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Sinking Land: Optimal Control of Subsidence 
 
 

Abstract 
 
Land subsidence threatens the living conditions of roughly 1.2 billion people worldwide in deltaic 
regions characterized by soft top soil. Economic activity in deltaic regions requires lowering the 
groundwater levels to keep the land sufficiently dry to maintain productivity, which, however, 
leaves future generations worse off by accelerating subsidence and increasing future costs. The 
current policymaking is often myopic by ignoring this intertemporal trade-off. This paper provides 
a model recognizing this trade-off: we integrate the dynamics of land subsidence and groundwater 
management to derive optimal paths for controlling the groundwater level. Applying our model 
to the paradigm case of Dutch agricultural peatlands, we find that the welfare costs of ignoring 
dynamic efficiency can be in the order of 10 percent of the land value. Our results support current 
proposals to slow down subsidence by increasing the groundwater levels even in the absence of 
its social benefits such as avoided carbon dioxide emissions. 
JEL-Codes: C610, Q150, Q240, Q250, Q500. 
Keywords: land subsidence, agricultural production, intertemporal trade-offs, water management, 
optimal control. 
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1 Introduction

Land subsidence, the downward movement of land surface, is a global threat of

paramount importance. Recent estimates indicate that 19 percent of the global

population faces a high likelihood of being affected by land subsidence (Herrera-

Garćıa et al., 2021). Subsidence of soft soils is a major problem in delta regions

with high population densities, such as the West and the North of the Nether-

lands, the Mekong Delta hosting Ho Chi Minh City, the Chao Phraya Delta host-

ing Bangkok, or the Ciliwung Delta hosting Jakarta. The soft upper soil in these

regions compacts and decomposes over long time horizons leading to gradual subsi-

dence. This process is often exacerbated by anthropogenic factors such as intensive

agriculture and urbanization (Koster and Ommeren, 2015). The consequences can

be severe and include reduction in agricultural productivity, damages to the built

environment and infrastructure, and increase in flood risk (Pelsma et al., 2020).

For example, deltaic regions typically sink much faster than the sea level rises due

to climate change (Shirzaei and Bürgmann, 2018; Nicholls et al., 2021). Hence,

subsidence poses severe risks to life and property in delta regions.

How should land subsidence be managed? Keeping soils in subsiding delta

areas sufficiently dry for economic activity requires lowering the groundwater lev-

els artificially (drainage), which in turn speeds up subsidence, as dry soils com-

pact and decompose easier than wet soils. The continuous cycle of groundwater

drainage and subsidence depletes the fertile upper soil layer and increases costs

of maintaining groundwater levels. Hence, current productivity gains from deeper

ground water levels come at the expense of future costs due to subsidence: less top

soil for future generations and higher future costs of pumping out the groundwater

and maintaining the water infrastructure. Therefore, policymakers responsible for

groundwater and land-use management face an intertemporal trade-off between

the costs of land subsidence and the costs of mitigating subsidence through main-

taining higher groundwater levels, which is often ignored in current policymaking.

This paper recognizes this intertemporal trade-off in a modelling framework.

We offer an analytically tractable dynamic model with an optimal control ap-

proach. Our model integrates the dynamics of land subsidence and groundwater

management to derive socially optimal paths for groundwater levels. We show

that the current policy of aligning the speed of drainage with that of subsidence

ignores these intertemporal trade-offs, hence it is myopic. We compare this my-

opic benchmark with the forward-looking groundwater policy that takes into ac-

count the intertemporal trade-off. Applying our model to the paradigm case of
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Dutch agricultural peatlands, we find that ignoring dynamic efficiency can lead

to substantial welfare costs of around 10 percent of the potential net gains from

agriculture on those peatlands.

Since the Middle Ages, low-lying peatlands of the Netherlands have been

drained to allow for agriculture, and even more intensely in the last century

(Erkens et al., 2016). As a result, these peatlands are sinking by 8 mm annu-

ally on average (Van den Born et al., 2016). The Dutch policy on subsidence has

focused on adaptation: lowering groundwater levels periodically at the same rate

as the subsidence to maintain productivity levels (Council for the Environment

and Infrastructure, 2020; Gils et al., 2021). We show that such a policy cannot

be optimal from a forward-looking perspective. Our results suggest to increase

groundwater levels compared to this myopic benchmark. Indeed, alternative man-

agement strategies have been under consideration in the Netherlands since many

years (Querner et al., 2012; Hardeveld et al., 2018). Only recently, a new policy

initiative called for increasing groundwater levels to slow down subsidence (Har-

bers, 2023). The main motivation of the proposal is to mitigate the CO2 emissions

associated with land subsidence. Our results suggest that increasing the ground-

water levels can yield significant benefits even in the absence of any benefits from

avoided carbon emissions.

In this paper, we focus on subsidence management in agricultural areas. The

specific hydrologic, geologic and economic dynamics of subsidence depend on land-

use and geographical context. Our model can easily be adapted to analyze other

settings, for example urban areas. In this initial step, we ignore various external-

ities associated with land subsidence, such as the CO2 emissions and flood risks.

Therefore, our estimated welfare costs represent a lower bound. Evaluating the

effects of these externalities is an important avenue for future research.

There is a large literature on physical and technical aspects of land subsidence

including drivers, measurement and monitoring, future projection, and technical

mitigation (Querner et al., 2012; Fokker et al., 2018; Asselen et al., 2018; Shirzaei

et al., 2020; Lizárraga and Buscarnera, 2020; Wu et al., 2022). Project appraisal

studies have quantified costs and benefits of suggested measures (Warren et al.,

1975; Hardeveld et al., 2018; Wade et al., 2018; Kok and Costa, 2021). Our paper

is related to the literature on the intertemporal allocation of scarce resources,

such as fossil fuel resources (Dasgupta and Heal, 1974; Stiglitz, 1976; Salant, 1976;

Hoel, 1978; Sweeney, 1993; Heal, 1993) or groundwater (Gisser and Sanchez, 1980;

Casola et al., 1986; Ben-Gal et al., 2013; Quintana Ashwell et al., 2018; Reinelt,

2020). In this paper, we treat the subsiding peat soil as a scarce resource whose
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intertemporal allocation can be managed by groundwater regulation.

To our best knowledge, Goetz and Zilberman (1995) is the only study so far

to point out the Hotelling dynamics arising from the scarcity of peat. Our model,

on the other hand, is the first to reflect the unique dynamics and trade-offs stem-

ming from endogenous changes in the costs of groundwater management due to

subsidence. This novel mechanism is the main factor driving our robust empirical

result that the cost of ignoring dynamic efficiency is substantial, while Goetz and

Zilberman (1995) find that these costs are negligible. Unlike Goetz and Zilberman

(1995) we do not fix the planning horizon. Our model sheds light on the long-term

subsidence effects of groundwater management and we are able to determine the

time horizon of the use of peatlands for agriculture endogenously.

The rest of the paper is organized as follows: We present our model in Section

2. In Section 3, we provide the myopic solution as the benchmark, and derive

optimal forward-looking paths in Section 4. Next, we present the optimal paths

and their welfare implications by calibrating our model to the Dutch agricultural

peatlands in Section 5. In these sections, we focus on a case characterized by

a thick peat layer where the terminal time is determined by exhaustion of net

economic benefits, which is not the case when the peat layer is thin. We present

our results for the case of a thin peat layer in Section 6. The welfare gains from

following a forward-looking policy instead of a myopic one crucially depend on the

thickness of the peat layer, which we analyze in Section 7. Section 8 concludes.

2 Model

The single most important determinant of the speed of land subsidence is the

groundwater level. We devise a deterministic model for a single agricultural plot of

land in which the groundwater level can be fully controlled by water pumping and

other water management practices. While we focus on subsidence management in

agricultural areas, our model can be easily adapted to land subsidence associated

with other economic activities, such as urban development.

Physical environment. Figure 1 describes the key elements of our model. The

upper soil layer consists of peat, potentially mixed with clay, which we briefly

refer to as the peat layer. It is fertile, but subsides gradually over time when

drained. We measure the levels of peat surface S(t) and groundwater g(t) at

time t in reference to the border where the upper and lower soil layers meet.

