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Abstract 

We model competition on a credence market governed by an imperfect label, signaling high 
quality, as a rank-order tournament between firms. In this market interaction, asymmetric firms 
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Contesting fake news

Daniel Rehsmann§ Béatrice Roussillon† Paul Schweinzer♮

1 Introduction

Contests and tournaments are typically modeled such that a given “black box” technology ranks

some dimension of the contestants’ competitive efforts, expenditures, or qualities. The precise

properties of this ranking technology, such as, for instance, the precision with which the underlying

strategic variables are translated into ranks, are usually kept exogenous. This paper formalizes a

novel type of interaction that allows contestants to strategically and jointly control the precision

of the employed ranking technology through costly “marketing” outlays. Intuitively, the creation

of an imprecise ranking is viewed as less costly than the assembly of the perfect ranking embodied

in, for instance, auction models, which can translate even small differences in monetary bids into

significant changes of assignment probabilities.

To put this idea to work, we consider a market of vertically differentiated goods or services with a



credence or experience aspect.1 In this market, different qualities of some credence good cannot

be discerned by consumers absent further information. An ordinal ranking (i.e., labeling) of these

qualities or goods—created, for instance, by experts or public servants on the basis of information

provided by the producers of the goods—would, however, be perfectly useful to inform the public’s

consumption decisions. In our model, such an exogenous ranking benefits the firms and is assumed to

spontaneously arise as firms release potentially competing information. Formally, this ranking trans-

lates market-provided information into probabilities of which product quality is ranked first, second,

etc. Hence, in the modeled strategic interaction, a firm’s decision is how much costly information

to release in order to positively or negatively manipulate the industry’s ranking “standard.”

As an example, consider a ranking of academic departments to guide, for instance, ex-ante unin-

formed students on the relative merits of potential future almae matres.2 Two departments are

asked on the basis of which factors they wish to be ranked. If one department is highly successful

in research, it may insist that the number of top-five publications enters the ranking prominently,

while another department that excels in student satisfaction will want this information included in a

nationwide ranking of departments. Obviously, if the ranking is supposed to capture research qual-

ity, the number of high-quality publications is more informative than student satisfaction. Hence,

a ranking based exclusively on the number of top publications is “more precise” in picking out a

high research-quality department. Conversely, if educational experiences are to be evaluated, the

satisfaction data may be more useful, and including the number of top-five publications makes such

a ranking “less precise.”

The recent designation of nuclear energy and natural gas as sustainably “green” by the European

Commission serves as another example. Costly political and industry lobbying activities on which

“taxonomy” to use to assign energy forms a “green label” are well-documented, and several European

Union member states sued the Commission over the implemented rules.3,4 More generally, lobbying

expenditures by firms and interest groups, as well as taxes paying for public certification agencies and

their activities, may be seen as fitting the framework of our analysis. Such payments may indirectly

translate into the quality of public ranking institutions, thereby shifting the status quo evaluation

standard toward more or less adequate (or precise) certification.

Sports competitions provide further examples of situations in which ranking precision is a strategic

choice. Wang (2010) reports on the rationale behind the change of the points scoring system by

the International Table Tennis Federation from 21 to 11 as the “domination of China meant that

1 “Credence qualities are those which, although worthwhile, cannot be evaluated in normal use. Instead, the
assessment of their value requires additional costly information. An example would be the claimed advantages
of the removal of an appendix, which will be correct or not according to whether the organ is diseased.” (Darby
and Karni, 1973). In contrast to experience goods, the utility of such goods is hard to ascertain, even after
consumption.

2 The United Kingdom’s Research Excellence Framework ranks individual departments based on criteria established
by consultation of Universities UK and the University & College Union (among others).

3 The European Commission (EC) explicitly states the anticipated consumer reaction as one of the central aims of
the taxonomy, which it sees as a “list of environmentally sustainable economic activities” whose overall purpose
is to provide a “science-based classification system that allows financial and non-financial companies to share a
common definition of sustainability when determining their investment choices.” EC press release 7-Mar-2022.

4 See, for instance, EC press release 1-Jan-2022. The rejected “amber category” would have, in addition to the
implemented green and red labels, resulted in a more precise ranking (EC press release 2-Feb-2022).
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there was little incentive for the other teams. Reducing the accuracy level increases the chance that

a team other than China will win, thus inducing more effort from the other teams. This increased

competition could, in turn, result in greater effort from the Chinese team.” Deng et al. (2021)

argue that similar reasoning has led to changing the best-of-three finals structure in the Israeli

basketball league to a single game. “From 1970 to 2006, the Maccabi Tel Aviv team lost only one

championship, while after the change, it lost six.” Similarly, Yildirim (2015) reports on the slow

adoption of obviously accuracy-improving video replay technology to support refereeing decisions in

European soccer competitions as corresponding to non-aligned competitor interests.

We view the contribution of this paper as twofold. On the theoretical side, we introduce a family

of contests that endogenize the degree of discrimination the underlying relative ranking is built

on. This makes applications to (partial) credence or experience goods markets possible in which

consumer-impenetrable product descriptions are translated into a simple ordinal ranking or label.

In these stylized applications, we integrate both market sides into a standard equilibrium model of

vertical product differentiation in which consumer demand reacts endogenously to the firms’ choice

of information dissemination. This allows us to analyze the competitive effects of the variation of

ranking precision in credence markets.

Related literature

The idea that, in many circumstances, rank-order tournaments achieve socially beneficial outcomes

in competitive situations is due to Lazear and Rosen (1981) and the contest literature they initiated.

For detailed and recent surveys of this literature, see, for instance, Corchón and Serena (2018) and

Fu and Wu (2019). To our knowledge, there is no prior contribution that allows contestants to

endogenously control the precision of the underlying ranking technology in a strategic fashion.

A small set of papers, however, endogenize some aspects of a ranking’s precision into a contest.

Michaels (1988) is, as far as we know, the first to allow a “monopoly politician” the ability to

set the discriminatory power of the Tullock contest success function to optimally extract rents

from symmetric constituents. Into a similar setup, Dasgupta and Nti (1998) add a designer’s own

intrinsic valuation of the prize in addition to the valuation of the competitors. Wang (2010) allows

for two asymmetric contestants, deriving the designer’s optimal choice of accuracy, depending on

the asymmetric contestants’ ability spread. Yildirim (2015) models accuracy as the elasticity of

contestants’ efforts and derives comparative statics related to the heterogeneous players’ payoffs.

Ewerhart (2017) derives further revenue rankings for asymmetric Tullock contests, depending on

an employed decisiveness (or discriminatory power) parameter. Bruckner and Sahm (2023) explore

the optimal accuracy choice problem in multistage political competitions, finding that “a decisive

primary might actually decrease the chances of winning the general election.” Deng et al. (2021)

allow for the use of contest precision as a competition instrument between contest organizers who

compete to attract contestants among their potentially heterogeneous contests. None of these

papers allows for the endogenous control of ranking precision as a competitive dimension between

asymmetric players. Allowing for a significantly richer class of ranking technologies than explored by

the existing literature, we embed this strategic competition into a vertically differentiated, labeled
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(credence) goods market.

The industrial organization literature on (competitive) labeling is well-developed and has been sur-

veyed by Bergès-Sennou et al. (2004) and Sheldon (2017).5 The papers closest to our idea of labeling

are Roe and Sheldon (2007), Bonroy and Constantatos (2015), and Scott and Sesmero (2022).6

They use a market-share approach which could be interpreted as a fixed-precision contest. The link

to our contribution is that the degree of label-induced vertical product differentiation depends on

the information disclosed by the label. Roe and Sheldon (2007) analyze how the practical implemen-

tation of a label (e.g., mandatory/voluntary, continuous/discrete, using a private certifier or public

agency) can affect the size and distribution of surplus created in a vertically differentiated credence

market.7 In their models, governments can influence quality disclosure and the information a label

communicates. Hence, a firm’s strategic choice is to decide whether or not to hire a private certifier

on top of some existing governmental labeling. This differs from (and complements) the approach

of the present paper, which varies the level of information a label transfers to the consumers. Bonroy

and Constantatos (2015) survey a variety of industrial organization models investigating how differ-

ent label implementations affect welfare. They discuss questions of labeling policy with implications

on firms’ lobbying activities and incentives to develop labels of particular forms and stringency. Scott

and Sesmero (2022) study the efficiency and distributional effects of consumers’ misperception of

product quality—similar to our imperfect rankings—in a vertically differentiated food market, both

theoretically and empirically. They show that information-based policies aimed at curbing quality

misperception (e.g., stricter labeling policies, nudging, changes in the labeling format) may have

deleterious effects on efficiency and, perhaps most importantly, hurt the consumers they strive to

protect. The competitive ranking precision aspects introduced in this paper are not included in any

of these contributions and are, as far as we are aware, a novel approach to the labeling problem.

We define the formal structure of the market interaction in the following section 2 and characterize

the firms’ equilibrium behavior in section 3, which also contains all results, including elements of a

welfare analysis. We provide illustrate of our results through several examples in section 3.5. All

proofs can be found in the appendix.

2 Model of a labeled credence market

2.1 Supply side

There are two risk-neutral firms, N = {1, 2}, each of which produces a good of quality θi, i ∈ N .

These qualities are assumed to be independently distributed according to θi ∼ F[0,θ̄], θ̄ ∈ R++,

with continuous and strictly positive density f(θi). We write θ = (θ1, θ2) for the quality vector

5 More distantly, our paper also relates to the literature on information disclosure and unraveling (Milgrom, 2008).
6 Lehmann-Grube (1997) is, in some sense, diametrically opposite to our paper in investigating pure quality com-
petition in a vertically differentiated market.

7 Recent interest in credence goods has been spurred by applications to competition policy, health care, and the
regulation of legal counseling. Comprehensive surveys include Dulleck and Kerschbamer (2006) and Balafoutas
and Kerschbamer (2020). We are unaware of a previous application of contest-driven consumer demand to the
analysis of competitive credence or experience markets.
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and, without loss of generality, reindex firms such that θ1 ≥ θ2. We assume that qualities are

commonly known among the two firms but only the distribution of qualities F is known to the

consumers. Denoting the mean and variance of the quality distribution F by (m, σ2), we assume

that the following holds:8

m+ σ/
√
3

m− σ/
√
3
≤ 2. (A1)

For simplicity, production and distribution of the goods are assumed to be costless. Once the good

is produced, there is nothing a firm can do to alter its quality. While qualities are fixed, firms can

release (dis-)information ρi ∈ R allowing the two products to be ranked by means of a label. The

absolute sum r = |ρ1+ρ2| of this emitted information is observed by the consumers and determines

the precision used to rank the products.9,10 This observed market information, r, affects the extent

of product differentiation in the consumer market and, thus, the firms’ expected profits represented

by the winner’s and loser’s prizes P1(r), P2(r) in the contest for being ranked first. More precisely,

we assume that firm i ∈ N maximizes

(1)max
ρi

ui(θ, r) = qi(θ, r)P1(r) + (1− qi(θ, r))P2(r)− c(|ρi|)

in which qi(θ, r = |ρ1 + ρ2|) is player i’s probability of being ranked first. The firms’ information

dissemination cost, c(|ρi|), is assumed to be symmetric, strictly increasing, and strictly convex with

c(0) = 0. For i ∈ N and j = 3− i, we make the following assumptions on the noisy ranking of the

firms’ qualities qi(θ, r) which we collectively refer to as (Q):

(Q1) the ranking of firms’ qualities θ is observable and verifiable with qi(θ, r) + qj(θ, r) = 1;

(Q2) for r > 0, qi(θ, r) is strictly increasing in θi, strictly decreasing in θj ;

(Q3) qi(θ, r) is continuous and strictly increasing in r = |ρi + ρj | if θi > θj , strictly decreasing

if θi < θj , and qi(θ, 0) =
1/2;

(Q4) qi(θ, r) =
1/2 for θi = θj ; hence, ∂qi(θ1 = θ2, r)/∂r = 0;

(Q5) qi(θ, r) is sufficiently continuously differentiable in θi and has at most one inflection point

at fixed θj > 0, with ∂2qi/∂θ
2
i ≥ 0 for θi ≤ θj and ∂

2qi/∂θ
2
i ≤ 0 for θi ≥ θj ;

11

8 The standard distributional restriction to the class of increasing failure rate distributions fails to provide sufficient
conditions for our purposes of bounding ratios of expected order statistics. (A1) is satisfied for a broad class
of distributions, as e.g., for the general uniform distribution, for arbitrary intervals of the standard triangular
distribution, for standard values of the (truncated) normal with m = θ̄/2 and σ > θ̄/5, the log-normal distribution
with an appropriate shifted mean-variance pair, and the beta distribution with parameters 1 ≤ α < 2, 1 ≤ β < 2.
It is violated by U-shaped distributions as, e.g., the beta distribution with α < 1, β < 1.

9 Dulleck and Kerschbamer (2006) discuss the incentives of strategic experts in credence markets. Since our focus
is on the firms’ information emission, we view the ranking as emerging spontaneously through the firms’ activities.
The recent White (2018) provides an overview of the literature on rating agencies, including several examples in
which rankings arise from the (strategic) operations of market intermediaries.

10 Allowing consumers to observe the sign of the total information introduces additional anti-symmetric equilibria on
the negative information orthant (in which rational consumers invert the observed rankings) but otherwise adds
little insight to the analysis.

11 We adopt the convention that curvature changes at an inflection point. Therefore, the piecewise linear functions
we define in form in subsection 3.5.3 have no inflection point in the ranges of interest.
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(Q6) qi(θ, r) is sufficiently continuously differentiable in r and satisfies ∂2qi/∂r
2 ≤ 0 for θi ≥ θj .

Some of these assumptions are relaxed to accommodate our examples of a difference-based ranking

of subsection 3.5.2 as well as the piecewise constant form of subsection 3.5.3.

2.2 Demand side

A unit mass of consumers, each with demand for a single good, is represented through a distribution

of valuations µ ∼ G[0,s], s ∈ R++, with continuous and strictly positive density g(µ) > 0.12

Throughout the analysis of the labeling application, we restrict attention to the case in which G[0,s]

follows a uniform distribution. We interpret the upper bound, s, as a measure of the consumers’

preference heterogeneity. The utility of a type-µ consumer is assumed to be quasi-linear with

(2)v(µ, θ) = µθ̃ − p̃

in which p̃ is the price paid for a product of (expected) quality θ̃. Outside options are zero.

Apart from these individual preferences, the main element informing consumer demand is the com-

monly known outcome of a public ranking of the qualities θ1 and θ2, arising spontaneously following

the firms’ observed release of information r = |ρ1 + ρ2|.13 In the absence of a ranking for the

underlying credence good (or the case of observed r = 0), consumers cannot distinguish between

products. Products of identical expected qualities are then assumed to be sold (under Bertrand

competition) at the same price with the firms sharing expected profits equally.

Consumers do not know the realization of product qualities but form expectations of these, based on

the commonly known distribution F . They observe the absolute market information r = |ρ1 + ρ2|
which they know to correspond to the ranking precision, i.e., the probability with which the first-

ranked (or labeled) good actually has the higher quality. Consumers cannot observe the individually

emitted components ρi.

2.3 Labeling contest

In our labeling contest, a firm’s prize for coming first (second) is the expected consumer de-

mand captured by the first-labeled (second-labeled) product, given the observed ranking based

on (q1(θ, r), 1− q1(θ, r) = q2(θ, r)). To determine this demand, we use a standard vertical product

differentiation model in which the expected quality is signaled through the product rank.14 Given

their mutually known qualities, firms decide on both their optimal, rank-dependent prices and the

amount of information to release, ρi. Thus, first, firm i chooses and announces prices (p1i , p
2
i ),

12 In general, there are technical problems associated with the use of a continuum of independent random variables.
These play no role in our analysis and could be resolved along the lines discussed by Lang (2019).

