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Abstract 

We develop a procedure to estimate production functions, elasticities of demand, and productivity 
when firms endogenously select into multiple destination markets where they compete 
imperfectly, and when researchers observe output denominated only in value. We show that 
ignoring the multi-destination dimension (i.e., exporting) yields biased and inconsistent inference. 
Our estimator extends the two-stage procedure of Gandhi et al. (2020) to this setting, which allows 
for cross-market complementarities. In Monte Carlo simulations, we show that our estimator is 
consistent and performs well in finite samples. Using French manufacturing data, we find aver-
age total returns to scale greater than 1, average returns to variable inputs less than 1, price 
elasticities of demand between -21.5 and -3.4, and learning-by-exporting effects between 0 and 
4% per year. Alternative estimation procedures yield unrealistic estimates of returns to scale, 
demand elasticities, or both. 
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1 Introduction

Production function estimation is a central component of many economic analyses.1 While
early estimation methods relied on restrictive assumptions with respect to the evolution of
unobserved productivity shocks, substantial progress has been made in the last 30 years
towards specifying flexible conditions under which structural elements of supply can be
identified from firm or plant-level data (Olley & Pakes, 1996; Blundell & Bond, 2000;
Levinsohn & Petrin, 2003; Wooldridge, 2009; Ackerberg et al., 2015; Gandhi et al., 2020).

Despite this remarkable progress, significant gaps remain between the conditions as-
sumed by the literature and the real world datasets confronted by practitioners. Most
notably, the vast majority of estimation procedures are built for the case in which out-
puts are denominated in physical units; yet, in most datasets outputs are denominated in
value.2 In this case, the pricing decisions of firms directly influence the outcome variable
(revenues), which means that unobserved shocks to demand bias the estimation of output
elasticities, even if unobserved shocks to supply are adequately controlled for (Foster et al.,
2008; De Loecker & Syverson, 2021). This problem is exacerbated when there are multiple
sources of demand shocks, as for example when firms endogenously select into multiple
destination markets.

In this paper, we develop a procedure to estimate structural elements of supply and
demand from firm-level data when (1) outputs are denominated in value, and when (2) firms
chose which of multiple destination markets to serve, where (3) they face heterogeneous
firm-specific demand conditions. Contrary to most existing approaches, which implicitly
assume that outputs reported in the data coincide with the theoretical object posited in

1Researchers estimate production functions for a wide array of purposes. Sometimes, the structural
coefficients themselves are of interest, as in studies of returns to scale (Caballero & Lyons, 1992). Some-
times, structural coefficients are used to estimate other objects of interest, such as markups (Hall, 1986),
or wedges (Hsieh & Klenow, 2009). Other times, researchers aim to control for estimated productivity in
order to address omitted variable bias (Almunia et al., 2021). In still other cases, researchers estimate
productivity as the residual of a production function and then regress this residual on other explanatory
variables in order to study the determinants of productivity (Harrigan et al., 2023). For a recent review
of the literature, see De Loecker & Syverson (2021).

2This is a common feature of firm and plant-level data sets. Examples include Chile (Levinsohn &
Petrin, 2003), Colombia (Gandhi et al., 2020), the French FICUS/FARE data sets (Harrigan et al., 2023)
and Indonesia (Amiti & Konings, 2007). Rare data sets report outputs in physical units at the product
level. Examples include the PRODCOM surveys for France (De Ridder et al., 2022), the Indian data
sets Prowess (Loecker et al., 2016) and the Annual Survey of Industries (Boehm & Oberfield, 2020), and
the product trailers for the US Census (Ganapati et al., 2019). Additionally, firm-level price deflators are
available for Colombia (Kugler & Verhoogen, 2012) and Spain (Doraszelski & Jaumandreu, 2018). When
output is denominated in physical quantities at the product level, researchers must grapple with a different
set of challenges relating to multi-product production functions (De Loecker & Syverson, 2021).
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the model, we model the data generating process for revenues. Lacking price data, we
rely on common structural assumptions from the international trade literature—constant
elasticity of substitution (CES) demand, homogeneous price elasticities across markets, and
monopolistic competition—to relate revenue to observables.3 The result is an estimator
that is applicable in a wide range of settings, that is based on an explicit model, and that is
internally consistent. In contrast, most existing approaches make inconsistent assumptions
by ignoring the quantities versus value distinction entirely, deflating firm-level revenues by
an industry-wide price index, or assuming firms sell to just one market.4