For notational convenience, we will often ignore the time argument. The lower
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Figure 1: Key elements of the model

Notes: The figure illustrates a schematic vertical cross section of a plot of peat land together
depicting the key elements of the model: the soil height S, groundwater level g and root zone
R = S − g. The blue arrows indicate water flows.

layer does not subside, and is relatively less fertile, such as a rocky layer where

agricultural production is not possible, or a sandy layer with a low productivity.

Without drainage, the groundwater level rises above the surface of the peat layer

preventing agricultural activity. This case is the natural equilibrium state of the

system where there is no subsidence. Agricultural production, however, requires

pumping out the groundwater to leave a positive root zone R = S − g between

soil surface and groundwater level.

Yield and costs. The agricultural yield from a given plot of land is a function

of the root zone, such that y = y(R). Based on insights from soil and agronomic

sciences (Wessiling, 1974; Mulder et al., 2021), we specify a quadratic form for the

yield function as follows:

y(R) = ψR(2κ−R),

where parameter κ is the yield maximizing root zone. The productivity param-

eter ψ captures agricultural prices. Thus we refer to y(R) as yield or revenues

interchangeably. Marginal yield with respect to groundwater level is given by

yg = 2ψ (R− κ) and is negative and increasing in the relevant range R ∈ [0, κ].

Throughout the paper, we may indicate partial derivatives with a subscript. Then
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the maximum attainable yield is given by ȳ = ψκ2 and the corresponding root

zone is R̄ = κ.

The costs of water management are the pumping effort and the investment

in and management of the water infrastructure to reach a certain groundwater

depth. Costs are determined by the depth of the groundwater level relative to the

natural (initial) water table, such that c = c(g). Let S0 be the initial level of the

soil surface of a given plot of land. The water management costs are then given

by:

c(g) = c0 + γ(S0 − g),

where c0 stands for the fixed costs and γ > 0 is the marginal cost of lowering the

groundwater level. Here, we assume that costs are linear in groundwater depth,

in accordance with most short- and medium-term subsidence cost estimates (Van

den Born et al., 2016; Pelsma et al., 2020). It is also plausible that marginal

costs are increasing in depth in the long term, as we need broader dikes, more

infrastructure and have to pump the groundwater higher up to prevent flooding

(Van den Born et al., 2016). Therefore, our predicted welfare gains from adopting

a forward-looking policy represent a lower bound.

Lowering the groundwater level to create a root zone for agricultural production

leads to subsidence as follows:

Ṡ = −αR,

where Ṡ is the total time derivative of S, which is the vertical shrinkage of the

upper soil layer at a point in time. Hence subsidence is proportional to the root

zone. We refer to α as the subsidence rate. Here, we assume regeneration of the

peat soil is negligible and ignore potential subsidence in deeper geological forma-

tions. These simplifications provide analytical tractability to gain insights into

the dynamics of our model. Incorporating such considerations is straightforward

and can provide further empirical precision.

Myopic versus forward-looking policymaking. The myopic policymaker

chooses the groundwater level to maximize instantaneous net benefits Π(S, g) at

each point in time without accounting for the effect of subsidence on future costs
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and benefits. The myopic policy maker’s problem is:

max
g(t)

Π
(
S(t), g(t)

)
,

where Π
(
S(t), g(t)

)
= y(S, g)− c(g), (1)

subject to Ṡ(t) = −α
(
S(t)− g(t)

)
,

S(0) = S0, S(t) ≥ 0, 0 ≤ g(t) ≤ S0,

for all t ∈ [0, T ].

The forward-looking policymaker, on the other hand, chooses the path of ground-

water level g and the terminal time T to maximize the sum of net benefits V over

the entire planning horizon t ∈ [0, T ], by discounting future net benefits at rate δ

and taking the subsidence dynamics into account. Formally, the forward-looking

policymaker solves

max
g(t), T

V
[
S(t), g(t), t

]
,

where V
[
S(t), g(t), t

]
=

∫ T

0

Π
(
S(t), g(t)

)
e−δtdt, (2)

subject to Ṡ(t) = −α
(
S(t)− g(t)

)
,

S(0) = S0, S(t) ≥ 0, 0 ≤ g(t) ≤ S0,

for all t ∈ [0, T ].

At any point in time, a decision maker can opt out from using the land by

stopping groundwater maintenance, such that g(t) = S0. Then the plot fully

submerges yielding zero net instantaneous benefits. Therefore, both the myopic

and forward-looking policymakers maintain a positive root zone until a terminal

(stopping) time T with Π(T ) = 0, after which the land is abandoned. In the

forward-looking case, the terminal (stopping) time T is an endogenous variable

to be chosen optimally together with g(t), while Π(T ) = 0 can be considered a

surprise for the myopic policymaker.

3 Benchmark: myopic policy

We first describe our benchmark policy scenario, namely the myopic policymaking

which ignores the effect of current decisions on future conditions. To provide an

intuitive understanding of the dynamics in our model, we start with illustrating

the myopic policymaking in Figure 2. The figure illustrates the yield function
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Figure 2: Myopic policymaking

g

Yield, Cost

gm(0)gm(t)gm(T) S0

c(S0-g), thick

c(S0-g), thin

y(S(0),g)y(S(t),g)y(S(T),g)

Notes: This figure illustrates myopic policymaking (m) for two case: high and low fixed costs
labelled as thick and thin peat cases. Agricultural yield y and drainage costs c are depicted as
a function of groundwater level g.

as a function of the groundwater level g for a given soil surface level S. As

long as g(t) < S(t) at time t, there is subsidence, and the yield function moves

leftwards. The policymaker initially chooses a g(0) below S0 by leaving a root zone

R(0) = S0−g(0) to produce y(R(0)). While a positive root zone is necessary input

for agricultural production, excessive drainage of the groundwater, for example too

low g(0) with a too high R(0), also leads to lower agricultural yield, as plants do

not receive sufficient water. Cost of lowering the groundwater c(g) is linear and

increasing in depth S0− g. Therefore, the costs are decreasing in g for a given S0,

as depicted for cases with high and low (fixed) costs.

First, consider the high cost case in Figure 2. The myopic policy ignores

what will happen tomorrow and chooses g(0) by maximizing the agricultural yield

net of the costs, such that gm(0), the myopic (m) groundwater level at t = 0,

maximizes the distance between the yield and the cost curve which occurs where

their slopes are equal. Creating a root zone by lowering the groundwater level leads

to subsidence, which is given by the change in the peat level as Ṡ(t) = −αR(t),

where α is the subsidence rate. Hence, subsidence is faster when the root zone

is larger. In Figure 2, subsidence is represented by the leftward movement of the

yield function. Hence, the right branch of the yield function traces S(t) over time

on the horizontal axis. The yield function in the middle represents the situation
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at an arbitrary point in time t. As the shape of the yield function does not change

over time and the slope of the cost function is given, the optimal myopic root zone

remains constant.

In Figure 2, the yield function on the left represents the point where the myopic

policy stops drainage. Agricultural activity beyond this point does not yield fur-

ther net benefits. Therefore, the myopic policymaker abandons the land avoiding

any further costs. However, if the costs were described by the lower cost function,

the net benefits would still be positive when the groundwater level reaches to the

zero reference point. In this case, the agricultural activity would still go on, but

switches into a new phase where the dynamics and optimal behaviour depend on

the remaining peat and the characteristics of the lower soil layer. As in the figure,

we label the former situation as the thick peat case, where the stopping time is

determined by the exhaustion of net economic benefits while we are still exploiting

the upper soil layer. We refer to the latter case as the thin peat case, where, once

the zero groundwater level is reached, a new phase starts. In the following, we

first focus on the thick peat case.

The solution to myopic policymaking is straightforward. Still, for the clarity of

the exposition, we summarize the solution in a proposition as follows and provide

the derivations in the Appendix:

Proposition 1. There exist a unique critical S0 level Ŝ0, such that if S0 ≥ Ŝ0, then

there exists a unique myopic policy gm(t) > 0 for all t ∈ [0, T ] solving Equation

(1). Respectively, the myopic groundwater level, peat height, root zone, terminal

time, and the critical initial soil height are given by

gm(t) = S0 −Rm (αt+ 1)

Sm(t) = S0 − αRmt

Rm = κ− γ

2ψ
,

Tm =
1

α

(
ym − c0
γRm

− 1

)
,

Ŝ0 =
ym − c0

γ
,

where we denote ym = y(Rm).

