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INTRODUCTION

A difficulty in understanding how democratic forces shape tax and transfer

policies is that such policies are inherently nonlinear, which causes cycling in models

of direct voting over policy.1 Voting cycles can sometimes be eliminated by restricting

policy to linear tax functions, but this approach obviously precludes study of nonlin-

earities.2 To study redistributional tax policies under majority rule without imposing

linearity, we assume instead that policy is determined in a stylized representative

democracy in which voters elect one of two candidates. The winning candidate is

not bound by campaign promises and, once in office, implements his or her own most

preferred tax function.3

A key assumption is that individuals differ only in productivity. This helps

eliminate cycles because elections are between individuals, who are ranked along

the single dimension of productivity, and not between policy functions, which are

infinite-dimensional. As in Mirrlees (1971), policy is required only to satisfy incentive-

compatibility and budget constraints.

Röell (1996) provided a median-voter result for the special case in which utility

is quasi-linear (no income effects) and a minimum-utility constraint does not bind

(no individual has zero consumption). She stated that “whether [a median-voter

result] obtains in a fully general setting with quasi-linear preferences remains an open

question” (p.12). We prove a median-voter result under a general utility function,

whether or not a minimum-utility constraint binds.

1For instance, in an electorate of three voters with different incomes, any redistributional tax

policy can be upset by an alternative policy that would effectively take resources from one of the

voters and give the resources to the other two.
2Examples of the approach are in Romer (1975), Roberts (1979), and Meltzer and Richard (1981).
3In an important unpublished paper, Röell (1996) used the same approach to study nonlinear

taxation. Osborne and Slivinski (1996) and Besley and Coate (1997) also consider a setting in which

an election winner sets policy to maximize own utility.
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To understand the result, consider an election between two candidates with

different productivities. If elected, each would maximize own utility by choosing a tax

function with a low (possibly negative) tax at the own optimal income, and possibly

higher taxes at other incomes.4 Under regularity conditions described below, there is a

crossover point between the two candidates’ productivities such that individuals with

productivity above the crossover vote for the candidate with greater productivity

and individuals with productivity below the crossover vote for the candidate with

lower productivity. This property implies that the candidate who receives the votes

of median-productivity voters wins under majority rule. It follows that a candidate

with median productivity is a Condorcet winner, meaning a candidate that beats any

other candidate with a different productivity.

We also describe the tax function an election winner imposes. To extract taxes

from individuals with higher productivities, the tax function is strictly increasing

above the winner’s income. To extract taxes from individuals with lower productiv-

ities, the function may impose greater taxes than the winner pays at incomes just

below the winner’s, that is, marginal rates may be negative just below the winner’s

income. Such an outcome seems counterfactual. We show that the tax function can

have positive marginal rates at all incomes if government funds non-redistributional

spending or if individuals are altruistic.

An empirical observation is that the phase-out of welfare subsidies often leads

to high effective marginal tax rates at the low end of the income distribution.5 An

outcome with relatively high marginal rates at low incomes can easily result from two

forces in the model here: the winner wishes to extract taxes from individuals with

lower productivities, but cannot squeeze positive taxes from individuals with zero

4We use taxes to mean net taxes, that is total taxes paid to government minus total transfers

received from government.
5See Browning and Johnson (1979), Dickert et al. (1995), Keane and Moffitt (1998).
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income so the tax function’s intercept cannot be positive. As a consequence, the tax

function may increase steeply just above zero income and then becomes flatter (and

possibly slope downward) as income rises toward the winner’s income.

The winner’s tax function is always nonlinear with a kink at the winner’s

own income, and is strictly better than a linear tax for the winner. Thus there is

an interval of individuals close to the election winner in productivity who also are

better off than they would be under a linear tax. This together with the median-voter

results provides a sense in which the analysis accords with Director’s Law: if one of

the candidates has close to median productivity, the resulting policy is better than a

linear tax for middle-productivity individuals.6

Section I describes the model. Section II uses a numerical example to provide

intuition and guide the formal analysis. In section III, we derive the policy a winning

candidate would impose, characterizing the candidate’s own optimal income level and

the resulting utility levels of all individuals in the electorate. In section IV, we study

election outcomes and provide median-voter results. In section V, we build on the

derivation of the winner’s optimal policy to characterize the shape of the tax function.

Section VI concludes.

I. MODEL

Tax-paying units (“individuals”) differ only in productivity (x); we therefore

refer to an individual with productivity x as simply “individual x.” Productivity has

distribution function F (x) with continuous density f and finite mean over support

[x−, x+] with x+ > x− ≥ 0; x+ may be infinite. We assume f > 0 over (x−, x+).

6See Stigler (1970), who argued that the middle classes sometimes have relatively great political

clout and also benefit disproportionately from many government spending programs. Recent analyses

of spending programs consistent with Director’s Law are in Gouveia (1997) and Dixit and Londregan

(1998).
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Below, “all x” means “all x ∈ [x−, x+].”

Each individual has the same strictly increasing, differentiable, weakly concave

utility u defined over consumption c ≥ 0 and leisure 0 ≤ l ≤ 1. Each maximizes utility

by choosing how much to labor to supply, n ≡ 1− l, which determines gross income,

y ≡ nx, and hence consumption, c ≡ y − T , where T is the positive or negative tax

the individual pays. To ensure that labor supply is always strictly less than one, we

assume liml−>0 ul(c, l)/uc(c, l) = ∞ for any c > 0, where subscripts denote partial

derivatives throughout.

Before making labor-leisure choices, the individuals elect one of two exoge-

nously given candidates by majority rule. We model government policy as set by

the election winner, denoted xe. Because cycling results from direct voting over tax

functions, we assume that candidates cannot commit to set specific tax functions if

elected. The winning candidate therefore designs policy to maximize own utility.

This stylized representative democracy abstracts from several aspects of polit-

ical life. Notably, we allow candidates to be two arbitrary individuals in [x−, x+] to

prove median-voter results, but we do not study the politics of how the candidates

are selected. Also, we do not study how policy is set by governments drawn from

more than one (possibly overlapping) jurisdiction.7

Candidates’ productivities and hence the policies they would impose are re-

vealed to voters during the electoral process, so each voter knows the utility he/she

would receive if either candidate were elected. Each individual votes for the candidate

who would provide greater utility.

There are three limits on the power to tax. First and as in Mirrlees (1971),

government can observe individuals’ incomes but not their productivities; hence it

7Given the assumption that individuals differ only in productivity, allowing for many jurisdictions

should matter little: if candidate productivities are the same across jurisdictions, all election winners

would wish to impose the same tax function.
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imposes a tax function T ∗ that specifies the positive or negative net tax paid by an

individual as a function of the individual’s gross income y. (Different election winners

xe would impose different T ∗’s, but we suppress this dependence when studying the

taxes imposed by a generic winner.) Second and as in Meltzer and Richard (1981), xe

is subject to the same rules as other individuals and must pay taxes according to T ∗.

Third and as in Röell, an individual cannot be forced to work in order to pay taxes.

Thus xe’s policy can give no individual utility lower than that of a non-worker with

zero taxes, or U(x) ≥ u(0, 1) for all x, where U(x) is the utility individual x obtains

under the tax function chosen by xe.
8 The latter implies that an individual’s taxes

cannot exceed the individual’s income.

A non-altruistic election winner with moderate or high productivity may im-

pose a tax function that extracts substantial revenue from low-productivity individ-

uals, leaving them with utility close or equal to u(0, 1). Such an outcome is hard to

square with observed welfare payments to low-income individuals. To allow for altru-

ism and see how it affects the tax function, we assume the election winner guarantees

a minimum consumption level α ≥ 0 and hence a minimum utility level u(α, 1) to all

citizens; this altruism is Rawlsian (1971) in that it reflects concern with those who

are worst off. Both the possibility of altruism and the requirement that utility be

bounded below by u(0, 1) are captured by imposing the minimum-utility constraint

U(x) ≥ u(α, 1), for all x, where u(α, 1) > −∞. (1)

This treats α as a preference parameter common to all candidates.9

8Such a constraint would be superfluous in Mirrlees (1971) and Meltzer-Richard (1981), where

the optimal or equilibrium policy is to transfer to low-productivity individuals.
9If u is unbounded and α = 0, then u(α, 1) = −∞ is possible, violating the assumption u(α, 1) >

−∞. In such cases we redefine c to be consumption financed from taxed income, and assume

that individuals also obtain a fixed positive amount of consumption from home production. These

assumptions make u(0, 1) finite and the analysis below goes through with the redefined variable c.
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The election winner’s choice of a tax function is subject to a government

budget constraint
R x+
x−

T ∗(Y (x))dF (x) ≥ G, where G ≥ 0 is an exogenous level of

non-redistributional spending and Y is an individual’s income when the tax function

is T ∗. We assume tax functions T ∗ exist that strictly satisfy the government budget.

Specifically, we assume that α and G satisfy G < Ĝ(α), where Ĝ(α) is the supremum

of levels of G that can be financed given tax functions that satisfy (1) for given α.

Because α and G are given parameters, we suppress dependence of the problem on

them when no ambiguity arises. In section V, we study how changes in α and G affect

the shape of T ∗.

Following Mirrlees (1971) and Seade (1982), we make the agent monotonicity

assumption that nul(c, 1 − n)/uc(c, 1 − n) is strictly increasing in n for all c > 0.

This will ensure that an individual with greater productivity never finds it optimal

to earn less income than an individual with lower productivity. Sufficient conditions

for agent monotonicity are that consumption is normal or that utility is separable.

The tax function T ∗ chosen by xe induces profiles of utility {U(x)}x and income

{Y (x)}x for all individuals. To characterize T ∗, we follow Mirrlees (1971, 1986) by

reformulating xe’s utility maximization as a control problem. Specifically, the problem

of choosing T ∗ is equivalent to the problem of choosing a utility profile {U(x)}x and an

income profile {Y (x)}x subject to incentive-compatibility constraints requiring that

any individual x be induced to work n(x) = Y (x)/x in order to earn the assigned

income Y (x).

To express the incentive-compatibility constraints as functions of the profiles

{U(x)}x and {Y (x)}x, denote the consumption level that provides utility U at work

effort n by c∗(U, n); this function is defined by the identity U = u(c∗, 1−n). Incentive-

compatibility then requires

U(x) ≥ u(c∗(U(z), Y (z)/z), 1− Y (z)/x), for all x and z satisfying x ≥ Y (z), (2)
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which says that income and utility profiles must be such that an individual with true

productivity x does not prefer the income-and-tax package of any other individual

(z) to his own. The constraints apply only for x ≥ Y (z) because individual x cannot

earn an income Y (z) > x within the time constraint n ≤ 1.

From Mirrlees (1971, 1986), the incentive-compatibility constraints (2) are

equivalent to the combination of a differential equation

U(x)− U(x−) =

Z x

x−

ω(U(z), Y (z), z)dz, (3)

where ω(U, Y, z) ≡ ul(c
∗(U(z), Y (z)/z), 1− Y (z)/z) · Y (z)/z2,

plus requirements that Y (x) be monotone non-decreasing and Y (x) < x.10 We there-

fore replace (2) by (3), define the income derivative ψ(x) ≡ dY/dx, and ensure mono-

tonicity by imposing11

ψ(x) ≥ 0, for all x. (4)

Our assumption that liml−>0 ul(c, l)/uc(c, l) =∞ for any c > 0 ensures Y (x) < x.

