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Quantifying Lottery Choice Complexity 
 
 

Abstract 
 
We develop interpretable, quantitative indices of the objective and subjective complexity of 
lottery choice problems that can be computed for any standard dataset. These indices capture the 
predicted error rate in identifying the lottery with the highest expected value, where the 
predictions are computed as convex combinations of choice set features. The most important 
complexity feature in the indices is a measure of the excess dissimilarity of the cumulative 
distribution functions of the lotteries in the set. Using our complexity indices, we study behavioral 
responses to complexity out-of-sample across one million decisions in 11,000 unique 
experimental choice problems. Complexity makes choices substantially noisier, which can 
generate systematic biases in revealed preference measures such as spurious risk aversion. These 
effects are very large, to the degree that complexity explains a larger fraction of estimated choice 
errors than proximity to indifference. Accounting for complexity in structural estimations 
improves model fit substantially. 
Keywords: complexity, choice under risk, cognitive uncertainty, experiments. 
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1 Introduction

Much recent research emphasizes that decision problems involving risk are often com-
plex, meaning that they require a non-trivial degree of cognitive processing to aggregate
problem inputs into a decision. Understanding complexity is believed to be important for
two broad reasons. First, people may systematically undervalue lotteries that are com-
plex (e.g., Huck and Weizsäcker, 1999; Iyengar and Kamenica, 2010; Bernheim and
Sprenger, 2020; Puri, 2022), or even entirely select out of complex decisions (e.g., Enke
et al., 2023b). Second, complexity may cause cognitive noise and resulting systematic
distortions such as seeming probability weighting or violations of canonical axioms (e.g.,
Enke and Graeber, 2023; Oprea, 2022; Frydman and Jin, 2021, 2023; Khaw et al., 2021;
Vieider, 2022; Nielsen and Rehbeck, 2022; McGranaghan et al., 2022; Hey, 1995).

While this literature argues for the importance of complexity, it also begs the ques-
tion: which lottery choice problems actually are complex? The typical approach in the
literature – including in our own prior work – is to proceed on a heuristic case-by-case
basis: the researcher intuits a specific complexity feature (e.g. number of distinct pay-
outs) and investigates how that feature affects behavior. Yet, ideally, one would like to
quantify the overall complexity of a choice set, and to study behavioral responses to
such a composite notion of complexity. The ability to quantify complexity might help in
(i) designing simple choice problems; (ii) predicting choice errors and resulting biases
in revealed preference measures; (iii) quantifying the importance of complexity relative
to non-standard preferences; and (iv) evaluating results across papers, when different
researchers construct choice problems with varying levels of complexity.

In this paper, we make progress by developing an empirical mapping from choice set
features to indices of choice complexity, which can be computed for any standard dataset.
We use these indices to study behavioral responses to complexity and document that
complexity-dependent noise is quantitatively even more important than the distortions
captured by popular behavioral models such as prospect theory.

Development of indices of lottery choice complexity. We understand the complexity
of a choice problem as the cognitive difficulty of identifying one’s preferred choice option.
Complexity is latent and unobserved. We, hence, develop a measure of revealed objective
complexity that is based on errors (mistakes). In choice data, even revealed complexity is
generally unobserved: the researcher does not know the decision-maker’s utility function
and, as a result, cannot distinguish errors from non-standard preferences. To circumvent
this problem, we propose to quantify the (revealed) objective complexity of a lottery
choice set as the predicted error rate in identifying the lottery with the highest expected
value, where the prediction is computed as a function of choice set features.
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This index does not rest on the assumption that people are necessarily risk neutral.
We also don’t assume that maximizing expected value is as complex as maximizing ex-
pected utility. Rather, the thought is that those choice set features that make it difficult to
gauge expected values also make it hard to gauge expected utilities (or other subjective
values) because the cognitive process of aggregating probabilities and payouts (“aggre-
gation complexity”) is similar across the two tasks. Based on this idea, we formally state
an identifying assumption for the true revealed complexity of standard lottery choice
problems to be a monotone function of our complexity index.

To develop such an empirical complexity index, we need to know which choice set
features increase error rates. We implement experimental lottery problems in which
subjects receive a fixed bonus if and only if they correctly indicate the lottery with the
highest expected value. Because ex ante we do not know which choice set features drive
complexity, we design a large-scale experiment in which subjects make decisions involv-
ing 2,220 quasi-randomly generated problems.

In selecting the features that enter our objective problem complexity index (OPC),
we need to balance the tradeoff between completeness and interpretability that is in-
herent to any predictive index. We use an iterative procedure according to which (i) we
implement exploratory LASSO regressions to identify the most predictive features, and
then (ii) construct a handcrafted index based on few and easily interpretable features
that closely approximate the machine learning index.

OPC comprises two classes of features: (i) the proximity of the (aggregated) expected
values of the lotteries in the set; and (ii) features that affect the complexity of aggrega-
tion in the first place. In standard random choice models, mistake rates strongly depend
on how close in value the options are. Yet proximity to indifference only makes up a
small share of our index because some features that capture aggregation complexity
turn out to be substantially more important. OPC increases in the absence of (first-order
stochastic) dominance relationships, the magnitude of payouts, the lotteries’ support,
the presence of losses and compound probabilities.

While previous work has often focused on these familiar features, it turns out that
the most important feature by far is what we call the excess dissimilarity of the lotteries
in a set, by which we mean the degree to which lotteries are dissimilar from each other
above and beyond their difference in expected value. Intuitively, we compute dissimilar-
ity by overlaying the cumulative distribution functions of two lotteries and calculating
the (absolute) area between the two. Excess dissimilarity is then given by dissimilarity
minus the (absolute) expected values difference. This measure could reflect a cognitive
process whereby people choose among lotteries by first putting them into a correlated
common state-space (matching q-th quantile outcomes to define the common states) and
then comparing the payoffs state-by-state. In our data, excess dissimilarity is strongly
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predictive of error rates, and drives a majority of the variation in OPC.
We also construct an index of the complexity of individual lotteries. Here, the most

important complexity feature is the lottery’s variance.

Subjective complexity. In addition to the objective complexity of choice problems (re-
vealed by errors), we also quantify subjective complexity: how hard choice problems feel
to decision-makers. To do this, we elicit subjects’ cognitive uncertainty in the expected
values task and use this data to develop a subjective problem complexity (SPC) index
that captures the predicted subjective probability of making a mistake. In principle, OPC
and SPC capture distinct concepts, but in practice they are very similar.

Evidence for construct validity. To provide evidence for our identifying assumption
that there is indeed a tight link between the difficulty of maximizing expected value
and the difficulty of maximizing expected utility, we implement standard binary lottery
choice experiments and elicit subjects’ cognitive uncertainty about their choices (Enke
and Graeber, 2023). Both OPC and SPC are strongly predictive of variation in cognitive
uncertainty across choice problems, which we encouraging evidence for the validity of
our indices.

Behavioral responses I: Choice sets. With our indices of problem complexity in hand,
we study behavioral responses to complexity out-of-sample in traditional binary lottery
choice problems. We both collect our own dataset on risky decisions and re-analyze
the most comprehensive dataset on binary lottery choice ever collected (Peterson et al.,
2021). In total, we evaluate one million decisions across 11,000 unique choice problems.

The indices of problem complexity are strongly predictive of proxies for choice noise.
For example, the correlation between OPC and the frequency of within-subject choice
inconsistencies in repeated elicitations of the same problem is r = 0.56. Problem com-
plexity also strongly predicts the compression of choice rates to 50-50, which we inter-
pret as reflecting choice noise. The magnitude of these effects is very large: both the
frequency of picking the option with the lower expected value and the frequency of
choice inconsistencies increase by 35-39 percentage points going from very low to very
high complexity.

We benchmark magnitudes against a variable that drives the frequency of mistakes
in random choice models: the expected utility difference between the lotteries in the
set. We find that OPC explains 1.8-12.4 times more of the across-problem variation in
choice inconsistencies and other proxies for choice errors than the estimated proximity
to indifference in a prospect theory model.
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Behavioral responses II: Individual lotteries. How do people respond to the complex-
ity of individual lotteries? Ex ante, there are two plausible possibilities: higher noisiness
and systematically disliking complex options (complexity aversion). Our evidence over-
whelmingly points in the direction of complexity-dependent noise. We discuss how such
noise can produce systematic biases in revealed preference measures, such as spurious
small-stakes risk aversion or risk love.

To illustrate, consider how lottery variance affects choice when (1) decision-makers
are risk neutral and (2) complexity increases with lottery variance. First, consider the
choice between a lottery and a lower-value safe payment. As the lottery variance in-
creases, the choice becomes more complex (thus noisier), pushing the rate of choosing
the lottery down towards 50%. Thus, we observe seeming risk-aversion. If, instead, the
decision-maker must choose between a lottery and a higher-value safe payment, then
higher lottery variance (and resulting noise) pushes the rate of choosing the lottery
up towards 50%, creating seeming risk-seeking behavior. Analogous arguments can be
made to show that people can spuriously appear complexity averse or complexity seek-
ing, purely as a result of complexity-driven heteroscedasticity in combination with an
asymmetric selection of problems.

The takeaway from this analysis is that complexity-dependent noise does not “cancel
out,” but instead produces choice patterns that can be mistaken as being preference-
driven. In particular, as in other recent work, even mean-zero noise can reliably produce
bias when researchers don’t construct the set of choice problems in a symmetric way. We
do not insist that genuine small-stakes risk aversion or complexity aversion do not exist.
Rather, we emphasize that the differential noisiness caused by variation in complexity
is so strong that it can entirely override any true aversion that may exist.

Structural estimations. How does complexity-dependent noise impact structural esti-
mations? To estimate this, we allow the noise parameter in a logit model to be a function
of complexity, which amounts to introducing one additional parameter. This generates
an increase in model fit of 14%. In our dataset, this increase is even larger than the
combined increase resulting from all of prospect theory (value function curvature, loss
aversion and probability weighting).

We discuss for which types of decision problems standard approaches to estimating
expected utility, prospect theory or salience theory deliver systematically wrong predic-
tions because complexity is ignored. Intuitively, these models implicitly treat all choice
problems as if they had the same level of complexity, such that they dramatically un-
derpredict the probability that people choose the (estimated) higher value option when
complexity is low, but strongly overpredict it when complexity is high. Incorporating our
complexity index into structural estimations almost entirely eliminates this problem.
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Contribution and relation to prior work. We view this paper as making two main
contributions. First, we develop the first comprehensive indices of the objective and
subjective complexity of lottery choice sets and of individual lotteries. These indices
are transparent and defined on objective choice set features, making them amenable
to be computed in a standardized way across datasets. We make available code that
automate this process. In Section 7, we discuss some of the potential applications of
the indices: (i) the possibility to put experiments by different researchers on a common
scale to evaluate their complexity, hence increasing transparency and comparability;
(ii) to predict the direction and magnitude of biases in revealed preference measures;
and (iii) to standardly account for complexity in structural estimations.

Our second contribution is to study behavioral responses to complexity in a dataset
that is orders of magnitude larger and more comprehensive than typical experimental
datasets. Our results suggest that the predominant consequence of complexity in binary
choice is higher noise, rather than directional aversion. Because noise can cause bias,
complexity nonetheless generates systematic anomalies.

Our paper ties into the interrelated literatures on complexity and noise in lottery
choice. Appendix Table 5 presents an overview of experiments that isolate specific com-
plexity features. The bottom line is that multiple papers have documented how features
such as a lottery’s support or payout magnitudes can produce aversion and / or higher
noisiness. Such noise can confound the identification of risk preferences and their link-
ages with demographics (e.g., Andersson et al., 2016; Gillen et al., 2019; Vieider, 2018;
McGranaghan et al., 2022). Our contribution to this literature is to offer a composite
measure of complexity and to assess how people respond to overall complexity.

A small set of theoretical contributions have proposed that lottery complexity and / or
noisiness depend on problem features such as entropy (Verstyuk, 2016), payout magni-
tudes (Khaw et al., 2021, 2022), support (Puri, 2022), or importance-weighted support
(Gabaix and Graeber, 2023). In contrast to these contributions, we quantify complexity
in a data-driven way. Our complexity metrics differ substantially from theirs, both be-
cause we construct composite measures of complexity and because our indices include
excess dissimilarity as a main feature.