Our estimator builds on the seminal work of Klette & Griliches (1996) (hereafter KG),
who were the first to note the importance of the value versus quantities distinction in
production function estimation. Klette & Griliches (1996) demonstrate how structural
assumptions on demand can be exploited to write revenues as a quasi-linear function of
inputs and a single industry-wide demand shifter. They construct an empirical analogue
for this demand shifter from industry-wide price deflators and include it as a control in
their estimation routine. When all firms sell to a single market, the KG demand proxy is
sufficient to control for unobserved firm-specific output prices (conditional on the functional
form assumption for demand). However, in a globalized world, the assumption that all
firms sell to a single market is untenable. When firms serve multiple destinations, the KG
proxy does not adequately control for unobserved firm-specific demand shocks, and hence
unobserved demand shocks bias their estimator, even if supply-side shocks are controlled
for. To date, the literature has overlooked this point.5

We start by specifying a data generating process in which heterogeneous single-product
firms endogenously select destination markets to serve, destination-specific quantities and
prices, and quantities of variable inputs to hire in each period. All firms in the same
industry face the same elasticity of demand on each market, but face two types of firm-
destination-year demand shocks, in addition to productivity shocks. Ex post demand
shocks are realized at the point of sales, and hence are unknown to firms at the time

3Most estimates of “trade elasticities” vary only by product, regardless of the destination. See, for
example, Broda & Weinstein (2006), Kee et al. (2008), Fontagné et al. (2022) and Boehm et al. (2023).

4Bond et al. (2021) make a similar point with respect to the estimation of firm-specific markups.
5Klette & Griliches (1996) is frequently cited as the work-around to unobserved firm-specific output

prices; for example, see Melitz & Levinsohn (2006), De Loecker (2011) and Grieco et al. (2016). The only
paper we are aware of that implements the KG demand proxy strategy as the preferred specification is
De Loecker (2011). Inspired by KG, Grieco et al. (2016) and Harrigan et al. (2023) invert the demand
function in order to solve for unobserved firm-specific prices, but neither paper implements the demand
proxy approach. In addition, Grieco et al. (2016) and Harrigan et al. (2023) impose CES across inputs in
the production function and constant returns to scale, which are assumptions that we relax. No paper, to
our knowledge, has treated the case in which firms sell to multiple destinations.

2



that they choose variable inputs. Ex ante demand shocks are revealed to the firm prior
to making production plans, and hence affect input choices. The former can rationalize
variation in variable input shares in revenues across firms that use the same quantities
of inputs. The latter generate transmission bias if not controlled for, as they influence
variable input choices and directly affect revenues.

Following standard practices in the production function literature, we assume that cap-
ital is a quasi-fixed factor, which allows for convex short-run cost functions in output.
Given fixed costs of serving foreign markets, optimization requires firms to solve a combi-
natorial discrete choice problem in which market entry decisions and destination-specific
quantities and prices are chosen jointly and simultaneously.6 The model generates an es-
timating equation where firm-level log revenues are expressed as a quasi-linear function
(in logs) of inputs and a firm-level demand shifter, which is a weighted average of ex ante
firm-destination demand shocks.

We base our estimator on the two-stage factor shares approach of Gandhi et al. (2020).
In the first stage, we project the expenditure share of variable inputs (e.g., materials) on
log levels of all inputs, by non-linear least squares (NLLS). As shown in the appendix
of Gandhi et al. (2020), this regression non-parametrically identifies what can be called
“revenue elasticities”, i.e., composites of output elasticities and the industry-specific demand
elasticity. According to our model, the residual of this regression corresponds to a weighted
average of unobserved ex post firm-destination demand shocks. We show how to combine
this residual with firm-level export revenue shares to build a proxy for the weighted average
of ex ante firm-specific demand shocks.