Proof. See Appendix A.

The results in Proposition 1 reflects what we observe in Figure 2. The ground-

water level decreases at the same speed as the soil level leading to a root zone that
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remains constant over time. The marginal agricultural returns to root zone are

given by 2ψ(κ−R), which is increasing in κ and ψ. Hence, the myopic root zone

is increasing in κ and ψ. On the other hand, a higher marginal cost of lowering

the groundwater level γ leads to a smaller root zone, as it reduces the net benefits

from agricultural production.

The myopic policy abandons the land when the agricultural returns does not

recover the costs of maintaining the groundwater level, as reflected in the expres-

sion for the terminal time Tm. A higher root zone speeds up subsidence leading

to a faster exploitation of the peat layer.

In this section, our assumption is that the peat layer is sufficiently thick for

given yield and cost structures, such that S0 > Ŝ0. The critical soil surface level

Ŝ0 is endogenous and determined by the yield and cost structure. Hence, even if

the peat layer is physically thin, a sufficiently low agricultural productivity and/or

high groundwater management costs can yield S0 ≥ Ŝ0 leading to the situation

which we label as the thick peat case. In this case, the optimal groundwater levels

are always positive. The thin peat case arises when S0 < Ŝ0 which we analyze in

Section 6.

4 Forward-looking policy

In this section, we present the solutions to the forward-looking paths in thick peat.

In this optimal control problem given by equation (2), the control variable is the

groundwater level g and the state variable is the height of the peat layer S. Hence,

the planner steers subsidence by managing groundwater levels. The current value

Hamiltonian is given by

Hc = [ψ(S − g)(2κ− (S − g))]− [c0 + γ(S0 − g)]− αλ(S − g),

where λ is the costate variable representing the shadow price of depleting the peat

layer. The optimum path must satisfy the FOCs of the maximum principle given
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by

∂Hc

∂λ
= 0⇒Ṡ = −α(S − g) (3)

∂Hc

∂g
= 0⇒2ψ(S − g − κ) = −γ − αλ (4)

λ̇− δλ = −∂Hc

∂S
⇒λ̇ = (δ + α)λ+ 2ψ(S − g − κ) (5)

Transversality C. 1⇒λ(T )e−δT = 0 (6)

Transversality C. 2 ⇒Hc(T )e−δT = 0, (7)

where the transversality conditions arise from having free terminal time and state,

respectively. The first and third FOCs represent the canonical system: the law

of motion for the state (S) and costate (λ) variables, respectively. The former is

simply a restatement of the subsidence equation. The second FOC is the static

optimality condition that the current value Hamiltonion must be maximized with

respect to the groundwater level at each point in time, which implies that, at each

point in time, the current profit effects of changing the groundwater level must be

equal to its effect on the value of remaining peat layer height.

We summarize the solution to these FOCs for the thick peat case in the fol-

lowing proposition:

Proposition 2. There exists a critical S0 level Ŝ0, such that, if S0 ≥ Ŝ0, there

exists a unique forward-looking policy gf (t) > 0 for all t ∈ [0, T ]. Respectively,

the forward-looking groundwater level, peat height, root zone, and shadow price are

given by

gf (t) =
(
S0 −Rm + Λ

(
1 +

α

δ
e−δT

f
))
− α (Rm − Λ) t− Λ

(
1 +

α

δ

)
eδ(t−T

f)

Sf (t) =
(
S0 + Λ

α

δ
e−δT

f
)
− α (Rm − Λ) t− Λ

α

δ
eδ(t−T

f)

Rf (t) = Rm − Λ
(

1− eδ(t−T f)
)

λf (t) =
γ

δ

(
1− eδ(t−T f )

)
,

where Λ = γα/(2ψδ) and T f is the forward looking terminal time which obeys a

transversality condition:

TV C(T f ) = 0,

where TV C(T f ) =

(
Rm − ym − c0

γ

)
+ Λ

α

δ

(
1− e−δT f

)
+ α (Rm − Λ)T f .
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Proof. See Appendix B for the derivation of the solution. See Appendix D.5 for

its uniqueness property.

In this solution, there are several important points worth attention. First,

it is clear that the forward looking root zone is always smaller than the myopic

root zone until the terminal time at where they are equal. Therefore, the forward-

looking planner keeps the subsidence slower by choosing a path with higher ground-

water levels at all times. Second, it is also easy to verify that the groundwater level

and the peat layer height of the two policies are equal at the terminal times. The

reason is that the zero profit condition determining the terminal time is the same

for both policy types. The difference is that the forward-looking planner extends

the exploitation time with a smaller root zone by taking into account the scarcity

of the peat layer. Finally, while the uniqueness of myopic solution is self-evident,

the forward-looking terminal time is given by an implicit function, and it appears

in the expressions for all endogenous variables. We refer to Appendix D.5 for the

uniqueness of forward-looking policy.

We summarize the above discussion in the following proposition:

Proposition 3. In the thick peat case, (i) the forward-looking groundwater level

is higher than the myopic one, leading to slower subsidence, and smaller root zone.

Formally,

gf (t) > gm(t), Sf (t) > Sm(t), and Rf (t) > Rm.

(ii) The exploitation time in the forward looking policy is longer compared to the

myopic policy. Formally, we have T f > Tm. (iii) The forward-looking and myopic

paths end with same groundwater level, peat layer height, and root zone.

gf (T f ) = gm(Tm), Sf (T f ) = Sm(Tm), and Rf (T f ) = Rm.

Proof. The proof follows the above discussion.

To provide the intuition underlying these results, Figure 3 describes the forward-

looking policy in reference to the myopic policy. It compares the myopic and

forward-looking policies on the {R(t), S(t)} plane for the thick peat case. The

myopic paths start at (S0, R
m) and end at (S(Tm), Rm). Hence the root zone is

constant as described earlier. The forward-looking policy starts with a smaller root

zone at (S0, R
f (0)) for two reasons: First, it accounts for the fact that subsidence

will lead to higher costs in the future. Second, it gives higher weight to present

compared to future net benefits by applying a constant discount rate δ. As the
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Figure 3: Myopic versus forward-looking policies

R

S

Myopic

Forward-looking

(S0, R
m)

(Sm(Tm), Rm)

(Sf (Tf ), Rf (Tf )

(S0, R
f (0))

S = Rm

(S0, R
f (0))

Notes: This figure compares myopic (m) vs forward-looking (f) policies, depicting myopic (solid
vertical) and forward looking (dashed) paths of root zone R and soil surface S; from t = 0 to
endogenous terminal time T .

forward-looking root zone is smaller Rf (0) < Rm, subsidence is slower. Hence, the

forward looking policy exploits the peat over a longer time horizon. The length

of the paths, as depicted in Figure 3, are proportional to the time spans that the

peat is exploited. The forward-looking root zone increases gradually reaching the

myopic root zone at the stopping time, as it is determined by the exhaustion of

net economic benefits, which is the same for both policies.

Figure 3 also illustrates a forward-looking path starting at (Ŝ0, Rf (0)) which

represents the borderline case between the thick and thin peat cases. On this

path, economic exhaustion happens at the time when we reach the zero ground-

water level. Ceteris paribus, starting with S0 > Ŝ0 leads to the thick peat case.

Otherwise, we are in the thin peat case.

In the previous section, we have shown that the myopic root zone is constant.

A constant root zone is an observational fact in the Netherlands where ground-

water levels are lowered at the same rate as the land subsides. In the model, the

constancy of the myopic root zone follows from the linearity of the cost function,

which seems to be a good approximation. Our argument that current policymak-

ing is likely to be myopic follows from another theoretical finding: intertemporal

optimality rules out a constant root zone over time. Hence, current policymaking

cannot be forward-looking and can be at best myopic. This result holds under

fairly general conditions without parametrizing the yield and cost function. We
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Figure 4: Myopic versus forward-looking paths in thick peat

Sm(t)

gm(t)

Sf (t)

gf (t)

50 100 150
t

2.5

3.0

3.5

4.0

4.5

5.0

S, g

(a) Top soil and groundwater height

Rm(t)

Rf (t)

0 20 40 60 80 100 120 140
t

0.55

0.60

0.65

0.70

0.75

R

(b) Root zones

Notes: This figure illustrates the myopic (m) and forward-looking (f) paths in thick peat applied
to Dutch peatlands over time t in years. See Appendix C for the baseline values of the parameters.
Vertical lines represent stopping times. Panel (a) presents the optimal top soil and groundwater
(S and g) heights in meters. Panel (b) presents optimal root zones R in meters.

state this result in the following proposition:

Proposition 4. Suppose that yield function is concave and the cost function c(g)

is weakly convex in g. Then, the root zone solving the forward-looking problem in

equation (2) cannot be constant.