Our empirical index of lottery choice complexity is also related to work that uses
self-reported cognitive uncertainty to measure the cognitive difficulty of lottery choice
(Enke and Graeber, 2023). In comparison to this measure, our indices are based on
objective performance in an analogous value comparison task. This said, we find that
our complexity indices are strongly predictive of cognitive uncertainty.

Section 2 lays out a conceptual framework. Section 3 describes the data we rely on
and Section 4 develops the complexity indices. Section 5 discusses behavioral responses
to complexity and Section 6 presents structural estimations. Section 7 concludes.
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2 Conceptual Framework

2.1 Terminology and Identifying Assumption

Consider choice sets comprising two lotteries each and denote by dc ∈ {A, B} the decision
maker’s (DM’s) choice. We denote by EU(x) the DM’s true expected utility from a lottery,
where we allow “utility” to include any form of non-standard preferences such as loss
aversion. We view distortions of objective probabilities as reflecting errors rather than
non-standard preferences (e.g., Enke and Graeber, 2023; Oprea, 2022).

For the purposes of this paper, we informally define the objective complexity of a
choice problem as the latent cognitive difficulty of identifying one’s preferred object.
Because this latent difficulty is unobservable, we define the revealed objective complexity
(ROC) of a choice problem as the probability that the decision maker chooses the option
that does not maximize her true expected utility.

ROCA,B = P(dc /∈ ar gmax
xA,xB

EU(x)) (1)

Because the researcher usually does not know the DM’s objective function, revealed ob-
jective complexity cannot be directly inferred from choice data. To overcome this prob-
lem, we consider a second, ancillary decision problem in which the DM is tasked with
identifying which lottery has the highest expected value. We denote the DM’s decision
by ds. In this task, the objective function is known, thus we can identify errors. We define
a second revealed complexity metric based on errors in an expected values task.

ROC EV
A,B = P(ds /∈ ar gmax

xA,xB

EV (x)) (2)

A main idea behind this paper is that choice errors arise in large part due to the la-
tent complexity of aggregating probabilities and payouts (“aggregation complexity”).
Therefore, we expect a close link between the complexity of a real choice problem and
the complexity of the corresponding expected values problem. Aggregation complexity
similarly arises in a lottery choice and an expected values problem because the aggre-
gated value of a lottery is not transparent to real decision makers but requires cognitive
processing to combine multiple probabilities and payouts into a decision (e.g., Oprea,
2022; Enke and Graeber, 2023). Our main identifying assumption is that the frequency
of errors in the expected values task is predictive of errors in the choice task,

ROCA,B = f (ROC EV
A,B) , (3)

with f (·) a monotone increasing function. Importantly, this identification assumption
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does not require that people are necessarily risk neutral. It also doesn’t require that
maximizing expected value is as difficult as maximizing expected utility. Instead, our
assumption is that the choice set features that make it difficult to gauge expected value
also make it hard to gauge expected utility, producing a link between error rates in the
two different problems.1 Below, we will provide indirect evidence for this.

2.2 Empirical Implementation

Indices of feature-predicted error rates. In the above, the revealed complexity of a
choice problem is approximated by the error rate in the analogous expected values task.
Because it is impractical for researchers to always implement an expected values problem
to quantify the complexity of their choice problem of interest, we leverage the idea that
error rates in the expected values problem can be predicted based on choice set features.
This is attractive because once a complexity index is defined based on objective features
of the set, it can be easily computed for any standard dataset.

Denote by f A,B an (N+1)-dimensional vector of choice set features, where the zeroth
element is a constant. Denote by εA,B a mean-zero disturbance term.

Definition 1. The objective problem complexity of choice set {C,D} is given by

OPCC ,D :=
N
∑

i=0

β̂i f
C ,D

i +
2
∑

j=1

γ̂ j|EV (C)− EV (D)| j , (4)

where the vectors β̂ and γ̂ are estimated from the error rates in a sample of expected values
problems using OLS:

ROC EV
A,B =

N
∑

i=0

βi f
A,B

i +
2
∑

j=1

γ j|EV (A)− EV (B)| j + εA,B . (5)

This index has a simple interpretation once it is applied to standard lottery choice
problems: it captures the error rate in the analogous expected values problem that is
predicted by the choice set features.2

As discussed above, OPC comprises two components: features that capture the prox-
imity of the aggregated (expected) values, and features that capture the complexity of
aggregation. OPC does not allow the effect of the “aggregation complexity features” fi to
depend on the expected values distance. This is clearly a simplification. The aggregation

1An additional motivation is that if one accepts the premise that a complexity metric should be inde-
pendent of the utility function, experimentally inducing risk neutrality should not affect the metric.
2 Measurement error in the problem-level estimates of error rates (e.g. resulting from finite samples)

does not affect the statistical unbiasedness of OPC because measurement error in the dependent variable
does not create attenuation bias.
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complexity features may plausibly have a smaller effect on error rates either when the
DM is very close to being indifferent or when the DM is far enough from indifference
that the choice is obvious. We expect our simple index to perform well in problems for
which the DM is neither extremely close nor very far from indifference. Below in Sec-
tion 2.3, we develop an alternative index of problem complexity that is independent of
the proximity of the aggregated values (but requires stronger structural assumptions on
the decision errors).

Applying the complexity index to choice data. Researchers may be interested purely
in predicting to what extent choice behavior y (e.g., choice inconsistencies) reflects er-
rors, regardless of whether these errors reflect proximity of the aggregated values or
aggregation complexity. In this case, OPC can be linked to choice behavior using uni-
variate regressions. If the researcher is interested in isolating how a specific component
of OPC affects choices, multivariate regressions that control for relevant features are
called for. In particular, we anticipate that researchers may be interested in isolating
the role of aggregation complexity. In this case, the appropriate estimating equation
includes controls for proximity and is given by

yC ,D = α+ θ OPCC ,D +
2
∑

j=1

ω j|EV (C)− EV (D)| j + εC ,D . (6)

2.3 Incorporating Complexity into Structural Analyses

Thus far, we’ve defined revealed complexity as error rates without taking a stance on
whether errors reflect noise or systematic bias. In Section 4, we will show that the vast
majority of the across-problem variation in errors in expected values problems reflects
variation in noisiness. This enables researchers to incorporate complexity considerations
into structural analyses by allowing the error variance in a random choice model to de-
pend on complexity. For instance, suppose that a decision-maker’s binary choice proba-
bilities are given by the logit model:

P(A) = F(EU(A)− EU(B);η) =
1

1+ e−η [EU(A)−EU(B)]
, (7)

where η is the conventional responsiveness (precision) parameter. In this model, un-
like in our reduced-form indices developed above, aggregation complexity and resulting
noise (captured by η) can be separated from proximity to indifference. To this end, we
define the revealed aggregation complexity of a choice problem as the inverse of the
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decision-maker’s precision for that problem. Inverting the logit CDF,

sA,B :=
1
ηA,B

=
EU(B)− EU(A)

ln
�

1
P(A) − 1

� . (8)

Again, we cannot observe this object in choice data since we do not know the utility func-
tion. However, in the expected values task, we observe both the relevant value difference
and the empirical rate of selecting A. We, hence, compute the “implied logit precision”3

sEV
A,B :=

1
ηEV

A,B

=
EV (B)− EV (A)

ln
�

1
P(A) − 1

� . (9)

Similarly to before, we develop an index of predicted aggregation complexity by im-
posing the assumption that the problem-specific precision in the choice task is a linear
increasing function of the precision in the expected values task,

ηA,B = η0 +η1
1

sEV
A,B

with η1 > 0. (10)

Definition 2. The objective aggregation complexity (OACC ,D) of choice set {C,D} under a
logit model is given by the prediction of the regression

sEV
A,B =

N
∑

i=0

αi f
A,B

i + εA,B . (11)

where sEV
A,B is calculated as in (9). Thus, the index is OACC ,D = ŝEV

C ,D =
∑N

i=0 α̂i f
C ,D

i .

Structural analyses can then be implemented by estimating a complexity-augmented
logit model, in which the precision is heteroscedastic and specified as ηC ,D = η0 +
η1/OACC ,D + εC ,D, where we supply OACC ,D and the researcher estimates η0 and η1.

2.4 Complexity of Individual Lotteries

Sometimes, researchers are interested in the complexity of individual lotteries. In these
cases, the relevant complexity component is that of aggregation complexity (because
proximity is undefined for a single lottery). We, hence, construct the predicted complex-
ity of an individual lottery in analogy to the aggregation complexity of a choice set.

3Empirically, we winsorize selection rates for the higher EV lottery from below at 0.51 (since other-
wise (8) is undefined). Next, we winsorize the across-problem distribution of ŝEV

A,B at the 85th percentile
because sEV

A,B can explodes when selection rates for the wrong lottery get close to 50% or when the expected
values difference is very small.
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Definition 3. Objective lottery complexity (OLCC) of lottery {C} under a logit model is
given by the prediction of the regression

sEV
A,B =

N
∑

i=0

ζi f
A

i + εA,B , (12)

where (i) lottery B is a safe payment, (ii) only features of the non-degenerate lottery A enter
the feature vector f and (iii) sEV

A,B is calculated from error rates as in (9). Thus, the index is
OLCC = ŝEV

C ,. =
∑N

i=0 ζ̂i f
C

i .

2.5 Subjective Complexity Indices

All of the above concerns the quantification of objective choice complexity. Yet in many
economically-relevant situations, it is not objective complexity that matters for behavior
but subjective complexity: the DM’s subjective beliefs about the complexity of a prob-
lem, as revealed through subjective beliefs about error rates. Crucially, objective and
subjective complexity need not coincide. We, hence, define analogous indices of subjec-
tive (revealed) complexity that are identical to the formulations above except that true
probabilities of making errors are replaced with subjective probabilities.

Definition 4. Given choice set {C,D}, subjective problem complexity (SPCC ,D), subjective
aggregation complexity (SACC ,D) and subjective lottery complexity (SLCC), are defined in
analogy to Definitions 1, 2 and 3, except that in equations (5), (11) and (12) objective
error rates are replaced by the average subjective probability of making an error in the
expected values problem.

3 Experimental Datasets

Our main analysis is based on three experimental datasets, two of which we collected
ourselves. Table 1 provides an overview.

3.1 Experiment EV Tasks

Decision task. We present experimental participants with two or more lotteries. In-
stead of asking them to choose the lottery that they would personally prefer, we instruct
participants to indicate the lottery that has the highest expected value. This design has
been used previously (e.g., Benjamin et al., 2013), albeit always on a very small set of
distinct problems. The task is similar in spirit to the “deterministic mirrors” proposed by
Oprea (2022) and Martínez-Marquina et al. (2019).
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Table 1: Overview of experiments and data sources

Experiment Description Problems Subjects Decisions

EV Indicate lottery with highest EV & 2,100 procedurally generated & 1,148 57kTasks CU elicitation 120 targeted

Choice Tasks Lottery choice problems 10,423 procedurally generated 11,681 975kfrom PEA

Choice Lottery choice problems & 500 procedurally generated 250 12.5kTasks CU elicitation

Notes. PEA = Peterson et al. (2021). CU = Cognitive uncertainty.

We avoid jargon and never speak of “expected value.” Rather, we instruct participants
to select the lottery that has the highest average payout if each lottery is run many, many
times (100,000 times). We explain that, in each run, we record the payout of the lottery
and then compute the average payout across runs. Subjects’ potential bonus equals $10
if they select the correct lottery, and nothing otherwise. This incentive scheme has three
main upsides. First, it makes transparent the objective nature of the task. Second, it holds
the incentives constant, which is important because we desire to cleanly measure the
complexity of the problem absent the confound of endogenous effort. Third, if people
dislike thinking about certain payouts (e.g., losses) then this is irrelevant under our
incentives because none of the payouts in a lottery are ever being paid out.