Next, we use the first stage estimates to compute the contribution of variable inputs to
firm revenues. We then subtract this contribution from revenues, along with the residual
from the first stage, and regress the resulting values on predetermined inputs (e.g., capital)
and the firm-specific demand shock proxy. We estimate the second stage by generalized
method of moments (GMM), allowing the unobserved productivity shock to depend on
participation in the export market, as in De Loecker (2013).7 The demand side elasticity
is identified by both cross-firm and time series variation in the share of export sales in
total sales. This variation is driven by firm-specific time and market-specific demand
shocks, time series variation in destination market aggregate demand shifters, and time

6Under certain conditions, this combinatorial discrete choice problem belongs to the class of problems
studied by Arkolakis & Eckert (2017).

7We focus on learning by exporting, but of course, one could control for other factors that are believed
to affect firm productivity.

3



and market-specific variation in fixed costs of entry.8 The demand elasticity is then used
to recover output elasticities and retrieve the production function itself.

The model could also be estimated via the more popular control function methods of
Blundell & Bond (2000), Wooldridge (2009) or Ackerberg et al. (2015).9 However, recent
work indicates two practical issues with the implementation of such methods. First, Gandhi
et al. (2020) demonstrate that the control function method relies on time series variation
in material input prices for identification. Given levels of input price variation observed
in practice, Gandhi et al. (2020) argue that the control function approach is likely biased
and inconsistent due to weak instruments. Second, Ackerberg et al. (2020) show that there
are, in fact, multiple solutions to the GMM optimization in the standard control function
framework, even when sample size goes to infinity. Hence, results may be sensitive to initial
conditions, and there may not be obvious ways to choose among multiple solution vectors.
In contrast, the factor shares approach does not rely on material input price variation for
identification, and the GMM used in the second step does not admit multiple solutions.10

We perform Monte Carlo simulations in order to compare the statistical properties of
our multi-market estimator to (1) the factor shares approach that includes a correction
for demand in a single market as in KG, (2) the standard practice of deflating firm-level
revenues by industry-wide price indices to obtain firm level “quantity,” which thereby as-
sumes no demand correction, and to (3) the single-market control function approach. We
demonstrate that if the data generating process coincides with our heterogeneous multi-
destination firm trade model, then our estimator is consistent, while all other alternatives
considered are not. In addition, we find that our estimator has appealing finite-sample
properties: the bias is small and confidence intervals have good “coverage ratios” (i.e., 95%
confidence intervals contain the true parameters in about 95% of the simulated samples).
Other estimators are inconsistent, strongly biased (compared to ours), and have confidence
intervals with poor coverage ratios.

Finally, we use our procedure to study returns to scale, the elasticity of demand, and
8In a single-market world, the demand elasticity can only be identified from time series variation in the

Klette & Griliches (1996) industry-wide demand proxy.
9These are the models most frequently cited when researchers use the control function method. But in

fact, these models are all written for value-added production functions. As far as we are aware, Gandhi et al.
(2020) is the only paper that establishes conditions under which the gross output production function is
identified via the control function method. To the extent we want to include material inputs in the analysis,
the control function approach we consider actually follows the version developed in Gandhi et al. (2020).

10In Monte Carlo simulations, we find that indeed the control function approach tends to yield biased
estimates unless input prices vary significantly over time and unless the GMM parameter search starts
from the true underlying structural parameter values of the model.
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the effect of exporting on productivity in a panel of French manufacturing firms in 1994–
2016. Using our estimator, we find price elasticities of demand ranging between -21.5 and
-3.4, depending on industries, which is a range that is consistent with estimates from the
gravity literature, for example. On the supply side, we estimate that returns to variable
inputs are less than 1, on average. Decreasing returns to variable inputs imply negative
cross-market cost complementarities as in Almunia et al. (2021). We find overall increasing
returns to scale, on average around 1.15. We also find evidence of statistically significant
effects of learning by exporting (LBE) between zero and 4 percent year-on-year. These esti-
mates imply cross-section differences in productivity between exporters and non-exporters
of zero to 40 percent. The model with no demand correction yields lower returns to scale,
consistent with unaddressed transmission bias. The model with a single-market correction
delivers unrealistic elasticities of demand elasticities and returns to scale.