To express the government budget constraint in terms of the profiles {U(x)}x
and {Y (x)}x, let

T (U, Y, x) ≡ Y − c∗(U, Y/x) (5)

denote the revenue that is extracted from an individual with utility U and income Y

who has productivity x. The government budget constraint is thenZ x+

x−

T (U(x), Y (x), x)dF (x) ≥ G. (6)

10Specifically, theorem 1 in Mirrlees (1971) shows that (2) implies a non-decreasing income profile

and Y (x) < x. Lemma 6.1 in Mirrlees (1986) proves that (2) implies (3) for a lower bound of 0

instead of x−; taking the difference U(x)−U(x−) yields (3) for any x− ≥ 0. That (3) implies (2) is
a special case of Mirrlees (1986) lemma 6.3, as discussed in Mirrlees (1986, p. 1237).
11That is, we follow Brito and Oakland (1977) and Ebert (1992) in using a “second-order” ap-

proach. We assume that ψ(x) is piecewise continuous, so dY (x)/dx may be undefined at a finite

number of points.
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Thus xe’s problem is to maximize U(xe) subject to (1), (3), (4), and (6) by choice of

{U(x), Y (x), ψ(x)}x. The solution to xe’s problem is a profile {U(x), Y (x), ψ(x)}x.

II. AN EXAMPLE

This section presents a numerical example that illustrates the model’s main

features and results. The example follows Diamond’s (1998) simplification of Mirrlees

(1971) in assuming affine utility with a constant elasticity of labor supply: u(c, l) =

c + v0{1− (1− l)1+v1}/(1 + v1), where v0 is a constant and v1 is the wage elasticity

of labor supply. In the example, we take v0 = 5, v1 = 1, and assume that F (x) is

uniform on [x−, x+] = [.2, 1.8].12 Denote the median productivity xM ; the assumed

distribution has xM = 1. We assume initially that G = 0 and α = 0.

Consider an election between xM and an alternative candidate xA = .84, at

the 40th percentile. Figure 1 shows the tax functions xM and xA would set if elected.

Because G = 0 and the government budget binds, some individuals gain net income

(T < 0) and others lose net income (T > 0) from either function.

As in the figure, either candidate if elected would impose a negative tax on

him/herself and would transfer resources from others by imposing a V-shaped tax

function with a minimum at the candidate’s own utility-maximizing income, generi-

cally denoted ye. The steepness of the V balances two forces. A steeper V tends to

extract greater resources from others by raising the taxes they pay, decreasing the

tax the winner pays. But because the winner’s own income level is tax-favored and

taxes are based on income and not productivity, other individuals have an incentive

to change their labor supplies to earn the tax-favored income ye. Thus a steeper V

also expands the set of individuals who earn ye, raising the tax the winner pays.

An individual’s incentive to earn the tax-favored income ye decreases with

12Although affine utility violates the assumption liml−>0 ul(c, l)/uc(c, l) = ∞, the parameter
values we choose ensure that leisure is bounded away from zero so Y (x) < x.
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the difference between the individual’s productivity and xe. Specifically, there is an

interval around xe, generically denoted [x1, x2] below, such that xe’s optimal policy

induces all individuals in [x1, x2] to earn ye. This bunching of incomes gives a mass-

point in the income distribution at ye and causes the profile of taxes set by any

candidate to be flat on [x1, x2]. The [x1, x2]-intervals for xM and xA are illustrated in

figure 2; interval endpoints are slightly higher for xM than for xA.

The minimum-utility constraint (1) limits government’s ability to extract taxes

from individuals with low market incomes. This explains why the two tax functions

rise from the origin, peak, and then fall at incomes below ye.

Figure 3 shows the utility profiles induced by xM and xA. The profiles cross at

x ∼= 0.926: individuals x & .926 receive greater utility if xM is elected; and individuals

x . .926 receive greater utility if xA is elected, except that individuals with minimum

productivity x = .2 receive utility u(0, 1) from both candidates. Thus all individuals

with greater-than-median productivity (half the population) plus some individuals

with lower-than-median productivity would vote for xM , so xM would win against

xA. Analogously, xM would win against any other candidate.

The tax functions in figure 1 are notably nonlinear. For instance, xM ’s func-

tion gives xM a large negative tax and imposes positive taxes on lower-productivity

individuals. This would not happen if taxes were constrained to be linear (figure 4),

because xM would then have to give large negative taxes to low-productivity individ-

uals in order to obtain a small negative tax him/herself.13

Figure 5 illustrates how government spending G affects xM ’s tax function. If

G = 0, individuals with incomes near Y (xM) receive negative taxes while individuals

with income near Y (x−) pay taxes, giving the tax function a negatively sloped seg-

ment below the winner’s income. As G rises from zero toward Ĝ (about 0.0772 in

13If taxes are constrained to be linear, our model yields the same tax function as Meltzer and

Richard (1981), so figure 4 provides a comparison of our model and Meltzer-Richard’s.
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the example), the election winner must increase taxes on middle and upper income

individuals because the minimum utility constraint rules out increased taxes on indi-

viduals with low productivity. This tilts the V-shaped spike so the negatively sloped

segment vanishes. As long as G < Ĝ, however, the equilibrium tax function always

has a kink at ye. Thus taxes are always nonlinear but may increase monotonically

with income.

Figure 6 illustrates how the altruistic consumption floor α affects the tax

function. An increase in α has two effects. First, it lowers the intercept of the

function (which is −α), pulling the function down at low incomes. Second, it raises

the government’s need for revenue, pulling the function up at higher incomes. Both

effects tend to make the tax function slope upward and may make taxes increase

monotonically with income.

III. AN ELECTION WINNER’S POLICY

The first step in a general analysis is to solve xe’s problem, deriving the winning

candidate’s optimal own income ye and tax function T ∗. A complication is that xe’s

objective U(xe) is also a point on the utility profile and hence enters a subset of the

incentive-compatibility constraints. We deal with this by solving a modified version

of xe’s problem with analytically convenient properties that will turn out to have the

same solution as the original problem.

In the modified problem, we give xe the additional option of choosing a sep-

arate own income ye and tax payment Te (and hence an own consumption ye − Te),

but we subject xe to additional incentive compatibility constraints requiring that no

individual x capable of earning ye (that is, with x ≥ ye) would receive greater utility

from earning ye and paying taxes Te than from accepting the assigned utility U(x).
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These additional constraints are

U(x) ≥ Ue(x) for x ≥ ye, (7)

where Ue(x) ≡ u(ye − Te, 1− ye/x) is the utility x would receive from earning ye and

paying taxes Te. Formally, xe’s modified problem is to

maximize u(ye − Te, 1− ye/xe)

subject to (1), (3), (4), (6), and (7),

by choice of (ye, Te, {U(x), Y (x), ψ(x)}x).

The modified problem can be solved conveniently in two stages. The first stage

is a control problem that determines the set of feasible (ye, Te) pairs, and the second

is a simple utility maximization that determines the optimal (ye, Te) pair. To evaluate

whether a pair (ye, Te) is feasible, we find the maximum revenue R(ye, Te) that can be

raised conditional on (ye, Te) by solving the conditional revenue maximization

problem (CRM):

maximize
Z x+

x−

T (U(x), Y (x), x)dF (x) (CRM)

subject to (1), (3), (4), and (7),

by choice of {U(x), Y (x), ψ(x)}x. A pair (ye, Te) is feasible if and only if R(ye, Te) ≥ G.

Because the value of xe does not enter the objective function or the constraint

set of CRM, the set of feasible (ye, Te) pairs is the same for all potential election

winners. This feature is indispensable in deriving voting theorems in the next section.

The conditioning variables ye and Te enter CRM only through Ue(x) in the

inequality constraint (7), and the form of the solution differs depending on whether

(7) binds. To determine the (ye, Te) pairs for which (7) binds, we solve CRM without

(7), which we refer to as the unconditional revenue maximization problem
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(URM):

maximize
Z x+

x−

T (U(x), Y (x), x)dF (x) (URM)

subject to (1), (3), and (4),

by choice of {U(x), Y (x), ψ(x)}x. We assume URM has a unique solution denoted

{Û(x), Ŷ (x), ψ̂(x)}x. Note that the maximum revenue that can be raised under URM

is Ĝ.

For (ye, Te) pairs with low enough Ue(x) so Û(x) ≥ Ue(x) for all x ≥ ye, the

profile {Û(x)}x satisfies (7); thus for such pairs, the solution to URM also solves

CRM. (Because G < Ĝ, all (ye, Te) pairs for which {Û(x)}x satisfies (7) are feasible.)

For all other (ye, Te) pairs, Û(x) < Ue(x) for at least one x ≥ ye, so {Û(x)}x
violates (7). Solutions to URM and CRM therefore differ and (7) binds at some

value(s) of x under a solution to CRM. Given a conditioning pair (ye, Te), (7) therefore

binds if and only if Û(x) < Ue(x) for at least one x. Let B ≡ {(ye, Te) | Û(x) < Ue(x)

for some x ≥ ye} denote the set of (ye, Te) pairs for which (7) binds so the solution to

URM does not solve CRM. Also let B̄ = {(ye, Te) | Û(x) ≤ Ue(x), for some x ≥ ye}

denote the closure of B.

For any (ye, Te) ∈ B, let xb denote a value of x at which (7) binds so U(xb) =

Ue(xb). We show below that for any such xb, CRM can be solved in two parts: choose

{U(x), Y (x), ψ(x)}x for x ≤ xb to maximize revenue obtained from individuals with

productivities less than xb; and choose {U(x), Y (x), ψ(x)}x for x ≥ xb to maximize

revenue obtained from individuals with productivities greater than xb.
14

For given (xb, ye, Te), problem CRM1 focuses on maximizing revenue ob-

14Constraint (7) turns out to hold with equality at xe, but imposing xb = xe would obscure the

independence of the set of feasible (ye, Te) pairs on the winner’s identity.
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tained from individuals x ≤ xb:

maximize
Z xb

x−

T (U(x), Y (x), x)dF (x) (CRM1)

subject to (1), (3), (4), U(xb) = Ue(xb), and Y (xb) ≤ ye,

by choice of {U(x), Y (x), ψ(x)}x≤xb. Similarly, problem CRM2 focuses on maxi-

mizing revenue obtained from individuals x ≥ xb:

maximize
Z x+

xb

T (U(x), Y (x), x)dF (x) (CRM2)

subject to (1), (3), (4), U(xb) = Ue(xb), and Y (xb) ≥ ye,

by choice of {U(x), Y (x), ψ(x)}x≥xb. The condition U(xb) = Ue(xb) imposed on

both problems ensures that (7) holds with equality at xb. Let R1(xb, ye, Te) and

R2(xb, ye, Te) denote maximal values of the revenue integrals in CRM1 and CRM2.