A potential concern with this design is that participants may misunderstand it and,
instead, treat it as a standard choice task. We took the following measures to ensure that
this was not the case. First, we deliberately designed the incentive scheme described
above to make it clear that no lottery was ever actually being played out. We verfied
subjects’ understanding of this using a comprehension check question. Second, to avoid
confusion, the question on subjects’ decision screen reads: “Which lottery has the highest
average payout if the computer runs it many, many times?”, rather than, for example
“Which lottery do you select?”. Third, our instructions emphasized that the task has a
mathematically correct solution. Fourth, if it was the case that some subjects had still
misunderstood our instructions, we would expect subjects to exhibit risk aversion, as
they do in our real choice experiments below. Instead, we find no evidence for this in
our data, as seen in Appendix Table 8.⁴

Cognitive uncertainty elicitation. On each decision screen, we elicited both a sub-
ject’s discrete decision about which lottery has the highest average payout and their

⁴First, when subjects decide between a lottery and a safe payment, if anything they select the lottery
more often (52% of the time). Second, the variance of a lottery is uncorrelated with the probability that
a subject indicated that lottery to have higher expected value, again at odds with risk aversion.
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certainty they made the right choice. We asked “How certain are you that each lottery
has the highest average payout?” and subjects distributed 100 “certainty points” across
the lotteries in the choice set to indicate their probabilistic beliefs. Our instructions clar-
ified that subjects should allocate the certainty points to each lottery according to how
likely they think it is that the lottery has the highest average payout. This procedure is
similar to the elicitation of cognitive uncertainty (CU) in Enke and Graeber (2023) and
Enke et al. (2023a).⁵ Appendix Figure 9 shows a screenshot of a decision screen.

Discussion. We believe the cognitive difficulty of lottery choice problemsmainly comes
from the difficulty of aggregation: combining the probabilities and payouts of different
states. An attractive feature of our design is that this aspect of the decision problem is
similar between our EV Task and real lottery choice problems. Aggregation complexity
includes – but is not limited to – computational complexity. For instance, it also includes
the cognitive costs of figuring out what needs to be multiplied with what – for people
without training in statistics, it is arguably non-trivial to understand how to compute an
average payout in the first place.⁶

As noted in Section 2, we do not assume that people are genuinely risk-neutral, as
our design implicitly induces. We allow the “levels” of complexity to be different for
estimating expected utilities versus expected values; but we assume that the “ordering”
of complexity is the same.

Generation of problems. We desire our complexity indices to be applicable across dif-
ferent datasets. It is, hence, crucial for us to develop them on a dataset that includes as
many commonly-encountered lottery features as possible. We designed the experiment
EV Tasks to comprise a total of 2,220 unique choice sets. A first set of 2,080 unique
choice problems was generated using a quasi-random procedure, meaning that the lot-
teries are random conditional on a set of parameters that we impose to (i) make the
problems non-trivial and (ii) ensure variation across a large set of features. This random
procedure is called for because we as researchers do not know ex ante which features

⁵Recent work has cast doubt on the effectiveness of canonical incentive schemes designed to elicit
beliefs (Danz et al., 2022). To account for this, we incentivize CU in two different ways. In 15% of the
sample, we deployed a standard binarized scoring rule with a prize of $10 and a winning probability of
q = 1− (1− g)2, where g is the probability assigned to the correct option. In the remaining 85% of the
sample, we instead paid subjects $0.10 for each point they allocated to the correct lottery. This scoring
rule is not proper but simple to understand. In both cases, we instruct subjects “If you think it is 60%
likely that lottery A has the highest average payout, you should allocate 60 certainty points to lottery A.”
The distribution of CU in these two sub-samples is essentially identical.
⁶In our online experiment, it is possible that subjects used external help. At the end of the study, we

asked subjects whether they had done so. 23% of subjects indicated they had done so on at least some
problems. We have verified that our complexity indices are very similar if we restrict attention to the
sub-sample of subjects who report not having used external help.
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matter most for complexity, and because we do not want our own intuitions to constrain
the development of the indices.

A second set of 120 choice problems was devised by following the typical approach
in lab experiments of designing a relatively small number of problems that are targeted
at identifying some specific effect of interest. Our main analyses will leverage all 2,220
choice problems in the dataset. In Appendix H, we report separate analyses that only
make use of the smaller, targeted set.

In the development of our complexity indices, we focus on two-item menus and
discuss an extension to larger menus below. 95% of all tasks involve only two lotteries
and the remaining 5% involve choice sets with between three and five lotteries. In the
two-item menus, 30% involve deciding between a two-state lottery and a safe payment.
In the other 70%, the number of states of both lotteries varied between two and seven.
The problems exhibit large variation in the difference in expected values between the
lotteries. We collected data until each problem was completed by at least 20 subjects
(median is 22 and average 26). Appendix Table 7 presents further summary statistics.

Summary statistics. The average problem-level error rate in the EV Tasks experiment
is 27%, with a median of 25% and IQR = [14%, 38%]. The average problem-level sub-
jective error rate (average CU) is 18%, with a median of 17% and IQR = [13%,22%].
The correlation between problem-level error rates and average CU is r = 0.49.

3.2 Lottery Choice Problems

Dataset of Peterson et al. (2021). Peterson et al. collected by far the largest and most
comprehensive binary lottery choice dataset in the literature. The authors used a quasi-
random procedure to generate the 10,423 unique binary choice problems that we use.⁷
From this set of problems, 15,151 Amazon Mechanical Turk (AMT) workers completed
an average of 13 problems five times each, for an average total of 65 decisions per subject.
The dataset was designed to span a much larger space of choice problems than previous
data-collection exercises, making the data well-suited for our purposes. Another feature
of the dataset that we make use of below is that almost 50% of the choice problems
are such that the riskier option has a lower expected value. In contrast, in typical lab
experiments, the riskier option usually has a higher expected value. Appendix Table 7
presents summary statistics.

While the richness and size of this dataset provide many advantages, it has the down-
side that Peterson et al. (2021) did not pay out losses and instead truncated all payouts

⁷We drop problems that involve ambiguity or that involve choosing between two safe payments. We
combine identical problems with / without feedback.
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from below at zero. While this is a shortcoming, we view it as ultimately inconsequen-
tial: (i) the results shown below are robust to restricting attention to choice problems
that only involve gains (see e.g. Appendix Figure 13) and (ii) the results are very similar
in our own incentivized experiments described next.

Experiment Choice Tasks. As a robustness check, we implemented our own lottery
choice experiments. We generated 500 choice problems using a similar automated quasi-
random procedure as in the EV Tasks experiment, except that we only implemented bi-
nary choice sets. Losses were incentivized: subjects were informed that in every decision
they encounter they receive a budget that equals the largest possible loss in that choice
set, and that potential losses would be deducted from that budget.

In addition to asking subjects to choose between the two lotteries, we also elicited
their CU, by asking how certain they are (in percent) that they selected the option that
they actually prefer (Enke and Graeber, 2023). Appendix Figure 10 shows a screenshot.

3.3 Implementation

Our own experiments were conducted on Prolific. See Appendix I for screenshots of
instructions and comprehension check quizzes. Each subject encountered 50 randomly-
selected decision problems. In EV Tasks (median completion time 42 minutes), subjects
earned a completion fee of $6. In addition, 1 in 2 subjects was randomly selected to be
eligible for a bonus of $10 if they made the correct choice on a (uniformly) randomly se-
lected decision. In Choice Tasks (median completion time 22 minutes), subjects received
a fixed payment of $3.50. In addition, 1 in 5 subjects were randomly selected to be eligi-
ble for a bonus wherein we randomly selected one decision and played out their chosen
lottery from that decision.

We pre-registered the predictions and sample size for experiment Choice Tasks on
aspredicted.org under #130662. We didn’t pre-register the EV Tasks experiment because
there was no specific hypothesis: we use these data to create complexity indices, rather
than to show that a specific feature would matter.

4 Development of the Complexity Indices

We begin by developing the complexity indices based on the EV Tasks data. A main ques-
tion is which features should be included in the indices, for example in the regression
in eq. (5). There is a tradeoff between interpretability and completeness: an index that
is based on a large number of features may be more complete but less interpretable. We
strike a middle ground and proceed in three steps.
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1. Exploratory LASSO indices: We assemble a large vector of features. Because many
of these features will be intra-correlated (giving rise to multicollinearity), we esti-
mate LASSO regressions, such that only a relatively small number of features will
have non-zero coefficients.

2. Handcrafted indices: We inspect the LASSO-generated indices and approximate
them based on only a handful of simple and easily interpretable features.

3. Assess completeness:Webenchmark the handcrafted indices against a non-parametric
machine learning benchmark (a convolutional neural net).

Exploratory LASSO indices. Appendix B provides a list of all 46 choice set features
that we consider. When a feature is defined over a single lottery (such as a lottery’s
variance), we compute the average value in the choice set. We also consider non-linear
transformations of these averages (log and square). We only consider primitive features
of the lotteries, rather than also framing effects stemming from colors and other display
effects. We don’t allow interactions between features (as we will see below, they do not
matter much). Finally, we also don’t allow features of choice sets encountered in the past
(as in Frydman and Jin, 2021, 2023).

Some of the features that we consider may affect choice for standard expected utility
reasons, such as a lottery’s variance. However, as emphasized in Section 5.3, the way in
which features like variance affect choice through complexity is often distinct from what
expected utility theory prescribes. Moreover, because our indices are developed based
on the EV Task, utility curvature cannot drive any feature’s inclusion in an index.

We run the LASSO regressions on a randomly selected subset of 75% of all problems
(train set) and use the remaining 25% as a test set. We set the LASSO penalty parameter
to the value that minimizes mean squared error in the train set. In Appendix Tables 9 and
10, we report the results of the LASSO regressions of error rates (or CU) on all features.
Because many of the features are highly intra-correlated (e.g., range and variance of
payouts), the particular features that get selected by the LASSO should not be viewed as
uniquely important, but instead representative of broad classes of important features.

Handcrafted indices. This observation motivates us to develop handcrafted versions
of the complexity indices that are based on fewer features, each of which represents a
broad class of features that we now discuss. While we recognize that manually select-
ing features raises potential concerns over artifically generating “desired” results, we
view these as ultimately inconsequential because the handcrafted indices turn out to be
almost perfectly correlated with the exploratory LASSO indices, which means that all

15



results on choice data that we discuss in Sections 5 and 6 are virtually identical when
we use the LASSO-generated indices instead.

Table 2 shows the features that enter our objective complexity indices. Appendix
Table 11 shows the results for the subjective complexity indices, which look very similar.
We report the results of OLS estimates of eq. (5), (11) and (12). As with the LASSO
index, we run the regressions on a randomly selected subset of 75% of all problems
and use the remaining 25% as a test set to assess completeness. In all specifications, an
observation is a unique decision problem. In columns (1) and (2), we develop the indices
of the complexity of a choice set. In column (3), we develop the complexity of individual
lotteries, meaning that the sample is restricted to problems in which one option is a safe
payment. Accordingly, in columns (1) and (2) the features apply to choice sets, while
in column (3) they apply to one specific lottery. We compute our complexity indices as
the predictions of these regressions, censoring from below at zero.

To complement this table, Figure 1 reports correlation coefficients between error
rates (or CU) and choice set features. We organize the figure such that those features
that capture aggregation complexity rather than proximity appear to the left of the
dashed vertical line.

Dissimilarity and variability. The standout predictor of both objective and subjective
choice set complexity is the excess dissimilarity between the lotteries in a set, by which
we mean the degree to which lotteries are dissimilar from each other above and beyond
their difference in expected value. Intuitively, we compute dissimilarity by overlaying the
cumulative distribution functions (CDFs) of the two lotteries and calculating the summed
(absolute) area between the two. The so-called “Wasserstein 1-distance” between the
CDFs of two lotteries is given by δA,B =

∫

R |FA(x) − FB(x)|d x . We then define excess
dissimilarity as:

dA,B = δA,B − |EV (A)− EV (B)|. (13)

We can cognitively microfound this measure by imagining that a decision-maker does
not evaluate each lottery in isolation; but instead separately compares how the two
lotteries perform in their worst state, their best state, their “median” state, and so on.
When the lotteries are “similar,” in the sense that their CDFs track one another closely,
then the lotteries perform similarly in most states of the world,⁸ so the decision-maker
need only focus on the states in which they differ to assess which they prefer.