13 In this paper, consumers know that the assigned ranks or labels are correct only with some probability q(r). This
contrasts with Scott and Sesmero (2022) who allow for consumers to misperceive labels, resulting in suboptimal
purchasing decisions.

14 The classic reference on vertical differentiation is Gabszewicz et al. (1981), succinctly summarized by Tirole
(1988).
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conditional on each possible rank.15 This defines the labeling contest prizes P1(r) and P2(r) in

which the firms subsequently choose individual information release, ρi.

It is useful to define the consumers’ expectation of the first-ranked (second-ranked) product quality,

given an observed ranking of precision r. This expectation is denoted by:

Λ1(r) =

∫ θ̄

0

∫ θ̃1

0

(

q1(θ̃, r)θ̃1 + (1− q1(θ̃, r))θ̃2

)

f(1,2:2)(θ̃)dθ̃2dθ̃1,

Λ2(r) =

∫ θ̄

0

∫ θ̃1

0

(

q2(θ̃, r)θ̃1 + (1− q2(θ̃, r))θ̃2

)

f(1,2:2)(θ̃)dθ̃2dθ̃1,

(3)

in which f(1,2:2)(θ) denotes the joint order probability density of randomly drawn quality θ1 exceeding

quality θ2, and qi(θ, r) = 1 − qj(θ, r), j = 3 − i.16 In principle, these expectations are based

on consumers’ beliefs, conditional on the observed absolute total market information r.17 In our

independent qualities setting, the relevant joint order densities simplify to:

(4)f(1,2:2)(θ̃) = 2f(θ̃1)f(θ̃2).

Given an observed ranking (q1(θ, r), 1− q1(θ, r)) and announced prices p =
(

(p1i , p
2
i ) ,
(

p1j , p
2
j

))

,

a marginal consumer of valuation µ̂1
2 is indifferent between buying the first- and second-ranked

products if
(5)µΛ1(r)− p1 = µΛ2(r)− p2,

resulting in the vector of cutoffs:

(6)µ̂ =

(

µ̂0
1 = s, µ̂1

2 =
p1 − p2

Λ1(r)− Λ2(r)
, µ̂2

3 =
p2

Λ2(r)

)

.

Because µ̂2
3 ≥ 0, the market is not generally fully served. Given these cutoffs, the first- and second-

ranked firms maximize their profits by choosing p∗1 and p∗2, respectively, such as to:

max
p1

P1(r) = p1

∫ µ̂0

1

µ̂1

2

g(µ)dµ = p1
(

G(µ̂0
1)−G(µ̂1

2)
)

,

max
p2

P2(r) = p2

∫ µ̂1

2

µ̂2

3

g(µ)dµ = p2
(

G(µ̂1
2)−G(µ̂2

3)
)

.

(7)

A result due to Gabszewicz et al. (1981) establishes that such an equilibrium price vector exists and

has the required properties.

Proposition 1. For any market information r > 0 and any distribution of consumer tastes G with

strictly positive and weakly concave density g, there exists an equilibrium vector of announced prices

p∗1 > p∗2 > 0, provided that the failure rate

(8)
g(µ)

1−G(µ)
is strictly increasing.

15 Since consumers’ valuation only depend on the ranking of the firms—everything else being uninformative—each
firm faces the same optimization problem for choosing rank-dependent prices and thus selects the same equilibrium
vector of conditional product prices. Therefore, it makes no difference whether firms decide on prices before or
after the ranking realizes.

16 For details on stochastic orders, see David and Nagaraja, 2003 or Shaked and Shanthikumar, 2007.
17 For the timing and definition of consumer beliefs, see subsection 2.4.
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Hence, P1(r) and P2(r) defined in (7) can be interpreted as endogenized prizes in a labeling contest

in which firms manipulate the precision of the labels which partially inform consumers on the offered

qualities.

2.4 Timing and information

Both prizes Pi(r) and prices pi(r) are functions of the available information, i.e., the ranking precision

r = |ρ1 + ρ2|. We are looking for (Bayesian Perfect) asymmetric, pure strategy Nash equilibria in

which each firm chooses pairs ((pki )
2
k=1, ρi)

2
i=1. The complete timing of the interaction is:

t = 0 t = 1 t = 2 t = 3 t = 4
time

qualities θ
are drawn

firms choose
(p1i , p

2
i )

firms choose
ρi

ranking
realizes

consumption
& profits

Consumers cannot observe the firms’ individually released information, ρi, but they can observe

the absolute total amount of available information r = |ρ1 + ρ2|. Consumers realize that this

total information determines the precision with which the ranking of product labels is correct, i.e.,

corresponds to the true order of qualities. Firms, by contrast, are assumed to fully understand the

technology the industry is based on and therefore know each others’ product qualities θi.

Off-equilibrium path beliefs: If consumers observe some joint information r̂ which is incompatible

with equilibrium play, e.g., a very high number r̂ which necessarily results in negative utility for at

least one player, we define q1(θ, r̂) = q2(θ, r̂) = 1/2.

3 Results

3.1 Preliminaries

We begin the analysis by collecting some simple results which will be used and referred to repeatedly

in the subsequent reasoning. All proofs can be found in the Appendix.

We denote expected orders by:

(9)E[Θ(1:2)] =

∫ θ̄

0

∫ θ̃1

0

θ̃1f(1,2:2)(θ̃)dθ̃2dθ̃1, E[Θ(2:2)] =

∫ θ̄

0

∫ θ̃1

0

θ̃2f(1,2:2)(θ̃)dθ̃2dθ̃1

and their sum of by:
(10)θ̂ = E[Θ(1:2)] + E[Θ(2:2)] = 2m.

Note that θ̂ = θ̄ for all symmetric distributions.

Lemma 1. For any distribution of product qualities F (·) with associated positive density f(·), the
following “bookkeeping” results hold for all r > 0:

(11)Λ1(r) + Λ2(r) = E[Θ(1:2) +Θ(2:2)] = θ̂,

(12)E[Θ(1:2)] ≥ Λ1(r) > θ̂/2 > Λ2(r) ≥ E[Θ(2:2)] > 0,

8



(13)lim
r →∞

Λ1(r) = E[Θ(1:2)], lim
r →∞

Λ2(r) = E[Θ(2:2)],

(14)Λ
(n)
1 (r) =

∫ θ̄

0

∫ θ̃1

0

(θ̃1 − θ̃2)
∂nq1(θ̃, r)

∂rn
f(1,2:2)(θ̃)dθ̃2dθ̃1 ∀n ∈ N

+.

Moreover, in case of r = 0, we have

(15)Λ1(0) = Λ2(0) = θ̂/2.

The following inequality links properties of the underlying quality distribution with (spacings of)

expected values of statistical orders and is repeatedly used in our analysis.

Lemma 2. For any continuous quality distribution F (·) with mean m and variance σ2 bounded on

a positive interval, the ratio of expected order statistics satisfies:

(16)
E[Θ(1:2)]

E[Θ(2:2)]
≤ m+ σ/

√
3

m− σ/
√
3
,

in which σ denotes the standard deviation.

The bound (16) is binding for the case of the standard uniform distribution.

3.2 The labeling application

To allow for the explicit calculation of market prices, cutoffs, and prizes, we restrict attention to

uniformly distributed consumer preferences, i.e., G(µ) = µ/s, throughout this subsection. Quality

distributions F (·) remain general, as defined in the model section.

For uniform preferences, (7) simplifies to:

max
p1

P1 = p1

∫ µ̂0

1

µ̂1

2

g(µ)dµ = p1
(

G(µ̂0
1)−G(µ̂1

2)
)

= p1(µ̂
0
1 − µ̂1

2)
1

s
,

max
p2

P2 = p2

∫ µ̂1

2

µ̂2

3

g(µ)dµ = p2
(

G(µ̂1
2)−G(µ̂2

3)
)

= p2(µ̂
1
2 − µ̂2

3)
1

s
.

(17)

Maximization with respect to pi gives the optimal, rank-dependent prices as:

p∗1(r) = 2s
Λ1(r) (Λ1(r)− Λ2(r))

4Λ1(r)− Λ2(r)
, p∗2(r) = s

Λ2(r) (Λ1(r)− Λ2(r))

4Λ1(r)− Λ2(r)
(18)

resulting, from (6), in the equilibrium cutoffs:

µ̂0
1 = s, µ̂1

2 = s
2Λ1(r)− Λ2(r)

4Λ1(r)− Λ2(r)
, µ̂2

3 = s
Λ1(r)− Λ2(r)

4Λ1(r)− Λ2(r)
(19)

giving, in turn, the rank dependent contest prizes as functions of the available information as:

P1(r) = (µ̂0
1 − µ̂1

2)p
∗

1(r)
1

s
= 4s

Λ1(r)
2(Λ1(r)− Λ2(r))

(Λ2(r)− 4Λ1(r))2
,

P2(r) = (µ̂1
2 − µ̂2

3)p
∗

2(r)
1

s
= s

Λ1(r)Λ2(r)(Λ1(r)− Λ2(r))

(Λ2(r)− 4Λ1(r))2
.

(20)
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Since Λ1(r) + Λ2(r) = θ̂ from (10) and Lemma 1, (11), this results in contest prizes capturing the

labeled market segments of:

(21)P1(r) = 4s
Λ1(r)

2
(

2Λ1(r)− θ̂
)

(

θ̂ − 5Λ1(r)
)2 , P2(r) = s

(

θ̂ − Λ1(r)
)

Λ1(r)
(

2Λ1(r)− θ̂
)

(

θ̂ − 5Λ1(r)
)2 .

The endogenous emergence of contest prizes resulting from consumer demand is illustrated in Fig-

ure 1. Lemma 3 establishes some properties of the labeled market-segment prizes (21).

µ

Θ(2:2) = θ̄/3

Θ(1:2) = 2θ̄/3

µ̂1
2

P1

θ

µ̂2
3

P2

µ̂0
1

θ̄0

Figure 1: The labeled consumer market for uniform product qualities. The red-crossed consumer
segment remains unserved.

Lemma 3. For any distribution F (·) of product qualities and uniformly distributed consumer tastes

µ, the following properties hold for r > 0:

(22)P1(r) > P2(r) > 0,

(23)P ′

1(r) > 0, P ′′

1 (r) < 0 as well as P ′

1(r) > P ′

2(r),

(24)P ′

2(r) > 0 and P ′′

2 (r) < 0,

in which only (24) requires F (·) to satisfy (A1). Moreover, in case of r = 0, P1(0) = P2(0) = 0.

Remark 1 (Price competition). Notice that, from (22), the prizes Pi(r) accruing to competing firms

are zero for the (unlabeled) no-information case of r = 0. The reason is that Bertrand competition

for identically perceived products (albeit of positive expected qualities) drives prices p1 = p2 down

to marginal cost which is zero in our environment.

Notice that, for r > 0, neither player leaves the market since expected payoffs (1) are strictly positive

in equilibrium. This follows from (21), continuity, and the fact that emission of no information is

costless. We are now ready for the characterization of equilibrium information release.

10



Proposition 2. Consider player i ∈ N with objective (1). A necessary condition for equilibrium is

P1
′(ρ1 + ρ2) + P2

′(ρ1 + ρ2) = c′(|ρ1|) + c′(|ρ2|). (25)

Since (25) is independent of qualities θ, an immediate corollary is that firms emit the same total

amount of information r∗ in any equilibrium, irrespective of individual qualities (and, in particular,

in case of θ1 = θ2). Hence, in equilibrium, consumers cannot learn and update their beliefs about

qualities (3), after observing the total market-provided ranking precision, r. This simplifies the

analysis considerably and would not generally be the case if, for instance, firms could choose quality

and information simultaneously. Moreover, the same invariance does not hold with respect to

changes in preference heterogeneity, s, since prizes (21) react directly to this parameter.

The fact that the level of information in the market stays constant, irrespective of the product

quality spread, is in line with numerous studies showing how difficult it is to reduce informational

asymmetries in a credence market (Balafoutas and Kerschbamer, 2020; Dulleck and Kerschbamer,

2006). Evidence shows that companies may want to limit the level of information they provide, and

consumers may be willfully ignorant. Our model underscores difficulties in information provision in

such markets, and the firms’ interest to strategically manipulate information disclosure.

Remark 2 (Positive precision). The total precision of the market-provided product ranking is positive

in any equilibrium with
(26)ρ1 ≥ |ρ2|.

To see this, consider firm 1’s first-order condition

(27)q1(θ, r)P1
′(r) + q2(θ, r)P2

′(r) +
∂q1(θ, r)

∂ρ1
(P1(r)− P2(r))− c′(|ρ1|) = 0.

For r > 0, we know that q1(θ, r) > q2(θ, r) as well as P1(r) > P2(r) > 0 and P1
′(r) > P2

′(r) > 0

from Lemmata 1 & 3. Therefore, it must be the case that c′(|ρ1|) > c′(|ρ2|). Moreover, since

prizes are positive and q1(θ, r) > q2(θ, r), it must be the case that equilibrium ρ1 > 0. Hence, in

equilibrium, “markets do not lie” and competition results in the provision of useful total information

to consumers.

The following two results establish sufficient conditions for the existence of equilibrium information

release policies in the labeling application.

Proposition 3. Firm 1’s utility function (1) is concave in ρ1 for any fixed ρ∗2.

The proof shows that firm 1’s benefit function—i.e., utility (1) without costs—is concave and

increasing in ρ1. Conceptually, the monotonicity of firm 1’s benefits is attributed to a dual interplay

of effects: 1) profits Pi(r) increase monotonically in r, with P1(r) > P2(r) > 0, and 2) the ranking

function q(θ, r) can discriminate more correctly between qualities as precision r increases. The

combined effect allows firm 1 to assert the higher profit P1, as precision increases. Together with

the assumed concavity of −c(|ρ1|) the result follows. Since firm 1’s benefit function is concave and

increasing for any ρ∗2, standard methods imply that an optimal best response ρ∗1 exists to any of firm

2’s choices of ρ2 (Rosen, 1965).

11



Proposition 4. A sufficient condition for asymmetric equilibrium behavior of firm 2 is that the

ranking’s hazard rate

(28)h(r) =

∂q1(θ, r)

∂r
1− q1(θ, r)

is strictly increasing in r for any θ1 > θ2.

The proof establishes quasi-concavity of firm 2’s benefits in r. Intuitively, firm 2’s benefits may be

non-monotonic due to two opposing effects: 1) both Profits P1(r) and P2(r) increase with precision

r, with P1(r) > P2(r); 2) the increased precision of the ranking q(θ, r) labels firm 2 with increasing

precision as possessing the lower quality. Consequently, with increased r, firm 2 realizes the lower

profit P2(r) with a higher probability. Hence, firm 2’s benefits vary smoothly from the pooled prize

(P1(0) + P2(0))/2 for zero precision to P2(r), for r large.