Problems URM, CRM1, and CRM2 have the same objective function and dif-

ferential equations. They differ only in domains and boundary conditions. Hence their

Hamiltonians and Euler equations have the same form. The common Hamiltonian is

H(U, Y, ψ, ξ, µ, x) = T (U, Y, x) · f(x) + ω(U, Y, x) · ξ(x) + ψ(x) · µ(x),

where ξ and µ as the costate variables associated with U and Y. The implied Euler

equations are

HY = TY · f(x) + ωY (U, Y, x) · ξ(x) = −µx(x), (8)

HU = TU · f(x) + ωU(U, Y, x) · ξ(x) = −ξx(x), (9)

where definition of T and the properties of c∗ imply TY = 1 − ul/(ucx) and TU =

−1/uc.
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We sidestep issues of existence and uniqueness of a solution to CRM with:15

Assumption CON: For all (ye, Te) ∈ B̄ and xb ∈ {x | Û(x) ≤ Ue(x)}, CRM1

and CRM2 each have a solution. For any solution, functions ξ and µ satisfying (8) and

(9) exist, andH(U, Y, ψ, ξ, µ, x) is strictly concave in (U, Y ) for all x. The functions U

and Y are continuous in x, ψ is piecewise continuous in x, and ξ and µ are continuous

and piecewise continuously differentiable in x.

Strict concavity of the Hamiltonian in (U, Y ) under CON ensures uniqueness.

(By a unique solution, we mean a solution with unique profiles {U(x), Y (x)}x and a

profile {ψ(x)}x that is unique except at points of discontinuity.)

The following proposition characterizes solutions to CRM and shows that if

(ye, Te) ∈ B so the incentive compatibility constraint (7) binds, then income-bunching

on an interval [x1, x2] is generic and CRM can be solved by separately maximizing

revenue obtained from those with productivities lower than xb and revenue obtained

from those with productivities higher than xb. These two optimizations give the

segments of the tax function below and above ye (see figure 1), where xb is any value

in the interval [x1, x2] of individuals that earn ye (see flat segments of tax profiles in

figure 2). Proofs of propositions are in an appendix:

Proposition 1 (conditional revenue maximization) If CON holds, CRM has a

unique solution for any (ye, Te), and:

1. For any (ye, Te) ∈ B:
15Existence would be straightforward with a discrete number of productivities but is technically

complicated when productivity has a continuous distribution. Mirrlees (1986, p. 1235) states that

conditions like CON are “obscure” in that they restrict third partial derivatives of u, but are un-

avoidable in variational problems of this type. Note that the previously assumed existence and

uniqueness of {Û(x), Ŷ (x), ψ̂(x)}x is implied by CON, because URM is equivalent to CRM2 with

xb = x−, ye = 0, and Te = −α.
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(a) There is an interval [x1, x2] with U(x) = Ue(x) and Y (x) = ye for x ∈

[x1, x2], and U(x) > Ue(x) for x /∈ [x1, x2]. If [x1, x2] includes any x ∈

(x−, x+), then x1 < x2; otherwise, either x1 = x2 = x− or x1 = x2 = x+.

(b) For any xb ∈ [x1, x2], the solution to CRM1 on [x−, xb] together with

the solution to CRM2 on [xb, x+] also solve CRM. Moreover, R(ye, Te) =

R1(xb, ye, Te) +R2(xb, ye, Te) for all xb ∈ [x1, x2].

(c) Revenue R(ye, Te) is continuous and differentiable in (ye, Te), and strictly

increasing in Te. The function T ∗e defined by R(ye, T
∗
e (ye)) = G is differ-

entiable.

2. For (ye, Te) /∈ B, {Û(x), Ŷ (x), ψ̂(x)}x solves CRM and R(ye, Te) = Ĝ.

The function T ∗e described in part 1c of the proposition gives xe’s lowest feasi-

ble own tax payment as a function of ye. In this way, xe’s income choice ye uniquely

determines xe’s leisure 1 − ye/xe, minimum feasible tax payment T ∗e (ye), and con-

sumption ye − T ∗e (ye).

It is convenient to represent xe’s optimization in income-consumption space

where consumption is a good but income is a “bad” because greater income means

less leisure. The set

Ce = {(ye, ce) ≥ 0|ce ≤ ye − T ∗e (ye)} (10)

is the set of xe’s feasible choices. Note that T ∗e is independent of xe, so the same

feasible set Ce is available to all potential election winners. Income and leisure

are negatively related by the identity l = 1 − y/x, so the weak concavity of u im-

plies that an individual’s indifference curves in income-consumption space are con-

vex, continuous lines {(y, c) ≥ 0|u = u( c, 1 − y/x)}, with slope ul/(xuc) > 0.

The optimal income choice ye is found by maximizing u(ye − T ∗e (ye), 1 − ye/xe),

illustrated in figure 7 as finding the highest indifference curve tangent to the up-

per boundary of Ce. As in the figure, this boundary is not necessarily concave,
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so there may be multiple optimal ye. Denote xe’s set of optimal income values

y∗e(xe) ≡ {0 ≤ ye ≤ xe | ye = argmaxu(ye − T ∗e (ye), 1− ye/xe)}.

The following proposition characterizes the solution to xe’s modified problem

and verifies that the solution also solves xe’s original problem:

Proposition 2 (solution to xe’s problem) Assume CON. For any xe ∈ [x−, x+]:

1. A pair (ye, Te) and a set of profiles {U(x), Y (x), ψ(x)}x solve xe’s modified

problem if and only if {U(x), Y (x), ψ(x)}x solves CRM for ye ∈ y∗e(xe) and

Te = T ∗e (ye).

2. xe’s modified problem has at least one solution. All solutions satisfy Y (xe) = ye

and U(xe) = Ue(xe) = u(ye − Te, 1 − ye/xe). Moreover, [x1, x2] is non-empty,

xe ∈ [x1, x2], and (ye, T ∗e (ye)) ∈ B. For ye > 0, optimal values of ye satisfy the

first-order condition ∂T ∗e /∂ye = 1− ul/(ucxe).

3. Profiles {U(x), Y (x), ψ(x)}x solve xe’s original problem if and only if (Y (xe),

T ∗e (Y (xe)), {U(x), Y (x), ψ(x)}x) solve xe’s modified problem.

Because the values of x1 and x2 are conditional on ye, we sometimes write

x1 = x1(ye) and x2 = x2(ye) below.

Seade (1982) points out that agent monotonicity implies that an individual

with greater productivity chooses a greater income. Applied to election winners, this

says that y∗e(xe) is strictly increasing:
16

Proposition 3 (income monotonicity (Seade, 1982)) Let xL < xH be two can-

didates and let yL ∈ y∗e(xH) and yH ∈ y∗e(xH). Then yL < yH as long as yH > 0;

otherwise yL = yH = 0.

16Seade (1982) does not contain a proof. A formal proof in the context of our model is available

from the authors.
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The idea is illustrated in figure 8. At any point (y, c) in income-consumption

space with y > 0, agent monotonicity may be written (y/xL)[ul(c, 1−y/xL)/uc(c, 1−

y/xL)] > (y/xH)[ul(c, 1−y/xH)/uc(c, 1−y/xH)]; dividing both sides by y shows that

at (y, c), the slope of xL’s indifference curve exceeds the slope of xH ’s indifference

curve. Thus increased productivity flattens the indifference curve at (y, c). All po-

tential election winners face the same feasible set Ce, so flatter indifference curves

shift the optimum (tangency) toward greater ye, and optimal income choices satisfy

yL < yH as long as yH > 0. Similarly yH = 0 implies yL = yH = 0; this occurs if xL

and xH are so low that indifference curves at ye = 0 are steeper than the boundary

of Ce.

Note from propositions 1 and 2 that xe’s problem has exactly as many dis-

tinct solutions as there are elements in y∗e(xe). Because y
∗
e is strictly monotone by

proposition 3, y∗e(xe) is single-valued except at isolated xe-values, so xe’s problem

has a unique solution for almost all election winners. To account for the possibility

that one of the candidates may have multiple optimal ye, we express the policy of

an election winner with any ye ∈ y∗e(xe) as a function of ye, denoting the associated

income and utility profiles {U(x | ye), Y (x | ye)}x.17

The net income-tax function T ∗ implied by {U(x | ye), Y (x | ye)}x can then

be inferred from (5), the definition of T . Specifically, for any income level y ∈

[Y (x− | ye), Y (x+ | ye)] and any x for which Y (x | ye) = y, the income tax is

T ∗(y | ye) = T (U(x | ye), Y (x | ye), x).18

To clarify the relationship between T ∗ and T ∗e , the value T ∗(y | ye) is the

income tax an individual with income y would pay if the election winner earns income

ye, whereas T ∗e (ye) is the minimum tax an election winner with income ye can arrange

17From proposition 3, a given value ye > 0 is optimal for at most one value of xe, so the election

winner’s productivity can always be inferred from ye.
18To extend T ∗ to the entire real line, it suffices to set taxes prohibitively high (e.g. T ∗(y) = y−α)

for y /∈ [Y (x−|ye), Y (x+|ye)].
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for him/herself by optimally choosing an income tax function T ∗. It can be shown

that T ∗e is the lower envelope of all tax functions T
∗, and that the tax function T ∗ set

by a given election winner has a downward spike at y = ye, where T ∗ touches T ∗e .

IV. ELECTIONS

Elections between candidates with the same productivity or between candi-

dates who would choose the same ye are uninformative so we study elections be-

tween pairs of candidates xL < xH with yL < yH . For now, take yL ∈ y∗e(xL) and

yH ∈ y∗e(xH) as given; later in the section we discuss candidates’ optimal income

choices when y∗e(xL) and/or y
∗
e(xH) are multi-valued.

Induced Utility Profiles

We establish that under two regularity conditions, the utility profiles induced

by xL and xH cross only once at a productivity denoted x× with xL < x× < xH , that

individuals x > x× receive greater utility from xH , and that individuals x < x× either

receive greater utility from xL or else receive utility u(α, 1) from both candidates.

A graphical intuition is as follows. When xe picks T ∗, the individuals in the

economy are presented with a set of (y, c) choices denoted C(ye) ≡ {(y, c) ≥ 0|c ≤

y − T ∗(y | ye)}. The downward spike in T ∗ at y = ye implies that the boundary of

C(ye) has an upward spike at (ye, ye − T ∗e (ye)), where C(ye) touches the boundary of

Ce (see figure 9). Individuals x ∈ [x1(ye), x2(ye)] then find a corner solution at income

ye optimal, individuals x < x1(ye) optimally earn incomes y < ye, and individuals

x > x2(ye) optimally earn incomes y > ye.

As ye increases differentially from yL to yH , the spike point (ye, ye − T ∗e (ye))

moves monotonically to the right along the boundary of the common feasible set Ce,

illustrated in the figure by the shift from L to H. This shifts the boundary of C(ye)
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outward for individuals with y > ye (arrow 1 in the figure), making them strictly

better off, and inward for individuals with y < ye (arrow 2), making them strictly

worse off as long as U(x) > u(α, 1).

Among the set of individuals x ∈ [x1(yH), x2(yL)] who earn y = ye for any

ye ∈ [yL, yH ], agent monotonicity implies that there is a crossover individual x× whose

indifference curve goes through L and H.19 Because agent monotonicity implies that

indifference curves become flatter with productivity, it must be that individuals with

productivities greater than x× receive greater utility from xH and individuals with

productivities less than x× receive greater utility from xL.