Excess dissimilarity is large when the lotteries have very different advantages and
disadvantages. Excess dissimilarity equals zero when there are no tradeoffs across states

⁸We are implicitly putting the two lotteries into a common, perfectly correlated state space. Formally,
we think of the state x as a draw from a Uniform distribution on [0,1], and we say the lotteries A and B
are “perfectly correlated” in that they return F−1

A (x) and F−1
B (x), respectively.
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Table 2: Coefficients of features in objective complexity indices

Dependent variable:

Observed error rate Implied obj. logit imprecision sEV

Index: OPC OAC OLC

(1) (2) (3)

Log excess dissimilarity 0.052∗∗∗ 1.69∗∗∗
(0.00) (0.15)

No dominance 0.068∗∗∗ 0.67∗
(0.01) (0.35)

Average log payout magnitude 0.036∗∗∗ 1.12∗∗∗
(0.00) (0.18)

Average log number of states 0.045∗∗∗ 2.07∗∗∗
(0.02) (0.59)

Frac. lotteries involving loss 0.029∗∗∗ 1.17∗∗∗
(0.01) (0.32)

Frac. lotteries involving compound prob. 0.15∗∗∗ 4.93∗∗∗
(0.03) (1.26)

Absolute EV difference -0.032∗∗∗
(0.01)

Absolute EV difference sqr. 0.0014∗∗∗
(0.00)

Log variance 1.06∗∗∗
(0.11)

Log payout magnitude 0.90∗∗∗
(0.24)

Log number of states 2.10∗∗∗
(0.48)

1 if involves loss 0.96∗∗∗
(0.36)

1 if involves compound prob. 2.14∗∗∗
(0.74)

Constant 0.027 -4.12∗∗∗ -5.67∗∗∗
(0.03) (0.81) (0.91)

Observations 1587 1587 935
R2 0.31 0.20 0.23

Notes. OLS estimates, robust standard errors in parentheses. An observation is a decision problem
from the train set in the EV Tasks experiment. In columns (2) and (3), the dependent variable is the
implied logit precision sEV

A,B as defined in eq. (9). To calculate sEV
A,B, we first winsorize the error rates so

that they never exceed 0.49. Then, we winsorize the calculated sEV
A,B at the 85th percentile. In column

(3), the sample is restricted to problems in which one option is a safe payment, and the independent
variables are features of the non-degenerate lottery. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

(i.e., when differences in expected value arise due to first-order stochastic dominance).
We can loosely think of excess dissimilarity as a measure of how “close” lotteries A and
B are to having a dominance relationship.

Excess dissimilarity depends on scale. While we have verified that dA,B is also strongly
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Figure 1: Raw and partial correlation coefficients between task-level error rates / average cognitive un-
certainty and choice set features in the train set in the EV Tasks experiment (1,587 unique problems).
Whiskers show 95% confidence intervals. Partial correlations are calculated controlling for all of the other
features in the figure. Log scale, mixed / loss payouts, log number of states and compound probabilities
are computed as averages across the lotteries in a set.

predictive of error rates when it is normalized by the average absolute payout, we view
the dependence on scale as a feature because it appears intuitive that two lotteries are
more dissimilar when all payouts are multiplied by a constant.

To illustrate, the following lotteries have low excess dissimilarity. Option A: “Get
$20 with probability 80%”, and Option B: “Get $21 with probability 70%”. In contrast,
Option B’: “Get $70 with probability 21%” has high excess dissimilarity with Option A
(note that B and B’ have the same expected value). Thus, choosing between A and B is
predicted to be simpler than choosing between A and B’.

It may appear surprising that dissimilarity adds to complexity because researchers
often think of “similar” as “difficult”. The key distinction is that here “similarity” does not
refer to the proximity to indifference (similarity of aggregated values) but, instead, to
the similarity of the disaggregated objects, netting out the similarity in aggregate value.
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The idea that similarity affects choice complexity is prominent in perceptual tasks
in psychology and has attracted some attention in economics (e.g., Rubinstein, 1988;
Natenzon, 2019). A small psychology literature has shown that δA,B in our notation
above is predictive of choice noise (Buschena and Zilberman, 2000; Erev et al., 2002,
2010). We work with dA,B because δA,B is mechanically correlated with the expected val-
ues difference, and we sometimes desire to separate effects stemming from aggregation
complexity and from proximity.

Figure 1 shows the raw correlation between log excess dissimilarity⁹ and error rates
as well as average CU, which is approximately r = 0.5 in both cases. Log excess dissim-
ilarity is the strongest predictor of both errors and CU in our data. In fact, because the
correlations are so much stronger than with other features, both OPC and SPC heavily
load on this variable, a point we quantify below.

It is easy to see that excess dissimilarity typically increases in the variance of the
lotteries, for example when one option in the choice set is a safe payment. Measures
of variability such as log variance are strongly correlated with both error rates and CU,
yet in multivariate regressions they always lose statistical significance and collapse in
magnitude once excess dissimilarity is accounted for. For this reason, we do not include
direct measures of variability in our choice set complexity indices.

However, we return to direct measures of variability in constructing our lottery-
specific indices, OLC and SLC. Excess dissimilarity cannot enter these indices since it
is defined on the choice set. Thus we include log variance as the most predictive feature
in these indices. The correlation of log lottery variance with error rates and average CU
is r ≈ 0.42.

Dominance relationships. The second choice set feature that enters our OPC and SPC
indices is the absence of weak stochastic dominance: lottery A dominates B if FA(x) ≤
FB(x)∀x . This is an intuitively plausible feature of aggregation complexity because the
presence of dominance reduces the need to aggregate probabilities and payouts.

Payout scale. Much research on number perception suggests that people find it harder
to process and transform larger numbers (Weber’s law). Again, this intuitively adds to
the difficulty of integrating different payouts and probabilities. Our preferred measure
of payout scale for an individual lottery is the log average absolute payout; for the choice-
set measure, we average this individual measure across the set.

Mixed and loss gambles. It appears cognitively harder for people to process negative
payouts in aggregation problems. In our data, both pure loss gambles andmixed gambles

⁹Throughout the paper, whenever we saywe compute the log of x , wemean that we compute ln(1+x).
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produce significantly higher error rates and CU, compared to pure gains lotteries. To
keep our indices sparse, we generate one variable to capture these patterns, which is
the fraction of lotteries in a choice that includes at least one negative payout.

Number of distinct payout states. Figure 1 shows that the average (log) number of
states in the choice set is significantly correlated with error rates and CU. Again, this
is plausible from a perspective of aggregation complexity because a larger number of
components needs to be aggregated (e.g., Puri, 2022; Gabaix and Graeber, 2023). We
include this variable in our complexity indices, but we note that it is clear from Fig-
ure 1 that lottery support – while a main focus of the literature – is a considerably less
important determinant of overall complexity than some of the other features.

Compound probabilities. The presence of compound lotteries intuitively leads to higher
aggregation complexity because they require an additional computational step (reduc-
tion). We find that compound probabilities are associated with both higher error rates
and average CU, and include this variable in OPC and SPC.1⁰

Proximity of expected values. Unlike the aforementioned features, the difference in
expected values between the two options does affect the magnitude of errors in standard
random choice models. Figure 1 shows that proximity to indifference is indeed mean-
ingfully correlated with errors and CU. Because this relationship is concave, we include
both linear and squared terms in the construction of our handcrafted indices, see Ta-
ble 2. Importantly, however, the link between proximity and errors (or CU) is relatively
small compared to some of the features that capture aggregation complexity. This is a
first indication of what we repeatedly emphasize thoughout this paper: errors (and our
complexity indices) largely reflect aggregation complexity rather than proximity.

Completeness of indices. In the EV Tasks test set data, OPC and SPC exhibit a raw cor-
relation of r = 0.87. An important question is how complete the complexity indices are.
In principle, they could be incomplete for two reasons. First, the list of features that the
LASSOwas based onmay be incomplete. Second, interactions of features may play an im-
portant role. As is well-understood, the appropriate metric for assessing completeness is
not simply the variance explained of the regression in Table 2 due to the presence of irre-
ducible error. For instance, problem-level error rates are only noisily estimated given our
sample size. To assess completeness, we follow Fudenberg et al. (2022) and benchmark
the out-of-sample performance of our complexity indices against that of a convolutional

1⁰For compound probability choice problems, one option involves an unknown probability p, which
subjects know is drawn uniformly from some specified range.
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neural net (CNN). This algorithm is trained to predict error rates in a non-parametric
fashion based on both (i) the raw lottery features (payouts and probabilities) and (ii) all
hand-coded features that we include in the LASSO regressions. Formally, completeness
is defined as the ratio of the variance explained of the index and the variance explained
by the CNN (in the test set).

Figure 2 shows the completeness of the main choice set indices, OPC and SPC. To
comprehensively study completeness, we show the results for four different types of
indices. First, an index that only captures proximity to indifference: the absolute differ-
ence of the expected values and its square. Second, an index that only consists of the (by
far) most important aggregation complexity feature, log excess dissimilarity. Third, our
handcrafted OPC and SPC indices. Fourth, the analogous exploratory LASSO indices.

There are three main takeaways. First, proximity to indifference is highly incomplete.
Second, log excess dissimilarity is more than three times as complete as proximity to
indifference. Third, our handcrafted indices are almost as complete as the exploratory
LASSO indices (about 85%–95%). We conclude that our indices capture a large fraction
of the predictable component of revealed complexity. This strongly suggests that (i) we
are not overlooking important features and (ii) interactions between features do not
play an important role.

What do the indices capture? In principle, the indices could reflect two different types
of errors: bias and noise. The easiest way to see this is to consider the OLC index that
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captures the complexity of the lottery in a choice set when the alternative is a safe pay-
ment. If this index would mostly reflect bias, subjects would have systematically selected
higher OLC lotteries less often (or more often), regardless of whether the lottery is objec-
tively the correct choice. On the other hand, if the index mostly reflected noise, subjects
would have selected higher OLC lotteries less often when the lottery is the correct deci-
sion but more often when it is the incorrect decision. In our train data, the correlation
between OLC and the frequency of selecting the lottery is r = 0.00 (p = 0.88), meaning
that we cannot reject the null hypothesis that the index reflects zero bias. In contrast, in
the sub-sample of problems in which the lottery is the correct decision, the correlation
between selecting the lottery and OLC is r = −0.42, while in the sub-sample in which
the lottery is the incorrect decision it is r = 0.46. These correlations document that our
complexity indices almost entirely reflect predicted noisiness rather than predicted bias.

Evidence on identifying assumption. We can directly test the identifying assumption
that underlies the construction of SPC: that CU in the EV Task is predictive of CU in real
choice tasks. We can test this assumption because in our own Choice Tasks experiment,
we elicited subjects’ CU for every decision they made. The correlation of average CU in
a choice problem with SPC is r = 0.62.11 Similarly, the correlation with OPC is r = 0.49.
These results are encouraging because they strongly suggests that the same features
determine how difficult it is to gauge expected utilities on the one hand and expected
values on the other hand.

5 Behavioral Responses to Complexity

We now deploy the complexity indices to explain choice behavior. Unless noted other-
wise, we pool the data from our own Choice Tasks experiment with those collected by
Peterson et al. (2021). In our analyses, the level of observation is not an individual de-
cision but, instead, choice rates in a unique choice problem. Because the underlying
number of decisions is very large (almost one million), the statistical significance of the
results will always be trivial. For each choice problem, we compute the complexity in-
dices as implied by Table 2, see Appendix Figure 11 for histograms.

We study the link between complexity and choice in three steps. First, we provide a
few illustrative examples of low- and high-complexity problems and associated choice
patterns. While cherry-picked, these examples are arguably helpful in building intuition
for the results in the very large set of problems that we use for our main analysis.

Second, we systematically study the role of the indices of problem complexity, OPC

11This correlations is likely even biased downward due to finite-sample measurement error.
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and SPC. Because these indices apply to a choice set as a whole, the natural prediction
is that higher complexity is linked to more noisy decisions. In a third step, we study the
indices of the complexity of individual lotteries, OLC and SLC.

5.1 Examples

Table 3 presents seven example choice problems. Six of them are selected to have simi-
lar expected value differences but varying OPC. This will allow us to intuitively attribute
variation in complexity to features that drive aggregation complexity rather than prox-
imity. All problems are such that Option A (the lottery with the weakly larger number
of states) has a lower expected value.

Problem 1 is very simple even though lottery A has three distinct payout states. This
is because it features dominance (thus excess dissimilarity is 0), but also because the
payout scale is relatively low.

