compared to the base-load technology (i.e., δB >

δA(Q1 − Q)/[σ(Q1 − Q0)]). Otherwise, total environmental damage increases. In fact, for
equally polluting conventional technologies (i.e., δA = δB ), total environmental damage
decreases (increases) under the same condition under which total electricity consumption
decreases (increases). This is stated in the corollary 1, which also further highlights
the potentially contrasting effects of a decline in RE capacity costs and an increase in
consumer flexibility on total environmental damage.

Corollary 1. Environmental Damage.
(i) For δA < σδB, total environmental damage D increases as RE capacity costs decline,
and it decreases as consumer share θ grows. For σδB ≤ δA ≤ σδB(Q1 − Q0)/(Q1 − Q),
total damage D decreases as RE capacity costs decline and consumer share θ increases.
Finally, for σδB(Q1 − Q0)/(Q1 − Q) < δA, total damage D decreases as RE capacity costs
decline, and it increases with consumer share θ.
(ii) Consider the case in which base-load and peak-load technologies are equally polluting
(i.e., δA = δB). Then, total environmental damage decreases as RE capacity costs decline.
Formally, dD/dα < 0. By contrast, total environmental damage decreases (increases) as
consumer share θ grows if the marginal utility function is concave (convex). Alternatively,
dD/dθ ⋚ 0 if U ′′′(Q) ⋚ 0.

As corollary 1 points out, neither a decline in RE costs nor an increase in the share of
flexible consumers necessarily goes hand in hand with a decrease in total environmental
damage in social optimum. In fact, only for specific parameter constellations do both a
lower RE cost and a higher consumer flexibility reduce overall pollution.
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4 Environmental Policy in a Liberalised Market

Having characterised the socially optimal outcome and how it changes in response to
declining RE capacity costs and increasing consumer flexibility, let us next determine the
SPN equilibrium in a liberalised electricity market and the optimal environmental policy.

4.1 Market Equilibrium

Solving the model by means of backward induction, the interactions in the electricity
markets in the fourth stage are analysed first. This subsection then explores the RE
capacity choices, or RE market entry decisions, in the third stage and afterwards the
monopolist’s capacity choices in the second stage. Finally, the government’s policy choices
in the first stage are characterised in subsection 4.2.

Retail and Wholesale Markets

In the fourth stage, energy suppliers, retailers and households interact in the retail and
wholesale markets. In the retail market, flexible households face real-time prices p0 and p1

in the non-windy periods and the windy ones, respectively, while inflexible households pay
the time-invariant price p irrespective of the state of nature. With individuals maximising
the utility from electricity consumption net of payments, individual instantaneous inverse
demands are given by the marginal utility function:

p0 = U ′(Q0), p1 = U ′(Q1), p = U ′(Q), (12)

where U ′(Q0) and U ′(Q1) capture the inverse demands of the flexible consumers in the
non-windy state and the windy one, and U ′(Q) stands for the inverse demand of the
inflexible consumers.

Retailers compete for final customers in Bertrand fashion. As they have no costs other
than wholesale electricity costs, retail prices p0 and p1 coincide with the wholesale prices
in the non-windy and windy states of nature. (Thus, there is no separate notation for
wholesale prices.) In equilibrium, retail firms are also indifferent between selling to flexible
and inflexible customers. This requires that the time-invariant retail price p equals the
average wholesale price, yielding the arbitrage condition p = σp0 + (1 − σ) p1 or, plugging
in demand (12),

U ′(Q) = σU ′(Q0) + (1 − σ) U ′(Q1). (13)

In the wholesale market, the aggregate demands of retail firms are θQ0 +(1 − θ) Q and
θQ1 + (1 − θ) Q in the non-windy state and the windy one, which are simply the sums
of the state-dependent demands of the θ flexible individuals and the invariant demand of
the 1 − θ inflexible individuals. Retail firms purchase their electricity in state-contingent
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markets for the windy state of nature and the non-windy one.
In the windy state of nature, profit-maximising RE generators choose to produce at

full capacity and supply QR = KR as long as price p1 is non-negative (which is the
case in equilibrium), since the marginal cost is zero at this stage and investment costs
are sunk. Similarly, the monopolist employs the base-load technology at full capacity
and supplies QA = KA across both states of nature if the marginal revenues exceed
the marginal generation costs and emission taxes at this output level. This is the case
in equilibrium, since a profit-maximising monopolist on its own would never build up
capacities that lay completely idle, and a welfare-maximising government would never
incentivise such a socially suboptimal strategy. In the same vein, the monopolist fully
uses its peak-load capacity and supplies QB0 = KB, but only in the non-windy state
of nature. As this technology exhibits higher costs than the base-load technology when
employed permanently, the monopolist on its own never uses the peak-load technology
in both states of nature, but only in the state of nature in which electricity is scarcer.
Moreover, the government would always face incentives to prevent the monopolist from
doing otherwise by levying a prohibitive emission tax t

B1 . To summarise, decision paths
that do not lead to QA = KA, QB0 = KB, QB1 = 0 and QR = KR are inconsistent with
an SPN equilibrium.

Thus, instantaneous aggregate supply is KA + KB in the non-windy state of nature
and KA + KR in the windy one. Then, the market-clearing conditions are

θQ0 + (1 − θ) Q = KA + KB, (14)
θQ1 + (1 − θ) Q = KA + KR. (15)

RE Capacity

In the third stage, the potential RE generators decide whether or not to enter the market.
Facing no costs other than their investment, they do so as long as revenue (1 − σ) p1 in
the fourth stage weakly exceeds capacity cost g(k; α). Using inverse demand U ′(Q1) = p1,
the resulting zero-profit condition of the marginal RE generator is

πR(KR; α) = (1 − σ) U ′(Q1) − g(KR; α) = 0, (16)

where πR(KR; α) stands for the profit of the marginal RE firm in the market.

Base-load and Peak-load Capacities

In the second stage, the monopolist chooses the base-load and peak-load capacities KA

and KB. As the firm anticipates the impact of the capacity choices on the decisions in
the ensuing stages, inverse demands p0 = U ′(Q0) and p1 = U ′(Q1) and outputs QA = KA
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and QB0 = KB can already be plugged into the profit function of the monopolist, yielding

πM = σ [U ′(Q0) (KA + KB) − (cA + tA0) KA − (cB + tB0) KB]
+ (1 − σ) [U ′(Q1)KA − (cA + tA1) KA] (17)
− (FA + τA) KA − (FB + τB) KB,

which includes the technology-specific capacity taxes τA and τB and technology- and
state-of-nature-specific emission taxes tA0, tA1 and tB0. The first line on the right-hand
side captures the monopolist’s revenue net of the variable production costs (including the
technology- and state-dependent emission taxes) that accrue in the σ non-windy periods
when both base-load and peak-load power stations run at full capacity. The second line
is the counterpart for the windy periods, in which only the base-load technology is used,
again at full capacity. Finally, the third line contains the capacity costs and taxes.

The first of the two first-order conditions for the profit-maximising capacities is

dπM

dKA

= σ[U ′(Q0) + U ′′(Q0)
dQ0

dKA

(KA + KB)︸ ︷︷ ︸
own-market effect ΛA0:=

− (cA + tA0)]

+ (1 − σ) [U ′(Q1) + U ′′(Q1)
dQ1

dKA

KA︸ ︷︷ ︸
own-market eff. ΛA1:=

− (cA + tA1)] − (FA + τA) (18)

+ [σU ′′(Q0)
dQ0

dKR

(KA + KB)︸ ︷︷ ︸
cross-market effect ΨR0:=

+ (1 − σ) U ′′(Q1)
dQ1

dKR

KA︸ ︷︷ ︸]
own-market eff. ΛR1:=

dKR

dKA

︸ ︷︷ ︸
strategic investment effect

= 0,

where the signs of the derivatives on the right-hand side are as follows:

dQ0

dKA

= dQ1

dKA

> 0,
dQ0

dKR

≤ 0,
dQ1

dKR

> 0,
dKR

dKA

∈ (−1, 0) . (19)

The first and second line on the right-hand side of the first-order condition (18) imply the
standard conclusion that marginal revenues equal marginal costs including the emission
taxes in optimum. Only, the terms are weighted according to the duration of the two states
of nature, and the marginal cost and tax of building up base-load capacity are added. The
second terms in the square brackets in the first and second line show the indirect effects
of an increase in capacity on the monopolist’s revenues through price changes that occur
in the markets in which output rises, referred to, for brevity, as own-market effects ΛA0

and ΛA1. Not surprisingly, an increase in base-load capacity KA raises the quantities Q0

and Q1 that are traded in the market equilibrium in the fourth stage (i.e., dQi/dKA > 0,
i = 0, 1) and depresses the corresponding prices p0 and p1 (i.e., U ′′(Qj) (dQj/dKA) < 0),
since it directly increases the supply in both states of nature. Thus, the own-market
effects ΛA0 and ΛA1 are negative. [The results of the bulky comparative statics on the
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relationships between the capacities and the equilibrium quantities, and between the RE
capacity on the one hand and the base-load and peak-load capacities on the other, are
provided in the appendix, with eqs. (19) above and (21) below just summarising the
signs. See eqs. (A.7) to (A.15) in the appendix.]

The third line of the first-order condition (18) as a whole captures the effect of a
higher base-load capacity on the monopolist’s revenues through its impact on RE capacity,
referred to as strategic investment effect in the following. The term outside the square
brackets is straightforward. An increase of base-load capacity and thus supply in the
windy periods depresses price p1. This in turn discourages RE firms from entering the
market. That is, capacities KR and KA are strategic substitutes (dKR/dKA < 0 ).

A change in RE capacity, in turn, leads to two opposing effects on the monopolist’s
revenues, as shown by the terms in the square brackets of the third line. An increase
in RE capacity KR raises the RE supply and thus quantity Q1 traded in windy periods,
thereby depressing price p1 (i.e., U ′′(Q1) (dQ1/dKR) < 0) and the monopolist’s revenues
that accrue in these periods. This negative own-market effect ΛR1, included in the second
term in the square brackets in the third line, is opposed by a positive cross-market effect
ΨR0, included in the first term. A lower price p1 in windy periods means that the time-
invariant price p also falls. This, in turn, boosts demand of inflexible consumers in the
non-windy periods, which drives up overall demand θQ0 + (1 − θ) Q and price p0 (i.e.,
U ′′(Q0) (dQ0/dKR) > 0), thereby inevitably crowding out some consumption of flexible
households (i.e., dQ0/dKR < 0). Higher overall demand and price raise the monopolist’s
revenue in the non-windy state of nature (i.e., ΨR0 > 0).

Overall, the strategic investment effect is positive (negative), and the monopolist
strategically overinvest (underinvest) in base-load capacity KA, if the weighted own-
market effect dominates (is dominated by) the weighted cross-market effect, with weights
being again σ and 1 − σ. Then, with base-load capacity KA depressing RE capacity KR,
the positive effect of less RE capacity on the monopolist’s revenue in the windy periods
more than (less than) compensates for the negative impact of less RE capacity on the
revenue in the non-windy ones (i.e., (1 − σ) ΛR1 (dKR/dKA) > (<)|σΨR0 (dKR/dKA)|).
As explored in sections 5 and 6, the overall sign of the strategic investment effect is
systematically related to the RE capacity costs and the share of flexible consumers.