Our paper is most closely related to Gandhi et al. (2020) and De Loecker (2011).11 In a
single-market world, our model collapses to a single-segment version of De Loecker (2011)
or a constant markup version of Gandhi et al. (2020)’s revenue production function model.
The key difference with respect to Gandhi et al. (2020) is that we allow for multiple
destination markets. Also, we allow labor to be either fully predetermined within the
period, or respond partially to contemporaneous shocks, which is particularly relevant in
the context of the French dual labor market.12 On the way, we also verify that the second
stage GMM estimator is not sensitive to initial conditions.

Turning to De Loecker (2011), there is a similarity between the multi-segment dimen-
sion in his model and the multi-destination dimension in ours. In fact, if we define markets
as destination-product pairs, then our model can be viewed as a multi-product model,
similarly to De Loecker (2011). The key difference is that we allow for endogenous selec-
tion into markets and recognize the implications of this selection for estimation, while in
De Loecker (2011) participation in segments is exogenous. Another difference is that we
do not rely on the control function approach, due to shortcomings that we discussed above
and illustrate in our simulations.

11There is a handful of papers that studies productivity in the context of multi-destination firms when
outputs are observed in quantities (Aw et al., 2011; Roberts et al., 2018; Blum et al., 2023). In this
case, there is no need to control for unobserved demand shocks, and hence known methods are sufficient
for estimating production function parameters. However, quantities are usually only available for select
industries in special cases, when they are available at all. We offer a theory-consistent method for estimating
supply and demand parameters for industries for which quantity data is not available, which is much more
frequently the case.

12While the main analysis in Gandhi et al. (2020) assumes that labor is a quasi-fixed input, they develop
in their appendix the case for when labor fully adjusts to contemporaneous shocks.
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Our paper is also related to a small literature on cross-market cost complementarities.
Berman et al. (2015), Aghion et al. (2022), Barrows & Ollivier (2021) and Almunia et al.
(2021) all estimate the effect of demand shocks in a given market on sales in a different
market.13 If the returns to variable inputs are decreasing, then more supply to one mar-
ket increases the cost of serving other markets. Hence, positive ex ante demand shocks
in one market should lower sales in another market. Neither Berman et al. (2015) nor
Barrows & Ollivier (2021) estimate production function parameters, but rather focus on
the reduced form connection between demand shocks in one market and sales in another
market. Almunia et al. (2021) specifies a similar model to the one we develop. However,
the procedure used by Almunia et al. (2021) to estimate the production function and the
elasticity of demand is not consistent with the conditions necessary for cross-market cost
complementarities nor multi-destination markets, which we demonstrate in Appendix G.

Finally, our application is related to the literature on productivity-enhancing effects of
exporting (Van Biesebroeck, 2005; De Loecker, 2007; Wagner, 2007, 2012; Garcia-Marin &
Voigtländer, 2019; Atkin et al., 2017; Buus et al., 2022). It is often stated in the literature
that learning by exporting (LBE) is a phenomenon that affects firms from the developing
world, if it affects any firms at all.14 We follow De Loecker (2013) in estimating the effect
of LBE by including an export dummy in the controlled Markov process, but study a set
of developed-world firms for which outputs are denominated in value. When quantities
are observed, then one can study LBE without explicitly modeling the export decision
and export market. In contrast, if outputs are denominated in value, then it is critical
to employ a multi-destination model that includes a correction for demand from multiple
markets. In fact, we do not know a paper on LBE—including those cited just above—that
addresses this issue.15

13Feenstra et al. (2014) also investigates mechanisms consistent with across-market cost complementar-
ities, although they do not investigate directly the effect of demand conditions in one market on sales in
another market.

14For example, in their review of industrial policy, Harrison & Rodríguez-Clare (2010) say “learning from
exporting is most likely in technologically backward countries and among less productive firms”; De Loecker
& Warzynski (2012) claim that LBE effects have been “confirmed mostly for developing countries”. They
find that relative to high income countries, firms in developing countries enjoy a stronger impact of ex-
porting on productivity”; and from Berman & Rebeyrol (2010) “One interesting regularity in the empirical
papers aiming at testing the relevance of the learning by exporting hypothesis is that most studies finding
a positive effect of the export status use data from developing countries”.