Proof. See Appendix E.

5 Calibration: optimal paths and welfare

In this section, we apply our model to the Dutch drained peatlands based on

parameter values obtained from the literature. We provide a detailed Appendix C

for the parameter values). First, we present the optimal paths for the groundwater

height and corresponding soil height and root zone under myopic and forward-

looking behaviour. Next, we analyze the welfare implications of these paths. As

stated earlier, we focus on the thick peat case. We present the results for the thin

peat case in the next section.

Optimal paths. Figure 4a shows the myopic (m) and forward-looking (f) paths

for the groundwater g(t) and soil surface S(t) levels when the peat layer is very
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Figure 5: Welfare gains

Baseline: δ = 1%

Less care for future: δ = 2%

High care for future: δ = 0.5%

0.1 0.2 0.3 0.4 0.5
γ

2

4

6

8

10

Welfare gain (%)

(a) Sensitivity to the discount rate δ

Baseline: α = 0.023

Fast subsidence: α = 0.046

Slow subsidence: α = 0.012

0.1 0.2 0.3 0.4 0.5
γ

2

4

6

8

10

Welfare gain (%)
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Notes: This figure shows the welfare gains from forward-looking policy compared to the myopic
benchmark in percentage points over a range of levels of marginal cost γ, calibrated for Dutch
peatlands. See Appendix C for the baseline values of the parameters. Vertical dashed lines
represent the baseline value of γ. Panel (a) and panel (b) present sensitivity analyses with
respect to the discount rate δ and subsidence rate α, respectively.

thick and given by 5 meters. Forward-looking policy starts with a higher ground-

water and levels off slower, exploiting the fertile upper soil for a longer time hori-

zon, almost 20 additional years. Hence, subsidence is slower, and the soil surface

level is always higher compared to that of the myopic policy. The right panel shows

the corresponding root zones R(t). The initial root zone in the forward-looking

case is around 20 cm smaller, and remains smaller throughout the planning hori-

zon. As explained earlier, exhaustion of net benefits determining the stopping time

happens at the same root zone depth, while the forward-looking policy reaches that

level much later.

Welfare gains. For both the myopic and forward-looking policies, the welfare

represents the sum of net benefits (profits) from the initial to the terminal time.

Figure 5 shows that the welfare from following the forward-looking policy is around

6 percent higher compared to that from the myopic policy with our baseline pa-

rameter choices. When the marginal cost γ is higher, the welfare gains can be

over 8 percent. The figure presents two sensitivity analyses: On the left panel, the

welfare gains are around 10 percent, when we apply a lower discount rate to the

future benefits and costs, which reflects weighing future generations’ well-being

more. On the right panel, the welfare gains again are around 10 percent when

the subsidence rate is slower compared to our benchmark case. In both cases, the
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Figure 6: Myopic versus forward-looking paths in thin peat
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Notes: This figure illustrates the myopic (m) and forward-looking (f) paths in thin peat applied
to Dutch peatlands over time t in years. See Appendix C for the baseline values of the parameters.
Vertical lines represent stopping times. Panel (a) presents the optimal top soil and groundwater
(S and g) heights in meters. Panel (b) presents optimal root zones R in meters.

welfare gains can be higher than 10 percent when the marginal costs are higher

than our benchmark value. Our finding is remarkably different from Goetz and

Zilberman (1995) who do ”not [find] a big difference between short- and farsighted

optimal behavior”. Note that their result is obtained for a fixed time horizon of

30 years.

6 Thin peat

Until this section, we have assumed that the initial peat layer is sufficiently thick,

such that the groundwater levels are still within the peat layer at the terminal

time. When this condition does not hold, the characteristics of the lower soil

level is binding for the optimal paths. For expositional brevity, we assume that

the lower base layer is unproductive. From a welfare comparison perspective, the

difference with the case of a productive lower base layer is small which we discuss

later in this section. When the base layer is unproductive and the peat layer is

not sufficiently thick, we may observe three further cases: First, Thin peat case,

when S0 < Ŝ0. In this case, we start with a positive groundwater level, but we

reach a zero groundwater level while land use is still profitable. Second, Very thin

peat case when S0 is very small, where we start and end with zero groundwater

level. Third, Non-utilization case when S0 is too small, such that there are no net

benefits to be exploited. The solutions for the latter two cases are straightforward.

In this section, we present the calibration results for the optimal paths in the the
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thin peat case. We provide the solutions and their derivations for all cases in

Appendix D.

Figure 6 illustrates the myopic and forward-looking paths for a thin peat layer

of 1.5 meters. The forward-looking policy lowers the groundwater level much

slower, slowing down the subsidence and reaching the unproductive base layer

around 20 years later than the myopic policy. At this phase switch, the remaining

peat layer is smaller with the forward-looking policy. There is an important be-

havioural difference leading to the drastic differences between the phase-switching

times and remaining peat layers: the forward-looking policy chooses the phase-

switching time and how much peat to leave for the second phase by trading off

its effects on the net benefits in the first and second phases. On the other hand,

phase-switching time can be considered a surprise for the myopic policymaker.

Despite the difference in the timing of second phase and remaining top soil

level at the switching time, the dynamics in the second phase is the same for

both policies: the groundwater level is kept at g = 0, and soil surface is allowed

to subside until net benefits are exhausted. The duration of the second phase

is longer with the myopic policy, as it reaches to the zero groundwater level very

early by ignoring the intertemporal trade-offs that the forward-looking policy takes

into account. The right panel of Figure 6 shows the corresponding root zones.

The forward-looking policy starts with a root zone around 15 cm smaller which

increases gradually over time, while the myopic root zone is constant. At the phase

switching time, the forward-looking root zone is smaller, as it leaves less peat for

the second phase as explained earlier.

Note that, when the lower soil level is not fertile, economic exhaustion must

happen at some point in time, as the upper soil level gradually becomes thinner

leading to lower returns in terms of agricultural yield, while we still experience

the high costs of maintaining the groundwater level at zero. On the other hand,

if the lower base layer were productive, agricultural activity might be maintained

forever. However, such a policy is optimal only if the peat layer is sufficiently thin,

so that the cost in this final phase is not too high. Hence, in this case there are

no drastic differences in terms of welfare evaluation.

7 Heterogeneity in welfare gains

The most important observational variability determining the optimal decision is

the initial soil surface level. Figure 7 illustrates the welfare levels for given initial

soil heights in the left panel. The right panel illustrates the welfare gains from
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Figure 7: Welfare comparison by peat thickness
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Notes: This figure shows the welfare comparison by thickness of peat layer, calibrated for Dutch
peatlands. See Appendix C for the baseline values of the parameters. Vertical lines indicate
threshold levels of Ŝ0 leading to different cases (short-thin lines for the myopic and tall-thick
lines for the forward-looking policies). Panel (a) provides the net present values of welfare levels
in 1000 Euros per hectare as a function of initial top soil height S0 in meters. Panel (b) shows
the welfare gains from the forward-looking policy in reference to myopic policy in percent as a
function of initial top soil height S0 in meters.

following the forward-looking policy. The vertical lines are the critical S0 levels for

different cases. As mentioned earlier, an unproductive base layer entails four cases:

1) Thick peat. 2) Thin peat. 3) Very thin peat. 4) No utilization. The critical

S0 values may be different for the myopic (thin vertical lines) and forward-looking

policy (thick vertical lines).