The second first-order condition is given by

dπM

dKB

= σ[U ′(Q0) + U ′′(Q0)
dQ0

dKB

(KA + KB)︸ ︷︷ ︸
own-market effect ΛB0:=

− (cB + tB0)]

+ (1 − σ) U ′′(Q1)
dQ1

dKB

KA︸ ︷︷ ︸
cross-market eff. ΨB1:=

− (FB + τB) (20)

+
[
σU ′′(Q0)

dQ0

dKR

(KA + KB) + (1 − σ) U ′′(Q1)
dQ1

dKR

KA

]
dKR

dKB

= 0,
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where the missing signs of the derivatives on the right-hand side are as follows:

dQ0

dKB

> 0,
dQ1

dKB

≤ 0,
dKR

dKB

∈ [0, 1) . (21)

As already mentioned, the details of the derivatives (19) and (21) are presented in the
appendix. The first line of the second-order condition (20) is the counterpart to the first
line of condition (18). Thus, it needs no further explanation, and neither does the term
(FB + τB) in the second line.

The first term of the second line contains the cross-market effect ΨB1, whose expla-
nation is in line with that of the previous cross-market effect. An increase in peak-load
capacity KB and the corresponding output QB0 reduces the state-dependent price p0 and
thus also the time-invariant price p. This leads to a higher demand from inflexible cus-
tomers in the windy periods, pushing up overall demand θQ1 + (1 − θ) Q and price p1

(i.e., U ′′(Q1) (dQ1/dKB) > 0), now inevitably crowding out some consumption of flexi-
ble households in the windy periods (i.e., dQ1/dKB < 0). Higher overall demand and
price improve the monopolist’s revenue that accrues in the windy periods (i.e., ΨB1 > 0).
This positive effect on its profit incentivises the monopolist to overinvest in peak-load
capacity and oversupply peak-load electricity. As the previous cross-market effect, this
one also crucially hinges on the presence of inflexible customers. Without them (i.e.,
for θ = 1), the link between the markets in the non-windy and windy states of nature
breaks down. Then, both cross-market effects vanish (i.e., ΨB1 = ΨR0 = 0 because
dQ1/dKB = dQ0/dKR = 0).

The third line captures the impact of peak-load capacity on revenues through its effect
on RE capacity, and is thus the counterpart of the third line of the first-order condition
(18). This effect is again referred to as strategic investment effect. The terms in the
square brackets are the same as those in the third line of the first-order condition (18),
since they both capture the same relationship between RE capacity and the monopolist’s
revenues. However, while an increase in base-load capacity reduces the mass of RE firms
entering the market, an increase in peak-load capacity has the opposite effect. As it raises
price p1 through the cross-market effect (as long as there are some inflexible consumers;
i.e., for θ < 1), it attracts more RE capacity.14 So while base-load and RE capacities
are strategic substitutes, peak-load and RE capacities are strategic complements. Hence,
while the overall strategic investment effect can again be positive or negative, it has for
sure the opposite sign of its counterpart above. That is, whenever there is an incentive
to strategically overinvest (underinvest) in base-load capacity, there is also an incentive
to strategically underinvest (overinvest) in peak-load capacity.

14Again, for θ = 1, there is no cross-market effect and thus no impact of base-load capacity on RE
capacity (i.e., dKR/dKB = 0 for θ = 1).
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4.2 Optimal Emission and Capacity Taxes

In the first stage, the government sets the emission and capacity taxes such that welfare
(1), which is equivalent to the sum of consumer surplus and profits net of environmental
damage, is maximised. To explore the optimal policies, let us define the total base-load
and peak-load tax burdens TA and TB as the sums of emission and capacity taxes per unit
of output: TA = σtA0 +(1 − σ) tA1 + τA and TB = tB0 +(τB/σ). Then, a closer look at the
first-order conditions (18) and (20) reveals that the optimal capacity choices KA and KB

depend only on these total burdens TA and TB, and not on how the total tax burdens are
exactly apportioned to the individual components, either tA0, tA1 and τA or tB0 and τB.
However, to facilitate the explanation of the comparative statics in the following sections,
the total tax burdens are allocated such that the individual components address specific
causes of market failure. More specifically, the emission taxes tA0, tA1 and tB0 tackle
the environmental externality caused by the corresponding technologies and the issue of
market power in the corresponding states of nature. The capacity taxes deal with the
distortive strategic investment incentives.

Then, comparing the first-order conditions (4) to (7) with the equilibrium conditions
(13), (16), (18) and (20) yields a set of optimal taxes:

tA0 = δA + U ′′(Q0)
dQ0

dKA

(KA + KB)︸ ︷︷ ︸
own-market effect ΛA0:=

, (22)

tA1 = δA + U ′′(Q1)
dQ1

dKA

KA︸ ︷︷ ︸
own-market eff. ΛA1:=

, (23)

tA = σtA0 + (1 − σ) tA1, (24)

tB0 = δB + U ′′(Q0)
dQ0

dKB

(KA + KB)︸ ︷︷ ︸
own-market effect ΛB0:=

+ 1 − σ

σ
U ′′(Q1)

dQ1

dKB

KA︸ ︷︷ ︸
cross-market eff. ΨB1:=

, (25)

τA = [σU ′′(Q0)
dQ0

dKR

(KA + KB)︸ ︷︷ ︸
cross-market effect ΨR0:=

+ (1 − σ) U ′′(Q1)
dQ1

dKR

KA︸ ︷︷ ︸]
own-market eff. ΛR1:=

dKR

dKA

, (26)

τB = [σ
︷ ︸︸ ︷
U ′′(Q0)

dQ0

dKR

(KA + KB) + (1 − σ)
︷ ︸︸ ︷
U ′′(Q1)

dQ1

dKR

KA]dKR

dKB

, (27)

with the signs of the derivatives again given by eqs. (19) and (21).
Technology- and state-dependent emission taxes tA0 and tA1 show the traditional

characteristics of environmental taxes under imperfect competition. They are equal to
marginal environmental damage δA corrected for what are labelled above the own-market
effects ΛA0 and ΛA1, respectively, and thus underinternalise the environmental damage
as usual under imperfect competition (i.e., tA0, tA1 < δA). Instead of levying technology-
and state-dependent emission taxes tA0 and tA1, the government can simply impose the
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technology-dependent tax tA, irrespective of the state of nature, as implied by the discus-
sion above. Emission tax tA is simply the average of the state-dependent ones weighted
according to the duration of the non-windy and windy periods.

Emission tax tB0 takes account of the cross-market effect ΨB1 in addition to the
negative own-market effect ΛB0. As the cross-market effect is positive and incentivises
the monopolist to increase peak-load power generation (see discussion above), it raises
the tax and thus counteracts the underinternalisation of environmental damage caused by
the own-market effect, as further discussed below. The tax formulas (22) to (27) do not
include emission tax tB1. Such a tax might be necessary to discourage the monopolist from
employing the peak-load technology in windy periods and just needs to be ‘sufficiently’
high such that using peak-load technology in windy states is prohibitive.

Capacity taxes τA and τB eliminate the incentives to strategically over- or underinvest
in base-load and peak-load capacities, respectively. The preliminary characterisation of
these taxes in lemma 3 follows directly from our discussion of these strategic investment
incentives in subsection 4.1.

Lemma 3. Capacity Taxes and Subsidies.
Assume that there are some inflexible consumers. Then, both capacity taxes τA and τB

can be positive or negative. Whenever one of them is positive, the other one is negative,
and vice versa. More precisely, for θ < 1,

τA ⋛ 0 ⇔ KA ⋛ σ
1 − θ

θ

U ′′(Q0)
U ′′(Q)

KB ⇔ τB ⋚ 0. (28)

Interestingly, when the capacity of one of the two conventional technologies should be
subsidised, the capacity of the other one should be taxed. This issue is picked up below.
In any case, capacity costs FA and FB are assumed to be sufficiently high so that they
exceed any optimal subsidies −τA and −τB that are characterised by the tax formulas
(26) and (27). In other words, the constraints τA > −FA and τB > −FB are assumed to
be non-binding for the government when it chooses its welfare-maximising taxes, which
is a fairly innocent assumption.15

Then, an SPN equilibrium is characterised by the emission and capacity taxes (22)
to (27) in addition to the equilibrium conditions (13), (16), (18) and (20). With the
taxes outlined above, the government can induce socially optimal output, consumption
and capacity levels, which were characterised by conditions (8) to (11) and explored in
section 3.

Before the comparative-statics properties of the environmental policy is analysed in
the next section, this section concludes with two remarks that relate the current results
to those in the literature. First, capacities are taxed or subsidised in the current context
to counteract a conventional incumbent’s incentives to prevent or foster market entry

15Obviously, if these constraints were not satisfied, the monopolist would build up as much capacity as
possible without ever intending to employ all this capacity.
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of RE providers. Explicitly differentiating between base-load and peak-load technologies
shows that these incentives turn out to be fairly complex, as further explored in the
next sections. The motivation for capacity taxes and subsidies in this paper is very
different from the alternative justifications for these policy instruments in the literature
on electricity markets or RE. These justifications include providing capacity payments to
reduce the risk of blackouts in the presence of stochastic demand (e.g., Fabra, 2018) and
employing specifically RE capacity subsidies to replace only imperfectly available emission
taxes in second-best settings (e.g., Helm and Mier, 2021) or to attract internationally
mobile green capital (e.g., Eichner and Runkel, 2014).16

Second, there are important differences between the implications of variations in supply
and in demand. In the current setting, pollution and market power cause inefficiencies,
but variations in supply over different states of nature themselves do not. In particular,
variations in supply do not distort the time-invariant retail price p = U ′(Q) (see optimality
condition (4) and equilibrium condition (13)). By contrast, variations in demand usually
do distort the price-invariant retail price, as shown in Borenstein and Holland (2005).
Abstracting from pollution, they show that even a competitive market equilibrium is not
second-best when demand varies across time and some consumers are charged a time-
invariant price.17

5 Environmental Policy and RE Capacity Costs
Let us now analyse how the socially optimal emission and capacity taxes adjust to a
changing environment. In this section, the effects of declining RE capacity costs on these
taxes are explored. Propositions 3 to 5 cover the case in which at least some consumers
are on time-invariant prices (i.e., θ < 1). Afterwards, proposition 6 analyses how the
results change if all consumers are on real-time prices (i.e., θ = 1). Let us start with
considering the impact of RE costs on emission taxes in the case of θ < 1.

Proposition 3. Emission Taxes and RE Capacity Costs for θ < 1.
(i) As RE capacity costs decline (i.e., as parameter α increases from α to α), emission tax
tA0 remains unchanged, while emission taxes tA1 and tA strictly increase proportionally
to each other. By contrast, emission tax tB0 strictly decreases as RE capacity costs fall.
Formally, dtA0/dα = 0, dtA1/dα > 0, dtA/dα = (1 − σ) dtA1/dα > 0 and dtB0/dα < 0.
(ii) All emission taxes underinternalise environmental damage with the exception of emis-
sion tax tA1, which fully internalises environmental damage, but only when the cost pa-

16Green subsidies are also discussed as a means to address inefficiencies due to technological spillovers
(e.g., Fischer and Newell, 2008; Fischer et al., 2017).

17As explored in Borenstein and Holland (2005), the time-invariant market price equals the quantity-
weighted average real-time price, while the second-best time-invariant price, which minimises the dead-
weight loss of time-invariant pricing, equals the average real-time price with the weights given by the
slopes of the demand curves. Without variations in demand across time, as in the current paper, the equi-
librium price coincides with its second-best value. However, even with variations in demand, a second-best
outcome can be achieved if two-part tariffs are allowed, as shown by Joskow and Tirole (2006).

22



Figure 1: RE Capacity Costs and Taxes, θ < 1

rameter α reaches its upper bound α. Formally, tA0, tA < δA and tB0 < δB for α ∈ [α, α],
tA1 < δA for α ∈ [α, α), and tA1 = δA for α = α.