15Van Biesebroeck (2005), De Loecker (2007) and De Loecker (2013) all deflate sales or value added by
industry price indices—invariably, domestic price indices—in order to approximate quantities. This leaves
firm-level variation in demand shocks a source of transmission bias. In addition, using domestic price
indices implies that price conditions faced by exporters are identical in the domestic and foreign markets,
which is at odds with the existence of variable trade barriers and different market conditions.

6



The rest of the paper is organized as follows. In Section 2 we describe the model that
gives rise to an estimation equation for the production function. In Section 3 we explain
different ways of estimating the production function, including our new estimator. In
Section 4 we report results from Monte Carlo simulations that demonstrate the consistency
and small sample properties of our estimator, and compares to those of other estimators.
In Section 5 we describe the estimation results from French manufacturing data. Section
6 concludes.

2 Model

We specify a model in which heterogeneous single-product firms engage in monopolistic
competition across horizontally differentiated varieties on multiple destination markets.
The model is in partial equilibrium, as we seek only to link firm-level output to firm-level
inputs and demand shifters. Closing the model would not alter estimation in any way,
and hence we take the demand side of the model as exogenous. The model delivers an
estimation equation for the production function and demand curvature, as well as a data
generating process for Monte Carlo simulations.

2.1 Demand

There are a fixed number of destination markets indexed by d ∈ {1, ...,D}, origin markets
indexed by o ∈ {1, ...,D}, and industries indexed by i ∈ {1, ...,I }. In each destination
market a representative consumer aggregates consumption in two tiers. In the top tier,
the consumer aggregates over industry-level consumption bundles with a flexible utility
function:

Ud
t = Ud

t

(
Bd

1t, B
d
2t, ..., B

d
I t

)
, (1)

where t indexes time. Within a generic industry i, consumers aggregate over varieties f
produced in country of origin o with a CES structure:

Bd
it =

[∑
o

∑
f∈Θod

it

(
Xod

ft

)ρi
exp(ϵodft + uodft)

]1/ρi
, (2)

where Xod
ft is the quantity consumed of variety f in destination d sourced from o in time t,

ϵodft is an ex ante variety-specific demand shock (realized prior to production), uodft is an ex
post variety-specific demand shock (realized at the point of sales), Θod

it is the set of varieties
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in industry i shipped from origin o to destination d in year t, and ρi < 1 is a parameter that
governs the substitutability of varieties within the industry, with constant price elasticity
of demand ηi = 1/(ρi − 1) < −1. The CES price index at the industry level is defined in
the usual way:

Υd
it =

[∑
o

∑
f∈Θod

it

(
P od
ft

) ρi
ρi−1 exp

(
1

1− ρi

(
ϵodft + uodft

))] ρi−1

ρi

(3)

where P od
ft is the price of variety f sourced from o that is paid by consumers in destination

market d at time t.
The representative consumer’s objective is to maximize her utility (1) given her budget

constraint. The CES structure yields an expression for expenditures Rod
ft on each variety f

in destination d:

Rod
ft =

(
Xod

ft

)ρi Υd
it(

Bd
it

)ρi−1 exp(ϵ
od
ft + uodft). (4)

Given the empirical applications we consider, we make two notational simplifications.
First, as we perform our analysis industry-by-industry, we drop the industry index i. Sec-
ond, we assume that researchers only observe varieties and firms coming from a single
origin country, which we refer to as o = 1. Hence, we drop the o index from now on.

2.2 Production

Firms produce a single differentiated variety which they may ship to many destination
markets. To serve a given market, firms must pay a firm-destination-year specific fixed
cost Cd

ft and a destination-specific ad valorem “iceberg” cost τ dt ≥ 1. For simplicity, we
assume that there are no domestic fixed costs, so that C1

ft = 0. This ensures that all firms
sell on the domestic market. We also normalize the iceberg cost to sell on the domestic
market to 1. To sell Xd

ft units to destination market d, firm f must produce Qd
ft = τ dt X

d
ft

units. At each period t, the sum of all units sold to all destination markets must equal
total output:

∑
dQ

d
ft = Qft.