On a more technical level, the proof establishes strict-quasi-concavity of firm 2’s benefit function φ2

whenever the corresponding marginal benefits satisfies a strict single crossing condition, −φ′

2(θ, ρ
∗

1+

ρ′2) > 0 =⇒ −φ′

2(θ, ρ
∗

1 + ρ′′2) > 0 when ρ′′2 > ρ′2. For this purpose, Quah and Strulovici (2012,

Proposition 1)—characterizing when the single crossing property is stable under aggregation—is

applied several times. To establish the single-crossing condition for the component function q′(θ, ρ∗1+

ρ2)P1(ρ
∗

1 + ρ2) − (1 − q(θ, ρ∗1 + ρ2))P1
′(ρ∗1 + ρ2) the ranking’s hazard rate (28) must be strictly

increasing in r. Based on quasi-concavity of firm 2’s benefits we then show that firm 2’s utility

preserves quasi-concavity when subtracting strictly convex costs c2(|ρ2|).
The ranking’s hazard rate (28) is interpreted as the instantaneous increase in the chance of being

ranked correctly at precision r, divided by the overall probability of being mis-ranked at r. The

requirement for this rate of two decreasing functions to increase with r (for θ1 > θ2) implies that

the instantaneous chance of being ranked correctly cannot decrease too quickly (see, e.g., Barlow

and Proschan, 1965).

Remark 3 (Off-equilibrium path beliefs). The underlying Bayesian Perfect Nash equilibrium re-

quires uninformed consumers to hold beliefs whenever they make their product choice. Along the

equilibrium path, the observed signal r > 0 is uninformative of qualities, as Proposition 2 ensures

that firms always emit the same total information, whatever the realization of θ. The same applies

to rank-dependent prices, which are chosen before labels are assigned. If some observed total in-

formation r̂ is incompatible with equilibrium play we assume that consumers’ loose all confidence

in the label’s informational content. Accordingly, we define consumers’ beliefs in such cases as

q1(θ, r̂) = q2(θ, r̂) = 1/2 leading to Bertrand price competition and zero profits for both firms,

dissuading such deviations.

We now establish an interesting economic property of the defined credence-market interaction. The

high-quality firm 1 always emits useful (i.e., positive) information which increases the ranking’s

precision while, for any fixed quality spread θ1 > θ2, there is a certain degree of heterogeneity, s, at

which the low-quality firm 2 switches to obfuscating the ranking (i.e., releasing negative information),

by releasing “fake news.”
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Proposition 5. For sufficiently high preference heterogeneity s̃, there exists a set of parameters

such that ρ∗1(s̃) > 0 and ρ∗2(s̃) = 0.

Intuitively, the proof utilizes the fact that benefits are linear in s to establish the existence of a

parameter pair (θ, s) at which firm 2’s marginal benefits are zero, resulting in ρ∗2 = 0. We then

apply Cauchy’s mean value theorem to firm 2’s benefit function to show that there exists a pair of

product qualities θ, at which a maximum of the function y(θ) = (1−q(θ, ρ∗1))P1(ρ
∗

1)/s in ρ
∗

1 exceeds

the limit of P2(r) at infinity. The result then follows from the observation that this maximum of

y(θ) increases with diminishing type spread θ, and corresponds to the limit of P1(r)/2 at infinity,

whenever θ2 → θ1.

Our above results establish that similar-quality firms always jointly provide useful (i.e., precision-

enhancing) information to the market. Proposition 5 shows that there exists a heterogeneity thresh-

old s̃, such that for s > s̃, the lower-quality firm switches to strategic obfuscation (since firm 2’s

benefits are shown to be quasi-concave in Proposition 4). In principle, a similar result could also

be shown for fixed consumer heterogeneity, s, and increasing quality spreads but, in that case, the

potentially restrictive upper bound on available qualities implies that θ1 cannot be raised indefinitely.

Proposition 5 is what partly motivates the “fake news” in the title of this paper. Firms cooperate to

improve consumer information for relatively similar quality types on “homogeneous” markets while

they choose to go at loggerheads for larger type differences on more heterogeneous markets. As a

corollary, it can be shown that total market information, r, is improving with the heterogeneity of

the consumer market.

The above Propositions 2–5 cannot generally accommodate ranking technologies qi(θ, r) with non-

differentiabilities in precision or quality. Nevertheless, we show in our examples in section 3.5 that

obfuscation-equilibria may still exist in those cases (see subsections 3.5.2 and 3.5.3).

Remark 4 (Maximum product differentiation). The maximum differentiation principle—i.e., con-

cavity of P1(r) and P2(r) from (23) and (24)—is a well-known result saying that firms differentiate

qualities in order to avoid “Bertrand” price-competition (Economides, 1986). Something similar

is happening in the present model: for modest quality dispersion or low heterogeneity, both firms

reinforce the market segmentation by improving market information. But since the quality dispersion

also enters the probability with which the assigned labels are (perceived as) correct, there is a point

at which the lower-quality firm starts to strategically obfuscate and partially offsets the better-quality

firm’s information release.

Remark 5 (Asymmetric costs). Propositions 4 and 5 allow insights into the case of heterogeneous

information dissemination costs. Consider asymmetric cost functions of the form c(|ρ1|) and γc(|ρ2|),
γ ∈ [0, 1], for firms 1 and 2, respectively. For a suitably chosen quality pair θ, the boundary case of

γ = 0 results in positive equilibrium information r∗ = argmaxr u2(θ, r) because firm 2’s benefits

are single-peaked whenever (28) is satisfied. Reducing firm 1’s costs to zero, by contrast, increases

equilibrium information release without bound since firm 1’s benefits are strictly increasing.
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3.3 Welfare properties

We start with the observation that, in any equilibrium, the precision of the market-provided product

ranking is higher than what a cartel provides.

Proposition 6. In any equilibrium of the labeling interaction, the precision of the market-provided

product ranking (25) is higher than what a cartel (or multi-product monopoly) would choose.

Intuitively, a single decision maker (or two cartelized firms) will optimally choose symmetric infor-

mation emission costs and therefore ρ1 = ρ2. With strictly convex costs this leads to less precision

than what the competitive duopoly provides.

Consumer welfare for the labeled market results from (2) and (3) as

WH(r) =

∫ µ̂0

1

µ̂1

2

(µΛ1(r)− p∗1) dG(µ),

WL(r) =

∫ µ̂1

2

µ̂2

3

(µΛ2(r)− p∗2) dG(µ)

(29)

summing to served consumer welfare

(30)WC(r) = WH(r) +WL(r)

with the measure of unserved consumer dead-weight loss given by

(31)W0(r) =

∫ µ̂2

3

0

µdG(µ).

We show that consumer welfare is strictly decreasing in r, due to (i) firms recovering their costs

of information by charging increased equilibrium prices p∗i and (ii) the served market segments

monotonically decreasing with increasing information r.

Proposition 7. Consumer welfare is strictly decreasing in r.

Together with firm utility (1), we define total welfare as

(32)W (r) = u1(r) + u2(r) +WC(r)

in which firm utilities are defined in (1). We compare this ranked welfare measure to the unlabeled

market, characterized by Bertrand-competition and zero prices, resulting in

(33)WU =

∫ s

0

(E[Θ]µ− 0) dG(µ), with E[Θ] =

∫ θ̄

0

θdF (θ).

Notice that dead-weight loss in the competitive, unranked case is zero; all consumers are served.

Moreover, the labeled market approaches the unlabeled case as information vanishes

(34)lim
r →0

W (r) =WU

also in terms of welfare. Our next result shows that adding information to an unlabeled market

increases total welfare, with the gain in producer surplus exceeding the loss in consumer welfare.

14



Proposition 8. Total welfare is strictly increasing in information release ρi at the unlabeled point

ρ1 = ρ2 = 0 = r.

Our minimal welfare analysis shows that, if possible, profit opportunities induce both firms to escape

Bertrand competition through the introduction of a label. Therefore, it is in the firms’ interests

to implement our assumption of a “spontaneously” arising ranking. Moreover, since total welfare

is increasing through the introduction of the label, (unserved) consumers could in principle be

compensated while still allowing for vertical differentiation.

Remark 6 (Social planner benchmark). Consider a benevolent social planner who knows product

qualities and is able to label product qualities with infinite precision. Consumers therefore know

that the two labeled products are of expected qualities (9), with no danger of mislabeling. Firms

have no means of manipulating the infinitely precise ranking and compete costlessly on a vertically

differentiated market with exogenous quality through the optimal choice of prices as in Gabszewicz

et al. (1981). The resulting welfare is, for infinitely precise ranking in (32),

(35)u1 + u2 +WC = 4s
Λ2

1

(

2Λ1 − θ̂
)

(

θ̂ − 5Λ1

)2 + s

(

θ̂ − Λ1

)

Λ1

(

2Λ1 − θ̂
)

(

θ̂ − 5Λ1

)2 + s
Λ2

1

(

5θ̂ − Λ1

)

2
(

θ̂ − 5Λ1

)2

simplifying to

(36)W ∗ = s
E[Θ(1:2)]

(

11E[Θ(1:2)]
2 + 3θ̂E[Θ(1:2)]− 2θ̂2

)

2
(

θ̂ − 5E[Θ(1:2)]
)2

which unambiguously improves over market welfare (32) for any finite (equilibrium) precision r.

For more stringent assumptions on the quality distribution further properties can be derived. For

instance, it can be shown that for uniformly distributed qualities, there exist positive prices—below

equilibrium prices (18)—such that consumers as well as producers strictly benefit from the introduc-

tion of labels. As this is generally not the case if firms choose prices competitively and strategically,

there may well be scope for government regulatory action.

3.4 Other precision contests

Although the paper’s main economic interest is the labeling application, we also want to point

out some general properties of the precision contests we define. Proposition 2, (25), describes an

equilibrium fixed point relationship which is responsible for many of the complications in the full

labeling application. If we disentangle the underlying precision contest from the market reaction,

however, analytic equilibrium strategies can be easily obtained.

Remark 7 (Exogenous Prizes). If we take demand to be exogenous of information, i.e., P1 > P2 > 0,

a direct consequence of (25) is

c′(|ρ1|) + c′(|ρ2|) = 0 = r∗ (37)
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and the information emitted by the two firms in equilibrium exactly cancels out. Individual informa-

tion dissemination is determined by the first-order conditions

c′(|ρ1|) =
∂q1(θ, r

∗ = 0)

∂ρi
(P1 − P2) = −c′(|ρ2|). (38)

Since costs are invertible, this directly determines the equilibrium information strategies as ρ∗i =

±c′−1(q′(θ, 0)), with the higher-quality firm emitting positive information while the lower-quality

firm obfuscates.

Remark 8 (Simple endogenous Prizes). We now allow prizes P1(r), P2(r) to react to aggregate

information, but in a less involved fashion than in subsection 3.2. In particular, we assume prizes to

be monomials of the form

P1(r) = α(r)β, P2(r) =
α

γ
(r)β, α > 0, β > 1, γ > 1, (39)

and costs to be quadratic c(ρ) = (ρ2)/2. These functional forms fix the left-hand side of (25) as

P1
′(r) + P2

′(r) = αβ
γ + 1

γ
rβ−1 (40)

implying that total available market information is

r∗ =

(

αβ + αβγ

γ

)
1

2−β

. (41)

Given this total precision, individual maximization (27) then leads to the pair of equilibrium infor-

mation dissemination strategies

ρ∗1 = α(r∗)β−1 (β + β(γ − 1)q1(θ, r
∗) + (γ − 1)r∗q′(θ, r∗)) /γ,

ρ∗2 = α(r∗)β−1 (βγ − β(γ − 1)q1(θ, r
∗)− (γ − 1)r∗q′(θ, r∗)) /γ.

(42)

Figure 2 illustrates this result for a simple Tullock-ranking example with θ2 = 1/4, α = 1, β = 3/2,

and γ = 2. Notice that information dissemination strategies are non-monotonic in θ1 and, for any

pair θ, total market-provided information r∗ is constant.

3.5 Examples of precision contests in the labeling application

We now illustrate the general results of the previous section by means of several examples for the

transformation of firms’ emitted information into (credence good) market ranking precision, i.e.,

the mapping from quality difference to label probability assignment. The Tullock-ratio, difference,

piecewise-constant, and noise-based forms we use below to rank qualities θ = (θ1, θ2) are illustrating

the class on which we base the general analysis of the previous subsections. The common example

properties are uniformly drawn qualities on [0, θ̄], uniformly distributed consumer tastes on [0, s],

and quadratic costs of information emission.

16



0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

θ1

q2(θ, r
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ρ∗2(θ1)

ρ∗1(θ1)

r∗(θ1)

θ2

Figure 2: Information dissemination (42) for θ2 = 1/4 as a function of θ1 ∈ [0, 1] is non-monotonic:
ρ∗1 is plotted blue, ρ

∗

2 gold, total information r∗ = ρ∗1+ρ
∗

2 green. For comparison, ranking probabilities
q1(θ, r

∗) and q2(θ, r
∗) are drawn red and purple, respectively.

The following Table 1 summarizes the relationship of our examples to the set of assumptions (Q):

Ratio-based
3.5.1

Difference-based
3.5.2

Piecewise-constant
3.5.3

Noise-based
3.5.4

(Q1) ✓ ✓ ✓ ✓

(Q2) ✓ ✓ locally ✗ ✓

(Q3) ✓ ✓ locally ✓ ✓

(Q4) ✓ ✓ locally ✓ ✓

(Q5) ✓ ✓ locally ✗ ✓

(Q6) ✓ ✓ locally ✓ ✓

Table 1: Matching assumptions to example properties.

Despite the fact that some examples of ranking functions violate several of the assumed properties

(Q), all examples verify the full set of properties derived in Propositions 1–5.

3.5.1 Ratio-based ranking

We consider the example of uniformly drawn qualities, θi ∼ U[0,θ̄], and uniform consumer preferences,

µ ∼ U[0,s]. Qualities θi are unobservable to the consumers but are known among competitors. Thus,

to a consumer, the expected quality of a product can only be inferred from its observed label (or

rank). We award a single “best-product” label to the firm ranked first, using the Tullock ranking

technology, specifying the probabilities with which firms are ranked first as:

(43)q1(θ, r) = 1/
(

1 + x−r
)

, q2(θ, r) = 1/(1 + xr) ,

for x = θ1/θ2. Note that the Tullock ranking function—illustrated in Figure 3—satisfies Assumptions

Q, as well as the sufficient condition for the firms’ equilibrium existence (28), by the fact that

(44)
∂

∂r

(

∂q1(θ, r)

∂r
/(1− q1(θ, r))

)

=
xr log(x)2

(1 + xr)2
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which is strictly positive for any x > 1 and r > 0.

q(θ, r)

θ1/θ2

r = 0.1

r = 1
r = 2

r = 10
θ1 = θ2

r = 0

∂q

∂θ1
= r

θr−1
1 θr2

(θr1 + θr2)
2

θ1 < θ2 θ1 > θ2

Figure 3: Reaction of Tullock ranking probabilities (43) to quality-ratio and precision.

A firm chooses i) the price of her product conditional on the product’s rank and ii) the resources ρi

it wishes to expend on influencing the overall ranking precision and consumer demand.

We start by modeling the demand side. Expected qualities are obtained using (3). For the uniform

distribution on the θ̄-scaled unit interval, the joint density (4) is

(45)f(1,2:2)(θ̃) = 2f(θ̃1)f(θ̃2) = 2/θ̄2.

The consumers assess the expected qualities of the first- and second-ranked products (3), given an

observed ranking, for x̃ = θ̃1/θ̃2 as:

(46)

Λ1(r) =

∫ θ̄

0

∫ θ̃1

0

(

1

1 + x̃−r
θ̃1 +

1

1 + x̃r
θ̃2

)

2

θ̄2
dθ̃2dθ̃1

=
2

θ̄2

(

∫ θ̄

0

∫ θ̃1

0

θ̃1
1 + x̃−r

dθ̃2dθ̃1 +

∫ θ̄

0

∫ θ̃1

0

θ̃2
1 + x̃r

dθ̃2dθ̃1

)

,

Λ2(r) =

∫ θ̄

0

∫ θ̃1

0

(

1

1 + x̃r
θ̃1 +

1

1 + x̃−r
θ̃2

)

2

θ̄2
dθ̃2dθ̃1

=
2

θ̄2

(

∫ θ̄

0

∫ θ̃1

0

θ̃1
1 + x̃r

dθ̃2dθ̃1 +

∫ θ̄

0

∫ θ̃1

0

θ̃2
1 + x̃−r

dθ̃2dθ̃1

)

.