The conclusions of proposition 3 are intuitive. Recall that the socially optimal con-
sumption, output and capacity levels are decentralised in equilibrium. Then, a decline
in RE capacity costs changes neither the consumption levels nor the monopolist’s com-
petitive position in the non-windy state of nature and its overall output KA + KB (see
lemma 1 and proposition 1). The own-market effect ΛA0 thus stays the same in the SPN
equilibrium with its socially optimal taxes, and so does emission tax tA0 (see eq. (22)).
By contrast, as RE capacity costs fall and RE firms penetrate the market in ever larger
numbers, growing supply of RE makes the electricity market in the windy state of nature
increasingly competitive. With the monopolist’s residual demand declining in windy pe-
riods, the base-load capacity KA is continuously crowded out. As a result, the absolute
value |ΛA1| of the own-market effect shrinks, and tax tA1 increases (see eq. (23)). Ul-
timately, for α = α, as base-load capacity KA falls to zero, the own-market effect ΛA1

vanishes and the emission tax tA1 thus equals marginal environmental damage δA. With
tax tA0 being constant, any rise in tax tA1 by ∆tA1 is translated into a rise in tax tA by
(1 − σ) ∆tA1, simply by construction of tax tA (see eq. (24)). These relationships between
emission taxes and RE capacity costs are illustrated in figure 1.

In contrast to emission taxes tA0, tA1 and tA, tax tB0 decreases as RE capacity costs
fall, which is also depicted in figure 1. This decline results since while the home market
effect ΛB0 remains unaltered, as does its counterpart ΛA0, the cross-market effect ΨB1

weakens (compare eqs. (22) and (25)). Recall that the latter effect incentivises the
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monopolist to increase peak-load generation in the non-windy periods to push up demand
of inflexible consumers and thus price p1 in the windy periods. This incentive to distort
the market outcome drives up emission tax tB0. However, the strength of the underpinning
cross-market effect ΨB1 fades away as base-load capacity KA is crowded out, causing the
optimal emission tax tB0 to decline in line with RE costs.

In any case, and although the monopolist faces fringe RE competitors, the second-best
emission taxes underinternalise environmental damage with the exception of tax tA1. But
even this tax only fully internalises environmental damage when base-load capacity is just
about to be completely crowded out. In the case of emission tax tB0, underinternalisation
results despite the positive cross-market effect ΨB1 because the negative own-market
effect ΛA0 is simply stronger. This in turn follows from the fact that the direct negative
impact of peak-load capacity on the price in non-windy periods, when this capacity is
employed, is unsurprisingly more pronounced than its indirect positive impact on the price
in non-windy periods, when this capacity is not employed (i.e., |U ′′(Q0) (dQ0/dKB)| >

U ′′(Q1) (dQ1/dKB)).
Having discussed some basic comparative-statics features, the next proposition ex-

plores the ranking of the emission taxes for θ < 1. To have a meaningful comparison,
the environmental damages of the two fossil-fuel based technologies are assumed to be
identical in proposition 4.

Proposition 4. Ranking of Emission Taxes for θ < 1.
Assume that technologies A and B are equally damaging (i.e., δA = δB).
(i) If demand is strictly convex (i.e., U ′′′(Q) > 0), then the emission taxes will be ranked
as follows: tB0 ≤ tA0 < tA < tA1 for all α ∈ [α, α], with tB0 = tA0 for α = α and tB0 < tA0

for α ∈ (α, α].
(ii) If demand is linear (i.e., U ′′′(Q) = 0), then all emission taxes will coincide for α = α

and the ranking in part (i) will be maintained for α ∈ (α, α]. That is, tB0 = tA0 = tA = tA1

for α = α and tB0 < tA0 < tA < tA1 for α ∈ (α, α].
(iii) If demand is strictly concave (i.e., U ′′′(Q) < 0), then critical values α̃ and α̂, with
α < α̃ < α̂ < α, will exist such that tB0 ⋛ tA ⇔ α ⋚ α̃ and tA0 ⋛ tA ⋛ tA1 ⇔ α ⋚ α̂.
Again, tB0 = tA0 for α = α and tB0 < tA0 for α ∈ (α, α].

To understand proposition 4, let us consider the case in which the demand function is
linear (i.e., U ′′′(Q) = 0) as a starting point. This is the case that is illustrated in figure
1.18 Clearly, at α = α and thus KB = 0, when the monopolist is just about to employ the
peak-load technology, the own-market effects ΛA0 and ΛA1 and thus emission taxes tA0

and tA1 coincide, as eqs. (22) and (23) for KB = 0 in conjunction with eq. (19) reveal.19

18The H(α)-function is also assumed to be linear. Otherwise, the relationships in figure 1 would not
be linear.

19The argument above hinges on the result that a change in base-load capacity increases consump-
tion levels of flexible consumers in the non-windy and windy state of nature by the same amount (i.e.,
dQ0/dKA = dQ1/dKA > 0). This result is not surprising, since the base-load technology is equally
employed across both states of nature.
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Since tax tA1 increases with parameter α, while tax tA0 remains constant, tax tA1 exceeds
tA0 for all α ∈ (α, α]. By construction, tax tA lies in between its components tA0 and tA1,
and thus coincides with them when they are identical.

Emission tax tB0 also coincides with the other emission taxes for α = α. The reason for
this outcome is as follows: On the one hand, the positive cross-market effect ΨB1 raises
tax tB0 compared to the constant emission tax tA0. On the other hand, the negative
own-market effect ΛB0 is stronger than its counterpart ΛA0 (i.e., ΛB0 < ΛA0), which
lowers tax tB0 compared to tax tA0. To understand the difference in relative strengths
of the own-market effects, recall that an increase in base-load capacity KA drives up
output in both the non-windy and windy periods. The ensuing fall in real-time price p1

in the windy periods also lowers time-invariant price p and thus raises the demand of
the inflexible consumers. This in turn puts upward pressure on real-time price p0 in the
non-windy state of nature, thus depressing consumption Q0 of flexible consumers in the
windy periods. This negative effect is absent when peak-load capacity KB is increased,
implying dQ0/dKB > dQ0/dKA and thus, for linear demand and α = α, ΛB0 < ΛA0.

In any case, the two opposing effects on the magnitude of emission tax tB0 compared
to tA0 (i.e., ΨB1 > 0 versus ΛB0 < ΛA0) exactly offset each other at α = α. Hence, tax tB0

coincides with tax tA0, which in turn is identical to taxes tA1 and tA at this point. As tax
tB0 decreases with parameter α, this tax falls short of all the other taxes for α ∈ (α, α].

The unambiguous ranking of the emission taxes for α ∈ (α, α] in the case of a linear
demand function basically carries over to the case of strictly convex demand functions.
Only, with strictly convex demand, taxes tA1 and tA already strictly exceed taxes tA0 and
tB0 for α = α. To understand this difference, note that in the case of strictly convex
demand, the effect of quantity on the real-time price is stronger in the non-windy state
of nature than in the windy state (i.e., |U ′′(Q0)| > |U ′′(Q1)| for Q0 < Q1). By contrast,
this effect is the same in the case of a linear demand function. Therefore, with strictly
convex demand, the negative own-market effect ΛA1 becomes relatively weaker, while the
negative own-market effect ΛA0 becomes relatively stronger. Hence, tax tA1 rises relative
to tax tA0, which still coincides with tax tB0.20 Thus, the emission taxes diverge from the
outset, with the ranking tB0 = tA0 < tA < tA1 already being valid for α = α. Again, tax
tA simply lies between taxes tA0 and tA1 by construction.

Only if demand is strictly concave, the ranking changes for sufficiently high RE ca-
pacity costs (i.e., for α ≤ α̂). With strictly concave demand, the arguments about the
relative strengths of the own-market effects and cross-market effect in the case of strictly
convex demand can simply be reversed. Initially, emission tax tA0 then exceeds tA1. Also,
emission tax tB0 is greater than tax tA at the beginning, since tax tB0 coincides with
tA0 for α = α, while tax tA falls short of tA0 by construction. However, the initial tax
levels do not alter the comparative statics outlined in proposition 3. As emission tax tA1

20Regarding tax tB0, not only the own-market effect ΛB0 is affected (although to a different extent
than its counterpart ΛA0), but also the positive cross-market effect ΨB0 is relatively weakened, putting
downward pressure on tax tB0.
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increases, tax tA0 stays constant, and tax tB0 decreases, the ranking tB0 < tA0 < tA < tA1

is eventually restored, first regarding to emission taxes tA and tB0, and then regarding to
the remaining taxes tA0 and tA1.

For δA = δB, the ranking of the emission taxes is exactly inverse to the ranking of
the internalisation gaps, i.e., the difference between the environmental damages and the
corresponding taxes. Once δB exceeds δA, the tax tB0 shifts upwards in parallel fashion
relative to the other emission taxes. This changes the tax ranking. However, proposition 4
still continues to correctly reflect the ranking of the internalisation gaps even for δA < δB.

Having explored the effect of RE capacity costs on the emission taxes, let us next turn
to the response of the capacity taxes and the total base-load and peak-load tax burdens.
Proposition 5 states the key results, again for θ < 1.

Proposition 5. Capacity Taxes, Total Tax Burdens and RE Capacity Cost for θ < 1.
(i) As RE capacity costs decline, capacity tax τA strictly decreases from a positive to a
negative value, while capacity tax τB strictly increases from a negative to a positive value.
More precisely, dτA/dα < 0 and dτB/dα > 0, with τA ⋛ 0 ⇔ α ⋚ α̌ ⇔ τB ⋚ 0 and
α̌ ∈ (α, α).
(ii) As RE capacity costs decline, total tax burden TA = tA + τA strictly increases, while
total tax burden TB = tB0 + (τB/σ) strictly decreases. In any case, these total tax burdens
per output unit fall short of environmental damage. Formally, dTA/dα > 0, with TA < δA,
and dTB/dα < 0, with TB < δB.

From the monopolist’s perspective, crowding out RE capacity is a double-edged sword,
as explored in section 4 and reflected in the policy conclusions in part (i) of proposition
5. On the one hand, it has a positive impact on the monopolist’s profit that accrues in
the windy periods, since a lower RE supply increases the monopolist’s residual demand
in the windy state of nature and thus real-time price p1. On the other hand, a lower RE
capacity has a negative impact on the monopolist’s profit in the non-windy state, since
a lower RE supply in the windy periods increases the time-invariant price p and thus
reduces the demand in the non-windy state and real-time price p0. If RE capacity costs
are sufficiently high (i.e., α ≤ α̌) and the monopolist therefore has a substantial market
share in the windy periods, the positive effect of lower RE supply will dominate the
negative effect. In this case, the monopolist faces an incentive to crowd out RE capacity.
It does so by means of (i) strategically overinvesting in base-load capacity to increase
supply in windy periods and (ii) strategically underinvesting in peak-load capacity to
raise the time-invariant price p for inflexible consumer and thus to lower demand in the
windy periods. Both measures depress the profits of RE firms and thus crowd out RE
capacity. To counteract the strategic investment incentives of the monopolist, base-load
capacity needs to be taxed and peak-load capacity to be subsidised.