To see the role of excess dissimilarity more clearly, consider problems 2 and 3. In both
problems, there is no dominance but the problems are intuitively simple. The reason is
that excess dissimilarity is very low because the payout probabilities in lottery A are
relatively extreme. For instance, in problem 2, one can intuitively see that lottery A “is
worth approximately $18,” which makes B’s payout of $25 look transparently superior.
Indeed, the choice rates in these problems are overwhelmingly in favor of lottery B.

In contrast, in problems 4 and 5, excess dissimilarity is high. This is because (i)
the probabilities are less extreme and (ii) the options have different advantages and
disadvantages. For example, in problem 5, heuristic pairwise comparisons of the lottery
upsides and downsides is difficult.

Problem 6 provides another illustration. Here, excess dissimilarity is high. Moreover,
both lotteries have at least two separate payout states, all payouts are relatively large,
and a loss is involved, creating additional complexity. Finally, problem 7 illustrates a very
high complexity problem. in which the driver of complexity is not just high aggregation
complexity (e.g., high excess dissimilarity) but also very similar expected values.

5.2 Choice Set Complexity and Choice Noise

In linking complexity to choice noise, we show the results for both OPC and SPC because
we are agnostic over whether the patterns reflect (i) objective complexity and resulting
genuine choice errors (in which case OPC is the appropriate tool) or (ii) subjective com-
plexity and resulting deliberate randomization (in which case SPC is more appropriate).
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Table 3: Example choice problems

# Probabilities A Payouts A Probabilities B Payouts B EV(A)-EV(B) OPC Frac. chose A

1 0.25, 0.375, 0.375 -21, 0.5, 1.5 1 2 -6.5 0 4%

2 0.99, 0.01 18, 33 1 25 -6.9 0.11 9%

3 0.95, 0.05 -2, 28 0.75, 0.25 1, 22 -6.8 0.13 16%

4 0.75, 0.25 8, 52 1 26 -7 0.24 42%

5 0.8, 0.2 -30, 34 0.1, 0.9 7, -12 -7.1 0.27 43%

6 0.9, 0.05, 0.025, 0.025 -17, 34, 36, 40 0.5, 0.5 19, -29 -6.7 0.30 43%

7 0.4, 0.3, 0.15, 0.15 -28, 31, 29, 25 1 7 -0.8 0.41 41%

Notes. Each row is a choice problem.

Choice inconsistencies. First, we link problem complexity to across-trial variability in
repetitions of the same problem (within-subject choice inconsistencies). Recall that in
Peterson et al. (2021), each subject that completed any given choice problem did so
five times (consecutively). For each choice problem, we compute the fraction of subjects
who are inconsistent at least once, i.e., who do not make the same decision in all five
iterations. In these analyses we restrict attention to problems in which the absolute ex-
pected values difference is at least $0.20 to reduce concerns that “choice inconsistencies”
simply reflect indifference (the results are identical in the full sample).

Figure 3 shows binned scatter plots of problem-level choice inconsistencies against
the complexity indices. Wework with binned scatter plots because of the large number of
underlying choice problems. In these binned scatter plots, each dot represents an equal
number of choice problems (104 choice problems per dot). The left panels show raw
correlations and the right panels partial correlations, controlling for linear and squared
terms of the absolute expected values difference. Thus, as discussed in Section 2.2, the
right panels isolate that component of OPC and SPC that reflects aggregation complexity
rather than proximity.

Moving from OPC = 0 to OPC ≥ 0.5 is associated with an increase in the frequency
of choice inconsistencies of 35 percentage points. The raw and partial correlations are
almost identical (always around r = 0.56). This suggests that a large majority of the ex-
planatory power of the complexity indices for choice inconsistencies reflects the impact
of aggregation complexity rather than proximity. We further quantify this point below.

Compression of choice rates to 50-50. A second potential implication of the idea that
choice set complexity creates noise is that the link between differences in expected val-
ues and choice rates should be attenuated for more complex problems, meaning that
higher complexity reduces the probability that the DM will choose the higher value
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Figure 3: Binned scatter plots. The y-axis represents the problem-level fraction of subjects who are incon-
sistent at least once (in five repetitions). The x-axes reflect OPC (top panels) and SPC (bottom panels).
The left panels show raw correlations and the right panel partial correlations, controlling for linear and
squared absolute expected values difference. Based on 9,901 choice problems in which the absolute ex-
pected values difference is at least $0.20.

option. Intuitively, if a problem is extremely complex, people may (consciously or sub-
consciously) choose uniformly at random.

To study this prediction, the top left panel of Figure 4 shows choice rates for lottery A
as a function of the difference in expected values between A and B, separately for choice
problems that are above or below median OPC. Again, we show a binned scatter plot.
We label the lotteries such that lottery A is always the one with a weakly larger number
of distinct payout states (lottery B is often a safe payment). We see that choice rates
in problems that are predicted to be more complex are substantially more compressed
towards 50%, as we’d expect with fully random choice.12 The top right panel shows
analogous results for SPC.

The bottom left panel provides a complementary perspective that does not rely on

12One interpretation of the compression towards choice rates of 50-50 is that subjects have a prior
belief over the expected utility associated with Options A and B, and that this prior is uninformative. In
Appendix F, we report on additional pre-registered experiments that study the role of prior beliefs and
how they interact with problem complexity. In these experiments, we experimentally manipulate prior
beliefs over which option is “better”. As we pre-registered, this treatment has a larger effect on choice for
more complex problems, an effect that is significant at 5% using SPC and at 10% using OPC.
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Figure 4: Complexity and deviations from expected value maximization in lottery choice. The top panels
implement a median split by OPC / SPC, separately within each percentile of the EV difference between A
and B. The bottom right panel shows a partial correlation plot that controls for linear and squared terms
of the absolute EV difference. Top panels constructed from 10,923 choice problems, bottom panels omit
problems with absolute EV difference of less than $0.20, hence constructed from 10,391 choice problems.

a median split of OPC but, instead, shows choice rates for lottery A as a function of
the continuous OPC index. The red dots correspond to cases where EV (A) > EV (B)
and the blue dots to cases where EV (A) < EV (B). Thus, for a noiseless expected value
maximizer, the choice rates should be 0% and 100%. Yet even a model that does feature
homoscedastic noise would predict that choice rates are constant inOPC. Instead, we see
that choice rates monotonically approach 50% as complexity increases. The magnitude
of this effect is very large: choice rates for the option with the higher expected value
decrease by 39 percentage points going from very low to very high complexity. Overall,
our data reveal a strong correlation between OPC and the fraction of choices that do not
correspond to choosing the lottery with the higher expected value (r = 0.66).

An immediate question is whether these compression patterns “only” reflect the ef-
fects of proximity, given that the proximity of expected values is a component of OPC.
To address this, the bottom right panel shows a partial correlation plot that residualizes
both choice rates and OPC from the absolute expected values difference and its square.
The results are almost identical. Thus, again, the results suggest that the vast majority
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Table 4: Benchmarking OPC and proximity to indifference

Dependent variable:
Frac. subjects inconsistent Deviation rate from PT prediction Avg. cognitive uncertainty

(1) (2) (3) (4) (5) (6) (7) (8) (9)

OPC 0.71∗∗∗ 0.80∗∗∗ 49.7∗∗∗
(0.01) (0.01) (3.79)

Abs. EV diff. -0.0078∗∗∗ -0.017∗∗∗ 0.039
(0.00) (0.00) (0.18)

Abs. PT value diff. -0.016∗∗∗ -0.044∗∗∗ -0.18
(0.00) (0.00) (0.32)

Constant 0.28∗∗∗ 0.50∗∗∗ 0.50∗∗∗ 0.14∗∗∗ 0.41∗∗∗ 0.44∗∗∗ 3.09∗∗∗ 15.6∗∗∗ 16.2∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.87) (0.99) (0.86)

Observations 10423 10423 10423 10923 10923 10923 500 500 500
R2 0.30 0.02 0.03 0.36 0.11 0.20 0.24 0.00 0.00

Notes.OLS estimates, robust standard errors in parentheses. An observation is a choice problem. The dependent variable
in columns (1)–(3) is the fraction of subjects who is inconsistent at least once in the five repetitions of the choice problem.
In columns (4)–(6) it is the fraction of decisions that does not equal the prediction of a full prospect theory model, see
Appendix E. In columns (7)–(9) the dependent variable is average self-reported cognitive uncertainty in the choice
experiments (in percent). The absolute PT value difference is the absolute difference in “non-expected utilities”, as
estimated from a full prospect theory model, see Appendix E. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

of the explanatory power of OPC is due to the effects of aggregation complexity rather
than proximity.

Benchmarking. A natural question is how quantitatively important our complexity
indices are for understanding choice behavior. Here, a natural point of comparison is the
proximity to indifference (in the choice task), which is the main driver of choice errors
in standard random choice models. We, hence, compare the predictive power of OPC
with that of the subjective value difference between the two choice options, estimated
from a full prospect theory model as described in Appendix E. Because OPC includes the
proximity of the expected values of the two options, we also benchmark OPC against the
expected values difference.

For our benchmarking analysis, we desire proxies for the frequency of choice errors.
Building on the analysis above, we work with three such proxies: (i) the fraction of
subjects who are inconsistent at least once in repetitions of the same problem; (ii) the
fraction of decisions that does not correspond to choosing the lottery that – according
to an estimated prospect theory model – delivers higher value;13 and (iii) average self-
reported cognitive uncertainty in a choice problem.

Table 4 shows the results. The main metric of interest is the variance explained in
each regression. There are two main takeaways. First, for all dependent variables, OPC
explains amuch larger fraction of the variation than the proximity of the expected values.
This is of interest because it again shows that the vast majority of the predictive power
of our complexity index for potential choice errors reflects aggregation complexity.

13We estimate the prospect theory model assuming a reference point of zero, see Appendix E.

27



Second, again for all dependent variables, OPC explains a substantially larger frac-
tion of the variation than the estimated prospect theory value difference between the two
options. For example, in column (6), the estimated value difference explains a sizable
share (20%) of the frequency of decisions that do not maximize prospect theory subjec-
tive value. Yet the variance explained by OPC is even larger (36%, column (4)). Perhaps
most strikingly, OPC alone explains 24% of the variation in self-reported CU, while the
proximity of estimated subjective values explains almost none of this variation.

We conclude from this analysis that choice set complexity appears to be a quantita-
tively important driver of choice behavior.

5.3 Lottery Complexity, Noise and Aversions

Up to this point, we focused on the complexity of a choice set. We now turn to studying
the complexity of individual lotteries. As discussed above, various features of lotteries
could have two distinct impacts on choice that we refer to as “direct” and “indirect”
effects. The direct (preferences-based) effect is that people may be genuinely averse to
a lottery feature, making them less likely to choose the lottery. For example, people may
be systematically averse to lotteries with higher variance because they are risk averse.
The indirect effect, on the other hand, is that the same feature may increase noisiness.

To cleanly study the effects of the complexity of individual lotteries, we focus on
problems in which one option is a safe payment. Given the obvious statistical significance
of the results (very large sample), we only present figures.

The left panel of Figure 5 plots the frequency of choosing the lottery as a function of
the expected value difference, split by median OLC. Complexity aversion predicts a uni-
form downward shift of choice fractions as complexity increases. Complexity-dependent
noise, on the other hand, predicts that the choice function becomes flatter, such that
choice rates are more compressed to 50-50.

We see no evidence of complexity aversion in the binary choice data. While people
choose the complex lotteries less often when the lottery has a higher expected value than
the safe payment, the opposite is true when the lottery is relatively unattractive. Thus,
people can spuriously appear “complexity-averse” (to the right of zero) or “complexity-
seeking” (to the left of zero), purely as a result of complexity-dependent heteroscedas-
ticity and the specific ways in which the researcher designs the decision problems.

The right panel of Figure 5 shows that we find very similar results for the subjective
complexity of lotteries.

Small-stakes risk aversion. The insight that complexity-driven heteroscedasticity can
generate spurious aversions is also relevant for our understanding of other preference
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Figure 5: Binned scatter plots of choice rates for lottery vs. safe payment (based on 6,501 choice problems).
Figures show median splits by OLC / SLC, separately within each percentile of the EV difference.

anomalies. As we saw in Section 4, many lottery features that are commonly believed to
induce a preferences-based response also induce higher complexity.1⁴ In particular, we
saw that lottery variance and the magnitude of payouts both contribute to higher error
rates in the EV Task. Given that these features are intimately linked to conventional
definitions of small-stakes risk aversion and increasing absolute risk aversion, this raises
the question if complexity can confound or spuriously generate behavior that looks like
it reflects certain types of risk preferences.