Following the general derivation in subsection 3.2 we obtain the contest prizes, using E[Θ(1:2)] +

E[Θ(2:2)] = θ̂ = θ̄, yielding contest prizes (21). We turn to the supply side and state firm i ∈ N ’s

maximization problem (under mutually known xi = θi/θj) on the basis of (7) as

max
ρi

1

1 + x−r
i

P1(r) +
1

1 + xri
P2(r)−

ρ2i
2
, (47)
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in which r = |ρi + ρj |. In order to get numerical values, we fix θ1 =
3/4, θ2 =

1/4 (i.e., x = 3), and

the distributional parameters at θ̄ = 1, s = 10. After taking derivatives with respect to ρi, we find

the asymmetric equilibrium candidate18

(48)ρ∗1 ≈ 0.480, ρ∗2 ≈ 0.131, implying that r∗ ≈ 0.612.

ρ1

u1(ρ1, ρ
∗
2)

ρ∗1

u2(ρ
∗
1, ρ2)

ρ∗2
ρ2

Figure 4: The two players’ optimal choice of ρi in asymmetric equilibrium for ratio-based ranking.

Notice that both firms choose to improve the ranking precision by supplying positive amounts

of information in equilibrium. Hence, the market-supplied ranking precision is an informational

improvement over the status quo of the unranked market with information r = 0. For other

parameterizations, however, it turns out that this behavior depends on both the ratio x and the

consumer heterogeneity, s. The left-hand panel of Figure 5 fixes the heterogeneity at s = 20 and

shows information emission as a function of x. For sufficiently wide type-difference, there exists a

0.2 0.4 0.6 0.8 1.0
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ρ∗i (x)

ρ∗2(x)

ρ∗1(x)

x̃

r∗(x)
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0.4
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s

ρ∗i (s)

ρ∗2(s)

ρ∗1(s) s̃

r∗(s)

Figure 5: Left: information dissemination ρ∗i for the ratio-form example, for heterogeneity s = 20,
as functions of θ1 ∈ [0, 1] for fixed θ2 = 1/10: ρ∗1(x) is plotted blue, ρ∗2(x) is shown gold, and total
information r∗(x) = ρ∗1(x) + ρ∗2(x) is green. The vertical dashed line indicates the ratio x̃ at which
ρ∗2(x) = 0. Right: information dissemination ρ∗i (s) as a function of the consumer heterogeneity s,
for θ̄ = 1. The dashed green line shows the critical heterogeneity s̃ ≈ 25.5 at which ρ∗2 = 0.

point x̃ at which the lower-quality firm turns to obfuscation. Moreover, the figure illustrates that the

18 These are numerical results. If qualities are Beta-distributed with parameters β1 = 2, β2 = 2, the asymmetric
equilibrium is ρ∗1 ≈ 0.344, ρ∗2 ≈ 0.156, implying that r∗ ≈ 0.5.
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symmetric case of θ1 = θ2 (and therefore ρ1 = ρ2 > 0) is sufficient to determine market information

r. The right-hand panel of Figure 5 shows that such an obfuscation-switching strategy also exists

for fixed x when the consumer heterogeneity s is varied (Proposition 5).

3.5.2 Difference-based ranking

Consider the same uniform two-firms example as in the previous subsection, but governed now by a

difference-form ranking technology in a piece-wise linear form, as discussed, e.g., by Che and Gale

(2000).19

(49)q1(θ, r) = max [min [1/2 + r (θ1 − θ2) , 1] , 0] .

We tentatively simplify this ranking technology—illustrated in Figure 6—using θ1 > θ2 to define:

(50)q1(θ, r) = min [1/2 + rx, 1] , q2(θ, r) = max [1/2− rx, 0]

in which x = θ1 − θ2 and we tentatively guess that xr∗ < 1/2.20 This allows (50) to locally satisfy

Assumptions (Q2)—(Q6), as well as the sufficient condition

(51)
∂

∂r

(

∂q1(θ, r)

∂r
/(1− q1(θ, r))

)

=
4x2

(1− 2rx)2

which is strictly positive for any x > 0 and r > 0 whenever xr∗ < 1/2.

q(θ, r)

θ1 − θ2

r

r/2
2r

θ1 = θ2

r = 0

θ1 < θ2 θ1 > θ2

Figure 6: Reaction of ranking probabilities (49) to quality-difference and precision.

19 A very similar analysis can be performed (with similar results) for a ranking based on 1) the “serial” contest
success function introduced by Alcalde and Dahm (2007) that combines aspects of both the ratio form (43) and
the difference form (49) and 2) a ranking based on the exponential type difference.

20 Since the relevant equilibrium candidates fall into this region, this guess turns out to be correct in the present
example.
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We obtain expected qualities (3), given the observed ranking, for x̃ = θ̃1 − θ̃2 as:

(52)

Λ1(r) =
2

θ̄2

(

∫ θ̄

0

∫ θ̃1

0

(1/2 + rx̃) θ̃1dθ̃2dθ̃1 +

∫ θ̄

0

∫ θ̃1

0

(1/2− rx̃) θ̃2dθ̃2dθ̃1

)

=
θ̄

6

(

3 + rθ̄
)

,

Λ2(r) =
2

θ̄2

(

∫ θ̄

0

∫ θ̃1

0

(1/2− rx̃) θ̃1dθ̃2dθ̃1 +

∫ θ̄

0

∫ θ̃1

0

(1/2 + rx̃) θ̃2dθ̃2dθ̃1

)

=
θ̄

6

(

3− rθ̄
)

.

Following the steps of the general derivation in subsection 3.2 results in the same prizes (21),

parameterized by Λi(r) and for θ̂ = θ̄, as in the previous subsection. The resulting supply-side firms’

maximization problem (under mutually known x = θ1 − θ2) is

(53)max
ρi

qi(θ, r)P1(r) + (1− qi(θ, r))P2(r)−
ρ2i
2
.

Under the simplified ranking and assumed xr∗ < 1/2 in (50), the first-order conditions for this

problem are

θ̄2s

(

θ̄r
(

θ̄r
(

5θ̄r + 27
)

+ 69
)

+ 135

2
(

5θ̄r + 9
)3 +

2rx
(

θ̄r
(

5θ̄r + 21
)

+ 27
)

3
(

5θ̄r + 9
)2

)

= ρ1,

θ̄2s

(

θ̄r
(

θ̄r
(

5θ̄r + 27
)

+ 69
)

+ 135

2
(

5θ̄r + 9
)3 − 2rx

(

θ̄r
(

5θ̄r + 21
)

+ 27
)

3
(

5θ̄r + 9
)2

)

= ρ2.

(54)

Guessing affine solutions ρi = α± βx to (54) for s = 10 and θ̄ = 1 results in the two functions

(55)ρ∗1(x) ≈ 0.452 + 1.650x, ρ∗2(x) ≈ 0.452− 1.650x, implying that r∗ ≈ 0.903,

which are indeed affine. Hence, the critical difference x̃ = θ1 − θ2 at which ρ∗2(x) = 0 equals

(56)x̃ = α/β ≈ 0.274.

For the same example values of θ1 = 3/4, θ2 = 1/4 as in the previous subsection, this yields the

asymmetric equilibrium candidate21

ρ∗1 ≈ 1.276, ρ∗2 ≈ −0.373. (57)

This candidate satisfies the assumed 0.452 < 1/2 = xr∗. Together with global cost convexity,

Figure 7 verifies this candidate as pure strategy equilibrium. While both players choose to improve the

ranking precision in the Tullock-example of the previous subsection, the lower-quality firm obfuscates

the ranking in this second example. The (indirect) positive influence of total information r on the

prizes outweighs the (direct) competitive effect in the difference-form example.

The left-hand panel of Figure 8 fixes the consumer heterogeneity at s = 10 and shows equilibrium

information emission as a function of x. The left-hand panel of Figure 8 shows that for sufficiently

21 If both qualities are Beta-distributed with parameters β1 = 2, β2 = 2, the asymmetric equilibrium is ρ∗1 ≈
0.799, ρ∗2 ≈ −0.068, implying that r∗ ≈ 0.731.
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ρ1

u1(ρ1, ρ
∗
2)

ρ∗1
ρ2

u2(ρ
∗
1, ρ2)

ρ∗2

Figure 7: The two players’ optimal choice of ρi in asymmetric equilibrium for difference-based
ranking.
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Figure 8: Left: information dissemination ρ∗i for the difference-form example, for heterogeneity
s = 10, as functions of θ1 ∈ [0, 1] for fixed θ2 = 1/10: ρ∗1(x) is plotted blue, ρ∗2(x) is shown
gold, and total information r∗(x) = ρ∗1(x) + ρ∗2(x) is green. The vertical dashed line indicates
the difference x̃ at which ρ∗2(x) = 0. Right: information dissemination ρ∗i (s) as a function of
the consumer heterogeneity s, for θ̄ = 1. The dashed green line shows the critical heterogeneity
s̃ ≈ 5.192 at which ρ∗2 = 0.

wide quality-difference there exists a point x̃ at which the lower-quality firm turns to obfuscation.

A similar effect is illustrated in the right-hand panel of Figure 8 for a sufficiently large heterogeneity

s. Notice that ρ∗1(s) is convex in this example.

3.5.3 Piecewise-constant ranking

In our third example we give up the stipulation that probabilities must strictly increase in the quality

spread (Q2) and the differentiability requirement (Q5). We define a—to our knowledge novel—

ranking technology qi(θ, r) that is only weakly increasing in θi and weakly decreasing in θj . Inspired
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by the all-pay auction, we use a piecewise constant function to define

(58)qi(θ, r) =



















d(r), x > 0

1/2, x = 0

1− d(r), x < 0

,

for x = θi − θj , in which d(r) is constant in x, satisfying limr→∞ d(r) = 1 and limr→0 d(r) = 1/2.

The responsiveness of this ranking technology is illustrated in Figure 9. To fix ideas we set

(59)d(r) =
δr + 1

δr + 2
, δ ∈ R+.

Observe that the sufficient condition for equilibrium existence (28) is violated, since for x > 0 we

have

(60)
∂

∂r

(

∂q1(θ, r)

∂r
/(1− q1(θ, r))

)

= − δ2

(2 + rδ)2

which is strictly negative for any r > 0 and δ > 0. Consumers assess expected qualities of the first-

o

q(θ, r)

θ1 − θ2

r

r/2

2r

θ1 = θ2

r = 0

θ1 < θ2 θ1 > θ2

Figure 9: Reaction of ranking probabilities (58) to quality-difference and precision.

and second-ranked products (3), given the observed ranking, as:

(61)

Λ1(r) =
2

θ̄2

(

∫ θ̄

0

∫ θ̃1

0

q1(θ̃, r)θ̃1dθ̃2dθ̃1 +

∫ θ̄

0

∫ θ̃1

0

(

1− q1(θ̃, r)
)

θ̃2dθ̃2dθ̃1

)

=
θ̄ (2δr + 3)

3r + 6
,

Λ2(r) =
2

θ̄2

(

∫ θ̄

0

∫ θ̃1

0

(

1− q1(θ̃, r)
)

θ̃1dθ̃2dθ̃1 +

∫ θ̄

0

∫ θ̃1

0

q1(θ̃, r)θ̃2dθ̃2dθ̃1

)

=
θ̄ (r + δ3)

3r + 6
.
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The same steps as in the previous subsections, with standard parameters (θ̄ = 1, s = 10) and

δ = 10, result in the two information release functions:

(62)ρ∗1(x) ≈



















0.531, x > 0

(0.531− 0.068) /2, x = 0;

−0.068, x < 0

ρ∗2(x) ≈



















−0.068, x > 0

(0.531− 0.068) /2, x = 0.

0.531, x < 0

For the same parameter values of θ1 = 3/4, θ2 = 1/4 as in the previous subsection (and all other

pairs for which θ1 > θ2), this yields the asymmetric equilibrium candidate

(63)ρ∗1 ≈ 0.531, ρ∗2 ≈ −0.068, resulting in r∗ ≈ 0.463,

which is verified in Figure 10. As in the previous subsection for the difference ranking, and in contrast

ρ1

u1(ρ1, ρ
∗

2)

ρ∗1

ρ2

u2(ρ
∗

1, ρ2)

ρ∗2

Figure 10: The two players’ optimal choice of ρi in asymmetric equilibrium for piecewise-constant
ranking.

to the ratio-form example, the lower-quality firm obfuscates the ranking in this example.

The left panel of Figure 11 fixes the heterogeneity at s = 10 and shows the firms’ (almost everywhere

constant) information emission as a function of x. Although information dissemination is piecewise

constant in types, the right-hand panel of Figure 11 illustrates that information release is still a

function of heterogeneity s. As with the quality dependency in the other examples (Figures 5, 8,

and 14), there is a critical heterogeneity s̃ ≈ 2.667 beyond which ρ∗2 turns negative.

3.5.4 Noise-based ranking

In a final example of a ranking function satisfying our assumptions (Q), we now consider a form

of noise-based assignment à la Lazear and Rosen (1981). In this case, the idea is that random

“noise” in addition to qualities determines the ranking and total firm-emitted information controls

the variance of this noise. More precisely, the two firms’ probabilities of ranking first depend on the

difference of qualities x (as in subsection 3.5.2) and independent normally distributed noise with

expectation zero and variance22

(64)r =
1

|ρ1 + ρ2|
.

22 Notice that Proposition 2 ensures that r > 0 in equilibrium.
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Figure 11: Left: information dissemination ρ∗i for the piecewise-constant ranking, for parameters
d = 10 and s = 10, as functions of θ1 ∈ [0, 1] for fixed θ2 = 1/10: ρ∗1(x) is plotted blue, ρ∗2(x) is
shown gold, and total information r∗(x) = ρ∗1(x)+ρ

∗

2(x) is green. The vertical dashed line indicates
the step at which qualities swap ranks. Right: information dissemination ρ∗i (s) as a function of the
consumer heterogeneity s, d = 10, θ̄ = 1. The dashed green line shows the critical heterogeneity
s̃ ≈ 2.667 at which ρ∗2 = 0.

Under such a ranking, firm i is ranked first with probability

(65)Pr [θi + εi ≥ θj + εj] = Pr [εj − εi ≤ θi − θj ]

which can be expressed using the normally distributed random variable ε = εj − εi with expec-

tation zero and variance r for i.i.d. noise terms denoted by Nr (Lazear and Rosen, 1981). The

responsiveness of this technology is illustrated in Figure 12.

q(θ, r)

θ1 − θ2

r

r/2

2r

θ1 = θ2

r = 0

θ1 < θ2 θ1 > θ2

Figure 12: Reaction of noise-based ranking probabilities (65) to quality-difference and precision.

This yields firm 1’s probability to be ranked first as

(66)q1(θ, r) = Pr [θi + εi ≥ θj + εj] = Nr(x),
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for x = θ1 − θ2. Under the current assumptions this simplifies to

(67)q1(θ, r) =
1

2

(

1− erf

(−rx√
2

))

for error function erf(z) =
2√
π

∫ z

0

e−t2dt.