As RE capacity costs decrease, RE capacity increases, while base-load capacity falls.
From the perspective of the monopolist, the market for electricity in the windy state of
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nature becomes less important as its market share plummets with the rise of RE capac-
ity, while the market for electricity in the non-windy state gains in relative importance.
Consequently, the strategic investment incentives of the monopolist first become weaker
and then reverse. If RE capacity costs are sufficiently low (i.e. α > α̌), crowding in RE
capacity will be beneficial to the monopolist. Then, a higher RE supply in the windy
periods reduces the time-invariant price p and thus increases the demand of inflexible
consumers in the non-windy periods, driving up real-time price p0 and thus the monopo-
list’s profit in the non-windy periods. While additional RE capacity still lowers real-time
price p1 and thus the monopolist’s profit in the windy periods, this negative effect is not
dominant anymore, since the monopolist’s market share in the windy state of nature is
too small for this market to be decisive. Hence, the monopolist reverses its strategy: it (i)
underinvests in base-load capacity to reduce its supply in the windy periods and (ii) over-
invests in peak-load capacity to reduce the time-invariant price p and thus to boost the
demand of inflexible consumers in the windy periods. As both measures improve the prof-
its of RE firms, they attract additional RE capacity. To counteract the reversed strategic
investment incentives of the monopolist, base-load capacity needs to be subsidised and
peak-load capacity to be taxed. The tax on base-load (peak-load) capacity monotoni-
cally moves from a positive (negative) to a negative (positive) value as RE capacity costs
decline, as illustrated in figure 1.

Interestingly, the qualitative impact of declining RE costs on capacity taxes is the
opposite of their effect on emission taxes: while emission tax tA increases, capacity tax
τA declines. Also, while emission tax tB0 declines, capacity tax τB increases. Analysing
the total tax burdens shows that the effects on emission taxes trump those on capacity
taxes. This result confirms the notion that changes in emission taxes, which tackle the
fundamental externality, are expected to be more prominent than those of capacity taxes,
which tackle the strategic incentives to manipulate RE entries. Intuitively, the own-market
and cross-market effects that influence emission taxes are very similar to those that drive
capacity taxes. However, in the case of capacity taxes, all effects are cushioned, since they
operate only indirectly through the impact of the monopolist’s capacity choices on RE
capacity (recall that dKR/dKA ∈ (−1, 0) and dKR/dKB ∈ [0, 1), as stated in eqs. (19)
and (21) above and, more precisely, in eqs. (A.13) and (A.14) in the appendix).

In any case, considering emission and capacity taxes together, the overall tax burdens
per output unit are smaller than the corresponding marginal environmental damages. The
optimal policy thus continues to underinternalise environmental damage even if capacity
taxes in response to strategic investment effects are taken into account.

While most of the above conclusions remain valid if all consumers are flexible (i.e.,
θ = 1), some need to be amended, as stated in proposition 6 and illustrated in figure 2.

Proposition 6. Consumer Flexibility and Impact of RE Capacity Costs.
Consider the case in which all consumers are on real-time prices (i.e., θ = 1).
(i) Emission tax tB0 coincides with tax tA0, and capacity tax τB is equal to zero. Changes
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Figure 2: RE Capacity Costs and Taxes, θ = 1

in RE capacity costs leave both tax tB0 and tax τB, and thus total tax burden TB, unaffected.
Formally, for all α ∈ [α, α], dtB0/dα = dτB/dα = dTB/dα = 0, with TB = tB0 = tA0 and
τB = 0.
(ii) As RE capacity costs decline, capacity tax τA strictly decreases from a positive value
to zero. Formally, dπA/dα < 0, with τA > 0 ⇔ α ∈ [α, α) and τA = 0 ⇔ α = α.
(iii) All other results of propositions 3 to 5 still hold.

If all consumer are on real-time prices, the link between markets in the windy state of
nature and the non-windy state is severed. Hence, all cross-market effects and all effects
that hinge on cross-market effects vanish. Consequently, the monopolist’s incentive to
underinvest, or overinvest, in peak-load technology disappears, and so does thus capacity
tax τB. The total tax burden TB simply consists of the emission tax tB0, and the emission
taxes tB0 and tA0 are identical. Finally, the capacity tax τA still decreases with RE
capacity costs, but remains non-negative. That is, without inflexible consumers, there is
no reason left to subsidise either base-load or peak-load capacity in the current model.

Overall, the impact of declining RE capacity costs on taxes is mixed. Regarding base-
load electricity, emission tax tA and total tax burden TA strictly increase, thus moving
closer to full internalisation of environmental damage. By contrast, emission tax and total
tax burden of peak-load electricity move in the opposite direction. However, the decline
of tax tB0 and total tax burden TB does not occur once all consumers are flexible. In this
sense, consumer flexibility supports the suggestion that taxes on conventional electricity
should rather increase as RE capacity costs decline.
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6 Environmental Policy and Consumer Flexibility
Proposition 6 already gives a taste of the importance of consumer flexibility. Let us now
examine the effect of consumer flexibility on emission and capacity taxes more compre-
hensively. This analysis requires an assumption about the fourth derivative of the utility
function (i.e., the third derivative of the inverse demand function). The following one
proves to be both helpful and fairly innocent.

Assumption 2. Utility Function.
Let us assume that |U ′′(Q)| is log-concave in Q or, equivalently, that inequality U ′′′′(Q) ≥
[U ′′′(Q)]2 /U ′′(Q) is satisfied.

This assumption allows for a range of convex and concave inverse demand functions
including linear, power and exponential ones.21 It is assumed to be fulfilled in propositions
7 to 10.

Proposition 7. Emission Taxes and Consumer Flexibility.
(i) As the share θ of flexible consumers grows, emission taxes tA0 and tB0 strictly increase
and, if demand is strictly convex, so does emission tax tA. Formally, dtB0/dθ > 0,
dtA0/dθ > 0 and, if U ′′′(Q) > 0, dtA/dθ > 0.
(ii) In the case of a linear demand function, a rise in share θ leaves emission tax tA

unaffected and raises tax tA0 by the same amount by which it lowers tax tA1. Formally, if
U ′′′(Q) = 0, then dtA/dθ = 0 and dtA0/dθ = −dtA1/dθ > 0.

As consumers become more flexible, overall demand shifts from the more expensive
non-windy periods to the less expensive windy periods. The monopolist’s position be-
comes weaker in the non-windy state of nature and stronger in the windy one, with
overall conventional capacity KA + KB decreasing but base-load capacity KA increas-
ing. (Recall that the decentralised, socially optimal RE capacity and output remain
unchanged; see proposition 2.) As a result, the absolute value |ΛA0| of the negative own-
market effect falls, while the absolute value |ΛA1| rises, thus driving emission tax tA0 up
and tax tA1 down (see eqs. (22) and (23)). In the case of a linear demand function (i.e.,
U ′′(Q0) = U ′′(Q1)), these two opposing effects cancel each other out such that the overall
emission tax tA remains unchanged as the share θ grows. With a convex demand function
(i.e., |U ′′(Q0)| > |U ′′(Q1)|), the increase in tax tA0 gains prominence relative to the decline
in tax tA1, and emission tax tA then increases (see eqs. (22) to (24)), as illustrated in
figure 3. Also, the positive impact of capacity KA on consumption levels Q0 and Q1 (i.e.,
dQ0/dKA = dQ1/dKA > 0), which is constant in the case of linear demand, shrinks as

21Simple examples include the linear function U ′(Q) = γ0 − γ1Q, the power function U ′(Q) =
γ2 (γ3 − Q)µ1 , γ3 > Q, and the exponential function U ′(Q) = γ4e−µ2Q, where γ0, γ1, γ2, γ3, γ4, µ1
and µ2 are positive parameters. See Cowan (2004) for a discussion on the use of the concept of log-
concavity to characterise demand functions when conducting comparative-statics analysis in the context
of models of imperfect competition. In the current analysis, this concept is applied to characterise the
slope of the demand curve.
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Figure 3: Consumer Flexibility and Taxes

share θ grows in the case of convex demand, thereby further pushing up both taxes tA0

and tA1 and thus overall emission tax tA.
If share θ increases, the negative own-market effect ΛB0 becomes weaker, as does its

counterpart ΛA0, thus pushing up emission tax tB0 (see eq. (25)). Despite an increasing
base-load capacity KA, the positive cross-market effect ΨB1 also ultimately weakens as
share θ grows, which counteracts the increase in tax tB0. After all, for θ = 1, the link
between the markets in the two states of nature is severed (i.e., dQ1/dKB = 0), and the
emission-tax increasing cross-market effects ΨB1 completely disappears. However, and
not surprisingly, the direct own-market effect is not only stronger than the corresponding
indirect cross-market effect, as already discussed in section 5, but changes in the own-
market effect in response to a higher share θ also systematically dominate those in the
cross-market effect. Hence, emission tax tB0 rises with share θ, as depicted in figure 3.

Having analysed the effect of consumer flexibility on emission taxes, let us explore how
capacity taxes and total tax burdens vary with share θ.

Proposition 8. Capacity Tax, Total Tax Burden and Consumer Flexibility.
(i) Consider a rise in consumer share θ. Then, capacity tax τA will strictly increase if it
is non-positive. Once capacity tax τA is positive, it remains positive as the share θ grows
further. Formally, dτA/dθ > 0 if τA ≤ 0. Also, if τA ≥ 0 for any θ̃, then τA > 0 for all
θ > θ̃.
(ii) Total tax burden TA will strictly increase with the consumer share θ if demand is
weakly convex. Formally, dTA/dθ > 0 if U ′′′(Q) ≥ 0.
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To understand proposition 8, consider first the case in which all consumers are on
real-time prices (i.e., θ = 1). In this case, the cross-market effect ΨR0 disappears, since
the link between the markets in the two states of nature is broken (i.e., dQ0/dKR = 0).
Then, being determined only by the negative own-market effect ΛR1 and the negative
interaction between capacities KR and KA, capacity tax τA is positive for sure (i.e.,
(1 − σ) ΛR1 (dKR/dKA) > 0, see eq. (26)). Simply, without a cross-market effect, the
incentive to underinvest in base-load capacity KA, which is discussed in section 4, vanishes.
Hence, a positive capacity tax τA is needed to combat the then remaining incentive to
overinvest in base-load capacity as the monopolist aims at crowding out RE capacity and
thus defending its profit in the windy state of nature.

By contrast, for sufficiently low values of share θ, the incentive to underinvest in base-
load capacity dominates, and a capacity subsidy is required to eliminate this incentive
(i.e., τA < 0). In this case, the monopolist’s profits predominantly accrue in the non-windy
periods, since aggregate capacity KA + KB is large relative to base-load capacity KA, as
implied by the comparative statics in section 3 (see proposition 2). Then, underinvesting
in base-load capacity to crowd in RE capacity and thus increase the price p0 in the non-
windy periods is optimal for the monopolist, as explored in section 3.

Overall, the government moves from subsidising to taxing base-load capacity as con-
sumers become more flexible. Capacity tax τA strictly increases with consumer share θ

until this tax is positive and then remains positive as the share of flexible consumers fur-
ther grows. Since emission tax tA will be non-decreasing in share θ if demand is convex,
and since capacity tax τA tends to increase with share θ, it is not surprising that total
tax burden TA goes up as consumers become more flexible.

As the analysis in the previous sections has revealed, the strategic incentive to invest
in peak-load capacity is of the opposite sign to the strategic incentive to invest in base-
load technology for θ < 1, and so are the optimal taxes to counteract these incentives
(see lemma 3). Hence, for sufficiently low values of share θ, capacity tax τB is positive.
It decreases as consumers become more flexible and, once it has turned negative, remains
negative as consumer share θ further increases. Only, when share θ converges towards
one, the cross-market effects vanish, and so does the strategic interaction between RE
and peak-load capacities, which depends on cross-market effects (i.e., dKR/dKB = 0).
Thus, any incentives to strategically invest in peak-load capacity fade away (see eq. 27))
and, once consumer flexibility exceeds a critical value θ̂, capacity tax τB increases to zero
(compare with proposition 6), as stated in the first part of the next proposition.