The regularity conditions we impose to show this single-crossing property en-

sure that the boundary of C(ye) is uniquely defined and changes smoothly with ye.

The boundary of C(ye) is determined by the Euler equations for CRM1 and CRM2.

The first regularity condition is therefore CON, which ensures that unique solutions

to CRM1 and CRM2 exist; CON also fills a role like that of second-order conditions

in comparative static exercises. The second regularity condition is a “no-bunching”

assumption that ensures that the solutions to CRM1 and CRM2 vary smoothly with

ye. To formalize the assumption, let X0(ye) ≡ {x | Y (x | ye) = 0} denote the set of

non-workers given ye. The no-bunching assumption is then:20

Assumption NB: Y (x | ye) increases strictly on [x−, x1(ye))\X0(ye) and on

(x2(ye), x+] for all ye.

Assumption NB says that the income profile that solves xe’s problem does not

have flat spots (“bunching”) at any productivity except those that lead to incomes

of zero or ye.

19This assumes yL and yH are close. If they are not close, [x1(yH), x2(yL)] may be empty and the

crossover individual may have a tangency on a leg of a spike. Proposition 4 below allows for such

cases.
20This type of assumption is common in the literature that follows Mirrlees (1971).
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A complication is that there may be a set of individuals at the lower end of

the productivity distribution who would obtain utility u(α, 1) from both candidates.

To treat this, let Xmin(ye) = {x | U(x | ye) = u(α, 1)} denote the set of individuals

who would obtain utility u(α, 1) from a candidate with income ye.21

Assumptions CON and NB are sufficient for:

Proposition 4 (single crossing of utility profiles) Consider candidates xL < xH .

Assume CON, NB, and take yL ∈ y∗e(xL) and yH ∈ y∗e(xH) as given with yL < yH.

Then utility profiles {U(x | yH)}x and {U(x | yL)}x cross at a unique point x× ∈

(xL, xH), and:

1. Individuals x > x× have U(x | yH) > U(x | yL);

2. Individuals x < x× with x /∈ Xmin(yL) have U(x | yL) > U(x | yH);

3. Individuals x = x× have U(x | yL) = U(x | yH); and

4. Individuals in Xmin(yL) have U(x | yL) = U(x | yH) = u(α, 1).

Note that because Xmin(yH) consists of Xmin(yL) plus the set of x for whom

U(x | yL) > U(x | yH) = u(α, 1), individuals in Xmin(yH) who are not in Xmin(yL)

receive strictly higher utility from xL.

A key assumption underlying proposition 4 is that xe is able to impose an

unrestricted tax function. Ad hoc restrictions on the tax function (for instance, that

it be quadratic or piecewise linear) may cause utility profiles to cross several times,

leading to voting cycles. Intuitively, this is because proposition 4 relies on incentive

constraints that restrict utility differences of individuals close in productivity, with

21Because U and Y are increasing, Xmin(ye) and X0(ye) are at the lower end of the income

distribution. If Xmin(ye) has positive measure then Xmin(ye) = X0(ye), but X0(ye) may have

positive measure even if Xmin(ye) has measure zero.
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individuals treated monotonically better the closer they are to the election winner.

This monotone link may be disrupted by restrictions on the functional form of T ∗.

Median-Voter Results

Proposition 4 forms the basis for median-voter results. IfXmin(yL) has measure

zero and the mapping y∗e is single-valued at xL and xH , the logic is simple. The

proposition implies that all individuals with productivity greater than x× have U(x |

yL) > U(x | yH) and hence vote for xH . If x× < xM , a majority that includes

median-productivity individuals therefore votes for xH . Similarly all individuals with

productivity less than x× who are not in Xmin(yL) have U(x | yH) > U(x | yL).

Because Xmin(yL) has measure zero, this implies that almost all individuals with

productivity less than x× vote for xL. If xM < x×, a majority that includes xM

therefore votes for xL. Thus median-productivity individuals always vote with the

winning majority. (In the non-generic case in which xM = x×, the election ends in a

tie.)

There are two possible complications that require additional assumptions.

First, individuals in Xmin(yL) have U(x | yL) = U(x | yH) and are indifferent, and

assumptions about how such individuals vote matter if (and only if) Xmin(yL) has

positive measure. Three alternative reasonable assumptions might be made: individ-

uals in Xmin(yL) vote for xL, who is closer to the individual’s own productivity and

income (voting by closeness);22 they abstain; or they randomize. Randomization is

formally similar to abstention under simple assumptions about how randomization

occurs, so we consider only voting by closeness and abstention.

22In the spirit of Benabou and Ok (2001), a preference for xL by a nonworker with current utility

u(α, 1) would be expected in an extended model in which future productivity is random and there

is a positive probability the individual will work and have utility greater than u(α, 1) during some

part of the winner’s term of office.
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When voters in Xmin(yL) vote by closeness, proposition 4 again implies that

the winning majority contains all individuals with median productivity. When voters

in Xmin(yL) abstain, the statement of the median-voter result changes: all voters with

median productivity among those who do not abstain vote with the winning majority.

Voters in Xmin(yL) and x× abstain but the latter have measure zero, so voters with

median productivity in [x−, x+]\Xmin(yL) always vote with the majority.

The second complication arises if the mapping y∗e is not single-valued at xL

or xH , because the specific values chosen in y∗e(xL) or y
∗
e(xH) may then affect voting.

The complication is non-generic because y∗e is single-valued except at isolated points.

In cases where more than one income-value gives a candidate the same utility, we

assume the candidate chooses ye to maximize the own vote share. This is natural

because winning gives higher utility than losing.

For xH , proposition 4 implies that choosing yH = min{y∗e(xH)} yields the

lowest crossing point x× and therefore maximizes xH ’s vote share against any income

chosen by xL. Similarly yL = max{y∗e(xL)} yields the highest crossing point for xL
and therefore maximizes xL’s vote share against xH , provided Xmin(yL) has measure

zero or individuals vote by closeness. IfXmin(yL) has positive measure and individuals

in Xmin(yL) abstain, however, an income choice less than max{y∗e(xL)} may maximize

xL’s vote share because the number of abstentions may then rise with yL. In this case,

determining the winner requires inspecting voting outcomes for all elements of y∗e(xL)

against min{y∗e(xH)}.

Thus:

Proposition 5 (median-voter theorem) Consider candidates xL < xH . Assume

CON, NB, yH = min{y∗e(xH)} > 0, and that xL chooses the yL ∈ y∗e(xL) that maxi-

mizes xL’s vote share against xH:

1. If Xmin(yL) has measure zero, then the candidate who provides greater utility to
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median-productivity individuals wins.

2. If Xmin(yL) has positive measure and

(a) if indifferent individuals vote based on closeness in productivity, then the

candidate who provides greater utility to median-productivity individuals

wins, or

(b) if indifferent individuals abstain, then the candidate who provides greater

utility to the median of [x−, x+]\Xmin(yL) wins.

Parts 1 and 2a of proposition 5 immediately imply:

Proposition 6 (Condorcet winner) Assume CON, NB, and yM ≡ min{y∗e(xM)} >

0. Then xM is the Condorcet winner if Xmin(yM) has measure zero, or if Xmin(yM) has

positive measure and indifferent individuals vote based on closeness in productivity.

When Xmin(yM) has positive measure and indifferent voters abstain (case 2b

of proposition 5), the existence of a Condorcet winner is not guaranteed because the

set of individuals who vote then depends on the specific candidate pair.23

V. THE SHAPE OF THE ELECTION WINNER’S TAX FUNCTION

To describe the shape of the tax function T ∗ set by a generic election winner

xe with income ye ∈ y∗e(xe), we derive the marginal tax schedule dT
∗(y)/dy.

23By a simple fixed-point argument, there is always a smallest productivity xm ∈ (xM , x+) that

is median in the set [x−, x+]\Xmin(min{y∗e(xm)}). Because xL < xm may draw individuals in

Xmin(min{y∗e(xm)}) to the polls, xL may win against xm, and because xL is below the median in
[x−, x+]\Xmin(min{y∗e(xL)}), xL may lose against an xl ∈ (xL, xm) who in turn may lose against
xm, forming a cycle. If xm wins against all xL < xm, however, then xm is a Condorcet winner. This

occurs if no xL induces enough individuals in Xmin(min{y∗e(xm)}) to vote.
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From Section III, the income tax satisfies T ∗(Y (x)) = T (U(x), Y (x), x) for

all x. On intervals where Y has a differentiable inverse Y −1, we may substitute

x = Y −1(y) into this expression for T ∗, differentiate with respect to y, and impose

incentive compatibility (3) to obtain dT ∗(y)/dy = TY (U(Y
−1(y)), y, Y −1(y)).24 For

brevity, define τ(x) ≡ TY (U(x), Y (x), x), so the latter is

dT ∗(y)/dy = τ(Y −1(y)). (11)

The following proposition characterizes the marginal tax schedule as τ(Y −1(y)).

As part of the proposition, we show that (11) holds at all points where Y −1 is well-

defined regardless of differentiability. By NB, Y −1 is well-defined at all incomes

except y = ye and possibly y = 0. We use the solution to CRM1 conditional on

(xe, ye, T
∗
e (ye)) to evaluate τ(x) for x < x1, and use the solution to CRM2 conditional

on (xe, ye, T ∗e (ye)) to evaluate τ(x) for x > x2:

Proposition 7 (the net-income-tax function chosen by xe) Assume CON and

NB and consider xe ∈ (x−, x+) with ye > 0.
25 Then T ∗ is continuously differentiable

on [Y (x−), Y (x+)] except at y = ye, with dT ∗(y)/dy = τ(Y −1(y)) except at ye and

possibly at zero.26 Moreover:

1. T ∗ is always nonlinear in that the marginal tax rate jumps upward at ye. Specif-

ically: τ(x1) = limy↑yedT
∗(y)/dy < τ(x2) = limy↓yedT

∗(y)/dy.

2. T ∗ is strictly increasing for y > ye. If x+ is finite, dT ∗(Y (x+))/dy = τ(x+) = 0.

3. T ∗ has three possible shapes for y < ye:
24More heuristically, at any point where T ∗ is differentiable, an individual who maximizes u(y −

T ∗(y), 1 − y/x) by choice of y satisfies the first-order condition dT ∗(y)/dy = 1 − ul/(ucx). From

section III, the right-hand side of the condition equals TY .
25Cases with xe = x−, xe = x+, and ye = 0 are straightforward but give degenerate results in

which [x0, x1)\X0, [x1, x2], or (x2, x+] are empty or contain a single point.
26If X0(ye) is an interval, Y −1(0) is not defined and dT ∗(0)/dy = τ(maxX0).
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(a) T ∗ may be strictly decreasing. A sufficient condition for this is that the

minimum-utility constraint (1) does not bind. If X0(ye) has measure zero,

then dT ∗(Y (x−))/dy = τ(x−) = 0.

(b) T ∗ may increase strictly from Y (x−) to a local maximum at Y (xτ ), then

decrease strictly to ye. This occurs if and only if τ(xτ) = 0 for some

xτ ∈ (x−, x1)\X0(ye).