Firms produce outputs using variable inputs (written in logs) vft = (v1ft,...,vV
ft) and

quasi-fixed inputs (written in logs) κft = (κ1ft,...,κK
ft ). Variable inputs are chosen opti-

mally each period given input prices (in levels) Wt = (W 1
t , ...,W

V
t ). Quasi-fixed inputs

(such as capital) evolve each period according to the depreciation rate and an endogenous
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investment choice. For each quasi-fixed input κj, we have

exp(κjft) = (1− ϱj) exp(κjft−1) + ιjft−1, (5)

where ϱj denotes the rate of depreciation and ιjft−1 is the investment choice in period t−1.16

Quantity produced is a deterministic function of a Hicks-neutral productivity shock ωft

and a twice continuously differentiable transformation of variable and quasi-fixed inputs
F (·):

Qft = exp(ωft)F (vft,κft) ⇐⇒ qft = ωft + f(vft,κft), (6)

where lower case indicates logs.

2.3 Optimization

The firm solves a combinatorial discrete choice problem each period in which it chooses a
vector that indicates which markets to serve Ift = (I1ft, ..., I

D
ft)—where Idft as an indicator

that equals 1 if firm f serves market d in year t and equals 0 otherwise—a vector of
destination-specific output shares χft = (χ1

ft, χ
2
ft, ..., χ

D
ft), and a vector of variable inputs

vft to maximize expected profits, given variable input prices, quasi-fixed inputs, fixed and
iceberg trade costs, and market-specific demand conditions. The firm takes expectations
over ex post demand shocks udft, which are assumed to be i.i.d. with a constant mean u

and variance σ2
u, that are both known to the firm.17

Using (4), we write the optimization problem as

max
Ift

max
χft,vft

L = E

[
exp(ρωft)F (vft,κft)

ρ
∑
d

(
χd
ft

)ρ
Dd

t exp(ϵ
d
ft + udft)

]

−
∑
j

exp(vjft)W
j
t + λft

(
1−

∑
d

χd
ft

)
−
∑
d

IdftC
d
ft , (7)

where Dd
t ≡ Υd

t

(
Bd

t

)1−ρ (
τ dt
)−ρ is a destination-industry-specific demand shifter, and λft

is the Lagrangian associated to the constraint
∑

d χ
d
ft = 1. We ignore for simplicity the

16We later entertain the case of inputs that evolve in a more general manner (partial adjustment).
17As in Gandhi et al. (2020), ex post shocks are necessary to rationalize variation in input expenditure

shares across firms. Whereas Gandhi et al. (2020) assume that these shocks are i.i.d. draws from the same
distribution function with constant mean within a market, we extend this assumption to the multi-market
context.
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additional constraints χd
ft ≥ 0 for all d, with the understanding that χd

ft > 0 whenever
Idft = 1.

We first solve for the optimal χft and vft, given a set of destinations, Ωft, that are
served with strictly positive quantities. Assuming monopolistic competition implies that
firms take price indices as given. First order conditions yield, for each destination d ∈ Ωft,

E [exp(u)] (Qft)
ρ ρ
(
χd
ft

)ρ−1
Dd

t exp(ϵ
d
ft) = λft (8)

and for each variable input vj

ρ exp(ρωft)E [exp(u)]

[ ∑
d∈Ωft

(
χd
ft

)ρ
Dd

t exp(ϵ
d
ft)

]
(F (vft,κft))

ρ−1 ∂F (vft,κft)

∂ exp(vjft)
= W j

t , (9)

given E
[
exp(udft)

]
= E

[
exp(u)

]
, a constant, for all firms and destinations.