Proposition 9. Capacity tax, Total Tax Burden and Consumer Flexibility Cont’d.
(i) Consider a rise in consumer share θ, with θ < 1, and assume that α ∈ (α, α). Then,
capacity tax τB will strictly decrease if it is non-negative. Once the share θ is sufficiently
large so that the capacity tax τB is negative, the tax τB remains negative as the share θ

grows further as long as θ < 1. The capacity tax τB is zero for θ = 1. Moreover, there
exists a critical value θ̂, with θ̂ < 1 and τB|θ=θ̂ < 0, such that the tax τB will increase if the
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share θ is greater than θ̂. Formally, for θ < 1, dτB/dθ < 0 if τB ≥ 0. Then, dτB/dθ > 0
if θ ∈

(
θ̂, 1

]
.

(ii) Total tax burden TB strictly increases with share θ. Formally, dTB/dθ > 0.

While emission tax tB0 increases with the share θ of flexible consumers, capacity tax
τB does so only for sufficiently large levels of flexibility. As in the case of declining RE
capacity costs, however, the change in the emission tax dominates any potential opposite
change in the capacity tax for the very same reason that is explored after proposition 5.
Hence, the total tax burden TB always rises in response to growing consumer flexibility.

Propositions 8 and 9 characterise the relationships between capacity taxes and con-
sumer flexibility, but also leave some ambiguity about the complete shape of these rela-
tionships. This is illustrated in figure 3, where the solid parts of the τA- and τB-curve
indicate the sections for which the signs of the slopes, and not only the signs of the taxes,
are unambiguously determined. Proposition 10 fills the gaps for the case of a linear de-
mand function. Then, there is (i) a monotone relationship between capacity tax τA and
consumer share θ and (ii) a unique turning point in the relationship between tax τB and
share θ, as depicted by the broken lines of the τA- and τB-curve in figure 3.

Proposition 10. Linear Demand Specification.
Consider the case of a linear demand function (i.e. U ′′′(Q) = 0). Then, capacity tax
τA strictly increases with consumer share θ. Capacity tax τB decreases (increases) with
consumer share θ if, and only if, consumer share θ is smaller (greater) than the critical
value θ̂. Formally, dτB/dθ ⋚ 0 ⇔ θ ⋚ θ̂ and dτA/dθ > 0.

7 Putting the Pieces Together - A Conclusion

We can now put the pieces together and look at the overall picture. This paper considers
an electricity market with a monopolist employing conventional fossil-fuel technologies to
generate electricity and a competitive fringe providing RE. The government implements
emission and capacity taxes to address the environmental externality, market power and
distortive strategic investment incentives.

The initial suggestion that a decline in RE capacity costs and an increase in consumer
flexibility intensifies the competition between the monopolist and the RE firms and thus
raises taxes towards the level of full internalisation of the environmental externality finds
some support. As consumers become more flexible, the total tax burdens TA and TB

on base-load and peak-load electricity rise, and the corresponding key emission taxes tA

and tB0 edge closer towards their Pigouvian tax levels.22 In the same vein does the total
burden TA on base-load electricity and the corresponding emission tax tA increase as RE
capacity costs fall. Tax tA1 actually reaches the environmental damage level δA, but only

22With the qualification that these results will hold if demand is convex and the absolute value of the
slope of demand is log-concave.
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when the RE capacity costs are so low that base-load capacity is anyway about to be
completely crowded out (i.e., for α = α).

However, the results are not quite consistent. As RE capacity costs decrease, the total
tax burden TB on peak-load electricity and the corresponding emission tax tB0 will remain
constant only if all consumer are flexible. Otherwise, they will fall. The inconsistencies
arise since a fall in RE capacity costs and an increase in consumer flexibility very differently
affect the monopolist’s market power across the windy and non-windy states of nature.
For instance, a decline in RE capacity costs crowds out conventional base-load capacity
and electricity generation but leaves consumption of conventional electricity in the non-
windy state unchanged, while an increase in consumer flexibility crowds in conventional
base-load capacity and electricity generation but reduces consumption of conventional
electricity in the non-windy state.

The monopolist’s different competitive challenges across the states of nature also affect
the magnitude of the emission taxes. The emission taxes levied on conventional base-load
generation, which immediately competes with RE, will be closer to their Pigouvian level
than the emission tax on peak-load generation if demand is weakly convex, or if demand
is concave and the RE capacity costs are sufficiently low.

The need for capacity taxes to counteract the monopolist’s strategic investment in-
centives further complicates the picture. The monopolist overinvests (underinvests) in
base-load capacity and underinvests (overinvests) in peak-load capacity to crowd out (in)
RE capacity. Hence, the taxes τA and τB on base-load and peak-load capacities always
show opposite signs (unless both are zero). If RE costs decline (consumer flexibility in-
creases), then the tax on base-load capacity goes from being positive (negative) to being
negative (positive), while the tax on peak-load capacity moves in the opposite direction.
These taxes disappear in the boundary case in which consumers are fully flexible and the
base-load technology is about to be completely crowded out of the market. In any case,
the emission taxes drive the overall tax burden, and not the capacity taxes, since the
former ones systematically dominate the latter.

The complexity of the socially optimal capacity tax scheme raises the question whether
a more straightforward policy instrument can achieve the same outcome. Indeed, a feed-in
tariff can replace the capacity taxes in the current context without affecting the magnitude
of the emission taxes, which would simply stay the same. If the government guarantees
the RE providers an electricity price, or feed-in tariff, that equals the socially optimal
shadow value of electricity in the windy state of nature irrespective of the market price,
then fringe firms will obviously build up the socially optimal RE capacity. The monopolist
is no longer able to manipulate their choices. The feed-in tariff completely eliminates the
monopolist’s strategic investment incentives.23

23This argument in favour of feed-in tariffs differs from the justification for these tariffs that are
discussed in the literature on electricity markets, such as, for instance, using them to replace emission
taxes when these taxes are not fully available (e.g., Abrell et al., 2019), to facilitate market entry of RE
producers when entry costs are lumpy (e.g., Antoniou and Strausz, 2016), and to achieve the optimal
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Appendix

Proof of Lemma 1:

Lemma 1 follows directly from the rearranged first-order conditions (8) to (10).

Proof of Lemma 2 and Proposition 1:

Let us start with proving proposition 1, assuming that all technologies are at least ‘almost’
employed; i.e., α ∈ [α, α] (see below). Conducting standard comparative statistics by
using the rearranged first-order conditions (8) to (11) yields

dKR

dα
= −dKA

dα
= dKB

dα
= − ∂g(KR; α)/∂α

∂g(KR; α)/∂KR

= −H ′(α)
ĥ

> 0, (A.1)

which proves parts (i) to (iii) and directly implies part (iv). Since g(KR; α) is twice-
continuously differentiable in KR and α, the capacities KR, KA and KB are twice-
continuously differentiable functions of the cost parameter α.

Part (v) of proposition 1 follows from

dD

dα
= δA

dKA

dα
+ σδB

dKB

dα
= − (δA − σδB) dKB

dα
⋚ 0 ⇔ δA ⋛ σδB, (A.2)

where expression (A.1) is used.
Next, let us prove part (i) of lemma 2. Recall that the inequalities U ′(N) <[

h + H(αmax)
]

/ (1 − σ) ≤ cA + δA and H(αmin)/ (1 − σ) > cA + δA + FA are assumed
to be satisfied (see section 2). Also, cA + δA < U ′(Q1) < cA + δA + FA holds. This re-
lationship follows from U ′(Q1) = 1

1−σ
[cA + δA + FA − σ (cB + δB + FB/σ)] > cA + δA ⇔

cA + δA + FA/σ > cB + δB + FB/σ, where the first equality states first-order condition
(10) and the last inequality is satisfied under part (vii) of assumption 1, and U ′(Q1) =

1
1−σ

[cA + δA + FA − σ (cB + δB + FB/σ)] < cA+δA+FA ⇔ cA+δA+FA < cB +δB +FB/σ,
where the last inequality is satisfied under part (vi) of assumption 1.

These features imply that
[
h + H(αmax)

]
/ (1 − σ) < U ′(Q1) < H(αmin)/ (1 − σ).

Since g(0; αmin) = H(αmin) and g(N ; αmax) = h + H(αmax), with H ′(α) < 0 and
∂g(KR; αmax)/∂KR > 0, there exists a critical value α, with αmin < α < αmax, such
that g(θQ1 + (1 − θ)Q; α)/ (1 − σ) = U ′(Q1) by means of a continuity argument. Then,
QR = KR = θQ1 + (1 − θ)Q follows from first-order condition (5). Hence, for α = α,
the constraints θQ1 + (1 − θ) Q = QA + QR and θQ0 + (1 − θ) Q = QA + QB imply
QA = KA = 0 and QB = KB = θQ0 + (1 − θ) Q > 0, with all first-order condi-
tions satisfied. Moreover, there also exists a critical value α, with αmin < α < α,
such that g(θ(Q1 − Q0); α)/ (1 − σ)=U(Q1) by means of a continuity argument, where

level and distribution of RE investment when economies of scale are present (e.g., Garcia et al., 2012).
See Couture and Gagnon (2010) for an overview of different designs of feed-in tariffs and their impact on
reducing the risks of RE investment.

34



0 < θ(Q1 − Q0) < θQ1 + (1 − θ)Q. Then, QR = KR = θ(Q1 − Q0) follows from first-
order condition (5). Hence, for α = α, the constraints θQ1 + (1 − θ) Q = QA + QR and
θQ0 + (1 − θ) Q = QA + QB imply QA = KA = θQ0 + (1 − θ) Q > 0 and QB = KB = 0,
again with all first-order conditions satisfied. Then, for α ∈ (α, α), KA, KB > 0 by means
of a continuity argument. First-order conditions (4) to (7) or, alternatively, (8) to (11)
are satisfied for all α ∈ [α, α], and the comparative-statics results are as described in
proposition 1. (The comparative statics for α /∈ [α, α] can be obtained from the author
upon request.)

Finally, let us prove part (ii) of lemma 2, using the rearranged first-order conditions
(8) to (10). Since U ′′(Q) < 0, the relationship Q0 < Q < Q1 follows from U ′(Q1) <

cA + δA + FA = U ′(Q), where the inequality is proven above, and U ′(Q) = cA + δA + FA <

cB + δB + FB < cB + δB + FB/σ = U ′(Q0), where part (vi) of assumption 1 is used. As
clarified above, for α = α, KR = θ (Q1 − Q0) > 0 = KB. Then, expression (A.1) implies
that KR > KB for all α ∈ [α, α], with KR − KB = θ (Q1 − Q0) > 0.

Proof of Proposition 2:

As previously, let us focus on the case with α ∈ [α, α]. Conducting standard comparative
statistics by using conditions (8) to (11) leads again to some very simple expressions:

dKA

dθ
= Q1 − Q > 0,

dKB

dθ
= − (Q1 − Q0) < 0,

dKR

dθ
= 0, (A.3)

where the inequality signs follow from part (ii) of lemma 2. Eq. (A.3) implies

d (KA + KB)
dθ

= −
(
Q − Q0

)
< 0,

d (KA + KR)
dθ

= Q1 − Q > 0. (A.4)

Expressions (A.3) and (A.4) prove parts (i) to (iv) of proposition 2 and yield

d [σ (KA + KB) + (1 − σ) (KA + KR)]
dθ

= σQ0 + (1 − σ) Q1 − Q. (A.5)

Jensen’s inequality gives us σQ0 + (1 − σ) Q1 − Q > (=, <) 0 if the marginal utility, or
inverse demand, curve U ′(Q) is convex (linear, concave), implying part (v).24

Part (vi) of proposition 2 follows from

dD

dθ
= δA

dKA

dθ
+ σδB

dKB

dθ
= δA

(
Q1 − Q

)
− σδB (Q1 − Q0) ⋚ 0

⇔ δA ⋚ σδB
Q1 − Q0

Q1 − Q
, (A.6)

24Let us interpret quantity as a function of the shadow value: Q0 = U ′−1(s0), Q = U ′−1(s) and
Q1 = U ′−1(s1), with s0 = U ′(Q0), s1 = U ′(Q1) and s = σs0 +(1 − σ) s1. Then, σQ0 +(1 − σ) Q1 ≥ Q ⇔
σU ′−1(s0) + (1 − σ) U ′−1(s1) ≥ U ′−1(σs0 + (1 − σ)s1), where the last inequality is Jensen’s inequality for
U ′−1(s) being convex in s (and thus U ′(Q) being convex in Q).
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where expression (A.3) is used.