The left panel of Figure 6 again shows a binned scatter plot of choice rates for the
lottery as a function of the difference between its expected value and the safe payment,
this time split by median lottery variance. If people are risk averse and noise was inde-
pendent of complexity, we should expect choice rates for the high-variance lotteries to be
lower than for the low-variance lotteries everywhere (a vertical shift). In contrast, cogni-
tive noise that increases in variance again predicts a compression (or “flipping”) pattern,
according to which observed risk taking can even increase in the lottery’s variance when
the lottery is very unattractive (the left part of each panel).

In the data, we indeed see a pronounced compression pattern. This implies that
people look risk averse when the lottery is attractive (to the right of zero), but risk
loving when the lottery is unattractive (to the left of zero).

To highlight the confound this poses for estimating risk preferences, we restrict at-
tention to the 2,678 problems for which all payouts are weakly positive (and one option
is a safe payment), where we can estimate a standard CRRA expected utility model,
EU(x) = E[xα]. When we estimate this model on the sub-sample in which the lottery
has a higher expected value than the safe payment, we estimate α̂ = 0.77 – a typical

1⁴Recent work has focused on the number of distinct payout states. As shown in Appendix Figure 12,
in our binary choice data, there is no evidence that people choose lotteries with a larger number of payout
states less often. If anything, people are more likely to choose a lottery over a safe payment if it has more
states, in particular when the lottery is unattractive.
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Figure 6: Binned scatter plots of choice rates for lottery vs. safe payment (based on 6,501 choice problems).
Figures show median splits, separately within each percentile of the EV difference.

estimate suggesting small-stakes risk aversion. In contrast, when we estimate on the
sub-sample in which the lottery has a lower expected value than the safe payment, we
estimate α̂ = 1.04 – suggesting apparent risk loving preferences. This exercise shows
that complexity-dependent noise can predictably bias the estimation of preference pa-
rameters.1⁵

It is worth pointing out that the vast majority of binary lottery choice experiments
implement problems in which the expected value of the lottery is at least as large as the
safe payment. Because it is precisely in this space of problems that complexity-dependent
heteroscedasticity spuriously produces risk aversion, we suspect that conventional esti-
mates of small-stakes risk aversion in the literature may be upward biased.

Increasing absolute risk aversion. The right panel of Figure 6 shows an analogous
analysis for the lottery’s stake size. This is of interest because a widely-cited result in
experimental economics is that observed risk aversion increases in the magnitude of
payouts. The typical way in which this result is derived is by showing that multiply-
ing all payouts with a large constant produces higher absolute risk aversion (e.g., Holt
and Laury, 2002). However, multiplying payouts with a constant also increases variance.
Thus, the previous discussion on the complexity effects of variance already suggest that
higher stakes may produce similar effects. The right panel of Figure 6 shows that we

1⁵An alternative potential interpretation of these results is that subjects treat the safe payment as a
reference point, in which case prospect theory predicts the patterns in Figure 6. Three pieces of evidence
speak against such an interpretation. First, when we estimate a prospect theory model as below in Sec-
tion 6, the variance explained is 4.5 percentage points higher when the reference point is assumed to be
zero than when it is assumed to be the safe payment. Second, the patterns in Figure 6 look very similar
when option B is not a safe payment but, instead, a non-degenerate lottery (and is, hence, less likely to
induce a salient reference point). Third, when we structurally estimate a prospect theory model separately
on the sub-samples of problems that have above- or below-median lottery variance, the estimated logit
precision parameter η is more than twice as large in the low-variance problems, again confirming the
crucial role of variance for choice noise.
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indeed see the familiar pattern: lotteries that have higher payouts produce choice rates
that are more compressed to 50-50. Thus, decisions can look like risk aversion that in-
creases in stakes when the lottery is attractive but like risk aversion that decreases in
stakes when the lottery is unattractive, purely as a result of heteroscedastic noise.

We emphasize that we do claim based on our results that genuine small-stakes risk
aversion or complexity aversion do not exist. Rather, the point is that the indirect effect
generated by complexity-dependent heteroscedasticity is so strong that it can either
confound or entirely override any true aversion that may exist.

6 Structural Estimations

How important is complexity-dependent heteroscedasticity in structural estimations?
In order to explain classical choice irregularities, canonical behavioral economics mod-
els augment the DM’s objective function. Popular modifications include allowances for
probability weighting, loss aversion, regret, salience and so on. We instead proceed by al-
lowing for complexity-dependent noise. Recall the choice model in Section 2, where the
index of objective aggregation complexity, OAC, scales the precision in the logit model:

P(A) =
1

1+ e−(η0+η1 1/OACA,B) [EU(A)−EU(B)]
. (14)

We estimate eq. (14) using maximum likelihood for different combinations of (i) the
specification of the DM’s objective function (expected value, expected utility, prospect or
theory) and (ii) the presence of complexity-dependent heteroscedasticity (i.e., whether
η1 is estimated or forced to be zero). Appendix E presents details for the estimating
equation for each model as well as the resulting parameter estimates.

To start out, consider prospect theory. The left panel of Figure 7 plots the actual
choice rate for the lottery that has higher value (according to an estimated prospect
theory model), as a function of OAC. In addition, we plot the model-predicted choice
rates in a prospect theory model. As is clear from this figure, prospect theory has highly
systematic prediction errors in our data: it strongly underpredicts how often people
choose the estimated higher value option when complexity is low but overpredicts it
when complexity is high. Intuitively, this happens because the model treats all choice
problems as if they had the same level of complexity.

The right panel of Figure 7 shows the prediction errors of a prospect theory model
augmented by a complexity-dependent noise term. We see that predicted and actual
choice rates track each other much more closely.

To systematically assess model fit, Figure 8 plots the variance explained across each
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Figure 7: Model prediction errors in pooled choice data as a function of objective aggregation complexity
(10,923 choice problems). Left panel: Prospect theory model. Right panel: Prospect theory model with
complexity-dependent noise. Both panels plot the actual and predicted choice rates for the choice option
that the respective model predicts has higher expected utility.

of six models. The first model assumes expected value maximization and only estimates
a constant error variance. The second model adds separate utility curvature parameters
for gains and losses (and hence includes reference-dependence relative to a reference
point of zero). The third model adds loss aversion and two probability weighting param-
eters. The fourth through sixth models are identical to the first three except that they
also estimate the parameter that maps the complexity index into error variance.

The expected values model has an R-squared of 46%, which increases to 56% when
two utility curvature parameters are introduced. The full prospect theory model does
not perform much better (58%). This is consistent with the recurring finding in the
literature that probability weighting substantially improves performance over expected
utility in valuation experiments but adds little in binary choice tasks (e.g., Harbaugh et
al., 2010; Bouchouicha et al., 2023; Peterson et al., 2021).

Introducing one parameter that maps problem complexity into error variance brings
an expected values model to R2 = 60%, larger than the full prospect theory. In other
words, in our dataset, complexity-dependent noise alone is quantitatively more impor-
tant than utility curvature, loss aversion and probability weighting combined. The vari-
ance explained further to 69% under the full prospect theory specification. The results
are very similar when we estimate a salience model (Bordalo et al., 2012) instead of
prospect theory.

We conclude from this analysis that allowing for complexity-dependent heteroscedas-
ticity is quantitatively important. This resonates with a literature in psychology that
finds that allowing the noise term in a stochastic choice model to depend on lottery dis-
similarity (δA,B rather than ln(dA,B)) yields the best model fit relative to other models
proposed in the psychology literature (Erev et al., 2010).
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Figure 8: Variance explained of different models. Number of estimated model parameters in parentheses.
The first model assumes EV maximization and a constant error variance. The second model adds utility
curvature parameters for gains and losses, and the thirdmodel loss aversion and two probability weighting
parameters. The fourth through sixth models are analogous except that they also estimate the parameter
that maps OAC into logit responsiveness, see eq. (14). See Appendix E for all estimating equations and
estimated parameter values.

7 Discussion

This paper has made two contributions. First, we developed indices of the objective
and subjective complexity of individual lotteries and of lottery choice sets. A significant
practical advantage of these indices is that they consist of simple linear combinations of
a handful of choice set features and can, hence, be computed for any standard lottery
choice dataset. Our interpretable complexity indices are highly complete, meaning that
they perform almost as well as a black-box neural net. A single feature – the excess
dissimilarity between the lotteries in a set – captures the bulk of variation in complexity.

Our second contribution is to comprehensively study behavioral responses to com-
plexity, which also allows us to illustrate the large predictive power of the complexity in-
dices. We find that the most important consequence of complexity in binary choice is het-
eroscedasticity. This increased noisiness does not “cancel out” but produces consequen-
tial deviations from normative benchmarks, including choice inconsistencies, accept-
ing unattractive gambles, and spurious “aversions”. Allowing for complexity-dependent
noise is quantitatively important. First, complexity explains much more of the variation
in proxies for choice noise than proximity to indifference. Second, a single parameter
that maps complexity into error variance adds more explanatory power to structural
estimations than prospect theory parameters. We now discuss what we believe to be
fruitful next steps.

A common complexity scale across papers. A common criticism of lab experiments
is that researchers have many degrees of freedom in constructing the choice problems
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they use to document an effect of interest. We believe that if our complexity indices were
standardly computed in lottery choice experiments going forward, they would provide
a standardized metric along which papers can be compared and assessed.

Real-world assets. The complexity indices we develop in this paper could be used to
quantify the complexity of real-world financial assets such as stocks, bolds and mutual
funds. All that would be required to do so is (i) information about the assets’ return
profiles (or information about what people know about these return profiles) and (ii) in-
formation about people’s choice sets.

Larger menus and valuation tasks. A natural question is how our indices can be ap-
plied to (i) larger choice sets and (ii) continuous valuation tasks, such as elicitations
of certainty equivalents. Regarding the latter, no work is required: because we also de-
veloped indices of the complexity of individual lotteries, these can directly be used to
predict the complexity of valuation problems. For example, we would predict that OLC
and SLC are correlated with noise in the elicitation of certainty equivalents through
multiple price lists or BDM elicitation procedures.

Regarding larger discrete menus, however, our indices require work to be general-
ized. In our EV Tasks experiment, we also included menus with between three and five
options. Appendix G discusses the results. Menu size is strongly linked to both error
rates and cognitive uncertainty. This suggests that incorporating menu size into our in-
dices would be productive. The main challenge we see is that extending to larger menus
would necessitate generalizing or averaging measures such as excess dissimilarity across
multiple different lottery pairs in the set.
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ONLINE APPENDIX

A Previous Literature

Table 5 provides an overview of prior studies that have investigated either (i) how noisi-
ness in lottery choice depends on choice set features or (ii) systematic complexity-averse
or -seeking behavior.