(c) T ∗ may be strictly increasing.

Part 1 says that the tax function has a kink at the election winner’s own

income level, with T ∗ having a lower slope from the right than from the left. Thus

the tax function is always nonlinear.

Because the kinked function T ∗ is strictly better than a linear tax for the

winner and the associated utility profile U is continuous, there is an interval of pro-

ductivities around xe that also are better off under T ∗ than under a linear tax. From

the median-voter results of the previous section, if one of the candidates has produc-

tivity close to the median, the resulting redistributional tax policy is better than a

linear tax for a range of middle-productivity individuals. This result is in accord with

Director’s Law.

Results in part 2 describe taxes at incomes above ye and resemble results in

Seade (1977, 1982) and Röell (1996): income taxes rise with income; and the marginal

tax rate is zero at the maximum productivity x+ if x+ <∞.

Results in part 3 state that the tax function T ∗ may have three shapes at

incomes below ye. If the minimum-utility constraint (1) does not bind (case a) then

T ∗ decreases monotonically over [Y (x−), ye) as the election winner extracts greater

taxes from individuals the lower their incomes. Such an outcome is counterfactual.

For marginal rates not to be negative on [Y (x−), ye), the minimum utility constraint

must bind. If (1) binds, T ∗ may still have a counterfactual downward sloping segment
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(case b), or it may have positive marginal rates throughout (case c); in both cases,

marginal rates can be high at very low incomes (see figures 1, 5, and 6).

Whether case (b) or (c) describes the tax function depends on the revenue

requirement G and the level of the altruistic consumption floor α. With no revenue

requirement or altruism (G = 0 and α = 0), it can be shown that T ∗(ye) < 0 whereas

T ∗(Y (x−)) ≥ 0. This says that the election winner pays lower taxes than an individual

with productivity x−, so T ∗ necessarily has a downward sloping segment (case b). If

G and α are high enough, however, marginal tax rates are positive throughout:27

Proposition 8 (the role of G and α in determining the slope of T ∗) Assume

CON and NB and consider solutions to xe’s problem with G < Ĝ(α). Then:

1. For G in a neighborhood of Ĝ(α) for given α, the tax function T ∗ is strictly

increasing on [Y (x−), Y (x+)].

2. For α in a neighborhood of Ĝ−1(G) for given G, the tax function T ∗ is strictly

increasing on [Y (x−), Y (x+)].

The proof studies parametric variations in G and α. The proposition shows

that the tendencies illustrated in figures 5 and 6 are generic.

VI. CONCLUSION

We study a simple form of representative democracy in which voters elect a

single candidate who then imposes redistributional taxes on all citizens. We provide

conditions for the winning candidate to receive the votes of median-productivity in-

dividuals, so a median-productivity candidate is a Condorcet winner. We also show

that the tax function imposed by the election winner is always nonlinear, may have

27Röell (1996) assumes G = 0 and α = 0, which implies that the tax function necessarily has

negative marginal rates at some incomes.
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positive marginal rates at all incomes if government faces non-redistributional spend-

ing requirements or if individuals are altruistic, and may impose high marginal tax

rates at very low incomes.

Two assumptions are crucial for the median-voter results. The first and no

doubt strongest is one-dimensional heterogeneity of candidates; if candidates (the

objects over which voting occurs) differ along more than one dimension, voting cycles

arise generally. The advantage of assuming such one-dimensional heterogeneity is that

it allows analysis of how economic forces influence the shape of the tax function. The

alternative approach of ruling out cycling by imposing linearity on the tax function

precludes such analysis.

The second crucial assumption is that no restrictions are placed on the func-

tional form of the tax function. Although a median-voter result was obtained by

Meltzer and Richard (1981) by restricting the tax function to be linear, other restric-

tions can upset a median-voter outcome.
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APPENDIX: PROOFS

Proposition 1 Overview: For (ye, Te) /∈ B, we show that solutions to URM solve

CRM, establishing part 2 of the proposition. For (ye, Te) ∈ B, we first define xb1 ≡

min{x | Ue(x) ≥ Û(x)} (see figure A1). Let (i) subscripts mark solutions to CRMi

for i = 1, 2. We construct the interval [x1, x2] by solving CRM2 conditional on

(xb1, ye, Te), defining x2 ≡ sup{x | Y(2)(x) = ye}, then solving CRM1 conditional on

(x2, ye, Te) and defining x1 ≡ min{x | Y(1)(x) = ye}. The interval [x1, x2] has constant

income Y (x) = ye and hence constant utility U(x) = Ue(x) as in part 1a. We combine

the solutions to CRM1 and CRM2 conditional on (x2, ye, Te) as

{Ub(x), Yb(x)}x ≡ {U(1)(x), Y(1)(x)}x≤x2 ∪ {U(2)(x), Y(2)(x)}x≥x2 .

The remainder of parts 1a-b are established by showing that {Ub(x), Yb(x)}x solves

CRM, and that the combined solutions to CRM1 and CRM2 conditional on (xb, ye, Te)

for any xb ∈ [x1, x2] also equal {Ub(x), Yb(x)}x and hence yield the same revenue. The

properties of R in part 1c follow from parametric variation/value function arguments.

Given R, the existence and differentiability of T ∗e follows from the implicit function

theorem.

Details: CON and the Mangasarian sufficiency theorem imply that: CRM1
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and CRM2 have solutions with unique profiles {U(x), Y (x)}x; the conditions of the

Maximum Principle are sufficient for optimality; and Y is continuous. Because Y is

unique, its derivative ψ to is uniquely defined except at points of discontinuity. This

uniqueness implies the uniqueness of the solution to CRM.

For (ye, Te) /∈ B, we have Û(x) ≥ Ue(x) for all x so the solution to URM

satisfies (7) and hence is optimal for CRM. The profiles {Û(x), Ŷ (x)}x are unique

by CON because URM is equivalent to CRM2 conditional on (xb = x−, ye = 0, Te =

−α).28 The definition of Ĝ implies R(ye, Te) = Ĝ for (ye, Te) /∈ B.

For (ye, Te) ∈ B, the solution to URM does not satisfy (7). Because CRM1

and CRM2 conditional on (xb, ye, Te) for any xb ∈ [x1, x2] satisfy (7) by construction,

the combined solutions to CRM1 on [x−, xb] and CRM2 on [xb, x+] must differ from

the solution to URM.

Because URM does not satisfy (7), the sets {x | Ue(x) > Û(x)} and hence

{x | Ue(x) ≥ Û(x)} are nonempty so xb1 = min{x | Ue(x) ≥ Û(x)} exists. Consider

CRM2 conditional on (xb1, ye, Te). Its solution profiles {U(2)(x), Y(2)(x)}x are unique

and U(2)(xb1) = Ue(xb1), so Y(2)(xb1) = ye. Thus {x : Y(2)(x) = ye} is non-empty so x2
is well-defined.

The special case with xb1 = x2 is considered below; for now, assume xb1 < x2.

It cannot be that x2 = ∞ is optimal (when x+ = ∞) because higher revenue could

then be extracted from high-productivity individuals by assigning them incomes above

ye. Specifically, define

τ(x|ye, Te) ≡ 1−
u1(ye − Te, 1− ye/x)

uc(ye − Te, 1− ye/x)x
.

Agent monotonicity implies that τ(x|ye, Te) is strictly increasing in x and converges to

one as x→∞. Thus there is an xτ <∞ such that τ(x|ye, Te) > 0 for all x > xτ . From

28In CRM2 conditional on (x−, 0,−α), the constraint Y (xb) ≥ ye holds trivially and the constraint

U(xb) = Ue(xb) reduces to U(x−) = u(α, 1). The Euler equation (9) for URM implies ξ(x−) < 0 so

(1) binds, that is, U(x−) = u(α, 1).
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(5) and TY (Ue(x), ye, x) = τ(x|ye, Te), an upward variation in Y (x) for all x ∈ (xτ , x+]

holding U(x) constant then raises T , so a policy with Y (x) = ye for all x ≥ xb1, that

is, with x2 =∞, cannot be optimal.

From x2 <∞, it follows that x2 = max{x : Y(2)(x) = ye}, so Y(2)(x2) = ye and

U(2)(x2) = Ue(x2).

Consider CRM1 conditional on (x2, ye, Te) and note that x1 = min{x : Y(1)(x) =

ye}. CRM1 conditional on (x2, ye, Te) and CRM2 conditional on (xb1, ye, Te) have

matching utility and income values at x2, or U(1)(x2) = U(2)(x2) = Ue(x2) and

Y(1)(x2) = Y(2)(x2) = ye, so the solutions to both CRM1 and CRM2 can hold si-

multaneously and {Ub(x), Yb(x)}x is well-defined at x2.

The special case with x1 = x2 (and xb1 < x2) is also be considered below;

for now, assume x− ≤ x1 < x2 ≤ x+. By construction, the combined profiles

{Ub(x), Yb(x)}x have Ub(x) = Ue(x) and Yb(x) = ye for x ∈ [x1, x2], and Yb(x) 6= ye

for x /∈ [x1, x2]. Because Ub(x) = Ue(x) implies Yb(x) = ye and Ub(x) ≥ Ue(x) always

holds, it must be that Ub(x) > Ue(x) whenever Yb(x) 6= ye, that is, for x /∈ [x1, x2].

CON implies that the unique solution profiles of CRM1 and CRM2 conditional

on (xb, ye, Te) for any xb ∈ [x1, x2] are the same as {Ub(x), Yb(x)}x, and hence yield

the same revenue Rb ≡ R(ye, Te). To prove the optimality of {Ub(x), Yb(x)}x, suppose

to the contrary that an alternative profile {Ua(x), Ya(x)}x satisfied the constraints of

CRM and yielded revenue Ra > Rb. There are two possibilities:

(a) If Ya(xa) = ye for any xa ∈ [x−, x+] then the combined solutions to CRM1

and CRM2 conditional on (xa, ye, Te), denoted {U∗a (x), Y ∗a (x)}x, would yield revenue

R∗a ≥ Ra > Rb. Because any xb ∈ [x1, x2] yields revenue Rb, it must be that xa /∈

[x1, x2]. Hence either min{x : Y ∗a (x) = ye} > x2 or max{x : Y ∗a (x) = ye} < x1.

Consider min{x : Y ∗a (x) = ye} > x2. CRM2 conditional on (x2, ye, Te) satisfies the

transversality condition ξ(2)(x+) = 0 and the Euler equation ξ(2),x(x) = −HU > 0 for

x ≥ x2, so ξ(2)(x2) < 0. For x > x2 we have Y(2)(x) > ye so ψ(x) > 0 and hence
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µ(2)(x) = 0 in a neighborhood above x2. Thus µ(2),x(x2) = 0. In (8), µ(2),x(x2) = 0

and ξ(2)(x2) < 0 imply τ(x2|ye, Te) > 0. Because τ(x|ye, Te) is strictly increasing in

x, τ(x|ye, Te) > 0 for x ∈ [x2, x+]. Again using (5), a compensated upward variation

in Y ∗a on {x : Y ∗a (x) = ye} ⊂ [x2, x+] would then increase revenue so {U∗a (x), Y ∗a (x)}x
is not revenue maximizing, a contradiction. Analogous logic applies if x1 > max{x :

Y ∗a (x) = ye}.