Proof of Corollary 1:

Part (i) and the first statement of part (ii) follow directly from propositions 1 and 2. It
remains to explore the sign of dD/dθ. For δA = δB, dD/dθ = δA

[
σQ0 + (1 − σ) Q1 − Q

]
.

The terms in the square brackets are identical to those on the right-hand side of eq. (A.5),
and so is the sign of these terms (see discussion in the proof of proposition 2), which proves
the second statement of part (ii) of corollary 1.

Comparative Statics - Relationships between Consumption and Capacities

To determine the signs of the derivatives (19) and (21), let us first use conditions (13), (14)
and (15), which characterise the market equilibrium in the fourth stage, to show how the
demand levels vary with base-load, peak-load and RE capacity. The comparative-statics
analysis gives

dQ0

dKA

= dQ1

dKA

= U ′′(Q)
Ω > 0, (A.7)

dQ0

dKB

= θU ′′(Q) + (1 − θ) (1 − σ) U ′′(Q1)
θΩ > 0, (A.8)

dQ1

dKB

= −σ (1 − θ) U ′′(Q0)
θΩ ≤ 0, (A.9)

dQ0

dKR

= −(1 − θ) (1 − σ) U ′′(Q1)
θΩ ≤ 0, (A.10)

dQ1

dKR

= θU ′′(Q) + σ (1 − θ) U ′′(Q0)
θΩ > 0, (A.11)

where the inequality signs follow from U ′′(Q) < 0 and

Ω = θU ′′(Q) + (1 − θ) [σU ′′(Q0) + (1 − σ) U ′′(Q1)] < 0. (A.12)

(This comparative-statics analysis also leads to dQ/dKj > 0, j = A, B, R, but the detailed
expressions are omitted because this result is not explicitly referred to in the further
analysis.)

The signs of dKR/dKA and dKR/dKB remain to be explored. Totally differentiating
zero-profit condition (16), which characterises the market-entry equilibrium in the third
stage, and using eqs. (A.7), (A.9), (A.11) and ∂g(KR; α)/∂KR = ĥ to rearrange the
resulting terms give

dKR

dKA

= − (1 − σ) U ′′(Q1) (dQ1/dKA)
(1 − σ) U ′′(Q1) (dQ1/dKR) − ĥ

= −(1 − σ) U ′′(Q)U ′′(Q1)
Ψ ∈ (−1, 0) , (A.13)
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and

dKR

dKB

= − (1 − σ) U ′′(Q1) (dQ1/dKB)
(1 − σ) U ′′(Q1) (dQ1/dKR) − ĥ

= σ (1 − σ) (1 − θ) U ′′(Q0)U ′′(Q1)
θΨ ∈ [0, 1) , (A.14)

where the signs and ranges of values follow from U ′′(Q) < 0, Ω < 0 (see eq. (A.12)) and

Ψ = (1 − σ) U ′′(Q1)
[
U ′′(Q) + σ

1 − θ

θ
U ′′(Q0)

]
− ĥΩ > 0. (A.15)

Proof of Lemma 3:

Plugging eqs. (A.10) and (A.11) into eq. (26) yields, after some rearrangements,

τA = (1 − σ) U ′′(Q1)
U ′′(Q)KA − σ [(1 − θ) /θ] U ′′(Q0)KB

Ω
dKR

dKA

⋛ 0

⇔ KA ⋛ σ
1 − θ

θ

U ′′(Q0)
U ′′(Q)

KB, (A.16)

where Ω < 0, dKR/dKA < 0 (see eqs. (A.12) and (A.13)) and U ′′(Q) < 0 were used.
Then, eqs. (26), (27), (A.13), (A.14) and (A.16) imply, for θ < 1,

τB = τA
dKR/dKB

dKR/dKA

⋚ 0 ⇔ KA ⋛ σ
1 − θ

θ

U ′′(Q0)
U ′′(Q)

KB. (A.17)

Proof of Proposition 3:

(i) Lemma 1 directly implies that the second derivatives U ′′(Q0) < 0, U ′′(Q1) < 0 and
U ′′(Q) < 0 are not affected by an increase in parameter α, and thus neither are the deriva-
tives dQ0/dKA > 0, dQ1/dKA > 0, dQ0/dKB > 0 and dQ1/dKB ≤ 0 (with dQ1/dKB < 0
if θ < 1), as eqs. (A.7) to (A.9) and (A.12) reveal. Also, proposition 1 states that
dKA/dα < 0, dKB/dα > 0 and d (KA + KB) /dα = 0 (see eq. (A.1)). Thus, differentiat-
ing eqs. (22) to (25) with respect to parameter α yields

dtA0

dα
= 0,

dtA1

dα
= U ′′(Q1)

dQ1

dKA

dKA

dα
> 0,

dtA

dα
= (1 − σ) dtA1

dα
> 0 (A.18)

and, for θ < 0,

dtB0

dα
= 1 − σ

σ
U ′′(Q1)

dQ1

dKB

dKA

dα
< 0. (A.19)

(ii) Eq. (22) reveals that tA0 < δA, since U ′′(Q) < 0, dQ0/dKA > 0 (see eq. (A.7))
and KA + K

B
> 0 for α ∈ [α, α] (see lemma 2). Similarly, eq. (23) implies that tA1 < δA

for α ∈ [α, α), since U ′′(Q1) < 0, dQ1/dKA > 0 and, for α ∈ [α, α), KA > 0. However,
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for α = α, KA = 0 (see lemma 2) and thus tA1 = δA. Combining these results gives
tA = σtA0 + (1 − σ) tA1 < δA (see eq. (24)).

Plugging eqs. (A.8) and (A.9) into eq. (25) yields, after some rearrangements,

tB0 = δB +
U ′′(Q)U ′′(Q0)KA +

[
U ′′(Q)U ′′(Q0) + (1 − σ) 1−θ

θ
U ′′(Q0)U ′′(Q1)

]
KB

Ω < δB,

(A.20)

since U ′′(Q) < 0 and Ω < 0 (see eq. (A.12)).

Proof of Proposition 4:

Comparing taxes tA0 and tB0 yields, after some rearrangements,

tA0 ≥ tB0 ⇔ (1 − θ) KB ≥ 0, (A.21)

where eqs. (22), (A.7), (A.12) and (A.20) are used. Since KB = 0 for α = α and KB > 0
for α ∈ (α, α], tA0 = tB0 for α = α and tA0 > tB0 for α ∈ (α, α] and θ < 1.

Next, let us compare taxes tA0 and tA1:

tA1 ⋛ tA0 ⇔ −U ′′(Q0)KB − [U ′′(Q0) − U ′′(Q1)] KA ⋛ 0, (A.22)

where eqs. (22), (23), (A.7) and (A.12) are used. Since KA > 0 and KB = 0 for α = α,
eq. (A.22) yields, for α = α, tA0 ⋚ tA1 ⇔ −U ′′(Q1) ⋚ −U ′′(Q0). Thus, as Q0 < Q1

holds, tA0 < tA1 (tA0 = tA1, tA0 > tA1) results for α = α if inverse demand U ′(Q) is
strictly convex (linear, strictly concave). Also, recall that dtA0/dα = 0 and dtA1/dα > 0,
with tA0 < δA for all α ∈ [α, α] and tA1 = δA for α = α (see proposition 3), and that
tA = σtA0 + (1 − σ) tA1 (see eq. (24)). Hence, if inverse demand U ′(Q) is linear, then
tA0 = tA = tA1 for α = α and tA0 < tA < tA1 for α ∈ (α, α]. Also, if inverse demand U ′(Q)
is strictly convex, then tA0 < tA < tA1 for α ∈ [α, α]. By contrast, if inverse demand U ′(Q)
is strictly concave, then tA0 > tA1 for α = α, tA0 < δA = tA1 for α = α, dtA0/dα = 0
and dtA1/dα > 0 imply that, by means of continuity, a critical value α̂, with α < α̂ < α,
exists such that tA0 ⋛ tA ⋛ tA1 ⇔ α ⋚ α̂. This concludes the proof of the rankings of the
taxes tA0, tA1 and tA in parts (i) to (iii) of proposition 4.

Combining the comparisons between the taxes taxes tA0 and tB0 and between taxes
tA0 and tA1 gives the complete ranking of parts (i) and (ii) of proposition 4. Moreover, if
demand is strictly concave and θ < 1 holds, then tA0 = tB0 and tA0 > tA > tA1 for α = α

as well as tA0 > tB0 for α ∈ (α, α] and tA0 ≤ tA ≤ tA1 for α ∈ [α̂, α] imply that tA < tB0

for α = α as well as tA > tB0 for α ∈ [α̂, α]. Hence, since dtA/dα > 0 and dtB0/dα < 0, a
critical value α̃, with α̃ < α̂, exists by means of continuity such that tB0 ⋛ tA ⇔ α ⋚ α̃,
as stated in part (iii) of proposition 4.
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Proof of Proposition 5:

(i) Since KA = 0 for α = α and KB = 0 for α = α, eq. (28) directly implies that τA > 0
and τB < 0 for α = α, and that τA < 0 and τB > 0 for α = α, if θ < 1.

Differentiating eq. (26) with respect to parameter α gives

dτA

dα
= (1 − σ) U ′′(Q1)

dQ1

dKR

dKR

dKA

dKA

dα
< 0, (A.23)

since U ′′(Q0) < 0, U ′′(Q1) < 0, dQ0/dKR < 0 (if θ < 1), dQ1/dKR > 0, dKR/dKA < 0
and (KA + KB) are all unaffected by a change in α (see discussion at the beginning of the
proof of proposition 3 and eqs. (A.10) to (A.13), and recall the technology assumptions
∂

2
g(KR; α)/∂K2

R = 0 and ∂
2
g(KR; α)/∂KR∂α = 0 discussed in section 2), and since

dKA/dα < 0 (see proposition 1 and eq. (A.1)).
Similarly, differentiating eq. (27) with respect to parameter α yields

dτB

dα
= (1 − σ) U ′′(Q1)

dQ1

dKR

dKR

dKB

dKA

dα
> 0, (A.24)

where dKR/dKB > 0 if θ < 1 (see eq. (A.14)) is additionally used.
Since dτA/dα < 0 and, if θ < 1, dτB/dα > 0 for α ∈ [α, α], and since, if θ < 1,

τA > 0 > τB for α = α and τA < 0 < τB for α = α follow from our discussion above, a
unique threshold value α̌, with α̌ ∈ (α, α), exists such that τA ⋛ 0 ⇔ α ⋚ α̌ ⇔ τB ⋚ 0.