Table 5: Experimental literature on how lottery complexity depends on choice set features

Choice set feature Result Papers

Number of states Aversion Huck and Weizsäcker (1999), Sonsino et al. (2002), Iyengar
and Kamenica (2010), Carvalho and Silverman (2019), Bern-
heim and Sprenger (2020), Puri (2022), Fudenberg and Puri
(2021)

Number of states Seeking Birnbaum (2005), Erev et al. (2017), see Wakker (2022) for
additional references

Number of states Higher noise Hey (1995), Huck and Weizsäcker (1999), Sonsino et al.
(2002), Zilker et al. (2020)

Absolute dist. b/w CDFs Higher noise Buschena and Zilberman (2000), Erev et al. (2002), Erev et al.
(2010)

Compound prob. Aversion Halevy (2007), Gillen et al. (2019)

Compound prob. Higher noise Enke and Graeber (2023)

Opaque payouts / prob. Higher noise Enke and Graeber (2023), Zilker et al. (2020)

Payout range Higher noise Bruhin et al. (2010)

Payout magnitude Higher noise Webb et al. (2021)

Dominance Lower noise Agranov et al. (2020)

Payout variance (deci-
sions from experience)

Higher noise Erev and Barron (2005)
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B Potential Complexity Features

Consider a choice between two lotteries indexed by j and denoted by letters A, B etc.
Each lottery is characterized by payout probabilities (p j

1, . . . , p j
k j
) and payoffs (x j

1, . . . , x j
k j
),

where k j denotes the number of distinct payout states of lottery j. For some features de-
fined at the level of the choice set, we first “couple” the lotteries to put them in a common
state-space with states 1, ..., k, such that in the “worst” state, both A and B pay out their
worst outcomes, in the “best” state, both A and B pay out their best outcomes, and so on.
In the construction of our complexity indices, we include the features listed in Table 6.
Whenever a feature is defined for a single lottery rather than a choice set, we include
the average feature in the set. For continuous features (and “number of states”) f , we
include the linear term ( f ), square ( f 2), and the natural log (ln( f +1), where the added
1 ensures bounded values for f ranging between 0 and 1).
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Table 6: Potential complexity features

Feature Defined on Formal definition

Number of states Option k j

Payout range Option max{x j
1, . . . , x j

k j
} −min{x j

1, . . . , x j
k j
}

Variance Option
∑k j

s=1 p j
s

�

x j
i

�2
−
�

∑k j

s=1 p j
s x j

s

�2

Payout variance Option 1/k j

∑k j

s=1(x
j
s − x̄ j)2

Probability variance Option 1/k j

∑k j

s=1(p
j
s − p̄ j)2

Magnitude Option 1/k j

∑k j

s=1 |x
j
s |

Pure Gains Option 1{x j
s ≥ 0∀ j}

Mixed Option 1{∃x j
s > 0∧ ∃x j

s < 0}

Pure Loss Option 1{x j
s < 0∀ j}

Distance to certainty Option 1/k j

∑k j

s=1 min{p j
s ; 1− p j

s}

Payout-weighted dist. to certainty Option 1/k j

∑k j

s=1 |x
j
s |min{p j

s ; 1− p j
s}

Entropy Option
∑k j

s=1 p j
s(−ln(p j

s))

Normalized payout dispersion Option 1/k j

∑k j

s=1
|x j

s− x̄ j |
| x̄ j |

Normalized Variance Option (1/Magn.2) · Var , with Magn., Var. as defined above

Irregular probabilities Option 1
�

p j
s /∈ {0.01,0.05, 0.1, ..., 0.9, 0.95, 0.99} for s = 1, ..., k j

�

CDF self-distance Option
∑k j

s=1 |x
j
s − EV ( j)|p j

s

Compound Option

Compound Range Option Range of distribution of unknown p

Weak dominance Choice set 1{FA(x)≤ FB(x)∀x}

Excess dissimilarity Choice set
∫

R |FA(x)− FB(x)|d x − |EV (A)− EV (B)|

Average absolute payoff difference Choice set 1/k
∑k

s=1 |x
A
s − xB

s |

Probability difference Choice set
∑

x∈X | fA(x)− fB(x)|, where X = {xA
1 , ...xA

kA
} ∪ {xB

1 , ..., xkB
}
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C Additional Tables

Table 7: Summary statistics for problems across experiments

Experiment # options Safe payment # states Var Scale Mixed Dominance

EV Mean, median 2.1, 2 58% 3.3, 2 633, 164 34, 26 46% 5%
Tasks Range 2, 5 2, 7 0, 39440 1, 213

Choice Mean 2 80% 3.3 775 25.5 49% 7%
Tasks IQR 2, 2 2, 5 20, 735 14, 43

Choice Tasks Mean 2 59% 3.7 460 30 53% 17%
from PEA IQR 2, 2 2, 5 20, 553 15, 40

Prior Mean 2 81% 3.2 817 33 47% 6%
Manipulation IQR 2, 2 2, 4 14, 860 13, 48

Notes. PEA = Peterson et al. (2021). For the EV Task, statistics are limited to problems with menu size two except for
# options. Scale = absolute average payout. We display information for the lottery with the largest number of distinct
payout states.

Table 8: No risk aversion in EV Tasks

Dependent variable:
1 if selected lottery

(1) (2) (3)

Log variance of A 0.0025 0.0033
(0.00) (0.00)

Constant 0.52∗∗∗ 0.51∗∗∗ 0.51∗∗∗
(0.01) (0.03) (0.02)

Controls for EV diff. No No Yes

Observations 33586 33586 33586
R2 -0.00 0.00 0.22

Notes. OLS estimates, standard errors (two-way
clustered at subject and problem level) in parenthe-
ses. Each observation is a subject-decision. The sam-
ple is restricted to problems in which one option is
a lottery and the other option a safe payment. Con-
trols for absolute EV difference include linear and
squared terms. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

42



Table 9: LASSO coefficients for OPC and SPC

Coefficients Coefficients

Feature OPC SPC Feature OPC SPC
Intercept 1.1E-01 3.8E-02 Log CDF Self-Dist 2.4E-02
Abs EV Difference -3.3E-02 -3.8E-03 Sq Scale -3.2E-07 2.3E-06
Abs EV Difference Sq 1.5E-03 1.3E-04 Sq Range 1.8E-07
Scale -1.0E-03 Sq Variance 4.2E-11 -4.7E-10
Range -3.5E-04 Sq Payout Variance 8.8E-11 2.8E-10
Variance 1.4E-05 Sq Num States 8.6E-04
Pay-wtd DC -1.6E-03 Sq DC -1.0E-01
Probability Variance -3.6E-05 Sq Pay-wtd DC 1.4E-06
Payout Dispersion 6.0E-03 Sq Entropy -2.4E-02
CDF Self-Dist -1.2E-03 -2.0E-03 Sq Prob. Variance 1.8E+00
Log Scale 3.8E-02 2.2E-02 Sq Payout Dispersion 5.8E-03
Log Range 1.3E-02 Sq Norm. Variance 6.0E-03 1.8E-02
Log Variance -1.4E-02 Sq CDF Self Dist 1.2E-05
Log Payout Variance 1.7E-02 Gains -1.0E-02 -1.9E-02
Log Num States 2.8E-02 -1.9E-02 Irregular Probabilities 4.0E-02 -1.8E-03
Log DC -1.9E-01 Excess Dissimilarity -1.2E-03
Log Pay-wtd DC -5.6E-05 1.6E-02 Log Excess Dissimilarity 5.3E-02 3.5E-02
Log Entropy -2.3E-02 1.4E-01 Dominance -5.2E-02 -2.4E-02
Log Prob. Variance -3.5E-01 Compound 5.7E-02 3.6E-02
Log Payout Dispersion -7.4E-03 Compound Range 1.1E-01 1.0E-01
Log Norm. Variance -1.6E-02 Safe Option 6.6E-03 1.7E-02

Notes. Coefficients of LASSO regression of problem-level errors rates or cognitive uncertainty on
choice set features in the EV Tasks experiment. DC = distance to certainty. Features that apply
to a single lottery (such as number of states) are averaged across the lotteries in the set. Only
features with at leasts one non-zero coefficient are included.

Table 10: LASSO coefficients for OLC and SLC

Coefficients Coefficients

Feature OLC SLC Feature OLC SLC
Intercept -6.2E+00 -9.7E+00 Sq Payout Variance -2.2E-09 -7.2E-09
Expected Value -1.1E-02 Log Num States 1.9E+00 2.8E+00
Mixed 7.6E-01 1.5E+00 Log DC -4.3E-02
Irregular Probabilities -2.2E-01 4.7E-01 Sq DC -4.9E+00
Variance -1.3E-03 Log Pay-wtd DC 7.8E-01
Range 5.6E-02 Sq Pay-wtd DC -8.3E-04
Payout Variance -4.6E-04 Log Entropy 4.7E+00
Dist to Certainty (DC) -2.0E+00 Sq Entropy -1.1E+00
Pay-wtd DC 4.8E-02 Sq Prob Variance 1.3E+02
Payout Dispersion 1.7E-01 Log Payout Disperson 4.6E-01
Log Scale 9.2E-01 2.5E-01 Sq Payout Disperson 7.8E-02
Sq Scale -4.9E-05 -2.6E-05 Log Norm Variance -5.7E-02 -2.7E+00
Sq Range -1.0E-04 Sq Norm Variance 4.8E-01
Log Variance 9.1E-02 Log CDF Self-Dist 2.7E-02 2.8E+00
Sq Variance 9.8E-08 Compound 2.0E+00 1.7E+00
Log Payout Variance 1.2E+00 2.4E-02 Compound Range 1.2E+00 9.4E+00

Notes. Coefficients of LASSO regression of problem-level errors rates or cognitive uncertainty on
lottery features in the EV Tasks experiment. DC = distance to certainty. The sample is restricted
to problems in which one option is a safe payment, and only features of the lottery are used. Only
features with at leasts one non-zero coefficient are included.
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Table 11: Coefficients of features in subjective complexity indices

Dependent variable:

Cognitive uncertainty Implied subj. logit imprecision ŝ

Index: SPC SAC SLC

(1) (2) (3)

Log excess dissimilarity 0.018∗∗∗ 1.79∗∗∗
(0.00) (0.16)

No dominance 0.043∗∗∗ 0.83∗∗
(0.01) (0.41)

Average log payout magnitude 0.0036∗ 1.43∗∗∗
(0.00) (0.20)

Average log number of states 0.052∗∗∗ 3.10∗∗∗
(0.01) (0.63)

Frac. lotteries involving loss 0.028∗∗∗ 2.24∗∗∗
(0.00) (0.35)

Frac. lotteries involving compound prob. 0.12∗∗∗ 6.84∗∗∗
(0.01) (1.35)

Absolute EV difference -0.0037∗∗
(0.00)

Absolute EV difference sqr. 0.00010
(0.00)

Log variance 1.17∗∗∗
(0.13)

Log payout magnitude 1.05∗∗∗
(0.29)

Log number of states 2.95∗∗∗
(0.53)

1 if involves loss 1.71∗∗∗
(0.39)

1 if involves compound prob. 3.14∗∗∗
(0.84)

Constant 0.021∗∗ -5.35∗∗∗ -6.75∗∗∗
(0.01) (0.88) (1.03)

Observations 1587 1587 935
R2 0.38 0.24 0.26

Notes.OLS estimates, robust standard errors in parentheses. An observation is a decision problem from
the train set in the EV Tasks experiment. In columns (2) and (3), the dependent variable is the implied
logit precision sEV

A,B as defined in eq. (9). For calculating sEV
A,B, we winsorize average cognitive uncertainty

so that it cannot exceed 49%. Then, we winsorize the calculated sEV
A,B at the 85th percentile. In column

(3), the sample is restricted to problems in which one option is a safe payment, and the independent
variables are features of the non-degenerate lottery. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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D Additional Figures

D.1 Screenshots of Experimental Decision Screens

Figure 9: Example decision screen in EV Tasks

Figure 10: Example decision screen in Choice Tasks
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D.2 Analyses for Risky Choice Data
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Figure 11: Histograms of complexity indices in pooled choice data
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Figure 12: Binned scatter plots of choice rates for lottery vs. safe payment as a function of number of
states. Based on the 6,501 choice problems in which one option is a safe payment.
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Figure 13: Complexity and deviations from expected value maximization in lottery choice in the Peter-
son et al. (2021) dataset, excluding choice problems that feature losses. The figure replicates Figure 4,
excluding choice problems that feature losses. The top panels implement a median split by OPC / SPC,
separately within each percentile of the EV difference between A and B. The bottom right panel shows a
partial correlation plot that controls for linear and squared terms of the absolute EV difference. Top pan-
els constructed from 3,565 choice problems, bottom panels omit problems with absolute EV difference of
less than $0.20, hence constructed from 3,346 choice problems.

E Details on Structural Estimations

Prospect theory. We allow up to five additional parameters: loss aversion with respect
to a reference point of zero, separate utility curvature for gains and losses, and proba-
bility weighting:

EUPT (x) =
∑ χpγ

χpγ + (1− p)γ
u(x) , (15)

where

u(x) =







xα if x ≥ 0

−λ(−x)β if x < 0
(16)
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Salience theory. We first put both lotteries into a common state space by “correlating”
the payoffs. Then we specify salience values for each option as follows:

∑

s

ωspsu(xs), (17)

where ωs is the salience weight of state s given by

ωs =
δks

∑

psδks
, (18)

and ks is the salience rank of state s, which is given by the ordering of the salience
function

σ(xA
s , xB

s ) =
|xA

s − xB
s |

|xA
s |+ |xB

s |+ θ
(19)

with lower ranks ks indicating a higher value of the salience function. The primitives we
estimate for the salience model are the usual utility parameters (α, β , and λ), the logit
noise parameters η, and the two salience parameters θ and δ.