(b) If Ya(x) 6= ye for all x then the continuity of Ya implies that either

Ya(x) < ye or Ya(x) > ye for all x. If Ya(x) < ye then {Ua(x), Ya(x)} is feasible for

CRM1 conditional on (x+, ye, Te) so Ra ≤ R1(x+, ye, Te). Similarly if Ya(x) > ye then

{Ua(x), Ya(x)} is feasible for CRM2 conditional on (x−, ye, Te) so Ra ≤ R2(x−, ye, Te).

The feasible sets for CRM1 conditional on (x+, ye, Te) and for CRM2 conditional on

(x−, ye, Te) are in the feasible set for CRM, soRb ≥ max{R1(x, ye, Te), R2(x−, ye, Te) ≥

Ra, also a contradiction. Thus {Ub(x), Yb(x)}x is optimal.

We now consider the two special cases xb1 = x2 and xb1 < x1 = x2, and show

that these correspond to the boundary cases with x− = x1 = x2 and x+ = x1 = x2 in

part 1a:

(1) Suppose xb1 = x2: URM restricted to any [x−, xb] satisfies all sufficient

optimality conditions for CRM1 conditional on (xb, ye, Te) except Y(1)(xb) ≤ ye and

Ue(xb) = U(1)(xb). If x− < xb1 = x2, then Ue(xb1) = Û(xb1) and Ŷ (xb1) = ye, so

{Û(x), Ŷ (x)} on [x−, xb1] is the unique solution to CRM1 conditional on (xb1, ye, Te).

The combined solutions of CRM1 on [x−, xb1] and CRM2 on [xb1, x+] then satisfy the

sufficient conditions for a solution to URM on [x−, x+], contradicting (ye, Te) ∈ B.29

29For the combined solutions of CRM1 and CRM2 to satisfy all sufficient conditions for a solu-

tion to URM, solutions must match at xb1, that is, Y(1)(xb1) = Y(2)(xb1), U(1)(xb1) = U(2)(xb1),

µ(1)(xb1) = µ(2)(xb1), and ξ(1)(xb1) = ξ(2)(xb1). The first two hold by construction. From

Y(1)(x) < ye for x < xb1 we have µ(1)(x) = 0 in a neighborhood of xb1, and hence from (8),

H(1),Y (xb1) = 0. Similarly, Y(2)(x) > ye for x > x2 implies µ(2)(x) = 0 in a neighborhood of x2 and

hence H(2),Y (x2) = 0. Thus H(1),Y (xb1) = H(2),Y (xb1), which implies ξ(1)(xb1) = ξ(2)(xb1).
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Thus x2 = x−. This is a boundary case in which the constraint U(2)(x) ≥ Ue(x)

binds only at x−, and the solution to CRM2 conditional on (x−, ye, Te) is the unique

solution to CRM. In this case, x1 = x− so x− = x1 = x2.

(2) Suppose x1 = x2 with xb1 < x2: If x2 < x+, then Ue(x2) = Û(x2) and

Ŷ (x2) = ye, so {Û(x), Ŷ (x)} on [x2, x+] is the unique solution to CRM2 conditional

on (x2, ye, Te). The combined solutions of CRM1 on [x−, x2] and CRM2 on [x2, x+]

then satisfy the sufficient conditions for a solution to URM on [x−, x+], contradicting

(ye, Te) ∈ B. Thus x1 = x2 = x+ < ∞. This is a boundary case in which the

constraint U(1)(x) ≥ Ue(x) binds only at x+, and the solution to CRM1 conditional

on (x+, ye, Te) is the unique solution to CRM.

Standard value-function results imply that R1 and R2 are continuous and

differentiable with respect to (ye, Te) ∈ B. To sign ∂R/∂Te when x1 < x2, choose any

xb ∈ (x1, x2). Because solutions to CRM1 and CRM2 are unique, so is R = R1 +R2,

and

∂R/∂Te = ∂R1(xb, ye, Te)/∂Te + ∂R2/∂Te(xb, ye, Te) (12)

= [ξ(1)(xb)− ξ(2)(xb)] · uc(ye − Te, 1− ye/xb). (13)

Subtract (9) for CRM2 conditional on (x1, ye, Te) from (9) for CRM1 conditional on

(x2, ye, Te) to obtain

ξ(1),x(x)− ξ(2),x(x) = −ωU(Ue(x), ye, x) · (ξ(1)(x)− ξ(2)(x)), for x ∈ [x1, x2]. (14)

This is a homogenous linear differential equation so ξ(1) − ξ(2) cannot change

sign on [x1, x2]. Taking similar differences of Euler equations (8) and integrating over

[x1, xb] with xb ∈ [x1, x2] yields

I(xb) ≡
Z xb

x1

ωY (Ue(x), ye, x) · [ξ(1)(x)− ξ(2)(x)]dx (15)

= µ(2)(xb) + µ(1)(x1)− µ(2)(x1)− µ(1)(xb). (16)
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Because ψ(x) ≥ 0 implies µ(i)(x) ≤ 0 and the optimality conditions of CRM1 and

CRM2 imply µ(1)(x1) = 0 and µ(2)(x2) = 0, it follows that I(x2) ≥ 0 and hence

ξ(1)(xb) − ξ(2)(xb) ≥ 0. If ξ(1)(xb) = ξ(2)(xb) then (14) implies ξ(1)(x) = ξ(2)(x) for

x ∈ [x1, x2] so I(x2) = 0, whence µ(2)(x1) = µ(1)(x2) = 0. From (8), τ(x1|ye, Te) =

τ(x2|ye, Te) and because τ is strictly increasing, x1 = x2, contradicting x1 < x2. Thus

ξ(1)(xb)− ξ(2)(xb) > 0, (17)

so ∂R/∂Te > 0.

In the special case with x− = x1 = x2, the transversality condition ξ(2)(x+) = 0

and (9) imply ξ(2)(x−) < 0, whence ∂R/∂Te = −ξ(2)(x−) · uc > 0. In the special case

with x1 = x2 = x+, the solution to CRM1 conditional on (x+, ye, Te) has ξ(1)(x+) ≥ 0

and cannot satisfy the sufficient conditions for a solution to URM, so ξ(1)(x+) 6= 0

whence ∂R/∂Te = ξ(1)(x+) · uc > 0.

Proposition 2 1. From the definition of R, a given (ye, Te) satisfies the feasibility

constraint R(ye, Te) ≥ G, if and only if profiles {U(x), Y (x), ψ(x)}x exist that satisfy

the constraints of xe’s modified problem (equations (1), (3), (4), (6), and (7)). Hence

(ye, Te, {U(x), Y (x), ψ(x)}x) solves xe’s modified problem if and only if (ye, Te) maxi-

mizes u(ye−Te, 1−ye/xe) subject to R(ye, Te) ≥ G. Values Te < T ∗e (ye) are infeasible

and values Te > T ∗e (ye) are suboptimal because xe could raise u(ye − Te, 1 − ye/xe)

by reducing Te. Thus Te = T ∗e (ye) in any solution to xe’s modified problem, so

R(ye, Te) = G. The latter implies that profiles {U(x), Y (x), ψ(x)}x induce maximum

revenue and therefore solve CRM. Given Te = T ∗e (ye), maximizing u(ye−Te, 1−ye/xe)

means that ye maximizes u(ye − T ∗e (ye), 1− ye/xe), as claimed. Non-negative leisure

implies 0 ≤ ye ≤ xe.

2. A solution exists because ye maximizes a continuous function on the com-

pact set [0, xe]; the standard first-order necessary condition for an interior optimum is

∂T ∗e /∂ye = (1− ul
ucxe

). (The assumption liml→0ul/uc =∞ rules out a corner solution
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at ye = xe.) Solutions to xe’s modified problem satisfy U(xe) ≥ Ue(xe) because (7)

holds for x = xe. If U(xe) > Ue(xe) then xe could raise own utility by choosing

(Y (xe), T (xe)) instead of (ye, Te), contradicting optimality. Thus U(xe) = Ue(xe).

Because R(ye, T ∗e (ye)) = G < Ĝ, it must be that (ye, T ∗e (ye)) ∈ B. From proposition

1, part 1a, [x1, x2] is non-empty, xe ∈ [x1, x2], and Y (xe) = ye.

3. Any profiles {U(x), Y (x), ψ(x)}x that are feasible for xe’s original problem

are feasible for the modified problem by taking ye = Y (xe) and Te = T (U(xe), ye, xe).

Therefore the utility xe obtains under the original problem is less than or equal to the

utility xe obtains in any solution to the modified problem. From part 2, any solution to

the modified problem satisfies Y (xe) = ye and U(xe) = Ue(xe) = u(ye−Te, 1−ye/xe),

so c∗(U(xe), Y (xe)/xe) = ye − Te, and (2) implies (7). All solutions to the modified

problem therefore have profiles in the feasible set of the original problem, so any

solution to the modified problem solves the original problem. Moreover, xe’s utility

is equal under the modified and original problems, so any solution to xe’s original

problem solves the modified problem.

Proposition 4 We compare {U(x | yL)}x and {U(x | yH)}x for given x by integrat-

ing ∂U(x | ye)/∂ye over [yL, yH ]. At points xe where y∗e is single-valued, proposition

3 also implies that y∗e has an inverse, denoted x∗e(ye), that is single-valued, contin-

uous, and strictly increasing. At points xe where y∗e is multi-valued, the Maximum

Theorem implies that y∗e is compact-valued so min{y∗e(xe)} and max{y∗e(xe)} exist;

for ye ∈ [min{y∗e(xe)},max{y∗e(xe)], either x∗e(ye) = xe or else x∗e(ye) is undefined.

We first consider subintervals of [yL, yH ] over which x∗e is strictly increasing,

then deal with subintervals over which x∗e is constant or undefined; because each of

the latter subintervals is associated with an xe at which y∗e is multi-valued, the latter

subintervals have the form [min{y∗e(xe)},max{y∗e(xe)}].

Consider ye ∈ (yL, yH) at which x∗e is strictly increasing. From proposition 1,
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the solution to CRM conditional on (ye, T ∗e (ye)) has U(x) = Ue(x) and Y (x) = ye

on an interval [x1, x2]. Because x1 ≤ xe ≤ x2 from proposition 2, part 2, and x− ≤

x∗e(yL) < xe = x∗e(ye) < x∗e(yH) ≤ x+, proposition 1 (part 1a) implies x1 < x2.

We consider in sequence given x-values in the intervals [x1, x2], [x2, x+], and

[x−, x1]:

(1) For x ∈ [x1, x2], where U(x | ye) = Ue(x):

∂U(x | ye)/∂ye = ∂Ue(x)/∂ye = [uc − ul/x]− uc · ∂T ∗e /∂ye (18)

= uc · [τ(x|ye, Te)− ∂T ∗e /∂ye] = uc · [τ(x|ye, Te)− τ(xe|ye, Te)],

where the last step uses the first-order condition in proposition 2. Because the en-

velope theorem implies ∂U(xe | ye)/∂ye = 0 at xe = x∗e(ye) and agent monotonicity

implies that τ(x|ye, Te) and hence ∂U(x | ye)/∂ye are strictly increasing in x, it follows

that ∂U(x | ye)/∂ye < 0 for x ∈ [x1, xe) and ∂U(x | ye)/∂ye > 0 for x ∈ (xe, x2].