(ii) Differentiating total tax burdens TA = tA + τA and TB = tB0 +(τB/σ) with respect
to α gives

dTA

dα
= (1 − σ) U ′′(Q1)

(
dQ1

dKA

+ dQ1

dKR

dKR

dKA

)
dKA

dα
> 0, (A.25)

dTB

dα
= (1 − σ)

σ
U ′′(Q1)

(
dQ1

dKB

+ dQ1

dKR

dKR

dKB

)
dKA

dα
< 0, (A.26)

where eqs. (A.18), (A.19), (A.23) and (A.24) are used. The inequality signs follow from
U ′′(Q) < 0, dKA/dα < 0 (see eq. (A.1)) and, after rearranging eqs. (A.7), (A.9) and
(A.11) to (A.15),

dQ1

dKA

+ dQ1

dKR

dKR

dKA

= −U ′′(Q)ĥ
Ψ > 0, (A.27)

dQ1

dKB

+ dQ1

dKR

dKR

dKB

= σ (1 − θ) U ′′(Q0)ĥ
θΨ < 0, (A.28)

where ∂g(KR; α)/∂KR = ĥ > 0 and Ψ > 0 (see eq. (A.15)) are also used.
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Finally, tA|α=α < tA1|α=α = δA (see proposition 3), τA|α=α < 0 (see part (i) of this
proof) and dTA/dα > 0 imply that TA ≤ tA|α=α + τA|α=α < tA|α=α < δA. Similarly,
tB0|α=α < δB (see propositions 3), τB|α=α < 0 (see part (i) of this proof) and dTB/dα < 0
imply that TB ≤ tB0|α=α + (τB|α=α /σ) < tB0|α=α < δB.

Proof of Proposition 6:

(i) For θ = 1, eqs. (A.19) and (A.21) imply that tB0 = tA0 and, because dQ1/dKB = 0 if
θ = 1 (see eq. (A.9)), dtB0/dα = 0. Also, τB = 0 for α ∈ [α, α] and thus dτB/dα = 0 follow
from eq. (27) with dKR/dKB = 0 if θ = 1 (see eq. (A.14)). Then, TB = tB0+(τB/σ) = tB0

and dTB/dα = 0.
(ii) Eq. (26) implies that τA = 0 for α = α, since KA = 0 for α = α (see lemma 2),

and since dQ0/dKR = 0 if θ = 1 (see eq. (A.10)). As dτA/dα < 0 irrespective of θ (see
eq. (A.23) in connection with (A.1), (A.11) and (A.13)), τA > 0 for α ∈ [α, α).

(iii) See propositions 3 to 5.

Proof of Proposition 7:

(i) Using eqs. (22), (A.4), (A.7) and (A.12) leads to

dtA0

dθ
= −U ′′(Q0)

dQ0

dKA

[
Υ
Ω (KA + KB) +

(
Q − Q0

)]
> 0, (A.29)

where Υ := ∂Ω/∂θ = U ′′(Q) − σU ′′(Q0) − (1 − σ) U ′′(Q1). The inequality sign follows
from the facts that Υ ≤ 0 if |U ′′(Q)| is log-concave in Q (assumption 2), a relationship
which is shown separately in lemma 4 below, and that Q − Q0 > 0, Ω < 0, dQ0/dKA > 0
and U ′′(Q) < 0 (see lemma 2 and eqs. (A.7) and (A.12)).

Similarly, using eqs. (23), (24), (A.3), (A.7), (A.12) and (A.29) gives

dtA

dθ
= dQ0

dKA

{
−Υ

Ω [σU ′′(Q0) (KA + KB) + (1 − σ) U ′′(Q1)KA]

−σU ′′(Q0)
(
Q − Q0

)
− (1 − σ) U ′′(Q1)

(
Q − Q1

)}
> 0, (A.30)

where dQ0/dKA = dQ1/dKA is taken into account (the derivative dtA1/dθ, which is
included in eq. (A.30), is not separately stated). The first line of eq. (A.30) is non-
negative, since Υ ≤ 0 under assumption 2, Ω < 0, dQ0/dKA > 0 and U ′′(Q) < 0. The
sign of the second line is positive if the (inverse) demand function is strictly convex, since
then −σU ′′(Q0)

(
Q − Q0

)
> − (1 − σ) U ′′(Q1)

(
Q1 − Q

)
> 0.

In the same fashion, eqs. (25), (A.3), (A.4), (A.8), (A.9) and (A.12) can be used to
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derive

dtB0

dθ
= −ΥU ′′(Q0)U ′′(Q)

Ω2 KA − U ′′(Q0) [(1 − σ) U ′′(Q1)Ω + θ2ΥΓ1]
θ2Ω2 KB︸ ︷︷ ︸

Γ3:=

−
U ′′(Q0)Γ1

(
Q − Q0

)
+ [(1 − θ) /θ] U ′′(Q1)Γ2

(
Q1 − Q

)
Ω︸ ︷︷ ︸

Γ4:=

> 0, (A.31)

where Γ1 = U ′′(Q) + (1 − σ) [(1 − θ) /θ] U ′′(Q1) and Γ2 = (1 − σ) U ′′(Q0), with Υ =
∂Ω/∂θ given above. Both lines of eq. (A.31) are positive because U ′′(Q) < 0, Γ1 < 0,
Γ2 < 0, Υ ≤ 0, Ω < 0 and Q0 < Q < Q1. Hence, dtB0/dθ > 0 results.

(ii) If U ′′′(Q) = 0, then Υ = 0 (see above) and the second line of eq. (A.30) yields
−σU ′′(Q0)

(
Q − Q0

)
− (1 − σ) U ′′(Q1)

(
Q − Q1

)
= −U ′′

[
Q − σQ0 − (1 − σ) Q1

]
= 0 (see

discussion after eq. (A.5)). Hence, dtA/dθ = 0 (see eq. (A.30)). Since dtA0/dθ > 0 still
holds (see eq. (A.29)), dtA1/dθ = −dtA0/dθ must also hold (in general, the sign of dtA1/dθ

is ambiguous).

Lemma 4. Consider Υ := U ′′(Q) − σU ′′(Q0) − (1 − σ) U ′′(Q1). If |U ′′(Q)| is log-concave
in Q or, equivalently, if inequality U ′′′′(Q) ≥ [U ′′′(Q)]2 /U ′′(Q) is satisfied, then Υ ≤ 0.

Proof of Lemma 4:

Let us denote the demand function (i.e., the inverse of U ′(Q), with p = U ′(Q)) by
Z(p), with Q = Z(p), Q0 = Z(p0), Q1 = Z(p1) and Q = Z(p) = Z(σp0 + (1 −
σ)p1). Then, Jensen’s inequality implies that Υ = U ′′(Q) − σU ′′(Q0) − (1 − σ) U ′′(Q1) =
U ′′ (Z(σp0 + (1 − σ)p1)) − σU ′′ (Z(p0)) − (1 − σ) U ′′ (Z(p1)) ≤ 0 if, and only if, U ′′ is
convex in price p. With ∂Z(p)/∂p = 1/U ′′(Q) < 0, differentiating U ′′ twice gives
dU ′′/dp = (∂U ′′/∂Z) (∂Z/∂p) = U ′′′(Q)/U ′′(Q) and

d2U ′′

dp2 = ∂ [U ′′′/U ′′]
∂Z

∂Z

∂p
= U ′′(Q)U ′′′′(Q) − [U ′′′(Q)]2

[U ′′(Q)]3
≥ 0 ⇔ U ′′′′(Q) ≥ [U ′′′(Q)]2

U ′′(Q) , (A.32)

where the last inequality provides the condition for U ′′ being convex in p and thus, as
stated in lemma 4, Υ ≤ 0.

It remains to show that this condition is equivalent to the twice-continuously differen-
tiable function |U ′′(Q)| being log concave in Q. Differentiating log |U ′′(Q)| with respect
to Q twice gives d log |U ′′(Q)| /dQ = −U ′′′(Q)/ |U ′′(Q)| = U ′′′(Q)/U ′′(Q) and

d2 log |U ′′(Q)|
dQ2 = U ′′(Q)U ′′′′(Q) − [U ′′′(Q)]2

[U ′′(Q)]2 ≤ 0 ⇔ U ′′′′(Q) ≥ [U ′′′(Q)]2

U ′′(Q) , (A.33)

where the last inequality provides the condition for log |U ′′(Q)| being log-concave in Q

and is identical to the condition in eq. (A.32), thus proving lemma 4.
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Proof of Proposition 8:

(i) Plugging eq. (A.13) into eq. (A.16) gives τA as a function of the endogenous variables
KA and KB and of parameter θ. (Recall that the socially optimal capacity KR, which is
decentralised through the tax system, is independent of share θ, and so are the derivatives
U ′′(Q0), U ′′(Q1) and U ′′(Q), as stated in lemma 1 and proposition 2.) Then, the derivative
of τA with respect to θ can be decomposed into three elements:

dτA

dθ
= ∂τA

∂θ
+ ∂τA

∂KA

dKA

dθ
+ ∂τA

∂KB

dKB

dθ
. (A.34)

Using eqs. (A.3), (A.13) and (A.16) enables us to show that the second term and the
third term on the right-hand side of eq. (A.34) are positive and non-negative, respectively:

∂τA

∂KA

dKA

dθ
= −

[
(1 − σ) U ′′(Q1)U ′′(Q)

]2
ΩΨ

(
Q1 − Q

)
> 0, (A.35)

∂τA

∂KB

dKB

dθ
= −σ (1 − θ) [(1 − σ) U ′′(Q1)]2 U ′′(Q0)U ′′(Q)

θΩΨ (Q1 − Q0) ≥ 0, (A.36)

where the inequality signs follow from Ω < 0, Ψ > 0 (see Eqs. (A.12) and (A.15)),
U ′′(Q) < 0 and Q1 > Q > Q0 (see lemma 2).

Calculating the first term on the right-hand side of eq. (A.34) leads to

∂τA

∂θ
= −U ′′(Q) [(1 − σ) U ′′(Q1)]2

Ω2Ψ2

{
−Υ

[
U ′′(Q)KA − σ

1 − θ

θ
U ′′(Q0)KB

]

×
[
(1 − σ) U ′′(Q1)

(
U ′′(Q) + σ

1 − θ

θ
U ′′(Q0)

)
− 2ĥΩ

]

+
[

σ

θ2 U ′′(Q0)ΩKB

[
(1 − σ) U ′′(Q1)U ′′(Q) − ĥΩ

]]
+σ (1 − σ)

θ2 U ′′(Q0)U ′′(Q1)U ′′(Q)ΩKA

}
(A.37)

after some rearrangements. The fraction in the first line outside the curly brackets is
positive, and so are the terms in the second, third and fourth line, since Ω < 0, Ψ > 0,
U ′′(Q) < 0 and ∂g(KR; α)/∂KR = ĥ > 0. As U ′′(Q)KA ⋛ σ [(1 − θ) /θ] U ′′(Q0)KB ⇔
τA ⋚ 0 (see eq. (A.16), which holds for θ ≤ 1) and Υ ≤ 0 (see lemma 4), the expression
after the curly bracket in the first line is non-negative if τA ≤ 0. Thus, ∂τA/∂θ > 0 if
τA ≤ 0.

Consequently, dτA/dθ > 0 if τA ≤ 0, since two terms on the right-hand side of eq.
(A.34) are positive and one term is non-negative. Also, if τA > 0 for some θ, τA cannot
become negative as θ increases, since this would require, by means of continuity, dτA/dθ <

0 for τA = 0, which would contradict the previous statement.
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(ii) Eqs. (A.34) to (A.37) imply that

dτA

dθ
>

[
(1 − σ) U ′′(Q1)U ′′(Q)

]2
ΥKA

Ω2Ψ2

×
{

(1 − σ) U ′′(Q1)
[
U ′′(Q) + σ

1 − θ

θ
U ′′(Q0)

]
− 2ĥΩ

}
, (A.38)

where the right-hand side contains the only negative term of ∂τA/∂θ and dτA/dθ.