The welfare functions differ between policies. For both the myopic and forward-

looking policies, we calculate the intertemporal net benefits (profits) as

V i =

∫ T i

0

Πi
(
t
)
e−δtdt,

for i = {m, f}. Here, T i represents the overall terminal time which is given by the

end of profitable use. In the thin peat case profitable use stretches over two phases,

before and after a zero ground water level is reached. The instantaneous profit

functions differ by case and are given in the proofs of corresponding propositions.

Therefore, Πi
(
t
)

is not necessarily a continuous function. For example, in the thin

peat case, where there are three phases, V i is given by the sum of welfare under

the first and second phases.

As can be seen in the left panel of Figure 7, welfare does not depend on S0 in

the thick peat case, as economic net benefits are exhausted within the upper soil

layer. On the other hand, welfare is increasing in S0 in thin peat. The right panel

shows that the welfare gains from following the forward-looking policy is around
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6 percent in the thick peat case. In the thin peat, these gains can be around 8

percent. In the thin peat case, the welfare gains are inverted-U shaped, which is

driven by two opposing adjustments with respect to a change in S0: A higher S0

leads to higher profits given the terminal time and leads to a longer extraction

given the profits. Welfare is increasing in both adjustments. However, while the

former can reduce the relative advantage of a forward-looking policy, the latter

always favours it.

Figure 7 shows that welfare gains are smaller when the peat is very thin where

the characteristics of the lower soil layer matters. For this reason, assuming a

productive lower soil layer does not make any significant difference in this welfare

comparison within reasonable parameter ranges.

8 Discussion and conclusion

This paper offers a workhorse model for groundwater management in subsiding

peatlands which accounts for the intertemporal trade-offs in the management of

land subsidence. Applying our model to the paradigm case of peatlands in the

Netherlands, we show that the welfare gains from adopting a forward-looking

policy instead of a myopic one can be in the order of 10 percent of the value of

the land, depending on the thickness of the initial peat layer. This prediction

is conservative for several reasons: First, the increase in future costs could be

more drastic than suggested by our linear cost function due to water volumes,

energy requirements, and infrastructure costs that are increasing in the depth of

groundwater levels (Van den Born et al., 2016), which might suggest a convex

cost function instead. Second, uncertainty in rainfall patterns and variation in

exterior water pressure can drive up groundwater management costs. Therefore

extending our model with stochastic elements representing groundwater variability

can lead to additional gains from forward-looking management. Third, our welfare

evaluations are based on the assumption that marginal well-being derived from

agricultural yield is constant, such as a linear utility function which is a one-to-

one mapping from agricultural yield to consumer preferences. A concave utility

function would put more weight on the marginal yield when the consumption level

is small due to subsidence. Fourth, peatlands are large carbon stores, and current

subsidence is responsible for 3% of Dutch CO2 emissions (Van den Akker et al.,

2008). An important step forward would be to account for the associated social

costs of subsidence. Overall, the gains from applying a forward-looking policy are

likely to be even higher than our conservative prediction.
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Our results show that both the intertemporal trade-off between short-term and

long-term production losses as well as water management costs can be rationales

for slowing down land subsidence over time, even when we disregard the social costs

of subsidence, for example, from CO2 emissions, which are generally considered the

main reason for subsidence mitigation. Our model can provide valuable input for

decision-makers in the design of more efficient long-term policies for groundwater

and subsidence management. We have shown that the current common water

policy for Dutch peatlands is likely to be short-sighted. Our results support the

calls to raise relative groundwater levels to stretch out the exploitation of the peat

over a longer time period and delay higher future costs.
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Appendix

A Proof of Proposition 1

The first order condition (FOC) for myopic optimality is given by Πg = 0. This

FOC is sufficient to show that myopic root zone Rm is constant over time and

given by the expression in the proposition. For Rm > 0, we must have κ > γ/2ψ.

Then the myopic yield is positive and given by ym = ȳ − γ2/4ψ > 0. There is

subsidence following Ṡ = −αRm = −α(κ−γ/(2ψ)). Solving this simple differential

equation together with the initial condition S(0) = S0 gives the myopic path for

the peat height Sm(t) in the proposition. Using g = S − R leads to the myopic

groundwater path gm(t). As gm(0) = S0 − Rm, we must have S0 > Rm, which

defines the critical level Ŝ0 = Rm.

The net benefits Πm follows from substituting gm(t) and Sm(t):

Πm = ym − (c0 + γRm (αt+ 1)) for h = {1, 2}.

The myopic terminal time Tm is the point in time where instantaneous net

benefit is zero, such that Πm(Tm) = 0, which leads to the expression for Tm in

the proposition.

The derivation of the critical surface level requires further results from the thin

peat case, which we analyze in Appendix D; see the proof of Proposition 5.

B Proof of Proposition 2

Substituting Equation (4) in (5) gives λ̇ = δλ− γ. The solution to this linear first

order differential equation is given by

λ =
γ

δ
+K1e

δt, (8)

where K1 is an undetermined coefficient. Substituting this expression and R =

S − g in Equation (4) yields

R = Rm − α

2ψ

(γ
δ

+K1e
δt
)
, (9)

where we simplify the expression by using the myopic root zone in thick peat

denoted here with Rm. Substituting this expression in Equation (3) gives Ṡ =
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−αRm + (α2/2ψ)λ. Substituting Equation (8), and solving the resulting differen-

tial equation gives

S = K2 +

(
−αRm +

α2

2ψ

γ

δ

)
t+

α2

2ψ

K1

δ
eδt, (10)

where K2 is an undetermined coefficient. By using the initial condition S(0) = S0,

we eliminate K2, which leads to

S =

(
S0 −

α2

2ψ

K1

δ

)
+

(
−αRm +

α2

2ψ

γ

δ

)
t+

α2

2ψ

K1

δ
eδt. (11)

Substituting the final expressions for S and R in g = S −R gives

g =

(
S0 −

α2

2ψ

K1

δ
+

α

2ψ

γ

δ
−Rm

)
+

(
−αRm +

α2

2ψ

γ

δ

)
t+

(
α2

2ψ

1

δ
+

α

2ψ

)
K1e

δt.

(12)

Substituting Equation (8) in the first transversality condition and solving for the

undetermined coefficient K1 leads to K1 = −γ
δ
e−δT . Substituting this expression

back in those derived so far for S, g, R and λ leads to the forward-looking paths

provided in the proposition.

The forward-looking terminal time can be derived by using the second transver-

sality condition. The Hamiltonian at the terminal time is given by

Hc(T )e−δT =

ψR(T )(2κ−R(T ))︸ ︷︷ ︸
ym

 e−δT − [c0 + γ(S0 − g(T ))] e−δT − αλ(T )e−δTR(T )︸ ︷︷ ︸
=0 as λ(T )e−δT=0

= yme−δT − [c0 + γ(S0 − g(T ))] e−δT ,

The second line follows from the first transverality condition and its implication

R(T ) = Rm. In addition, we simply substitute myopic yield for brevity. By

applying the second transversality condition with this expression above and sub-

stituting g(T ), we reach the expression in the proposition which implicitly defines

the terminal time.

We provide its derivation in the proof of Proposition 6 in Appendix D, as its

derivation requires further results from the thin peat case.
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C Parameter values in the application

We obtain the parameter values from multiple data sets and existing applications

of subsidence models to the Dutch drained peat grasslands. The parameter val-

ues of the yield function y(S, g, t) are from a number of studies on the effect of

changes in groundwater levels on yield and farm profit, which are based on the

’Waterwijzer Landbouw’ tool and WOFOST models (Mulder et al., 2021). We

use cost estimates from existing cost-benefit analyses and water authority pro-

jections of subsidence impacts on water management to assign values to the cost

function c(g, t). Finally, we use the empirical estimation on the relation between

subsidence and groundwater levels by Van den Akker et al. (2008) and adapted

by Geisler (2015) to assign values to the parameters of the subsidence function

Ṡ(S, g, t). Table C.1 shows the baseline parameter values and value ranges used

in our numerical analysis and provides more details including the source studies.

Marginal subsidence rate. Our baseline value is taken from the empirical

relationship found by Van den Akker et al. (2008) based on field experiments in

Dutch peatlands. This rate applies to an area of peat without clay cover and

with negligible peat regrowth. When clay is mixed through the peat, subsidence

is significantly slower, so we apply half the baseline value as our lower bound.