This function satisfies the increasing hazard rate property (28) whenever

(68)
∂

∂r

(

∂q1(θ, r)

∂r
/(1− q1(θ, r))

)

> 0 ⇒ e
θ2r2

2

√
2πxr

(

1− erf

(

xr√
2

))

< 2

which can be numerically confirmed for r > 0 and x > 0. For the usual q1 = q and q2 = 1 − q in

(3), x̃ = θ̃1− θ̃2, and joint order statistic f(1,2:2) from (4) simplifying to 2/θ̄2, consumer expectations

under the noise-based ranking are:

Λ1(r) =

4

√

2

π
+ 3r3θ̄3 + e−

1

2
r2θ̄2

√

2

π

(

r2θ̄2 − 4
)

+ rθ̄
(

r2θ̄2 − 3
)

erf

(

rθ̄√
2

)

6r3θ̄2
,

Λ2(r) =

−4

√

2

π
+ 3r3θ̄3 + e−

1

2
r2θ̄2

√

2

π

(

4− r2θ̄2
)

+ rθ̄
(

3− r2θ̄2
)

erf

(

rθ̄√
2

)

6r3θ̄2
.

(69)

Similar steps as for the other ranking functions lead to the same demand side behavior and the

resulting supply-side firms’ maximization problem (under mutually known x = θ1 − θ2) is

(70)max
ρi

qi(θ, r)P1(r) + (1− qi(θ, r))P2(r)−
ρ2i
2
.

Solving the resulting first-order conditions numerically in the standard example for θ̄ = 1, s = 10,

θ1 = 3/4, and θ2 = 1/4 gives

ρ∗1 ≈ 0.363, ρ∗2 ≈ 0.191, implying that r∗ ≈ 0.553. (71)

Together with global cost convexity, Figure 13 verifies this candidate as pure strategy equilibrium.

ρ1

u1(ρ1, ρ
∗
2)

ρ∗1
ρ2

u2(ρ
∗
1, ρ2)

ρ∗2

Figure 13: The two players’ optimal choice of ρi in asymmetric equilibrium for noise-based ranking.
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ρ∗1(s) s̃

r∗(s)

Figure 14: Left: information dissemination ρ∗i for the noise-based ranking, heterogeneity s = 35,
as functions of θ1 ∈ [0, 1] for fixed θ2 = 1/10: ρ∗1(x) is plotted blue, ρ∗2(x) is shown gold, and
total information r∗(x) = ρ∗1(x) + ρ∗2(x) is green. The vertical dashed line indicates the difference
x̃ at which ρ∗2(x) = 0. Right: information dissemination ρ∗i (s) as a function of the consumer
heterogeneity s, parameters d = 10, θ̄ = 1. The dashed green line shows the critical heterogeneity
s̃ ≈ 30.0 at which ρ∗2 = 0.

As for the ratio-form, and in contrast to the difference ranking example, the lower-quality firm

improves the ranking in this example. The left panel of Figure 14 fixes the heterogeneity at s = 35

and shows information emission as a function of x.

As in the other examples, for sufficiently wide type-difference, there exists a point x̃ at which the

lower-quality firm turns to obfuscation. A similar effect is illustrated in the right-hand panel of

Figure 14 for a sufficiently large heterogeneity s.

4 Concluding remarks

We study a novel class of integrated market interactions in which firms compete on the informa-

tional content of a ranking which labels otherwise indistinguishable products. We establish a set

of economically meaningful properties and show that equilibrium existence is unproblematic for a

wide class of ubiquitous contest success functions. Besides defining a novel interaction on the basis

of the precision of observed information and characterizing the ensuing equilibria, our principal re-

sults include: 1) The modeled credence markets generally provide useful overall information to the

consumers. 2) There are widely applicable conditions under which the lower-quality firm turns to

strategic obfuscation (i.e., the release of unhelpful information, or “fake news”) if the quality spread

between product becomes too large or the heterogeneity of consumers too high. 3) The maximum

differentiation principle is weakened if the underlying information can be used by consumers to com-

petitively differentiate between products. 4) Conditions on the circumstances under which credence

good labeling enhances welfare over an unlabeled market.

Many further interesting applications match our model’s structure besides the examples discussed in

the Introduction. One example is the current debate around the Eco-score food label, implemented

by the French authorities with a consortium of socio-economic actors. The Eco-score labels products
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from A (preferred, green) to E (to be avoided), based on an aggregation of several environmental

criteria (e.g., water or energy consumption, level of biodiversity conservation, pesticides, etc.). The

number of criteria used to calculate the Eco-score is shown on the label but consumers cannot

observe the evaluation process or results for each criterion. Consumers only observe the number of

criteria underlying the ranking, i.e., the precision of the ranking, and the realization of the ranking,

i.e., the Eco-score the product receives. The Eco-score introduction has seen considerable debate

between various market players. In particular, food companies have been reported to lobby for the

inclusion of criteria that ensure intensive farming is given a good Eco-score (Stiletto et al., 2023).

Further applications include political party fundraising with parties informing potential donors of

their platforms if elected, and pharmaceutical drug testing, marketing, and advertising. In all these

examples, the possibility for differentiation through some form of labeling seems crucial for a firm’s

ex-ante quality investment incentives, which otherwise may not be valued by the market.

Appendix

Proof of Proposition 1.

The proof is derived from Gabszewicz et al. (1981). Since our setup is slightly different, we state

the full proof here which establishes that p∗1, p
∗

2 are the unique maximizers of the functions P1, P2

defined in (7).

1. Consider firm 1’s problem (7) and denote by p∗1 a solution to the corresponding first-order

condition

(72)
∂P1

∂p1
= − p1G

′ (µ̂1
2)

Λ1(r)− Λ2(r)
−G

(

µ̂1
2

)

+G(s) = 0.

Consider the second derivative of P1 with respect to p1

(73)
∂P1

∂2p1
= − p1G

′′ (µ̂1
2)

(Λ1(r)− Λ2(r))
2 − 2G′ (µ̂1

2)

Λ1(r)− Λ2(r)
.

This is smaller than 0 whenever

(74)− 2G′ (µ̂1
2)

Λ1(r)− Λ2(r)
<

p1G
′′ (µ̂1

2)

(Λ1(r)− Λ2(r))
2 .

Multiplication with (Λ1(r)− Λ2(r))
2 > 0 gives

(75)−2G′
(

µ̂1
2

)

(Λ1(r)− Λ2(r)) < p1G
′′
(

µ̂1
2

)

.

For distributions G with strictly increasing hazard rate (8) we have

(76)
d

dµ

(

G′(µ)

1−G(µ)

)

> 0 ⇐⇒ − G′(µ)2

1−G(µ)
< G′′(µ).
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Bounding the right-hand side of (75) and simplification gives

(77)2 (Λ1(r)− Λ2(r)) > p1
G′(µ)

1−G(µ)
.

Set p1 = p∗1. Solving (72) for p∗1 gives

(78)p∗1 =
(Λ1(r)− Λ2(r)) (G(s)−G (µ̂1

2))

G′ (µ̂1)
.

Inserting this back into (77), together with G(s) = 1, gives

(79)2 (Λ1(r)− Λ2(r)) > (Λ1(r)− Λ2(r)) ,

which is true since (Λ1(r)− Λ2(r)) > 0. Hence, at every critical point determined by (72),

P1 is strictly concave. Since P1 is continuous, this establishes the claimed result.

2. Consider firm 2’s problem (7) and denote by p∗2 a solution to the corresponding first-order

condition

(80)
∂P2

∂p2
= G

(

µ̂1
2

)

−G
(

µ̂2
3

)

− p2

(

G′ (µ̂1
2)

Λ1(r)− Λ2(r)
+
G′ (µ̂2

3)

Λ2(r)

)

= 0.

The second derivative equals

(81)
∂P2

∂p2
= p2

(

G′′ (µ̂1
2)

(Λ1(r)− Λ2(r))
2 −

G′′ (µ̂2
3)

Λ2(r)2

)

−2

(

G′ (µ̂1
2)

Λ1(r)− Λ2(r)
+
G′ (µ̂2

3)

Λ2(r)

)

.

Define

(82)M = G
(

µ̂1
2

)

−G
(

µ̂2
3

)

, χ1 =
−1

Λ1(r)− Λ2(r)
, χ2 =

1

Λ2(r)

and observe that χ1 < 0 and χ2 > 0 by Lemma 1. Inserting these definitions into (80), we

simplify the first order condition to

(83)M + p2χ1G
′
(

µ̂1
2

)

− p2χ2G
′
(

µ̂2
3

)

= 0.

Solving for p2 establishes

(84)p∗2 =
M

χ2G′ (µ̂2
3)− χ1G′ (µ̂1

2)
> 0

by the fact thatM > 0, χ1 < 0, χ2 > 0 and G′(·) > 0. Setting p2 = p∗2, the second derivative

(81) can be represented using (82) by

(85)χ1

(

2G′
(

µ̂1
2

)

+ p∗2χ1G
′′
(

µ̂1
2

))

− χ2

(

2G′
(

µ̂2
3

)

+ p∗2χ2G
′′
(

µ̂2
3

))

.

Consider the two expressions in parentheses. We want to establish that:
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(a) (2G′ (µ̂1
2) + p∗2χ1G

′′ (µ̂1
2)) > 0. By χ1 < 0, and (84), we have

(86)2G′
(

µ̂1
2

)

+ p∗2χ1G
′′
(

µ̂1
2

)

≥ 2G′
(

µ̂1
2

)

+ p∗2χ1

∣

∣G′′
(

µ̂1
2

)∣

∣ > 0.

Solving the first-order condition (83) for χ1 gives

(87)χ1 =
p∗2χ2G

′ (µ̂2
3)−M

p∗2G
′ (µ̂1

2)
.

Plugging this back into (86) gives

2G′
(

µ̂1
2

)

+ p∗2
∣

∣G′′
(

µ̂1
2

)∣

∣

p∗2χ2G
′ (µ̂2

3)−M

p∗2G
′ (µ̂1

2)
=

2G′
(

µ̂1
2

)

−M
∣

∣G′′
(

µ̂1
2

)∣

∣

1

G′ (µ̂1
2)

+ p∗2χ2

∣

∣G′′
(

µ̂1
2

)∣

∣

G′ (µ̂2
3)

G′ (µ̂1
2)
>

2G′
(

µ̂1
2

)

−M
∣

∣G′′
(

µ̂1
2

)∣

∣

1

G′ (µ̂1
2)
> 0

(88)

by the fact that χ2 > 0, |G′′ (µ̂1
2)| > 0, and G′(·) > 0 together with (84). Take the last

inequality, rearranging terms, multiplying by G′ (µ̂1
2) > 0, and applying the definition of

M yields

(89)2G′
(

µ̂1
2

)2
>
(

G
(

µ̂1
2

)

−G
(

µ̂2
3

)) ∣

∣G′′
(

µ̂1
2

)∣

∣ .

We simplify to

(90)2G′
(

µ̂1
2

)2
> G

(

µ̂1
2

) ∣

∣G′′
(

µ̂1
2

)∣

∣ ,

since, G (µ̂2
3) |G′′ (µ̂1

2)| > 0. The above inequality then follows again using (76).

(b) 2G′ (µ̂2
3) + p∗2χ2G

′′ (µ̂2
3) > 0. Observe that

(91)G′
(

µ̂2
3

)

+ p∗2χ2G
′′
(

µ̂2
3

)

> 0

whenever G′′ (µ̂2
3) ≥ 0, by the fact that G′ (µ̂2

3) > 0, p∗2 > 0, and χ2 > 0. For the case

of G′′ (µ̂2
3) < 0 take again the first-order condition (83) and solve for χ2, giving in return

(92)χ2 =
p∗2χ1G

′ (µ̂1
2) +M

p∗2G
′ (µ̂2

3)
.

Plugging this back into (91) gives

G′
(

µ̂2
3

)

+ p∗2G
′′
(

µ̂2
3

) p∗2χ1G
′ (µ̂1

2) +M

p∗2G
′ (µ̂2

3)
> 0

(93)G′
(

µ̂2
3

)

+M
G′′ (µ̂2

3)

G′ (µ̂2
3)

+
p∗2G

′′ (µ̂2
3)χ1G

′ (µ̂1
2)

G′ (µ̂2
3)

> 0

The left-hand side is again greater than

(94)G′
(

µ̂2
3

)

+G′′
(

µ̂2
3

) M

G′ (µ̂2
3)
> 0

whenever G′′ (µ̂2
3) < 0, by the fact that χ1 < 0 and G′(·) > 0, p∗2 > 0. The above

inequality then again follows by using the definition M and the increasing hazard rate

property (76).
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The above properties, together with χ1 < 0, χ2 > 0, establish (85). Thus, at any critical

point determined by (83), P2 is strictly concave. Since P2 is continuous, this completes the

proof.

Proof of Lemma 1.

1. We start by proving (11), Λ1(r) + Λ2(r) = E[Θ(1:2) +Θ(2:2)]. This follows immediately from

q1(θ̃, r) + q2(θ̃, r) = 1 (Q1), through

Λ1(r) + Λ2(r) =

∫ θ̄

0

∫ θ̃1

0

(

q1(θ̃, r)θ̃1 + (1− q1(θ̃, r))θ̃2

)

f(1,2:2)(θ̃)dθ̃2dθ̃1

+

∫ θ̄

0

∫ θ̃1

0

(

q2(θ̃, r)θ̃1 + (1− q2(θ̃, r))θ̃2

)

f(1,2:2)(θ̃)dθ̃2dθ̃1

=

∫ θ̄

0

∫ θ̃1

0

((

q1(θ̃, r) + q2(θ̃, r)
)

θ̃1

+
(

q1(θ̃, r) + q2(θ̃, r)
)

θ̃2

)

f(1,2:2)(θ̃)dθ̃2dθ̃1

=

∫ θ̄

0

∫ θ̃1

0

(

θ̃1 + θ̃2

)

f(1,2:2)(θ̃)dθ̃2dθ̃1 = E[Θ(1:2) +Θ(2:2)].

(95)

Splitting integrals and changing the order of integration gives

(96)

∫ θ̄

0

∫ θ̃1

0

θ̃1f(1,2:2)(θ̃)dθ̃2dθ̃1 +

∫ θ̃1

0

∫ θ̄

0

θ̃2f(1,2:2)(θ̃)dθ̃1dθ̃2

=

∫ θ̄

0

θ̃1

∫ θ̃1

0

f(1,2:2)(θ̃)dθ̃2dθ̃1 +

∫ θ̃1

0

θ̃2

∫ θ̄

0

f(1,2:2)(θ̃)dθ̃1dθ̃2.

The definition of marginal densities gives

(97)

∫ θ̄

0

θ̃1

∫ θ̃1

0

f(1,2:2)(θ̃)dθ̃2dθ̃1 +

∫ θ̃1

0

θ̃2

∫ θ̄

0

f(1,2:2)(θ̃)dθ̃1dθ̃2

=

∫ θ̄

0

θ̃1f(1:2)(θ̃1)dθ̃1 +

∫ θ̃1

0

θ̃2f(2:2)(θ̃2)dθ̃2 = E[Θ(1:2)] + E[Θ(2:2)],

where the last equality follows by the definition of expectation and θ̃1 ≥ θ̃2.