Estimation results. Table 12 summarizes the parameter estimates across the different
models. In our likelihood function, we weight each “person-problem” equally. Though
the problems from Peterson et. al. were repeated five times, the repetitions were con-
secutive, so we do not treat them independently. The choice data we collected contains
no repetitions. We do not report standard errors because they are almost always close
to zero given the large sample.

F Complexity and Reliance on a Prior

Experimental Design. The analyses reported in the main text showed that choice rates
in more complex problems are more strongly compressed to 50-50. Through the lens of
a Bayesian cognitive noise model (Woodford, 2020; Gabaix, 2019), an interpretation
of these patterns is that subjects’ prior belief does not systematically favor Lottery A or
B. This is a very natural assumption because the label and location of the lotteries on
subjects’ decision screen were randomized.

To study the role of priors, we exogenously manipulate subjects’ prior beliefs. We
implement two treatments, Low A Prior and High A Prior. These treatments build on
the Choice Tasks experiment. In both treatments, the instructions inform subjects that
some economists completed the same choice problems as the ones they will encounter,
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and that the economists preferred Lottery A in 80% (High A Prior treatment) or 20%
(Low A Prior treatment) of all choice problems. This information is also placed on a each
decision screen as a reminder. This information is truthful and based on the economists
(us) always preferring the lottery with the higher expected value.

The problems are then arranged such that subjects in both treatments actually work
on exactly the same choice problems for the first 20 out of 50 rounds (“target problems”).
The problems in the last 30 rounds are filler tasks that differ across treatments to make
the information provided truthful. In the first 20 rounds, Lottery A actually has a higher
expected value in 50% of all problems. In the last 30 rounds, Lottery A always has a
higher expected value in the High A Prior treatment and a lower expected value in the
Low A Prior treatment. Because we only study the target problems in the first 20 rounds,
the only aspect that differs across treatments is the prior belief.

Our main object of interest is not so much the raw treatment effect of this manipula-
tion but, rather, whether the treatment effect increases in complexity. We pre-registered
the sample size and the prediction that it does. 501 subjects participated in this exper-
iment, for a total of 10,020 decisions in the target problems. We randomly generated
200 choice problems that exhibit large variation in complexity (as measured by OPC
and SPC), and randomly assigned choice problems to subjects. The experiment was pre-
registered on aspredicted.org under #130662.

Results. Table 13 summarizes the results. Column (1) shows that the treatment shifts
choice rates by 5.7 percentage points. Our main interest is in how this effect depends
on complexity. Column (2) interacts both the prior manipulation treatment and the
expected value difference with OPC. We find that the treatment effect increases in com-
plexity, an effect that is marginally statistically significant. Moreover, as in the main text,
we see that higher complexity makes choice rates less responsive to differences in ex-
pected values. Together, these two interaction effects paint a picture according to which
complexity produces stronger compression to a prior.

Column (3) shows that these results are, if anything, stronger using SPC, regarding
both their quantitative magnitude and their statistical significance. While this is an ex
post interpretation, we believe that the stronger results for SPCmake intuitive sense. The
reason is that in our experiment the prior is very explicitly induced, such that subjects
may be more likely to use this external information (“advice”) if they find the problem
subjectively difficult (rather than when they objectively make many decision errors).
After all, one’s tendency to accept advice should be governed by one’s subjective proba-
bility of making a mistake (as captured by SPC). rather than the corresponding objective
probability (as captured by OPC).

Finally, columns (4) and (5) present alternative regression specifications in which we
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Table 13: Effect of complexity on treatment effect of manipulating prior

Dependent variable:
1 if chose lottery A

(1) (2) (3) (4) (5)

High A Prior vs. High B Prior 0.057∗∗∗ 0.025 -0.0057 0.022 0.0011
(0.01) (0.02) (0.03) (0.02) (0.02)

EV(A) - EV(B) 0.036∗∗∗ 0.084∗∗∗ 0.11∗∗∗
(0.00) (0.01) (0.01)

High A Prior vs. High B Prior × Objective problem complexity 0.12∗ 0.11∗
(0.07) (0.06)

EV(A) - EV(B) × Objective problem complexity -0.20∗∗∗
(0.03)

High A Prior vs. High B Prior × Subjective problem complexity 0.37∗∗ 0.30∗∗
(0.16) (0.14)

EV(A) - EV(B) × Subjective problem complexity -0.47∗∗∗
(0.06)

Objective problem complexity -0.12
(0.14)

Subjective problem complexity -0.34
(0.34)

Round FE Yes Yes Yes Yes Yes

Problem FE No No No Yes Yes

Observations 10020 10020 10020 10020 10020
R2 0.16 0.21 0.21 0.40 0.40

Notes. OLS estimates, standard errors (two-way clustered at subject and problem level) in parentheses. An obser-
vation is a binary decision. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

control for fixed effects for each choice problem. In these analyses, we, hence, only com-
pare choice rates on identical problems. Again, reliance on a prior is more pronounced
with higher complexity.

G Extension: Larger Menus

In our EV Tasks experiment, we also included 102 menus with between three and five
options. This allows us to study how error rates and cognitive uncertainty (i) depend
on menu size and (ii) how they depend on the other features we discussed in the main
text when the menus are not binary.

Figure 14 shows the link between choice set features and errors / cognitive uncer-
tainty. With menus larger than two, calculating excess dissimilarity and the presence of
dominance relationships is less trivial. We proceed by calculating both of these variables
for each pair of options in the set, and then average across all pairs. Similarly, for the
lottery-specific features such as payout scale, we average across all lotteries in the set.
We have verified that we get very similar results if we, instead, work with the maximum
in the set.
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Figure 14 shows that menu size has a large effect on both errors and CU, though the
effect is still smaller than that of excess dissimilarity.
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Figure 14: Correlations between choice set features and errors / cognitive uncertainty in the full dataset
in the EV Task, including menus with more than two options in the train set. Raw and partial correla-
tion coefficients between task-level error rates / average cognitive uncertainty and choice set features.
Whiskers show 95% confidence intervals. Excess dissimilarity, dominance and proximity of expected val-
ues are computed for each pair in the set and then averaged across pairs. Log scale, mixed / loss payouts,
log number of states and compound probabilities are computed separately for each lottery and then av-
eraged across the lotteries in a choice set.

H Targeted Problems in EV Tasks

H.1 Design of Targeted Problems

This Appendix H presents all 120 “targeted” EV Tasks problems that wemanually devised.
They broadly fall into two categories.

1. In a first category of 96 problems, one option is a safe payment and the other
one a non-degenerate lottery. Here, we designed three “sets,” each of which is
defined by a base lottery. Across choice problems within each set, we manipulate
specific features of the base lottery: scale (average absolute payout), variance, the
presence of mixed gain-loss payouts, number of states, extremity of probabilities
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(distance to certainty), and the presence of compound probabilities. In designing
thesemanipulations, we were careful to hold other aspects of the lotteries constant
to the greatest degree possible. Of course, it is logically impossible to hold all
features but one constant but we tried to the degree possible.

2. In a second category of 24 problems, both options in a choice set consisted of non-
degenerate lotteries. Here, we manipulated the similarity of the CDFs of the two
options while holding features such as expected value and variance constant.

Problems designed for lottery-specific features. We designed 96 choice problems in
which one option was a non-degenerate lottery and the other one a safe payment. The
lotteries were organized in three sets, within each of which we test for effects of specific
complexity features. Each set consists of the following types of lotteries:

1. Base: Lottery against which other lotteries are compared

2. Scale: Increase average absolute payout, holding payout range, mixed-ness and
probabilities constant

3. Range / variance: Increase payout range / variance, holding EV, mixed-ness and
probabilities constant

4. Mixed / scale: Shift all payouts up / down by a constant, such that lottery becomes
mixed while payout range and probabilities are held constant

5. Mixed / range: Increase payout range / variance to make lottery mixed, holding
EV and probabilities constant

6. Number of states: Increase number of states through event splits, holding EV con-
stant and changing variance / range as little as possible

7. Distance to certainty: make probabilities closer to certainty, holding EV constant

8. Compound: turn base lottery into compound lottery by letting payout probability
be drawn from a uniform distribution over a known support

In our experiments, each of the “base” lotteries was combined with safe payments
of: (i) EV −4, (ii) EV −2, (iii) EV +2 and (iv) EV +4, where EV refers to the expected
value of the lottery. This gives rise to a total of 96 unique choice problems.
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Problems designed for lottery dissimilarity. We designed 24 problems that are par-
titioned into three sets. A problem consists of a combination of lottery A and a lottery
B. Within each set, we designed a lottery B that is “similar” to A in the sense that the
distance between the two CDFs is relatively small, and a lottery B that is dissimilar. In
constructing similar and dissimilar lotteries, we paid special attention to ensuring that
(i) similar and dissimilar lotteries have almost exactly the same expected values; (ii) no
dominance relationship is present; and (iii) if anything, the variance of the similar lot-
tery is higher than that of the corresponding dissimilar lottery. The reason is that in our
quasi-randomly generated lottery set, the dissimilarity between two lotteries is highly
correlated with the variance of the two lotteries. Thus, in devising targeted problems, we
sought to investigate whether lottery similarity also matters independently of variance
(or even if variance predicts a result in the other direction).

H.2 Results for Targeted EV Problems

Table 14 summarizes the results. We present OLS regressions in which each observation
is a subject-decision. The dependent variable in columns (1)–(2) equals 1 if the sub-
ject selected the incorrect lottery. In columns (3)–(4), it is CU. All regressions include
problem set fixed effects.

In columns (1) and (3), we see that the following lottery features significantly impact
error rates and CU: higher variability (variance or range); mixed payout profiles (in
particular if they are associated with a higher range); and compound lotteries. A higher
number of states also leads to more errors and CU, though this relationship is statistically
significant only for CU.

Columns (2) and (4) document that the dissimilarity of the lotteries’ CDFs likewise
exerts a strong effect on errors and CU. Notably, the variance explained in column (2)
is relatively large, larger than that explained by all features in column (1). This is con-
sistent with our rsult – reported in the main text – that in our full dataset, including the
randomly-generated problems, excess dissimilarity is the strongest predictor of error
rates.

These results are broadly consistent with those from the full set of (randomly-generated)
problems reported in Figure 1. The main difference is that in the targeted problems we
find little indication that the magnitude of payouts itself affects errors.
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Table 14: Results for targeted EV tasks

Dependent variable:
1 if error Cognitive uncertainty

(1) (2) (3) (4)

Higher variance / payout range 0.095∗∗∗ 0.028∗∗∗
(0.02) (0.01)

Higher average abs. payout 0.033 -0.0076
(0.02) (0.01)

Mixed lottery (constant range) 0.033 0.021∗
(0.04) (0.01)

Mixed lottery (larger range) 0.18∗∗∗ 0.038∗∗∗
(0.02) (0.01)

Higher number of states 0.069 0.034∗∗∗
(0.04) (0.01)

Lower distance to certainty -0.0088 -0.024∗
(0.03) (0.01)

Compound lottery 0.11∗∗∗ 0.074∗∗∗
(0.03) (0.01)

Higher distance between CDFs 0.18∗∗∗ 0.020∗∗∗
(0.04) (0.01)

Controls for EV diff. Yes Yes Yes Yes

Problem set FE Yes Yes Yes Yes

Observations 8087 2003 8087 2003
R2 0.02 0.06 0.03 0.02

Notes.OLS regressions, standard errors (twoway-clustered at subject and prob-
lem level) in parentheses. An observation is a decision. Each independent vari-
able is a binary dummy for a problem type. The omitted category comprises
the base problems. In columns (1) and (3), the decision always involves a lot-
tery and a safe payment; in columns (2) and (4) it always involves two lotter-
ies. Controls for absolute EV difference include linear and second-order terms.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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I Experimental Instructions and Comprehension Checks

I.1 Experiment EV Tasks
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I.2 Experiment Choice Tasks
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