Geisler (2015) estimates a higher subsidence rate under the climate scenario with

the heighest temperature increases (W+) of the Dutch Meteorological Institute,

which we take as our upper bound. These empirical values are obtained in relation

to the mean lowest groundwater depth (GLG), defined as the average over 3 lowest

measurements every year for 8 years. Since our model is continuous, we change

this variable to the continuous depth of the groundwater table, which in our model

is equivalent to the root zone, in a 1:1 ratio, in line with the Phoenix subsidence

model of Putte (2020).

Fixed costs. Fixed costs depend on hydrologic circumstances and soil com-

position in the initial situation. Ruijgrok and Van Tuinen (2019) estimate the

reference management costs for a pure peat plot at e308/ha/yr, which we use

as a baseline. We use their highest cost estimate, for a peat plot with thick clay

layer (e494/ha/yr) as our upper value. We use the cost assessment of Wetterskip

Fryslan (2014) of e10 million/yr for 52,000 ha peat grassland(= e192/ha/yr) as

a lower bound.
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Table C.1: Parameters of the model

Description Baseline
value

Upper
bound

Lower
bound

Source

α marginal subsidence rate [m/yr] 0.02354 0.046 0.012 (Van den Akker et al., 2008;
Geisler, 2015; Putte, 2020)

c0 fixed water management cost
[e1000/ha]

0.308 0.494 0.192 (Ruijgrok and Van Tuinen,
2019; Wetterskip Fryslan,
2014)

γ marginal cost of lowering ground-
water level [e1000/m/ha]

0.305 0.95 0.2 (Stowa, 2021; Ruijgrok and
Van Tuinen, 2019; Hartman
et al., 2012)

κ yield maximizing root zone [m] 0.8 0.6 1.2 (Daatselaar and Prins,
2020; Mulder et al., 2021)

ψ productivity rate [e1000/m/ha] 1.875 4.6875 0.7 (Ruijgrok and Van Tuinen,
2019; Stowa, 2021; Kroes et
al., 2015)e

δ social discount rate 0.01 0.02 0.005

Notes: This table presents the benchmark parameter values used in the applications to Dutch peatlands.

Fixed costs of water management. γ is the marginal yearly water manage-

ment costs per meter of drop in the water level relative to the initial soil level.

It consists of infrastructure investments, yearly management expenses and energy

costs of pumping. In reality, some costs are related to the depth of the groundwa-

ter (energy and pumping infrastructure), while other costs are related to the depth

of the soil level (landscaping infrastructure). Since the soil level always follows

the water level – the maximum difference cannot be more than κ – expressing

costs as a function of soil or water depth does not make a large difference, so

we have lumped those costs together here. For one-off investments, we use ade-

quate amortization periods to convert these into annual maintenance costs. We

used infrastructure prices and investment requirements provided in table 4.1 of

Stowa (2021) and water infrastructure cost estimates of Ruijgrok and Van Tu-

inen (2019). Energy cost estimates are provided by Hartman et al. (2012). γ has

a high uncertainty range, resulting from different amortization periods, high local

heterogeneity of infrastructure needs and lack of reliable cost data.

Marginal cost of lowering the groundwater level. The yield maximizing

root zone depends on local hydrologic and physical circumstances. Based on the

WWL-table produced by Mulder et al. (2021) we can find that for peatlands the

lowest yield losses from either dry or wet circumstances occur when the root zone

is between 0.6 and 1.2 meters. Daatselaar and Prins (2020) show that a root zone

of 0.8 meters results in highest revenues in the grass peatlands of the Groene Hart
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area (South-Holland).

Yield maximizing root zone. Parameter ψ scales the parabolic net revenue

function. Its peak value is dependent on both the yield maximizing root zone (κ)

and the maximum net revenues obtained with that root zone. The baseline value

for ψ corresponds to κ = 0.8 and maximum net revenues of e1050/ha/yr, which

is an estimate of Ruijgrok and Van Tuinen (2019) for Frisian peatland farmers

excluding all government subsidies, based on the WaterWijzer Landbouw model

(Kroes et al., 2015). The lower bound for ψ corresponds to a higher κ of 1.2. The

upper bound corresponds to a higher maximum net revenue of e3100/ha/yr. This

is an estimate by Stowa (2021) of the average profits over all Dutch dairy farms

- not just those on peatlands - and is likely to include government subsidies.

D Full solution

In the main text, we primarily focused on the thick peat case and provide only

the calibration results for the thin peat case. In this section, we provide the full

solution of our model covering all potential cases. First, we start with outlining

all potential cases and phases entailed by each case. Second, we introduce further

notation to distinguish optimal paths for each case and phase. Third, we provide

the full solution for the myopic case. Fourth, we solve optimal control models that

cover the cases of thick peat, thin peat, and very thin peat.

D.1 Cases, phases and notation

In the following, we derive optimal paths for the two policy types indexed with

i = {m, f}, where m and f indicate myopic and forward-looking optimality, re-

spectively. Initially, we assume that the lower soil layer is unproductive, such as

a rocky layer, so that the root zone is constrained by the upper layer. In this

case, an optimal path can have at most two phases (or regimes) r = {r1, r2}.
In Phase 1, the groundwater levels are positive. If the peat layer is sufficiently

high, then net economic benefits are exhausted during Phase 1, before reaching

the zero groundwater level, which we call the thick peat case. If the initial peat

layer is not that high, then Phase 1 ends with zero groundwater level, where the

optimal policy switches to Phase 2 where the groundwater level is kept at zero

until the net economic benefits are exhausted. We refer to this case as the thin

peat case. There are two further cases characterized by very thin peat: one with
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a zero groundwater policy throughout, and another one without any agricultural

activity. We will refer to the former case as very thin peat case, and the latter as

the non-utilization case. To summarize, given the cost and yield structure, with

an unproductive lower soil layer, we distinguish four cases depending on the initial

peat height indexed h = {h1, h2, h3, h4} and labeled thick, thin, very thin, and

non-utilization case, respectively.

In the following, we indicate optimal paths with a superscript {i, r, h} indicat-

ing the policy type, phase, and case. For example, gm,r1,h1 is the optimal myopic

groundwater management path in Phase 1 of Case 1 (thick peat). We may ignore

some or all of the superscripts when there is no risk of confusion. We will param-

eterize the borders between different cases in a critical initial surface level Ŝ0. We

will have three such critical levels denoted with {Ŝc10 , Ŝc20 , Ŝc30 } constituting the

border surface levels between the four cases we may observe (see Figure 7).

D.2 Myopic policy

We state our results for the myopic policy for all possible cases in a single propo-

sition. To clarify the notation and to be precise in distinguishing the cases, we

include the results in Proposition 1 in the following proposition.

Proposition 5. There exists a myopic policy gm(t) for all t ∈ [0, T ] solving Equa-

tion (1). There exist unique critical S0 levels {Ŝc10 , Ŝc20 , Ŝc30 }, such that

if S0 ≥ Ŝc10 ⇒ Case 1 (Thick peat): gm(0) > 0 and gm(Tm) ≥ 0,

if Ŝc10 > S0 ≥ Ŝc20 ⇒ Case 2 (Thin peat): gm(0) > 0 and g(Tm) = 0,

if Ŝc20 > S0 ≥ Ŝc30 ⇒ Case 3 (Very thin peat): gm(0) = 0 and g(Tm) = 0,

if Ŝc30 > S0 ≥ 0⇒ Case 4 (non-utilization): gm(t) ≥ S0.

Part I In Cases 1 and 2 (S0 ≥ Ŝc20 ), there exists an initial phase (Phase 1),

where, respectively, the myopic groundwater level, peat height, and root zone are

given by

gm,r1,h(t) = S0 −Rm (αt+ 1)

Sm,r1,h(t) = S0 − αRmt

Rm,r1,h = Rm = κ− γ

2ψ
,

where h = {h1, h2},

and Ŝc20 = Rm.
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Here, and also in the remainder of the paper, we denote Rm,r1,h for h = {h1, h2}
with Rm as we will use it frequently.

Part II In Case 1 (S0 ≥ Ŝc10 ), the myopic terminal time Tm is given by the end

of Phase 1 as follows:

Tm,r1,h1 =
1

α

(
ym − c0
γRm

− 1

)
.