2. Consider (12), E[Θ(1:2)] ≥ Λ1(r) ≥ θ̂/2 > Λ2(r) ≥ E[Θ(2:2)] > 0:

• We start with E[Θ(1:2)] ≥ Λ1(r). Using the joint density (4) to calculate E[Θ(1:2)], the

first inequality reduces to

(98)

∫ θ̄

0

∫ θ̃1

0

θ̃1f(1,2:2)(θ̃)dθ̃2dθ̃1

≥
∫ θ̄

0

∫ θ̃1

0

(

q1(θ̃, r)θ̃1 +
(

1− q1(θ̃, r)
)

θ̃2

)

f(1,2:2)(θ̃)dθ̃2dθ̃1.
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By monotonicity of the integral it is sufficient to show

(99)θ̃1f(1,2:2)(θ̃) ≥
(

q1(θ̃, r)θ̃1 +
(

1− q1(θ̃, r)
)

θ̃2

)

f(1,2:2)(θ̃).

Since f(1,2:2) > 0, q1(θ̃, r) + q2(θ̃, r) = 1, and θ̃1 > θ̃2, this confirms the inequality.

• For Λ1(r) ≥ θ̂/2 we use again the joint density (45) to calculate θ̂/2 and, following the

same steps as above, we need to confirm

(100)
(

q1(θ̃, r)θ̃1 +
(

1− q1(θ̃, r)
)

θ̃2

)

≥ θ̃1 + θ̃2
2

.

Since q1(θ̃, r) ≥ 1/2 for θ̃1 ≥ θ̃2 (Q2 & Q3), this confirms the inequality.

• For θ̂/2 ≥ Λ2(r), the same reasoning leads us to confirm

(101)
θ̃1 + θ̃2

2
≥
(

q2(θ̃, r)θ̃1 +
(

1− q2(θ̃, r)
)

θ̃2

)

in which substituting q2(θ̃, r) = 1 − q1(θ̃, r) (Q1) together with θ̃1 ≥ θ̃2 confirms the

inequality.

• Λ2(r) > 0 follows again from monotonicity. It suffices to show that

(102)q2(θ̃, r)θ̃1 +
(

1− q2(θ̃, r)
)

θ̃2 > 0,

which obviously holds since θ̃1 ≥ θ̃2 > 0.

3. Considering (13), the limits

(103)lim
r →∞

Λ1(r) = E[Θ(1:2)], lim
r →∞

Λ2(r) = E[Θ(2:2)]

follow directly rom (Q1) and (Q3) and application of the monotone convergence theorem.

4. Consider (14),

(104)Λ
(n)
1 (r) =

∫ θ̄

0

∫ θ̃1

0

(

θ̃1 − θ̃2

) ∂nq1(θ̃, r)

∂rn
f(1,2:2)(θ̃)dθ̃2dθ̃, ∀n ∈ N

+.

Λ′

1(r) is computed using the Leibniz integral rule on fixed integration limits, i.e.,

(105)

Λ′

1(r) =
∂

∂r

(

∫ θ̄

0

∫ θ̃1

0

[

q1(θ̃, r)θ̃1 + (1− q1(θ̃, r))θ̃2

]

f(1,2:2)(θ̃)dθ̃2dθ̃1

)

=

∫ θ̄

0

∫ θ̃1

0

∂

∂r

([

q1(θ̃, r)θ̃1 + (1− q1(θ̃, r))θ̃2

]

f(1,2:2)(θ̃)
)

dθ̃2dθ̃1

=

∫ θ̄

0

∫ θ̃1

0

(

∂q1(θ̃, r)

∂r
θ̃1 −

∂q1(θ̃, r)

∂r
θ̃2

)

f(1,2:2)(θ̃)dθ̃2dθ̃1

=

∫ θ̄

0

∫ θ̃1

0

(

θ̃1 − θ̃2

) ∂q1(θ̃, r)

∂r
f(1,2:2)(θ̃)dθ̃2dθ̃1.
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Any higher derivatives Λ
(n)
1 (r) then follow inductively

(106)Λ
(n)
1 (r) =

∫ θ̄

0

∫ θ̃1

0

(

θ̃1 − θ̃2

) ∂nq1(θ̃, r)

∂rn
f(1,2:2)(θ̃)dθ̃2dθ̃1.

5. Concerning (15), Λ1(0) = Λ2(0) = θ̂/2 follows directly from (Q3).

Proof of Lemma 2.

The inequality (16) is an extension of the statement that E[Θi:n] is bounded, whatever the form of

its distribution F . By David and Nagaraja (2003, Inequalities 4.2.6), for any distribution exhibiting

a finite mean-variance pair (m, σ2), it is the case that

(107)E[Θ1:n] ≤ m+
(n− 1)σ
√

(2n− 1)
and likewise E[Θn:n] ≥ m− (n− 1)σ

√

(2n− 1).

Since the support of F is bounded, its mean and variance are finite. For the case of n = 2, combining

inequalities gives the desired property (16).

Proof of Lemma 3.

We restrict attention to the case of uniformly distributed consumer tastes G(µ) = µ/s and write

Λ′

1(r) = ∂Λ1(r)/∂r as well as Λ′′

1(r) = ∂2Λ1(r)/∂r
2.

1. Consider (22), P1(r) > P2(r) > 0 and P1(0) = P2(0) = 0. From (21), we have to show that

(108)

P1(r) = 4s

(

2Λ1(r)− θ̂
)

Λ1(r)
2

(

θ̂ − 5Λ1(r)
)2

> s

(

2Λ1(r)− θ̂
)(

θ̂ − Λ1(r)
)

Λ1(r)
(

θ̂ − 5Λ1(r)
)2 = P2(r) > 0.

Since s > 0, we know that (2Λ1(r)−θ̂) > 0 and (θ̂−5Λ1(r))
2 > 0 by (11) & (12). Simplifying

on both sides yields

(109)4Λ1(r)
2 >

(

θ̂ − Λ1(r)
)

Λ1(r) > 0

which is indeed true by (11) & (12).

To see that P1(0) = P2(0) = 0, take again (21) and substitute Λ1(0) = θ̂/2, from Lemma 1,

resulting in the denominator 9θ̂/4 > 0. Substituting into the first term in the numerator of

both prizes, i.e, (2Λ1(r)− θ̂) = 0, yields P1(0) = P2(0) = 0.

2. Consider (23), P ′

1(r) > 0, P ′′

1 (r) > 0 as well as P ′

1(r) > P ′

2(r).
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• P ′

1(r) > 0: The derivative of P1(r) with respect to r is

(110)P1
′(r) = 8s

Λ1(r)
(

θ̂2 − 3θ̂Λ1(r) + 5Λ1(r)
2
)

(

5Λ1(r)− θ̂
)3 Λ′

1(r).

Dividing by 8s > 0 and multiplying by (5Λ1(r)− θ̂)3 > 0 by (12) gives

(111)Λ1(r)
(

θ̂2 − 3θ̂Λ1(r) + 5Λ1(r)
2
)

Λ′

1(r) > 0.

We have Λ1(r) > 0 by (12) and Λ′

1(r) > 0 for r > 0 by (14) together with (Q2). Hence,

it is sufficient to show that

(112)
(

θ̂2 − 3θ̂Λ1(r) + 5Λ1(r)
2
)

> 0,

which holds by (12).

• P ′′

1 (r) < 0: Take P1(r), differentiating twice with respect to r gives

(113)

P ′′

1 (r) = −8s







θ̂2
(

θ̂ + 4Λ1(r)
)

(

θ̂ − 5Λ1(r)
)4 Λ′

1(r)
2

+
Λ1(r)

(

θ̂ − 5Λ1(r)
)(

θ̂2 − 3θ̂Λ1(r) + 5Λ1(r)
2
)

(

θ̂ − 5Λ1(r)
)4 Λ′′

1(r)






< 0.

Dividing by −8s < 0 and multiplying by (θ̂ − 5Λ1(r))
4 > 0 by (12) gives

(114)
θ̂2
(

θ̂ + 4Λ1(r)
)

Λ′

1(r)
2 +

Λ1(r)
(

θ̂ − 5Λ1(r)
)(

θ̂2 − 3θ̂Λ1(r) + 5Λ1(r)
2
)

Λ′′

1(r) > 0.

Clearly, θ̂2(θ̂ + 4Λ1(r))Λ
′

1(r)
2 > 0, since θ̂ > 0,Λ1(r) > 0 and Λ′

1(r) > 0 for r > 0 by

Lemma 1 and (Q1) and (Q2). Hence, it is sufficient to show that

(115)Λ1(r)
(

θ̂ − 5Λ1(r)
)(

θ̂2 − 3θ̂Λ1(r) + 5Λ1(r)
2
)

Λ′′

1(r) ≥ 0.

Observe that Λ1(r) > 0 and (θ̂2 − 3θ̂Λ1(r) + 5Λ1(r)
2) > 0 again by (12). Thus, we

need to show that

(116)
(

θ̂ − 5Λ1(r)
)

Λ′′

1(r) ≥ 0.

Since (θ̂−5Λ1(r)) < 0 follows again from (12) and Λ′′

1(r) ≤ 0 follows from (14) together

with (Q6), this proves the inequality.
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• P ′

1(r) > P ′

2(r): Take P1(r) and P2(r), differentiating with respect to r gives

(117)

P1
′(r) = 8s

Λ1(r)
(

θ̂2 − 3θ̂Λ1(r) + 5Λ1(r)
2
)

(

5Λ1(r)− θ̂
)3 Λ′

1(r)

>s
θ̂3 − Λ1(r)

(

θ̂2 − 6θ̂Λ1(r) + 10Λ1(r)
2
)

(

5Λ1(r)− θ̂
)3 Λ′

1(r) =P2
′(r).

Multiplying both sides by (5Λ1(r)− θ̂)3/sΛ′

1(r) > 0 (established by Lemma 1) gives

(118)8Λ1(r)
(

θ̂2 − 3θ̂Λ1(r) + 5Λ1(r)
2
)

> θ̂3 − Λ1(r)
(

θ̂2 − 6θ̂Λ1(r)

+ 10Λ1(r)
2
)

.

Adding Λ1(r)(θ̂
2−6θ̂Λ1(r)+10Λ1(r)

2) on both hand sides simplifies the above expression

to

(119)Λ1(r)
(

7θ̂2 − 18θ̂Λ1(r) + 30Λ1(r)
2
)

> θ̂3

which is always satisfied since Λ1(r) > θ̂/2 > 0 for any r > 0, by Lemma 1.

3. Consider (24): P ′

2(r) > 0, P ′′

2 (r) > 0. First observe that by (A1) and (16) we have

(120)
E[Θ(1:2)]

E[Θ(2:2)]
≤ 2.

Adding E[Θ(1:2)] on both sides gives

(121)
3

2
E[Θ(1:2)] ≤ θ̂.

By (12) we substitute Λ1(r) < E[Θ(1:2)] on the left-hand side and obtain

(122)3Λ1(r) ≤ 2θ̂.

This fact establishes

(123)3Λ1(r) ≤ 2θ̂ ⇒ θ̂3 − θ̂2Λ1(r) + 6θ̂Λ1(r)
2 − 10Λ1(r)

3 > 0.

• P ′

2(r) > 0: Differentiating P2(r) with respect to r gives

(124)P2
′(r) = s

θ̂3 − Λ1(r)
(

θ̂2 − 6θ̂Λ1(r) + 10Λ1(r)
2
)

(

5Λ1(r)− θ̂
)3 Λ′

1(r) > 0.

Dividing by s > 0 and Λ′

1(r) > 0 for r > 0 by (14) together with (Q2), and multiplying

by (5Λ1(r)− θ̂)3 > 0 by (12) gives

(125)θ̂3 > Λ1(r)
(

θ̂2 − 6θ̂Λ1(r) + 10Λ1(r)
2
)

.
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Rearranging and multiplying out gives

(126)θ̂3 − θ̂2Λ1(r) + 6θ̂Λ1(r)
2 − 10Λ1(r)

3 > 0

which is implied by (123).

• P ′′

2 (r) < 0: Take P2(r), differentiating twice with respect to r gives

(127)

P ′′

2 (r) = −2s
θ̂2
(

7θ̂ + Λ1(r)
)

(

θ̂ − 5Λ1(r)
)4 Λ′

1(r)
2

−s

(

θ̂ − 5Λ1(r)
)(

θ̂3 − θ̂2Λ1(r) + 6θ̂Λ1(r)
2 − 10Λ1(r)

3
)

(

θ̂ − 5Λ1(r)
)4 Λ′′

1(r)< 0.

Dividing by −s < 0 and multiplying by (θ̂ − 5Λ1(r))
4 > 0 by (12) gives

(128)
2θ̂2
(

7θ̂ + Λ1(r)
)

Λ′

1(r)
2 +

(

θ̂ − 5Λ1(r)
)

(

θ̂3 − θ̂2Λ1(r) + 6θ̂Λ1(r)
2 − 10Λ1(r)

3
)

Λ′′

1(r) > 0.

For the first term we have 2θ̂2(7θ̂ + Λ1(r))Λ
′

1(r)
2 > 0, since θ̂ > 0,Λ1(r) > 0 and

Λ′

1(r) > 0 for r > 0 by Lemma 1, (Q1) and (Q2). It is thus sufficient to show that

(129)
(

θ̂−5Λ1(r)
)(

θ̂3− θ̂2Λ1(r)+6θ̂Λ1(r)
2−10Λ1(r)

3
)

Λ′′

1(r)≥ 0.

Since (θ̂ − 5Λ1(r)) < 0 follows again from (12), and Λ′′

1(r) ≤ 0 follows from (14)

together with (Q6), this gives

(130)θ̂3 − θ̂2Λ1(r) + 6θ̂Λ1(r)
2 − 10Λ1(r)

3 ≥ 0.

Implication (123) completes the proof.

Proof of Proposition 2.

Firm i chooses information ρi. We drop the subscripts on rankings, writing q1 = q and q2 = 1− q,

and abuse notation by writing q′(θ, ρ1 + ρ2) for the partial derivative of q(θ, ρ1 + ρ2) with respect

to ρ1 or ρ2. The first-order condition of firm 1’s objective (1) with respect to ρ1 is then

q(θ, r)P1
′(r) + (1− q(θ, r))P2

′(r) +
∂q(θ, r)

∂ρ1
P1(r)−

∂q(θ, r)

∂ρ1
P2(r)− c′(|ρ1|) = 0 (131)

and the same condition for firm 2 is

(1− q(θ, r))P1
′(r) + q(θ, r)P2

′(r)− ∂q(θ, r)

∂ρ2
P1(r) +

∂q(θ, r)

∂ρ2
P2(r)− c′(|ρ2|) = 0. (132)

Summing the two for q′(θ, r) = ∂q(θ, r)/∂ρ1 = ∂q(θ, r)/∂ρ2 gives (25).
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Proof of Proposition 3.

As in the previous proof, we drop the ranking-subscripts, writing q1 = q and q2 = 1− q, and abuse

notation by writing q′(θ, ρ1+ρ2) and P
′

i (r, s) = ∂Pi(r, s)/∂r for the partial derivatives with respect

to ρ1, ρ2, and r. We first show that firm 1’s benefit function, defined as

(133)φ1(ρ1) = q(θ, ρ1 + ρ∗2)P1(ρ1 + ρ∗2) + (1− q(θ, ρ1 + ρ∗2))P2(ρ1 + ρ∗2),

is strictly increasing in r. Taking the derivative with respect to r gives

(134)
∂φ1(ρ1)

∂ρ1
= q(θ, ρ1 + ρ∗2)P1

′(ρ1 + ρ∗2) + (1− q(θ, ρ1 + ρ∗2))P2
′(ρ1 + ρ∗2)

+ q′(θ, ρ1 + ρ∗2) (P1(r)− P2(r)) > 0,

in which the inequality follows from P1
′(r) > P2

′(r) and P1(r) > P2(r), for any r > 0, as a

consequence of Lemma 3, together with assumptions (Q).