For use below, we need to show that

∂U(x1 | ye)/∂ye < 0 (19)

∂U(x2 | ye)/∂ye > 0. (20)

From above, these follow if xe 6= x1 and xe 6= x2. Differentiate the government budget

R(ye, T
∗
e (ye)) = G totally to get ∂R(Te, ye)/∂ye + ∂R(Te, ye)/∂Te · ∂T ∗e (xe)/∂ye = 0

and insert ∂R(Te, ye)/∂ye = ∂Ue(x)/∂ye[ξ2(xe) − ξ1(xe)] − µ(1)(xe) + µ(2)(xe), which

is the value-function result analogous to (12), as well as ∂R(Te, ye)/∂Te from (12)

and ∂T ∗e (xe)/∂ye = τ(xe|ye, Te) from proposition 2, then apply (18) and reduce to

µ(1)(xe) = µ(2)(xe). If xe = x1 then the optimality conditions for CRM1 imply

µ(1)(x1) = µ(2)(x1) = 0. For x < x1, the construction of x1 implies Y (x) < ye so

µ(1)(x) = 0. Thus µ(1)(x) = 0 for x ∈ [x−, x1], which implies µ(1),x(x1) = 0 and hence

from (8) that H(1),Y = 0 at x1. Then (17) and (8) imply H(2),Y = −µ(2),x(x1) < 0.

Because µ(2)(x1) = 0, it must be that µ(2)(x) > 0 for some x > x1, contradicting the
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optimality condition µ(2)(x) ≤ 0. Thus xe 6= x1, which implies (19). The proof that

xe 6= x2, which implies (20), is analogous.

(2) For x ∈ [x2, x+], NB implies µx(x) = 0 in (8) so HY = 0, where subscripts

(2) for CRM2 are suppressed. Because HY Y < 0 by CON, the income level Y ≡

y(U, ξ, x) that satisfies HY (x, U, Y, ψ, ξ, 0) = 0 is a well-defined function of (U, ξ, x)

that is differentiable in (U, ξ). From (3) and (9), U(x | ye) and ξ(x | ye) then satisfy

the differential equations

Ux(x | ye) = ω(U(x | ye), y(U(x | ye), ξ(x | ye), x), x)

ξx(x | ye) = −TU(U(x | ye), y(U(x | ye), ξ(x | ye), x), x)f(x) (21)

−ξ(x | ye) · ωU(U(x | ye), y(U(x | ye), ξ(x | ye), x), x).

System (21) is saddle-path stable because the characteristic matrix has zero

trace and, from CON, a negative determinant. Hence, a solution to (21) (which exists

by CON) is uniquely determined by the two boundary conditions U(x2 | ye) = Ue(x2),

and ξ(x+ | ye) = 0 if x+ <∞ or limx→∞ ξ(x | ye) = 0 if x+ =∞. For given ye, (21)

and Y = y(U, ξ, x) uniquely determine {U(x | ye), Y (x | ye)}x on [x2, x+]. Saddle-

path stability implies that an increase in ye that raises Ue(x2) must increase U(x | ye)

for x ≥ x2. The derivative U 0(x) ≡ ∂U(x | ye)/∂ye exists for x ≥ x2 and is found in

two steps. First, differentiate (21) with respect to ye to obtain30

∂U 0(x)/∂x = γ(U, ξ, x) · U 0(x) + γU 0ξ(U, ξ, x) · ξ0(x) (22)

∂ξ0(x)/∂x = γξ0U(U, ξ, x) · U 0(x)− γ(U, ξ, x) · ξ0(x),

where ξ0(x) ≡ ∂ξ(x | ye)/∂ye, γ(U, ξ, x) = ωU − ωY · HY U/HY Y , γU 0ξ(U, ξ, x) =

−ωY Y > 0 and γξ0U(U, ξ, x) = −[HY Y ·HUU−HY U ·HY U ]/HY Y > 0. Second, solve (22)

subject to the boundary conditions that U 0(x2) is given and ξ0(x+) = 0. (These are

30The notation U 0(x) highlights that these are ordinary differential equations in x at given ye.

Also, derivatives are one-sided at set boundaries here and below.
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the derivatives of the boundary conditions for (21).) Because (21) has a characteristic

matrix with zero trace and a negative determinant, it is saddle-path stable. This with

U 0(x2) > 0 from (20) implies U 0(x) > 0, or ∂U(x | ye)/∂ye > 0 for x ∈ [x2, x+].

(3) For x ∈ [x−, x1], let x0(ye) ≡ inf{x ≥ x− : Y (x | ye) > 0} denote the lower

bound of values of x at which earnings are positive. CRM1 applies so we suppress

subscripts (1) below. As in case (2) above, U(x | ye) and ξ(x | ye) satisfy (21) and

(22) for x ∈ [x0, x1]. One boundary condition on (21) is U(x1 | ye) = Ue(x1). Because

CRM1 is constrained by the inequalities U(x− | ye) ≥ u(α, 1) and Y (x− | ye) ≥ 0,

each of which may hold with inequality or equality and each with zero or non-zero

shadow values (ξ(x− | ye) ≤ 0, µ(x− | ye) ≤ 0), the second boundary condition

depends on which of the four inequalities hold as equalities. For any ye, one or more

of the following four cases apply:

(a) x0 = x− and ξ(x− | ye) = 0: In this case (21) applies on [x−, x1] and the

second boundary condition is ξ(x− | ye) = 0. Also, Y (x | ye) > 0 and U(x | ye) >

u(α, 1) for x > x−, so Xmin(ye) has measure zero.

(b) x0 = x− and U(x− | ye) = u(α, 1): In this case, (21) applies on [x−, x1]

with second boundary condition U(x− | ye) = u(α, 1). Again Y (x | ye) > 0 and

U(x | ye) > u(α, 1) for x > x−, with Xmin(ye) = {x−}.

(c) Y (x− | ye) = 0 and ξ(x− | ye) = 0: In this case, x0 ≥ x− is endogenous and

{U 0(x), ξ0(x)}x on [x0, x1] is described by (21) with the second boundary condition

given by requirements that (U(x0 | ye), ξ(x0 | ye)) satisfy HY (U(x0 | ye), 0, ψ, ξ(x0 |

ye), 0, x0) = 0 and that ξ(x0 | ye) be determined by the differential equation −ξx(x |

ye) = HU(U(x0 | ye), 0, ψ, ξ(x | ye), µ, x). The latter has solution ξ(x0 | ye) =

F (x0)/uc(c
∗(U(x0 | ye), 0), 1). Also, U(x | ye) = U(x− | ye) for x ≤ x0, so Xmin(ye) =

® if and only if U(x− | ye) > u(α, 1), and Xmin(ye) = [x−, x0] if and only if U(x−) =

u(α, 1).

(d) Y (x− | ye) = 0 and U(x−) = u(α, 1): In this case, x0 ≥ x− is also
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endogenous and (21) applies on [x0, x1] with the second boundary condition given by

requirements that (U(x0 | ye), ξ(x0 | ye)) satisfy U(x0 | ye) = u(α, 1) and HY (U(x0 |

ye), 0, ψ, ξ(x0 | ye), 0, x0) = 0. From Y (x | ye) = 0 and U(x | ye) = U(x− | ye) =

u(α, 1) for x ∈ [x−, x0], it follows that Xmin(ye) = [x−, x0].

Denote the sets of ye-values for which CRM1 has a solution falling into case

j ∈ {a, b, c, d} above by Y(j) ≡ {ye| (21) has a solution in case j for given U(x1 | ye)}.

Because (21) is saddle-path stable, solutions are continuous in the boundary value

U(x1 | ye), and because the cases are defined by equality conditions, the sets Y(j) are

closed.

For ye ∈ Y(a), ξ(x− | ye) = 0 implies the second boundary condition ξ0(x−) =

0. By logic analogous to that in case (2) above, U 0(x) exists for x ≤ x1 and is

the solution to (22) with boundary conditions that U 0(x1) is given and ξ0(x−) = 0.

Saddle-path stability and (19) then imply U 0(x) < 0 for x ∈ [x−, x1].

For ye ∈ Y(b), U(x− | ye) = u(α, 1) implies the second boundary condition

U 0(x−) = 0. As above, U 0(x) exists for x ≤ x1; in this case U 0(x) is the solution

to (22) with boundary conditions that U 0(x1) is given and U 0(x−) = 0. Saddle-path

stability and (19) then imply U 0(x) < 0 for x ∈ (x−, x1].

For ye ∈ Y(c), either x0 = x−, which implies ye ∈ Y(a) so all results for Y(a)

apply, or x0 = x0(ye) > x−. In the latter case, it is straightforward to show that x0

is continuous in ye and that U(x | ye) and ξ(x | ye) are differentiable in ye on [x0, x1].

Given differentiability, {U 0(x), ξ0(x)}x on [x0, x1] is uniquely determined by (22) with

boundary conditions that U 0(x1) is given and ξ0(x0) = F (x0)(− ucc(c∗(U(x0|ye),0),1)
uc(c∗(U(x0|ye),0),1)3 ) ·

U 0(x0) (which is the derivative of ξ(x0 | ye) = F (x0)/uc(c
∗(U(x0 | ye), 0), 1)). Saddle-

path stability and (19) then imply U 0(x) < 0 for x ∈ [x0, x1], so U 0(x0) < 0. This

with U 0(x) = U 0(x−) < 0 for x ∈ [x−, x0] implies U 0(x) < 0 for x ∈ [x−, x0].

For ye ∈ Y(d), one can show that x0 is continuous in ye and that U(x | ye) and

ξ(x | ye) are differentiable in ye on [x0, x1]. Because U(x | ye) = u(α, 1) for x ≤ x0,

40



it follows that U 0(x) = 0 for x ∈ [x−, x0]. Then {U 0(x), ξ0(x)}x on [x0, x1] is uniquely

determined by (22) with boundary conditions that U 0(x1) is given and U 0(x0) = 0.

Saddle-path stability and (19) then imply U 0(x) < 0 for x ∈ (x0, x1] and ξ0(x) < 0

for x ∈ [x0, x1]. Moreover, ∂Y (x0 | ye)/∂ye = (−HY Y )
−1ωY ξ

0(x0) < 0 implies that x0

increases strictly with ye.