For any two markets d and d′ served by firm f , we have from (8)

χd
ft = χd′

ft

[
Dd′

t exp(ϵd
′

ft)

Dd
t exp(ϵ

d
ft)

] 1
ρ−1

. (10)

Summing over destinations and rearranging yields the optimal quantity share for any des-
tination market d served by firm f

χd
ft =

(
Dd

t exp(ϵ
d
ft)
) 1

1−ρ∑
z∈Ωft

(
Dz

t exp(ϵ
z
ft)
) 1

1−ρ

. (11)

Plugging the last equation into (9) we get

ρ exp(ρωft)E [exp(u)]

[ ∑
d∈Ωft

(
Dd

t exp(ϵ
d
ft)
) 1

1−ρ

]1−ρ

(F (vft,κft))
ρ−1 ∂F (vft,κft)

∂ exp(vjft)
= W j

t .(12)

This is a system of V equations with V unknowns. A sufficient condition for a unique
interior solution is that F (·) is concave in each variable input.

Next, firms choose the set of destinations that maximizes total expected profits over
all possible sets. Firms can either solve the combinatorial problem by computing the
expected profits for each possible set, or, under certain conditions, by employing an efficient
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algorithm as in Arkolakis & Eckert (2017).18

We can write the optimal vector of indicators for market entry by firm as

Ift = I (ωft, ϵft,κft,Cft,Dt,Wt) (13)

to stress that each indicator depends on the firm-specific productivity ωft, quasi-fixed
inputs κft, the entire vector of destination-industry market potentials Dt, the vector of
input prices Wt, and each firm’s entire vector of fixed costs Cft and vector of ex ante
demand shocks ϵft. The optimal input demand and the quantities sold on each market are
implicit in the solution for the optimal Ift.

2.4 Estimation equation

Plugging in the solution (11) for χd
ft into total revenues and taking logs, we have

rft = ρωft + ρf(vft,κft) + (1− ρ) ln

[ ∑
d∈Ωft

(
Dd

t exp(ϵ
d
ft)
) 1

1−ρ

]
+ lnψft, (14)

where the set Ωft represents the optimal choice of Ift from (7) and where the last term of
(14) is the log of a weighted average of ex post demand shocks, with ψft ≡

∑
d∈Ωft

χd
ft exp(u

d
ft).

The second to last term of (14) is the firm-specific demand shifter. It depends on the
set Ωft, aggregate industry-destination demand shifters Dd

t and firm-destination specific
demand shocks ϵdft, which are both observed by the firm before making production decisions.
Hence, the term affects input decisions and must be controlled for to avoid transmission
bias.

Rather than building a proxy for this demand shifter—which would be quite demanding
from a data perspective—we exploit the first order conditions. Since all firms serve the
domestic market d = 1 (given C1

ft = 0), first order conditions (8) imply, for any destination
d served by a firm f ,

Rd
ft

R1
ft

=

(
Dd

t exp(ϵ
d
ft)

D1
t exp(ϵ

1
ft)

) 1
1−ρ exp(udft)

exp(u1ft)
. (15)

18The algorithm of Arkolakis & Eckert (2017) requires either decreasing or increasing differences in the
extensive margin of exports. If the production function output elasticities and overall return to scale
are “relatively stable”, or Cobb-Douglas type, then with a constant demand elasticity we can satisfy the
necessary conditions for the algorithm (either for complementarity or substitutability across destinations).
With a general production function, we cannot ensure that these conditions hold.
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Rearranging and summing over destinations yields

∑
d∈Ωft

(
Dd

t exp(ϵ
d
ft)
) 1

1−ρ exp(udft) =
(
D1

t

) 1
1−ρ exp

(
ϵ1ft

1− ρ
+ u1ft

) ∑
d∈Ωft

Rd
ft

R1
ft

. (16)

Using the definition of ψft and rearranging yields

∑
d∈Ωft

(
Dd

t exp(ϵ
d
ft)
) 1

1−ρ =
(
D1

t

) 1
1−ρ exp

(
ϵ1ft

1− ρ
+ u1ft

)
Rft

R1
ft

1

ψft

. (17)

Plugging this expression back into (14), we obtain our estimation equation

rft = lnD1
t + ρf(vft,κft) + (1− ρ) lnDft + ϵ1ft + (1− ρ)u1ft + ρωft + lnψft. (18)

with
Dft ≡

Rft

R1
ft

1

ψft

.