Similarly, eqs. (A.7) and (A.30) imply that if inverse demand U ′′(Q) is convex, then

dtA

dθ
≥ −U ′′(Q)Υ [σU ′′(Q0) + (1 − σ) U ′′(Q1)] KA

Ω2 , (A.39)

where the right-hand side excludes the second line of eq. (A.30), which is non-negative if
U ′′′(Q) ≥ 0, and a positive term of the first line (see proof of proposition 7). Eqs. (A.38)
and (A.39) together yield, after some rearrangements,

dTA

dθ
> −U ′′(Q)KA

Ω2

Υ [σU ′′(Q0) + (1 − σ) U ′′(Q1)]

− (1 − σ) U ′′(Q1)Υ
(1 − σ) U ′′(Q1)U ′′(Q)

Ψ

(
1 − ĥΩ

Ψ

)}

≥ −σU ′′(Q0)U ′′(Q)ΥKA

Ω2 ≥ 0. (A.40)

The first inequality sign in the last line might need an explanation: Denote by Ξ1 :=[
(1 − σ) U ′′(Q1)U ′′(Q)

]
/Ψ > 0 and Ξ2 := −ĥΩ/Ψ > 0 the fractions of the second line.

As can be easily checked, Ξ1 + Ξ2 ≤ 1 (see eq. (A.15)), which implies Ξ1 (1 + Ξ2) ≤
(1 − Ξ2) (1 + Ξ2) = (1 − Ξ2

2) < 1. Hence, the second line is greater than, or (if Υ = 0)
equal to, − (1 − σ) U ′′(Q1)Υ, which in turn implies the third line. Thus, dTA/dθ > 0 if
U ′′′(Q) ≥ 0.

Proof of Proposition 9:

(i) The proof of proposition 9 is analogous to that of proposition 8. Plugging eqs. (A.14)
and (A.16) into eq. (A.17) gives τB as a function of KA, KB and θ. Then, the derivative
of τB with respect to θ can be decomposed into three elements:

dτB

dθ
= ∂τB

∂θ
+ ∂τB

∂KA

dKA

dθ
+ ∂τB

∂KB

dKB

dθ
. (A.41)

Using eqs. (A.3), (A.14), (A.16) and (A.17) enables us to show that the second term
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and the third term on the right-hand side of eq. (A.41) are non-positive:

∂τB

∂KA

dKA

dθ
= σ (1 − θ) [(1 − σ) U ′′(Q1)]2 U ′′(Q0)U ′′(Q)

θΩΨ
(
Q1 − Q

)
≤ 0, (A.42)

∂τB

∂KB

dKB

dθ
= [σ (1 − σ) (1 − θ) U ′′(Q0)U ′′(Q1)]2

θ2ΩΨ (Q1 − Q0) ≤ 0, (A.43)

where the inequality signs follow again from Ω < 0, Ψ > 0 (see eqs. (A.12) and (A.15)),
U ′′(Q) < 0 and Q1 > Q > Q0 (see lemma 2).

Calculating the first term on the right-hand side of eq. (A.41) gives

∂τB

∂θ
= σU ′′(Q0) [(1 − σ) U ′′(Q1)]2

θΩ2Ψ2

{[
U ′′(Q)KA − σ

1 − θ

θ
U ′′(Q0)KB

]

×
{

− (1 − θ) Υ
[
(1 − σ) U ′′(Q1)

(
U ′′(Q) + σ

1 − θ

θ
U ′′(Q0)

)
− 2ĥΩ

]

−Ω
θ

[
(1 − σ) U ′′(Q1)U ′′(Q) − ĥΩ

]}

+σ (1 − θ)
θ2 U ′′(Q0)ΨΩKB

}
(A.44)

after some rearrangements. The fraction outside the curly brackets on the right-hand side
of the first line is negative. The second line is non-negative and the third and fourth line
are positive, since Ω < 0, Υ ≤ 0 (see lemma 4), ∂g(KR; α)/∂KR = ĥ > 0 and U ′′(Q) < 0.
Since, for θ < 1, U ′′(Q)KA ⋛ σ [(1 − θ) /θ] U ′′(Q0)KB ⇔ τB ⋛ 0, the expression in the
square brackets after the curly bracket in the first line is positive if tax τB is positive (see
lemma 3 and eq. (A.16)). Thus, for θ < 1, ∂τB/∂θ < 0 if τB ≥ 0.

Then, for θ < 1, dτB/dθ < 0 if τB ≥ 0 follows from (∂τB/∂KA) (dKA/dθ) < 0,
(∂τB/∂KB) (dKB/dθ) < 0 and ∂τB/∂θ < 0 (see eqs. (A.42), (A.43) and (A.44)). Also,
for θ = 1, τB = 0 is implied by eqs. (A.14) and (A.17). Additionally, for θ = 1 and
α ∈ (α, α) at θ = 1 (i.e., KA > 0), dτB/dθ > 0 follows from (∂τB/∂KA) (dKA/dθ) =
(∂τB/∂KB) (dKB/dθ) = 0 and ∂τB/∂θ > 0 (see again eqs. (A.42), A.43) and (A.44)).
Consequently, if τB < 0 for some θ, τB cannot become positive as θ increases, since this
would require, by means of continuity, dτB/dθ > 0 for τB = 0 and θ < 1, which would
contradict the previous statements. Furthermore, since dτB/dθ > 0 for θ = 1, dτB/dθ > 0
must be satisfied for some interval θ ∈

(
θ̂, 1

]
by means of continuity.

Note that the lower and upper bounds α and α are functions of parameter θ. Effec-
tively, KA has to be ‘interior’ over the relevant range of values of parameter θ. This is
certainly the case if KA ≥ 0 holds at the starting point of θ, since dKA/dθ > 0 results in
the decentralised social optimum, as shown in proposition 2. Then, the upward sloping
part of the τB-θ curve definitely exist, while the downward sloping part will exist if the
starting point of θ implies a sufficiently large (small) KB (KA).

(ii) Recall that dtB0/dθ = Γ3 + Γ4 (see eq. (A.31)). Then, dTB/dθ = dtB0/dθ +
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(1/σ) dτB/dθ > 0 if Γ4 + (1/σ) [(∂τB/∂KA) (dKA/dθ) + (∂τB/∂KB) (dKB/dθ)] > 0 and
Γ3 + (1/σ) ∂τB/∂θ > 0 (see eqs. (A.31) and (A.41). Let us prove in turn that the latter
two inequalities are satisfied. First, rearranging the terms of the first inequality (see eqs.
(A.31), (A.42) and (A.43)) gives

Γ4 + 1
σ

(
∂τB

∂KA

dKA

dθ
+ ∂τB

∂KB

dKB

dθ

)
= −(1 − σ) (1 − θ) U ′′(Q0)U ′′(Q1)

θΩ(Q1 − Q
) 1 −

(1 − σ) U ′′(Q1)
[
U ′′(Q) + σ [(1 − θ) /θ] U ′′(Q0)

]
Ψ


+
(
Q − Q0

) [
1 − σ (1 − σ) [(1 − θ) /θ] U ′′(Q0)U ′′(Q1)

Ψ

]}

− U ′′(Q0)U ′′(Q)
Ω

(
Q − Q0

)
> 0. (A.45)

This term is indeed positive. The fractions in the square brackets in the second and third
line are positive and smaller than one, which follows from the definition of Ψ in eq. (A.15)
and the fact that Ψ > 0 and U ′′(Q) < 0. Thus, the square brackets are positive and, as
Q0 < Q < Q1 also holds (see lemma 2), so are the second line and the third line. With
Ω < 0 (see eq. (A.12)), the fourth line and the right-hand side of the first line are positive,
too.

Second, using the facts that Γ3 > −U ′′(Q0) [(1 − σ) U ′′(Q1)Ω + θ2ΥΓ1] KB/ (θ2Ω2)
and ∂τB/∂θ > ∂τB/∂θ|KA=0, which follow from eqs. (A.31) and (A.44), leads to

Γ3 + 1
σ

∂τB

∂θ
> −U ′′(Q0)KB

Ω2 ×{
Υ
[
U ′′(Q) + (1 − σ) 1 − θ

θ
U ′′(Q1)

]
[1 − Ξ3 (1 + Ξ2)]

+1 − σ

θ2 U ′′(Q1)Ω [1 − Ξ3 (1 + Ξ1 + Ξ2)]
}

> 0 (A.46)

after some rearrangements, with Ξ1 =
[
(1 − σ) U ′′(Q1)U ′′(Q)

]
/Ψ > 0 and Ξ2 = −ĥΩ/Ψ >

0 as defined after eq. (A.40) and Ξ3 = [σ (1 − σ) (1 − θ) U ′′(Q0)U ′′(Q1)] / (θΨ) > 0. Eq.
(A.15) implies that Ξ1 + Ξ2 + Ξ3 = 1. Then, 1 − Ξ3 (1 + Ξ2) = Ξ2

2 + Ξ1 (1 + Ξ2) > 0 and
1 − Ξ3 (1 + Ξ1 + Ξ2) = (Ξ1 + Ξ2)2 > 0. Thus, as Υ ≤ 0, Ω < 0 and U ′′(Q) < 0 also hold,
Γ3 + (1/σ) ∂τB/∂θ > 0 results. Hence, inequalities (A.45) and (A.46) imply dTB/dθ > 0.

Proof of Proposition 10:

Plugging U ′′(Q) = U ′′ = const. < 0 into eqs. (A.35) to (A.37) and (A.42) to (A.44),
inserting the resulting terms into eqs. (A.34) and (A.41), and rearranging the equations

45



yield

∂τA

∂θ
=

σ [(1 − σ) U ′′]2
{
ĥKB − (1 − σ) (KA + KB) U ′′

}
θ2
{
(1 − σ) [1 + σ (1 − θ) /θ] U ′′ − ĥ

}2 > 0, (A.47)

dτB

dθ
= σ [(1 − σ) U ′′]2

θ2
{
(1 − σ) [1 + σ (1 − θ) /θ] U ′′ − ĥ

}2

{[
θ
(
Q1 − Q

)
+ σ (1 − θ) (Q1 − Q0) + σ

θ
KB

]
× (1 − θ)

[
(1 − σ)

(
1 + σ

1 − θ

θ

)
U ′′ − ĥ

]

+
(

KA − σ
1 − θ

θ
KB

) [
ĥ − (1 − σ) U ′′

]}
. (A.48)

Since (∂τA/∂KA) (dKA/dθ) > 0 and (∂τA/∂KB) (dKB/dθ) ≥ 0 follow from eqs. (A.35)
and (A.36), and since ∂τA/∂θ > 0 for U ′′′ = 0 follows from eq. (A.47), dτA/dθ > 0 results
for U ′′′ = 0 (see eq. (A.34)).

The first line on the right-hand side of eq. (A.48) is positive. Then, defining by
Γ5 the expressions in the curly brackets (i.e., the second, third and fourth line of eq.
(A.48)) implies that dτB/dθ ⋚ 0 ⇔ Γ5 ⋚ 0. Also, Γ5 < 0 if KA ≤ σ [(1 − θ) /θ] KB or,
equivalently, if τB ≥ 0 for θ < 1. By contrast, Γ5 > 0 if θ = 1. Finally, differentiating
Γ5 yields dΓ5/∂θ > 0 (where, e.g., σQ0 + (1 − σ) Q1 − Q = 0 for U ′′′ = 0 is used), as
can be checked. Hence, by means of continuity, a critical value θ̂, with θ̂ ∈

(
θ̃, 1

)
and

θ̃ : KA = σ [(1 − θ) /θ] KB, exists such that dτB/dθ ⋚ 0 ⇔ θ ⋚ θ̂.
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