Here, and also in the remainder of the paper, we denote ym,r1,h = y(Rm) with ym.

The critical initial peat height is given by

Ŝc10 =
ψRm(2κ−Rm)− c0

γ
=
ym − c0

γ
.

Part III In Case 2 (Ŝc10 > S0 ≥ Ŝc20 ), the end of Phase 1 is given by

Tm,r1,h2 =
1

α

(
S0

Rm
− 1

)
,

which is the time that the myopic policy enters Phase 2. In Phase 2, the myopic

groundwater level, peat height, and root zone are given by

gm,r2,h2 = 0

Sm,r2,h2(t) = Rm,r2,h2(t) = Rme−ατ

where we define τ = t−Tm,r1,h2. In Case 2, the myopic terminal time Tm is given

by the end of Phase 2 as follows

Tm,r2,h2 = Tm,r1,h2 − 1

α
ln

(
κ

Rm

(
1−

√
1− c0 + γS0

ȳ

))
.

Part IV In Case 3 (Ŝc20 > S0 ≥ Ŝc30 ), Phase 1 paths are the same with Phase 2

paths of Case 2, except that the initial peat height is given by S0, while the initial

peat height in Phase 2 of Case 2 is Rm. Hence,

gm,r1,h3 = 0

Sm,1,3(t) = Rm,r1,h3(t) = S0e
−αt
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and the myopic terminal time Tm is given by the end of Phase 1 as follows

Tm,r1,h3 = − 1

α
ln

(
κ

S0

(
1−

√
1− c0 + γS0

ȳ

))
.

The critical initial peat height is given by

Ŝc30 = κ

(
1−

√(
1− c0 + γS0

ȳ

))
.

Part V In Case 4 (Ŝc30 > S0 ≥ 0), the plot of land is not utilized.

Proof. We start with the results in Part I for Phase 1 of Cases 1 and 2. The

expressions for gm,r1,h(t), Sm,r1,h(t), and Rm are the same with the expressions

provided in Proposition 1 and proven in Appendix A. Here, we just clarify that

these expressions also apply to Phase 1 of Case 2 (thin peat).

As gm,r1,h(0) = S0 − Rm, we must have S0 > Rm, which defines the critical

level Ŝc20 = Rm stated in Part I, above, in which we have either the thick peat or

thin peat cases.

The net benefits Πm,r1,h follow from substituting gm,r1,h(t) and Sm,r1,h(t):

Πm,r1,h = ym − (c0 + γRm (αt+ 1)) for h = {1, 2}.

Phase 1 ends when economic benefits are exhausted or the groundwater level hits

zero, whatever happens first. In Case 1 it ends at Tm,r1,h1 when the optimal path

in Phase 1 yields zero instantaneous net benefit, such that Πm,r1,h1(Tm,r1,h1) = 0,

which leads to the expression for Tm,r1,h1 in Part II. We have stated this expression

in Proposition 1. Second, it may end at Tm,r1,h2 (Case 2) when the optimal path

reaches to zero groundwater level, such that gm,r1,h2(Tm,r1,h2) = 0, which yields

the expression for Tm,r1,h2 in Part III.

In the thick peat case (Case 1), the initial peat surface is very high given a

yield and cost structure. Therefore, the net economic benefits are exhausted before

reaching the zero groundwater level, and the plot of land is abandoned at Tm,r1,h1.

In the thin peat case (Case 2), the net economic benefits are still positive at the

zero groundwater level. Hence, the economic activity switches to a new phase. We

have thin peat if Tm,r1,h2 < Tm,r1,h1. Solving Tm,r1,h1 = Tm,r1,h2 for S0 gives the
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critical initial peat height Ŝc10 in Part II, above which we have thick peat. This

critical level is the same as the one stated in Proposition 1.

In the thin peat case, we switch to Phase 2 at Tm,r1,h2 after which the ground-

water level is kept at zero as long as the net instantaneous benefits are posi-

tive. Therefore, subsidence is given by Ṡ = −αS. For notational convenience,

define τ = t − Tm,r1,h2. It is straightforward to show that gm,r2,h2 = 0 and

Rm,r2,h2(t) = Sm,r2,h2(t) = Rme−ατ as given in Part III.

The resulting instantaneous net benefits are given by

Πm,r2,h2(t) = ψ(Sm,r2,h2(t))(2κ− Sm,r2,h2(t))− (c0 + γS0) .

The abandonment time marking the end of Phase 2 is given by Πm,r2,h2(Tm,r2,h2) =

0, which leads to the expression for Tm,r2,h2 in Part III. Here, Πm,r2,h2(Tm,r2,h2) = 0

leads to two real roots, but only one of them is in the admissible space.

We go on with Part IV. The third critical peat height in Part III can be derived

by using Ŝc30 = Sm,r2,h2(Tm,r2,h2), under which we are in the non-utilization case.

In Case 3 (very thin peat), we have Ŝc20 > S0 ≥ Ŝc30 . It is easy to see that there is a

corner solution, such that gm,r1,h3(t) = 0 for all t ∈ [0, Tm,r1,h3], and the peat level

follows Sm,r1,h3(t) = Rm,r1,h3(t) = S0e
−αt. The only difference to Phase 2 of Case

2 is that the starting time is t = 0 instead of Tm,r1,h2 and the initial peat height

is S0 instead of Rm. Therefore, simply replacing these values in the expression for

Tm,r2,h2 gives the expression for Tm,r1,h3 in the proposition, which is the end of

Phase 1 and also the myopic terminal time for Case 3.

D.3 Forward-looking policy in thin peat.

Our results for the forward looking policy in thin peat are summarized in the

following proposition followed by its proof.

Proposition 6. There exists a critical initial surface level Ŝc20 , such that if Ŝc10 >

S0 ≥ Ŝc20 , there exists an initial phase (Phase 1) with a unique forward-looking

policy gf,r1,h2(t) for all t ∈ [0, T ]. Respectively, the forward-looking groundwater
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level, peat height, root zone, and shadow price are given by

gf,r1,h2(t) =

(
S0 −Rm + Λ

(
1− α

γ
K(T )

))
− α

(
Rm,1,2 − Λ1

)
t+ Λ1

(
α + δ

γ

)
K(T )eδt

Sf,r1,h2(t) =

(
S0 − Λ

α

γ
K(T )

)
− α

(
Rm,1,2 − Λ

)
t+ Λ

α

γ
K(T )eδt

Rf,r1,h2(t) = Rm − Λ

(
1 +

δ

γ
K(T )eδt

)
λf,r1,h2(t) =

γ

δ
+K(T )eδt,

where Λ =
γ

2ψ

α

δ
,

K(T ) =
(S0 −Rm + Λ1)− α (Rm − Λ1)T

Λα
γ
− Λ

(
α+δ
γ

)
eδT

Here we denote T f,r1,h2 with T . The switching time from Phase 1 to Phase 2 is

given by a salvage value condition (SV C) as follows

SV C(T ) = 0, where we define

SV C(T ) :=
γ

δ
+K(T )eδT −

(
2κψ

(α + δ)
− 2ψST

(2α + δ)

)
+ 2S

(−α+δα )
T

Θ,

with the parameter Θ =
(
Ŝc30

)
( δα)

(
(γS0 + c0) (α + δ)− δκψŜc30

(α + δ)(2α + δ)

)
.

Here we denote Sf,r1,h2(T ) with ST , and Ŝc30 is the critical level for the non-

utilization case derived earlier for the myopic case, which is the same here in

the forward-looking case. Note that we redefine T and ST in each proposition to

denote the end of Phase 1 values.

In Phase 2, the forward-looking groundwater level, peat height, and root zone

are given by

gf,r2,h2 = 0

Sf,r2,h2(t) = Rf,r2,h2(t) = ST e
−ατ ,

where τ = t− T , and recall that we here denote T f,r1,h2 with T , and ST stands for

Sf,r1,h2(T ).
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The forward-looking terminal time T f is given by the end of Phase 2 as follows:

T f,r2,h2 = T − 1

α
ln

(
κ

ST

(
1−

√
1− c0 + γS0

ȳ

))
.

Finally, the critical level Ŝc20 is given by SV C(0) = 0.