Next, we show that player 1’s objective (1) is concave in ρ1, for any given ρ∗2. Recall that (26)

establishes ρ1 ≥ |ρ2|, yielding r ≥ 0 in equilibrium. By definition, −c(|ρ1|) is strictly concave. Since
the sum of two concave functions is again concave, it is sufficient to establish concavity of firm 1’s

benefit function (133) on the interval r ∈ [0,∞). Arbitrarily fixing ρ∗2 ∈ R, this is the case iff:

(135)λφ1(u) + (1− λ)φ1(v) ≤ φ1(λu+ (1− λ) v), for u, v ∈ [0,∞), λ ∈ [0, 1].

We use the fact that the consumers’ expectations sum up to a constant—Lemma 1, (11)—and

replace Λ2(r) = θ̂−Λ1(r). For any θ1 ≥ θ2, (Q6) together with property (14) establishes concavity

of Λ1(r), i.e.,
(136)λΛ1(u) + (1− λ) Λ1(v) ≤ Λ1(λu+ (1− λ) v).

We redefine contest prizes as functions of the consumers’ expectation Λ1(r) on the basis of (21):

P1(Λ1(r)) = 4s
Λ1(r)

2
(

2Λ1(r)− θ̂
)

(

θ̂ − 5Λ1(r)
)2 , P2(Λ1(r)) = s

(

θ̂ − Λ1(r)
)

Λ1(r)
(

2Λ1(r)− θ̂
)

(

θ̂ − 5Λ1(r)
)2 . (137)

As r > 0 and Λ1 is bounded by θ̂/2 < Λ1(r) < 2θ̂/3, in which the lower bound follows from (12) and

the upper bound is a consequence of (A1), obtained by repeating steps (120)–(122). Differentiation

with respect to Λ1(r) ∈ [θ̂/2, 2θ̂/3) yields the inequalities:

(138)
∂P1(Λ1(r))

∂Λ1(r)
= 8s

Λ1(r)
(

θ̂2 − 3θ̂Λ1(r) + 5Λ1(r)
2
)

(

5Λ1(r)− θ̂
)3 ≥ 0,

(139)
∂P2(Λ1(r))

∂Λ1(r)
= s

θ̂3 − Λ1(r)
(

θ̂2 − 6θ̂Λ1(r) + 10Λ1(r)
2
)

(

5Λ1(r)− θ̂
)3 ≥ 0,

(140)
∂P1(Λ1(r))

∂Λ1(r)
>
∂P2(Λ1(r))

∂Λ1(r)
.
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Since we have Λ′

1(r) > 0 by (14) and (Q2), inequality (138) follows directly by inspection of

P1
′(r) > 0 (110), inequality (139) follows by P2

′(r) > 0 (124), and inequality (140) follows by

P1
′(r) > P2

′(r) (117). Moreover we have

(141)
∂2P1(Λ1(r))

∂Λ1(r)2
= −

8sθ̂2
(

θ̂ + 4Λ1(r)
)

(

θ̂ − 5Λ1(r)
)4 < 0

which follows from s > 0, and θ̂ > Λ1(r) > θ̂/2 > 0 by Lemma 1. Similarly, the same arguments

establish

(142)
∂2P2(Λ1(r))

∂Λ1(r)2
= −

2sθ̂2
(

7θ̂ + Λ1(r)
2
)

(

θ̂ − 5Λ1(r)
)4 < 0

Hence, the inequalities (138)–(142) establish concavity of the form

(143)λP1(Λ1(u)) + (1− λ)P1(Λ1(v)) < P1 (λΛ1(u) + (1− λ)Λ1(v)) ,

(144)λP2(Λ1(u)) + (1− λ)P2(Λ1(v)) < P2(λΛ1(u) + (1− λ)Λ1(v)).

We similarly redefine firm 1’s benefit function (133) as φ1(r,Λ1(r)). We use and establish two

properties of the benefit functions. Firstly, φ1(r,Λ1(r)) is strictly increasing in Λ1(r):

∂φ1(r,Λ1(r))

∂Λ1(r)
= q(θ, r)P ′

1 (Λ1(r)) + (1− q(θ, r))P ′

2(Λ1(r)) > 0 (145)

which is confirmed by the fact that P ′

1(Λ1(r)) > P ′

2(Λ1(r)) > 0 and (Q). Secondly, φ1(r,Λ1(r)) is

strictly increasing in r:

(146)
∂φ1(r,Λ1(r))

∂r
= q′(θ, r) (P1(Λ1(r))− P2(Λ1(r)))

+ (q(θ, r)P ′

1(Λ1(r)) + (1− q(θ, r)P ′

2(Λ1(r)))Λ
′

1(r) > 0

which follows from (145) together with P1(Λ1(r)) > P2(Λ1(r)) > 0, (Q), and the fact that Λ′

1(r) >

0 as a consequence of Lemma 1. Inserting the definition of φ1(r,Λ1(r)) into (135) yields on the lhs

(147)λq(θ, u)P1(Λ1(u)) + (1− λ) q(θ, v)P1(Λ1(v))
+ λ (1− q(θ, u))P2(Λ1(u)) + (1− λ) (1− q(θ, v))P2(Λ1(v))

and on the right-hand side

(148)q(θ, λu+ (1− λ) v)P1(Λ1(λu+ (1− λ) v))
+ (1− q(θ, λu+ (1− λ) v))P2(Λ1(λu+ (1− λ) v)).

We start on the right-hand side; since q(θ, r) is weakly concave for θ1 ≥ θ2, we have

(149)λq(θ, u) + (1− λ) q(θ, v) ≤ q(θ, (λu+ (1− λ) v)).

Combined with (146), the right-hand side is thus greater than

(150)(λq(θ, u) + (1− λ) q(θ, v))P1(Λ1(λu+ (1− λ) v))
+ (1− (λq(θ, u) (1− λ) q(θ, v)))P2(Λ1(λu+ (1− λ) v)).
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Rearranging terms yields

(151)λq(θ, u)P1(Λ1(λu+ (1− λ) v)) + (1− λ) q(θ, v)P1(Λ1(λu+ (1− λ) v))
+λ (1− q(θ, u))P2(Λ1(λu+(1−λ)v))+ (1−λ) (1− q(θ, v))P2(Λ1(λu+(1−λ) v)).

Using (143) and (144) again on the right-hand side, substitution and simplification yields

(152)(λq(θ, u) + q(θ, v)− λq(θ, v)) (λP1(Λ1(u)) + (1− λ)P1(Λ1(v)))
+ (1− λq(θ, u)− q(θ, v) + λq(θ, v)) (λP2(Λ1(u)) + (1− λ)P2(Λ1(v))) .

Simplifying both sides of the modified inequality (147) ≤ (152) gives

(153)λ (1− λ) (q(θ, u)− q(θ, v)) (P1(Λ1(u))− P1(Λ1(v)) + P2(Λ1(v))− P2(Λ1(u))) ≤ 0.

Assume u < v. Since q(r, θ) is strictly increasing in r by (Q), we have q(θ, u) < q(θ, v). Using

λ ∈ [0, 1] and inserting definitions (137) yields

(154)

4s
Λ1(u)

2
(

2Λ1(u)− θ̂
)

(

θ̂ − 5Λ1(u)
)2 + s

(

θ̂ − Λ1(v)
)

Λ1(v)
(

2Λ1(v)− θ̂
)

(

θ̂ − 5Λ1(v)
)2

≥ 4s
Λ1(v)

2
(

2Λ1(v)− θ̂
)

(

θ̂ − 5Λ1(v)
)2 + s

(

θ̂ − Λ1(u)
)

Λ1(u)
(

2Λ1(u)− θ̂
)

(

θ̂ − 5Λ1(u)
)2 .

Converting terms to a common denominator and factoring in the numerator yields

(155)
s
(

2Λ1(u)
(

5Λ1(v)− θ̂
)

+ θ̂
(

θ̂ − 2Λ1(v)
))

(Λ1(u)− Λ1(v))
(

θ̂ − 5Λ1(u)
)(

θ̂ − 5Λ1(v)
) ≥ 0.

Since u > v ⇒ Λ1(u) > Λ1(v) and s > 0, the above expression simplifies to

(156)

(

2Λ1(u)
(

5Λ1(v)− θ̂
)

+ θ̂
(

θ̂ − 2Λ1(v)
))

(

θ̂ − 5Λ1(u)
)(

θ̂ − 5Λ1(v)
) ≥ 0.

Splitting the fraction and simplification gives

(157)
2

5
+

3θ̂2

5
(

θ̂ − 5Λ1(u)
)(

θ̂ − 5Λ1(v)
) ≥ 0.

Using θ̂ > Λ1(u) ≥ θ̂/2 gives

(158)2Λ1(u) ≥
θ̂
(

θ̂ − 2Λ1(v)
)

(

θ̂ − 5Λ1(v)
)

which is confirmed by the fact that

(159)2Λ1(u) ≥
2θ̂

3
≥
θ̂
(

θ̂ − 2Λ1(v)
)

(

θ̂ − 5Λ1(v)
) ,

follows from θ̂ > Λ1(v) ≥ θ̂/2. The case of v < u is entirely symmetric and the special case of

u = v is immediate since u = v ⇒ (q(θ, u)− q(θ, v)) = 0 in (153), completing the argument.
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Proof of Proposition 4.

As in the previous proofs, we drop the subscripts on rankings, writing q1 = q and q2 = 1 − q, and

abuse notation by writing q′(θ, ρ1 + ρ2) for the partial derivatives with respect to ρ1, ρ2, or r. Firm

2’s objective is given by:

(160)u2(θ, ρ
∗

1 + ρ2) = (1− q(θ, ρ∗1 + ρ2))P1(ρ
∗

1 + ρ2) + q(θ, ρ∗1 + ρ2))P2(ρ
∗

1 + ρ2) − c(|ρ2|)

in which ρ∗1 denotes the optimal response of firm 1 from Proposition 3. Following Quah and Strulovici

(2012), global strict quasi-concavity of firm 2’s objective is ensured whenever

(161)
−u′2(θ, ρ∗1 + ρ2) = −∂u2(θ, ρ

∗

1 + ρ2)

∂ρ2
= − (1− q(θ, r))P1

′(r)− q(θ, r)P2
′(r)

+ q′(θ, r)P1(r)− q′(θ, r)P2(r) + c′(|ρ2|)

satisfies the strict single crossing condition in the first derivative

(162)−u′2(θ, ρ∗1 + ρ′2) > 0 ⇒ −u′(θ, ρ∗1 + ρ′′2) > 0 whenever ρ′′2 > ρ′2.

Denote by
(163)ξ(ρ2) = q′(θ, ρ∗1 + ρ2)P1(ρ

∗

1 + ρ2)− (1− q(θ, ρ∗1 + ρ2))P1
′(ρ∗1 + ρ2)

(164)−ψ(ρ2) = −q(θ, ρ∗1 + ρ2)P2
′(ρ∗1 + ρ2)− q′(θ, ρ∗1 + ρ2)P2(ρ

∗

1 + ρ2)

(165)−φ2
′(ρ2) = ξ(ρ2)− ψ(ρ2)

and thus −u′(θ, ρ∗1 + ρ2) = −φ2
′(ρ2) + c′(|ρ2|). In a first step we want to establish single crossing

for the component function −φ2
′(ρ2) = ξ(ρ2)−ψ(ρ2). Recall again that (26) establishes ρ∗1 ≥ |ρ2|,

yielding r ≥ 0 in equilibrium. It is thus sufficient to establish single crossing on the domain r > 0.

Observe that −ψ(ρ2) < 0 by definition (Q) and the fact that P2(r) > 0, P2
′(r) > 0, and thus

trivially satisfies strict single crossing. For ξ(r), denote by

(166)ξ1(ρ2) = q′(θ, r)P1(r)

(167)ξ2(ρ2) = −(1− q(θ, r))P1
′(r).

Observe that ξ1(ρ2) > 0 and ξ2(ρ2) < 0 for any r > 0, by definition (Q) and Lemma 3. Hence,

ξ1(ρ2), ξ2(ρ2) both trivially satisfy single crossing. Applying Proposition 1 of Quah and Strulovici

(2012), the sum ξ(ρ2) = ξ1(ρ2)+ ξ2(ρ2) satisfies strict single crossing, whenever for ξ1(ρ2) > 0 and

ξ2(ρ2) < 0

(168)−ξ2(ρ2)
ξ1(ρ2)

=
(1− q(θ, r))

q′(θ, r)

P1
′(r)

P1(r)
is decreasing.

Observe that P1
′(r)/P1(r) is positive and strictly decreasing due to Lemma 3, and (1−q(θ, r))/q′(θ, r)

is positive and strictly decreasing whenever q satisfies the increasing hazard rate property (28),

which we assume. Since single crossing of the component functions ξ(ρ2),−ψ(ρ2) is thus estab-

lished, we can again apply Proposition 1 in Quah and Strulovici (2012), which states that the sum

−φ2
′(ρ2) = ξ(ρ2)− ψ(ρ2) satisfies strict single crossing if

(169)−−ψ(ρ2)
ξ(ρ2)

is decreasing, whenever ξ(ρ2) > 0 and −ψ(ρ2) < 0.
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This is equivalent to

(170)
ξ(ρ2)

ψ(ρ2)
is increasing, whenever ξ(ρ2) > 0 and ψ(ρ2) > 0.

Taking derivatives with respect to ρ2 gives

(171)
ξ′(ρ2)

ψ(ρ2)
≥ ξ(ρ2)ψ

′(ρ2)

ψ(ρ2)2
whenever ξ(ρ2) > 0 and ψ(ρ2) > 0

and simplification yields

(172)
ξ′(ρ2)

ξ(ρ2)
≥ ψ′(ρ2)

ψ(ρ2)
whenever ξ(ρ2) > 0 and ψ(ρ2) > 0.

This is implied by taking definite integrals on both sides of the following form

∫ ρ2

−ρ∗
1

ξ′(x)

ξ(x)
dx ≥

∫ ρ2

−ρ∗
1

ψ′(x)

ψ(x)
dx

log(ξ(ρ2))− log(ξ(−ρ∗1)) ≥ log(ψ(ρ2))− log(ψ(−ρ∗1))
log(ξ(ρ2))− log(ψ(ρ2)) ≥ log(ξ(−ρ∗1))− log(ψ(−ρ∗1))

(173)

whenever ξ(ρ2) > 0 and ψ(ρ2) > 0. Taking the exponential on both sides gives

(174)
ξ(ρ2)

ψ(ρ2)
≥ ξ(−ρ∗1)
ψ(−ρ∗1)

whenever ξ(ρ2) > 0 and ψ(ρ2) > 0.

Observe that on the right-hand side we have

(175)ξ(−ρ∗1) = q′(θ, 0)P1(0)− (1− q(θ, 0))P1
′(0) = −1/2P1

′(0)

(176)ψ(−ρ∗1) = q(θ, r)P2
′(0) + q′(θ, 0)P2(0) = 1/2P2

′(0).

Plugging in the values on the right-hand side gives

(177)
ξ(ρ2)

ψ(ρ2)
≥ −1/2

P1
′(0)

P2
′(0

whenever ξ(ρ2) > 0 and ψ(ρ2) > 0

which is always true by the fact that Pi(0) > 0 as a consequence of Lemma 3 as well as ξ(r) > 0

and ψ(r) > 0.