Now consider the ordering of the sets Y(j), j = 1, 2, 3, 4. Because U 0(x−) < 0

for ye ∈ Y(a) ∪ Y(c) and U(x− | ye) = u(α, 1) for ye ∈ Y(b) ∪ Y(d), it must be

that all points in Y(a) ∪ Y(c) are less than all points in Y(b) ∪ Y(d) except that

if both are nonempty, then Y(a) ∪ Y(c) and Y(b) ∪ Y(d) meet at the single point

max{ye ∈ Y(a) ∪ Y(c)} = min{ye ∈ Y(b) ∪ Y(d)}. Moreover, ye ∈ Y(c)\Y(d) implies

U(x0 | ye) > u(α, 1) and hence Xmin(ye) = ®, which implies that Xmin(ye) has

positive measure only if ye ∈ Y(d). Because x0 is strictly increasing for ye ∈ Y(d),

it must be that all points in Y(b) are less than all points in Y(d) except that if

both are nonempty, then Y(b) and Y(d) meet at the single point max{ye ∈ Y(b)} =

min{ye ∈ Y(d)}. Because (i) Xmin(ye) = ® for ye < max{ye ∈ Y(a) ∪ Y(c)}, (ii)

Xmin(ye) = {x−} for ye ∈ Y(b), and (iii) x0 is strictly increasing in ye on Y(d), it

follows that Xmin(y1) ⊂ Xmin(y2) for any y1 ≤ y2.

Summarizing derivatives for x ∈ [x−, x1]: Because (i) U 0(x) < 0 for x ∈ [x−, x1]

and any ye < max{ye ∈ Y(a) ∪ Y(c)}, (ii) U 0(x) < 0 for x ∈ (x−, x1] and any

ye ∈ Y(b), and (iii) U 0(x) < 0 for x ∈ (x0, x1] and any ye ∈ Y(d), it follows for all ye
that U 0(x) < 0 for x ∈ [x−, x1]\Xmin(ye) and U(x | ye) = u(α, 1) for x ∈ Xmin(ye).

Now consider any interval [min{y∗e(xe)},max{y∗e(xe)}] for xe ∈ [x∗e(yL), x∗e(yH)]

with multi-valued y∗e . Let Ũ ≡ U(xe | max{y∗e(xe)}) = U(xe | min{y∗e(xe)}) be xe’s

utility and let Ũ = u(ye − Te, 1− ye/xe) implicitly define utility-compensating taxes

Te = T̃ (ye). Let {Ũ(x | ye)}x denote utility profiles that solve CRM conditional on

(ye, T̃ (ye)). By construction, Ũ(xe | ye) = Ũ for ye ∈ [min{y∗e(xe)},max{y∗e(xe)}],

so ∂Ũ(xe | ye)/∂ye = 0. For profiles {Ũ(x | ye)}x, derivations analogous to those in
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(1)-(3) imply ∂Ũ(x | ye)/∂ye ≥ 0 for x > xe and ∂Ũ(x | ye)/∂ye ≤ 0 for x < xe. Note

that {Ũ(x | ye)}x = {U(x | ye)}x for ye ∈ y∗e(xe). For any y1, y2 ∈ y∗e(xe) with y1 < y2,

we have U(x | y2) − U(x | y1) = Ũ(x | y2) − Ũ(x | y1) =
R y2
y1

∂Ũ(x | ye)/∂yedye for

all x, so U(xe | y2) − U(xe | y1) = 0, U(x | y2) − U(x | y1) ≥ 0 for x > xe, and

U(x | y2) − U(x | y1) ≤ 0 for x < xe. (The latter implies that Xmin(y1) ⊂ Xmin(y2)

also holds for any y1 ≤ y2 taken from multi-valued y∗e(xe).)

To compute U(x | yH)− U(x | yL), integrate ∂U(x | ye)/∂ye over all subinter-

vals of [yL, yH ] over which x∗e is strictly increasing, integrate ∂Ũ(x | ye)/∂ye over all

subintervals of the form [min{y∗e(xe)},max{y∗e(xe)}] as in the preceding paragraph,

and sum. Because [yL, yH ] contains at least one non-degenerate subinterval over

which x∗e is strictly increasing, we have U(x | yH) − U(x | yL) > 0 for x ≥ xH ,

U(x | yH) − U(x | yL) = 0 for x ∈ Xmin(yL), and U(x | yH) − U(x | yL) < 0 for

x ∈ [x−, x1]\Xmin(yL).

Because U(x | yH) − U(x | yL) is continuous in x, the mean-value theorem

ensures that there is at least one crossing point x× ∈ (xL, xH) with U(x | yH)−U(x |

yL) = 0. The uniqueness of x× in [xL, xH ] follows from agent monotonicity.

Proposition 5 Voting decisions of individuals with x /∈ Xmin(yL) follow from propo-

sition 4 (parts 1-3). (Because yH > 0, proposition 3 implies yL < yH .)

If Xmin(yL) has zero measure or if all x ∈ Xmin(yL) vote for xL, then U(xM |

yL) > U(xM | yH) implies that x× < xM , all voters in (xM , x+] prefer xL over xH ,

and (xM , x+] is a majority. The reverse applies if U(xM | yL) < U(xM | yH).

If Xmin(yL) has positive measure and all x ∈ Xmin(yL) abstain, let xm denote

the median of [x−, x+]\Xmin(yL). Then U(xm | yL) > U(xm | yH) implies x× < xm,

so all voters in (xm, x+] prefer xL over xH , and this is a majority. The reverse applies

if U(xm | yL) < U(xm | yH).
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Proposition 6 Immediate from proposition 5 (parts 1 and 2a). Whenever xM is a

candidate, x× 6= xM rules out a tie.

Proposition 7 From (5), T ∗(Y (x)) = T (U(x), Y (x), x) determines T ∗ for all y ∈

[Y (x−), Y (x+)]. The continuity of U , Y , and T implies continuity of T ∗. From CON,

Y has a piecewise continuous derivative ψ, so dT ∗(Y (x))/dy · ψ(x) = TU(U, Y, x) ·

dU/dx+ TY (U, Y, x) ·ψ(x)+Tx except at points x where ψ is discontinuous. From (3)

and (5), TU(U, Y, x) · dU/dx+ Tx = −c∗U · ω(U, Y, x) + c∗n · Y/x2 = (−1/uc) · ulY/x2 +

(ul/uc) · Y/x2 = 0, so dT ∗(Y (x))/dy · ψ(x) = TY (U, Y, x) · ψ(x).

From NB, Y −1exists for all y ∈ [Y (x−), Y (x+)] except possibly y = 0 and

y = ye. Moreover, ψ(Y −1(y)) > 0 wherever Y −1 is defined, and ψ is continu-

ous, so dT ∗(Y (x))/dy = TY (U, Y, x) = τ(x) and hence dT ∗(y)/dy = TY (U, Y, x) =

τ(Y −1(y)). For any yd ∈ [Y (x−), Y (x+)]\{0, ye} at which ψ(Y −1(yd)) is discontinu-

ous, dT ∗(y)/dy = τ(Y −1(y)) in a neighborhood of yd (excluding yd), so dT ∗(yd)/dy =

limy→yddT
∗(y)/dy = τ(Y −1(yd)) is well-defined. Thus (11) holds for all y ∈ [Y (x−),

Y (x+)]\{0, ye}. If 0 ∈ [Y (x−), Y (x+)], then dT ∗(0)/dy ≡ limy→0dT
∗(y)/dy =

τ(maxX0) is well-defined. Therefore T ∗ is continuously differentiable on [Y (x−), Y (x+)]

\{ye}. (Because Y −1(0) is undefined if X0 is an interval, (11) may not hold at y = 0.)

1. On [x1, x2], τ(x) = τ(x|ye, Te), which is strictly increasing in x from agent

monotonicity. Thus τ(x2) > τ(x1). The one-sided limits follow from the continuity

of dT ∗(y)/dy = τ(Y −1(y)) for y < ye in a neighborhood of ye and y > ye in a

neighborhood of ye.

2. Monotonicity of Y implies Y (x) ≥ ye. Because (ye, Te) ∈ B by proposition

2, part 1b of proposition 1 requires that {U(x), Y (x)}x solve CRM2 on [xe, x+] and

CRM1 on [x−, xe]. Integrating the Euler equation (9):

ξ(2)(x) = −
Z x+

x

η(x, z)

uc(c∗(U(z), Y (z)/z), 1− Y (z)/z)
dF (z) + ξ(2)(x+), (23)

where η(x, z) ≡ exp{
R z
x
ωU(U(z̃), Y (z̃), z̃)dz̃} > 0. The transversality condition for
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CRM2 is ξ(2)(x+) = 0, which implies ξ(2)(x) < 0 on [xe, x+). In (8) for CRM2, NB

implies µx(x) = 0 for x ≥ x2, so τ(x) = 1 − ul
ucx

= −[ωY (U, Y, x)/f(x)]ξ(2)(x). It is

straightforward to show that agent monotonicity implies ωY > 0. Because f > 0 and

ξ(2)(x) < 0, it follows that τ(x) > 0 on [x2, x+), and because ξ(2)(x+) = 0, it follows

that τ(x+) = 0 if x+ <∞.

3. Monotonicity of Y implies Y (x) ≤ ye. Integrating the Euler equation (9):

ξ(1)(x) =

Z x

x−

η(x, z)

uc(c∗(U(z), Y (z)/z), 1− Y (z)/z)
dF (z) + ξ(1)(x−). (24)

Because (1) holds if and only if U(x−) ≥ u(α, 1), transversality conditions for CRM1

are [U(x−)−u(α, 1)] · ξ(1)(x−) = 0 and ξ(1)(x−) ≤ 0. Because η/uc > 0, ξ(1) is strictly

increasing. Thus there are three possibilities: ξ(1) < 0 for all x < x1; ξ(1) switches

sign from negative to positive at a point xτ ∈ (x−, x1) where ξ(1)(xτ ) = 0; or ξ(1) ≥ 0

for all x < x1. As above, (8) and NB imply that ξ(1)(x) and τ(x) have opposite signs

on [x0, x1]. If ξ(1) < 0 for x < x1 then τ(x) > 0 on [x0, x1) so T ∗ is strictly increasing;

this is case (c). If ξ(1)(xτ) = 0 for some xτ ∈ (x−, x1), the shape of T ∗ depends on xτ

and x0. If xτ > x0, (8) and NB imply τ(xτ ) = 0, τ(x) > 0 on (x0, xτ), and τ(x) < 0

on (xτ , x1); this is the inverted U-shaped case (b). Finally, if xτ < x0 or if ξ(1) ≥ 0

for x < x1, (8) and NB imply τ(x) < 0 on [x0, x1), so T ∗ is strictly increasing; this is

case (a). If (1) does not bind (ξ(1)(x−) = 0) then (24) implies ξ(1) > 0 on (x−, x1].

Proposition 8 The Euler equations for URM imply that the costate variable asso-

ciated with Û , denoted ξ̂, satisfies (23) for all x. Because η/uc > 0 and ξ̂(x+) = 0,

it follows that ξ̂(x) < 0 for x < x+. By (8), τ̂(x) > 0 for x < x+ and hence for

x ∈ [x−, xe] in the solution to URM. As {U(x), Y (x)} → {Û(x), Ŷ (x)}x, we have

τ(x) → τ̂(x) pointwise. Since [x−, xe] is compact, the convergence τ(x) → τ̂(x) > 0

is uniform on [x−, xe]. Hence there is a neighborhood of (Ĝ(α), α) such that τ(x) > 0

for all [x−, xe]. Because τ(x) ≥ τ(xe) > 0 on [xe, x2] and τ(x) > 0 for x2 ∈ [x2, x+),

it follows that τ(x) > 0 for x ∈ [x−, x+).
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