Proof. The expressions for the forward-looking paths of S, g, R, and λ in Phase 1

in thick peat given respectively by Equations (12), (10), (9), and (8) in the proof of

Proposition 2 also apply here in the thin peat case. The only difference is that the

undetermined coefficient K1 is replaced by K(T ). The reason is that the relation

between K1 and the terminal time of Phase 1 are different as the transversality

and/or stopping conditions are different. The end of Phase 1 in thin peat is given

by g(T ) = 0, which, together with Equation (12), leads to the expression for K(T )

in the proposition.

The second phase dynamics is the same as the corresponding myopic one, given

by

S(t) = ST e
−α(t−T ),

where, for convenience, we denote the initial peat height in Phase 2 with ST . The

expression for the abandonment time of the myopic case (Case 2) applies also here,

as the only difference is the peat height ST . Therefore, the length of Phase 2 and

the peat height abandoned is given by

τ = − 1

α
ln

(
κ

ST

(
1−

√
1− c0 + γS0

ȳ

))

Sτ = κ

(
1−

√
1− c0 + γS0

ȳ

)
.

Note that Sτ is the same with Ŝc30 determining the non-utilization case. For the

next step of the derivations, note the following expressions:

τ = − 1

α
ln
Sτ
ST

,
∂τ

∂ST
=

1

αST
and e−ατ =

Sτ
ST

(13)

The stopping time in Phase 1 is given by a salvage value condition. The salvage
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value is the total continuation value after Phase 1 given by

φ(ST , T ) =

∫ T+τ

T

(ψS(2κ− S)− c0 − γS0) e
−δ(t−T )dt

=

∫ τ

0

(ψS(2κ− S)− c0 − γS0) e
−δτdτ

=
2κψST
α + δ

[
1− e−(α+δ)τ

]
− ψS2

T

2α + δ

[
1− e−(2α+δ)τ

]
− (c0 + γS0)

δ

[
1− e−δτ

]
+K3,

where K3 is an undetermined coefficient. Note that, for brevity, we are denoting

the stopping time of Phase 1 with T . Hence, ST represents the initial peat height

at the beginning of Phase 2. Furthermore, we define τ = t − T and τ as the

duration of Phase 2, which provides a convenient way to rearrange the salvage

value in line 1 as in line 2. The third line simply follows from evaluating the

integral.

Substituting Equation (13) in the salvage value, we have

φ(ST ) = − ψ

2α + δ
S2
T +

(
2κψ

α + δ
+
ψSτe

2α+δ
α

2α + δ

)
ST

+
Sτ
ST

(c0 + γS0)

δ
e
δ
α −

(
2κψ

α + δ
Sτe

α+δ
α +

(c0 + γS0)

δ
−K4

)
The salvage value condition (SVC) is

∂φ(ST )

∂ST
= λ(T ).

Using Equation (13), the left-hand side of the SVC can be expressed as follows

∂φ(ST )

∂ST
=

(
2κψ

(α + δ)
−

2ψS
T

(2α + δ)

)
−2S

−(α+δα )
T S

( δα)
τ

(
(γS0 + c0) (α + δ)− δκψSτ

(α + δ)(2α + δ)

)
.

We have already provided the solution for λ(T ) on the right-hand side of the SVC.

Using these two expressions and substituting Ŝc30 for Sτ , we reach the expression

implicitly defining the end point of Phase 1 in the proposition.

Ŝc20 is defined as the critical level between thin and very thin peat cases, such

that T f,r1,h2 = 0 at S0 = Ŝc20 . The salvage value condition SV C(T f,r1,h2|S0) = 0

provides the implicit association between T f,r1,h2 and S0. If SV C(0|S0) = 0, then

g(0) = 0, meaning that we are on the threshold between thin and very thin peat.

Therefore, Ŝc20 is given by SV C(0|Ŝc20 ) = 0.
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D.4 Forward-looking policy in very thin peat and the case

of non-utilization.

All the critical values leading to these cases have been provided. For these cases,

the optimal paths and terminal time are the same as in the myopic case, as there

are no further intertemporal considerations in these cases.

D.5 Uniqueness of the solutions

The solutions provided in Propositions 1, 2, 5 and 6 are all unique. The uniqueness

of the myopic solution is self evident. For the forward-looking solutions, the paths

of endogenous variables (S, g, R, λ) are unique for given T (stopping time of Phase

1), as our setup satisfies the Mangasarian sufficiency conditions with a concave

objective function and linear law of motion (subsidence equation). It is also easy

to verify that the solution for Phase 2 in the thin peat case is also unique for

given T , as we have explicit solutions for the terminal values at the end of Phase

2. Therefore, the only complication in the uniqueness proof is to show that T ,

given implicitly by the transversality or salvage value condition, is unique. These

conditions do not lead to explicit solutions for T . Our results presented in the

previous sections rest on numerical solutions to those equations. In the following,

we depict the most important elements of the proof that these solutions are in-

deed unique which provides analytical generality to our results. The full proof is

available upon request.

The thin or thick peat cases require positive initial net benefits by definition,

such that Π(0) = ψR(0)(2κ−R(0))−(c0 + γR(0)) ≥ 0. This inequality, quadratic

in R(0), leads to the following condition:

Rm −
√
R2
m −

c0
ψ
< R(0) < Rm +

√
R2
m −

c0
ψ
, (14)

which has to be satisfied by both myopic and forward-looking policies. By sub-

stituting R(0) = Rm, it is easy to verify that the myopic root zone satisfies this

inequality.

Secondly, we also impose S0 ≥ R(0) > 0, which is also a necessary condition

to have thick or thin peat cases. By substituting the initial forward-looking root

zone in this inequality, we obtain the following condition:

S0 + Λ
δ

γ
K(T ) > Rm − Λ > Λ

δ

γ
K(T ), (15)
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which applies for both thick and thin peat cases. In the thin peat case K(T ) is

provided in Proposition 6. In the thick peat case, K(T ) = − (γ/δ) e−δT .

Under these conditions, it can be shown that TV C(T ) has the following proper-

ties: (i) TV C(0) < 0, (ii) TV C(T ) is a C1 (i.e., at least once continuously differen-

tiable) function of and monotonically increasing in T , and (iii) limT→∞ TV C(T ) =

∞. As a result, there exists at most one solution to TV C(T ) = 0. Finally, it can

be verified that this solution features g(0) > g(T ) > 0. As a result, the forward-

looking solution in the thick peat case is unique. The uniqueness of T in the thin

peat case can be proved by showing that the salvage value condition SV C(T )

shows similar properties to TV C(T ) under the conditions given by Inequalities

(14) and (15). Note that, in the thin peat case, we must have g(0) > g(T ) = 0

and λ(T ) > 0 by definition.

E Proof of Proposition 4

We have shown that the myopic root zone is constant over time in the thick and

thin peat cases, while the forward-looking root zone is not. Here, we show that

the forward-looking root zone cannot be constant under fairly general conditions:

more precisely, without parametric assumptions for the yield and cost functions.

We only assume that the cost function c(g)is weakly convex in g. The Hamiltonian

is given by Hc = y(R) − c(g) − αλ(S − g). The maximum principle yields the

following three FOCs:

Ṡ = −αR,

−y′(R) = c′(g)− αλ,

λ̇− (δ + α)λ = −y′(R).

Taking the total derivative of the second FOC gives

Ṙ =
−c′′(g)Ṡ + αλ̇

y′′(R)− c′′(g)
.

Substituting λ̇ from the third FOC and Ṡ from first FOC leads to

Ṙ =
c′′(g)αR− αy′(R) + α(δ + α)λ

y′′(R)− c′′(g)
.
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Now assume Ṙ = 0, which requires

c′′(g)R + (δ + α)λ = y′(R).

Substitute y′(R) from the second FOC, which gives

c′′(g)R + δλ = −c′(g).

The left-hand-side of this expression is positive, while the right-hand-side is neg-

ative, which is a contradiction. Therefore, the forward-looking root zone cannot

be constant. This result shows that the current policymaking is very likely to

be myopic at best. Our results on welfare gains from adopting a forward-looking

policy assume myopic optimality as a benchmark. If the current policymaking

is not myopic, adopting the forward-looking policy against such a non-optimal

benchmark yields even higher welfare gains.
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