With these two intermediate results in hand and the fact that c′(|ρ2|) > 0 also trivially satisfies strict

single crossing, we establish strict single crossing of −u′(θ, ρ2) = −φ2
′(ρ2) + c′(|ρ2|) by applying

again Proposition 1 in Quah and Strulovici (2012). This is the case if

(178)
φ′

2(ρ2)

c′(|ρ2|)
is decreasing, whenever φ2

′(ρ2) > 0.

Taking derivatives with respect to ρ2 gives

(179)
φ2

′′(ρ2)

c′(|ρ2|)
≤ φ2

′(ρ2)|ρ2|c′′(|ρ2|)
c′(|ρ2|)2

whenever φ2
′(ρ2) > 0.

Simplification yields

(180)
φ2

′′(ρ2)

φ2
′(ρ2)

≤ |ρ2|c′′(|ρ2|)
c′(|ρ2|)

whenever φ2
′(ρ2) > 0.
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Observe that the right-hand side is strictly greater than 0 by convexity of c(|·|). (180) is implied by

taking definite integrals on both sides

∫ ρ2

−ρ∗
1

φ2
′′(x)

φ2
′(x)

dx ≤
∫ ρ2

−ρ∗
1

|x|c′′(|x|)
c′(|x|) dx

log(φ2
′(ρ2)− log(φ2

′(−ρ∗1)) ≤ log(c′(|ρ2|))− log(c′(|−ρ∗1|))
log(φ2

′(ρ2))− log(c′(|ρ2|)) ≤ log(φ2
′(−ρ∗1))− log(c′(|ρ∗1|))

(181)

whenever φ2
′(ρ2) > 0. Taking the exponential on both sides gives

(182)
φ2

′(ρ2)

c′(|ρ2|)
≤ φ2

′(−ρ∗1)
c′(|ρ∗1|)

whenever φ2
′(ρ2) > 0. Moreover, observe that at any possible critical point we must have

(183)φ2
′(ρ2) = c′(|ρ2|)

by inspection of firm 2’s first-order condition. Hence, the left-hand side of (182) equals 1 at any

possible equilibrium candidate. Furthermore, observe that

(184)φ2
′(−ρ∗1) = (1− q(θ, 0))P1

′(0) + q(θ, 0)P2
′(0)− q′(θ, 0)(P1(0)− P2(0))

= 1/2(P1
′(0) + P2

′(0)).

Since c′(|ρ∗1|) > 0, we simplify to

(185)c′(|ρ∗1|) ≤ 1/2(P1
′(0) + P2

′(0)) whenever φ2
′(ρ2) > 0.

By inspection of firm 1’s first-order condition we have

(186)c′(|ρ∗1|) = q(θ, ρ∗1 + ρ2)P1
′(ρ∗1 + ρ2) + (1− q(θ, ρ∗1 + ρ2))P2

′(ρ∗1 + ρ2)

+ q′(θ, ρ∗1 + ρ2)(P1(ρ
∗

1 + ρ2)− P2(ρ
∗

1 + ρ2)) = φ1
′(ρ∗1 + ρ2)

which is strictly decreasing by concavity of firm 1’s benefits φ1(ρ
∗

1, ρ2) (as established in Proposi-

tion 3) and bounded above by 1/2(P1
′(0)+P2

′(0)), in the case of −ρ2 = ρ∗1, again by q(θ, 0) = 1/2

and Pi(0) = 0. Thus, at any possible critical point determined trough (183), firm 2’s objective is

strictly quasi-concave, and thus any critical point is a strict local maximum. From continuity of u2(·)
as a consequence of (Q6) we can therefore conclude that firm 2’s utility function is globally strictly

quasi-concave. An equilibrium with r > 0 determined trough (183) and (186) therefore exists.

Proof of Proposition 5.

Notice that prizes (21) depend linearly on s while none of the other utility-components depend

directly on s. Similarly, P ′

1(r) and P ′

2(r) (explicitly determined in Lemma 3, (110) and (124),

respectively) are linear in s. Hence, firm 2’s necessary condition (132) can be rewritten as a function

of consumer heterogeneity s at the point of interest r∗ = ρ∗1 > 0 with ρ∗2 = 0 (yielding c′(|ρ∗2|) = 0,

by assumption) as:

(187)(1− q(θ, ρ∗1))
P1

′(ρ∗1)

s
+ q(θ, ρ∗1)

P2
′(ρ∗1)

s
− q′(θ, ρ∗1)

P1(ρ
∗

1)

s
+ q′(θ, ρ∗1)

P2(ρ
∗

1)

s
= 0.
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Define

(188)φ(ρ∗1) = (1− q(θ, ρ∗1))
P1(ρ

∗

1)

s
and ψ(ρ∗1) = q(θ, ρ∗1)

P2(ρ
∗

1)

s
.

Inserting these definitions, (187) holds whenever

(189)
φ′(ρ∗1)

ψ′(ρ∗1)
= −1.

At this point we apply Cauchy’s mean value theorem (see, e.g., Apostol, 1974, Theorem 5.12), which

states that, for functions φ and ψ, both continuous on some closed interval [a, b] and differentiable

on the open interval (a, b) with a < b, there exists some ρ∗1 ∈ (a, b), such that

(190)
φ′(ρ∗1)

ψ′(ρ∗1)
=
φ(b)− φ(a)

ψ(b)− ψ(a)
,

provided that ψ(b) 6= ψ(a) and ψ′(ρ∗1) 6= 0. Note that ψ is strictly increasing and positive by

Lemma 3 and Assumptions Q. Moreover, both functions are continuous and differentiable on any

closed interval [a, b], with 0 ≤ a < b. For (187) to hold for some ρ∗1, it is thus sufficient to provide

some interval [a, b], with a < b, such that

(191)ξ(b) =
φ(a)− φ(b)

ψ(b)− ψ(a)
= 1.

As next step, note that φ(ρ∗1) attains a maximum since P1(ρ
∗

1)/s is concave and increasing, as a

consequence of Lemma 3 and the fact that (1 − q(θ, ρ∗1)) is strictly decreasing and converges to 0

as ρ∗1 increases (by Assumptions Q). Denoting the maximizers of φ by ρ̂1 = argmaxρ∗
1

φ(ρ∗1), we

establish the following claims for ρ̂1(θ2) and φ(ρ̂1(θ2), θ2) for arbitrarily fixed θ1 with θ1 > θ2:

(C1) The value function v(θ2) = φ(ρ̂1(θ2), θ2) is strictly increasing in θ2. Applying the envelope

theorem (Mas-Colell et al., 1995, Theorem M.L.1) gives

(192)
dv(θ2)

dθ2
=
∂φ(ρ1, θ2)

∂θ2

∣

∣

∣

∣

ρ1=ρ̂1(θ2)

= − ∂q(θ, ρ1)

∂θ2

P1(ρ1)

s

∣

∣

∣

∣

ρ1=ρ̂1(θ2)

which is strictly increasing for θ2 < θ1, by the fact that ∂q(θ, ρ1)/∂θ2 < 0 by Assumptions

Q, and P1(ρ1) > 0 by Lemma 3.

(C2) We claim that

(193)lim
θ2 →θ1

ρ̂1(θ2) = ∞

which follows from the fact that

(194)lim
θ2 →θ1

φ(ρ̂1(θ2), θ2) =
1

2

P1(ρ̂1)

s
,

which is strictly increasing in ρ̂1 by Lemma 3.
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(C3) We claim that

(195)lim
θ2 →θ1

φ(ρ̂1(θ2), θ2) = lim
ρ1→∞

1

2

P1(ρ1)

s

which follows as a consequence of (C1) and (C2), by the fact that the maximizer ρ̂1(θ2)

converges to infinity.

Now set a = ρ̂1. By continuity of φ(b) and ψ(b), respectively, we apply the intermediate value

theorem (see, e.g., Apostol, 1974, Theorem 4.33). It is sufficient for ξ(b) = 1 to establish that for

an adequately chosen parameter pair θ1 > θ2 within [0, θ̄]

(196)∃b : ξ(b) < 1,

(197)∃b : ξ(b) > 1.

For the case of (196), we take the limit of b→ ρ̂1 in (191), resulting in

(198)lim
b →ρ̂1

φ(ρ̂1)− φ(b)

ψ(b)− ψ(ρ̂1)
= 0,

directly following from the application of L’Hôpital’s rule with

lim
b→ρ̂1

φ′(b) = 0,

by definition of the maximum in the numerator, and

lim
b→ρ̂1

ψ′(b) > 0

in the denominator, by the fact that ψ is strictly increasing by (Q) together with Lemma 3.

For the case of (197), we take the limit of b→ ∞. Note that

(199)lim
b →∞

φ(ρ̂1)− φ(b)

ψ(b)− ψ(ρ̂1)
> lim

b→∞

φ(ρ̂1)− φ(b)

ψ(b)
,

by the fact that ψ is strictly increasing. Hence for (197), we only need to establish

(200)lim
b →∞

φ(ρ̂1)− φ(b)

ψ(b)
≥ 1.

Note that

lim
b→∞

φ(b) = 0,

by the fact that P1(r)/s is bounded and (1− q(θ, r)) converges to zero. Furthermore, note that

lim
b→∞

ψ(b) = lim
b→∞

P2(b)

s
.

Hence, (200) simplifies to

(201)φ(ρ̂1) ≥ lim
b→∞

P2(b)

s
.
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But since φ(ρ̂1(θ2), θ2) converges to

lim
ρ1→∞

1

2

P1(ρ1)

s

for diminishing type spreads θ by (C3), it is sufficient to show that

(202)lim
ρ1 →∞

1

2

P1(ρ1)

s
≥ lim

b→∞

P2(b)

s
.

Taking this limit for the demand-side expectations (3) gives

(203)lim
ρ1 →∞

Λ1(ρ1) = E[Θ(1:2)] and lim
ρ1 →∞

Λ2(ρ1) = E[Θ(2:2)],

by Assumptions (Q) and the definition of order statistics. Inserting these into prizes (20) simplifies

(202) to

(204)
2
(

E[Θ(1:2)]
)2 (

E[Θ(1:2)]− E[Θ(2:2)]
)

(

E[Θ(2:2)]− 4E[Θ(1:2)]
)2 ≥ E[Θ(1:2)]E[Θ(2:2)]

(

E[Θ(1:2)]− E[Θ(2:2)]
)

(

E[Θ(2:2)]− 4E[Θ(1:2)]
)2 ,

which is true by the fact that E[Θ(1:2)] > E[Θ(2:2)] > 0, completing the proof.

Proof of Proposition 6.

The maximization of joint firm (cartel) benefits over costs solves

(205)max
ρ1,ρ2

q1(θ, r) (P1(r) + P2(r)) + (1− q1(θ, r)) (P1(r) + P2(r))− c(|ρ1|)− c(|ρ2|)

which simplifies, using (Q1), to

(206)max
ρ1,ρ2

P1(r) + P2(r)− c(|ρ1|)− c(|ρ2|).

The first-order conditions of this problem are

(207)P1
′(r) + P2

′(r) = c′(|ρ1|), P1
′(r) + P2

′(r) = c′(|ρ2|).

The implied symmetry in costs simplifies the analysis since in a joint producer utility maximum (206)

it must be the case that ρ1 = ρ2. We therefore rewrite (206) as the simplified symmetric problem

(208)max
r

WP (r) = P1(r) + P2(r)− 2c (|r/2|)

with the first-order condition
(209)P1

′(r) + P2
′(r) = c′ (|r/2|) .

Since information emissions differ in equilibrium, (26), strict convexity of c(·) implies that the right-

hand side of (209) is strictly smaller than the right-hand side of (25) for non-zero r.

Proof of Proposition 7.

Consider the welfare of served consumer segments WH(r),WL(r) in (29). We first show that

equilibrium prices p∗i are both strictly increasing in r. To see this, take equilibrium prices (18) and

apply Lemma 1 to obtain

p∗1(r) = 2s
Λ1(r)

(

2Λ1(r)− θ̂
)

5Λ1(r)− θ̂
, p∗2(r) = s

(

2Λ1(r)− θ̂
)(

θ̂ − Λ1(r)
)

5Λ1(r)− θ̂
. (210)
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Taking the derivative of p∗1(r) with respect to r gives

∂p∗1(r)

∂r
= 2s

(

θ̂2 − 4θ̂Λ1(r) + 10Λ1(r)
2
)

Λ′

1(r)
(

θ̂ − 5Λ1(r)
)2 (211)

which is positive by the fact that Λ′

1(r) > 0 and 2Λ1(r) > θ̂, as a consequence of Lemma 1. Taking

the derivative of p∗2(r) with respect to r gives

∂p∗2(r)

∂r
= 2s

(

θ̂2 + 2θ̂Λ1(r)− 5Λ1(r)
2
)

Λ′

1(r)
(

θ̂ − 5Λ1(r)
)2 . (212)

The same reasoning as above establishes the inequality

θ̂
(

θ̂ + 2Λ1(r)
)

> 5Λ1(r)
2 (213)

which is true by the fact that Assumption (A1) together with Lemma 2 ensure 3Λ1(r) ≤ θ̂.

We proceed to show that the served consumer segments’ welfare, defined over the equilibrium cutoff

vector (19), also decrease in r. For the high type segment, WH(r) from (29), the argument follows

by the fact that the upper bound, µ̂0
1(r) = s, is constant and the lower bound µ̂2

1(r) increases in r.

Differentiating µ̂2
1(r) with respect to r gives

∂µ̂2
1(r)

∂r
= 2s

θ̂Λ′

1(r)
(

θ̂ − 5Λ1(r)
)2 (214)

which is positive by the fact that Λ′

1(r) > 0 and 2Λ1(r) > θ̂, as a consequence of Lemma 1. The

argument for WL(r) follows by the fact that µ̂2
1
′

(r) < µ̂3
2
′

(r). Taking derivatives of µ̂2
1(r), µ̂

3
2(r)

with respect to r gives:

2s
θ̂Λ′

1(r)
(

θ̂ − 5Λ1(r)
)2 < 3s

θ̂Λ′

1(r)
(

θ̂ − 5Λ1(r)
)2 (215)

which is always true.

Proof of Proposition 8.

Computing the integrals of served consumer welfare (30) results in

(216)WH(r) +WL(r) =
sΛ1(r)

2 (4Λ1(r) + 5Λ2(r))

2 (Λ2(r)− 4Λ1(r))
2 .

Using (Q), the firms’ utilities u1 + u2 simplify to

(217)P1(r) + P2(r)− c(|ρ1|)− c(|ρ2|).

Adding the above two expressions to obtain total welfare (32), inserting contest prizes (20), and

46



substituting Λ2 = θ̂ − Λ1 yields

(218)W (r) =
sΛ1(r)

(

11Λ1(r)
2 + 3Λ1(r)θ̂ − 2θ̂2

)

2
(

θ̂ − 5Λ1(r)
)2 − c(|ρ1|)− c(|ρ2|).

We now demonstrate that both partial derivatives of (218), evaluated at ρ1 = ρ2 = 0 = r, are

positive. Evaluating the first derivative

(219)
∂W (r)

∂ρ1
= −s

(

2θ̂3 + 4θ̂2Λ1(r)− 33θ̂Λ1(r)
2 + 55Λ1(r)

)

2
(

θ̂ − 5Λ1(r)
)3 − c′(ρ1)

at ρ1 = ρ2 = 0 = r, using the fact that Λ1(0) = θ̂/2 by Lemma 1, simplifies the derivative to

(220)
7

18
sΛ1

′(0)− c′(0)

which is positive by the fact that s > 0, c′(0) = 0, and Λ1
′(0) > 0 by (14). Since the derivative

with respect to ρ2 enters (218) in exactly the same way as that for ρ1, the same argument applies

to firm 2, completing the proof.
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