With this substitution, we split the endogenous demand shifter into an aggregate compo-
nent D1

t that can be absorbed into time fixed effects, and a firm-specific component Dft

that depends only on observable data (the export share) and the weighted average of ex
post demand shocks—which can be estimated from the data, as we demonstrate below.
The last four terms of (18) collect unobserved shocks to productivity, ex ante domestic
demand shocks (ϵ1ft), and ex post demand shocks.

3 Empirical strategy

We base our estimator on the two-stage factor shares approach of Gandhi et al. (2020).
In their main text, Gandhi et al. (2020) treat the case in which outputs are denominated
in quantity; but in Appendix O6-4, they consider the “revenue production function”, i.e.
the case in which outputs are denominated in value. The primary difference between our
estimation and theirs is that we allow firms to serve multiple destination markets. We
also present alternative estimation strategies based on the more popular control function
approach, although we prefer the factor shares approach for reasons we discuss below.
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3.1 Multi-market estimator: first stage

Following Gandhi et al. (2020), our estimation procedure proceeds in two stages. In the
first stage, output elasticities with respect to variable inputs are identified from projecting
factor expenditure shares on logs of input levels. The estimation equation is derived from
the first order conditions for variable inputs. When outputs are denominated in value,
these elasticities are inclusive of the demand-side parameter ρ.19

In the multi-destination market case, we combine (14) with (12) and obtain the cost
share in revenue of variable input vj

ln sjft = ln
[
exp(−E [ln (ψ)])E [exp(u)] βj

ft(vft,κft)
]
+ φft (19)

where we define sjft ≡
W j

t exp(vjft)

Rft
, where βj

ft (·) ≡ ρσj
ft (·) ≡ ρ

∂F (vft,κft)

∂ exp(vjft)

exp(vjft)

Fft
denotes the

output elasticity of variable input vj multiplied by ρ, or the “revenue elasticity” of input vj,
and where φft ≡ E [ln (ψ)]− ln [ψft]. We add and subtract the constant E [ln (ψ)] because
E [lnψft] ̸= 0 due to Jensen’s inequality.20

We follow Gandhi et al. (2020) and approximate βj
ft (·) with a complete polynomial

function of degree 2 and estimate by NLLS for each variable input vj:

min
gj

∑
f

∑
t

{
ln sjft − ln

(
gj0 +

∑
z∈{v1,...,vV ,k1,...,kK }

gjzzft

+
∑

ℓ∈{1,...,V }

∑
z∈{vℓ,...,vV ,k1,...,kK }

gj
vℓz
vℓftzft +

∑
ℓ∈{1,...,K }

∑
z∈{v1,...,vV ,κℓ,...,κK }

gj
κℓz
κℓftzft

)}2

(20)

where all the gj coefficients include the constant exp(−E [ln (ψ)])E [exp(u)]. To purge this
constant from the gj coefficients we compute

̂exp(−E [ln (ψ)])E [exp(u)] =
1

N

∑
f

∑
t

exp(−φ̂ft) (21)

19In general, the “revenue elasticities” of variable inputs are identified from the factor share regressions as
long as the markup does not depend on input levels (and as long as the orthogonality condition discussed
below is met). But this does not require that markups are fixed. Markups may vary over time and across
firms in our model because of ex post demand shocks.

20In the single-market case, the residual φft is simply the single ex post demand shock −uft, which is
mean zero and exogenous by assumption.

13



where N is the number of firm-year observations and φ̂ft is the residual from (20).21 We
then divide all gj coefficients by this constant and compute

β̂j
ft(vft,κft) = ĝj0 +

∑
z∈{v1,...,vV ,k1,...,kK }

ĝjzzft +
∑

ℓ∈{1,...,V }

∑
z∈{vℓ,...,vV ,k1,...,kK }

ĝj
vℓz
vℓftzft

+
∑

ℓ∈{1,...,K }

∑
z∈{v1,...,vV ,κℓ,...,κK }

ĝj
κℓz
κℓftzft (22)

Identification of equation (20) requires orthogonality between φft and all variable and
quasi-fixed inputs. In the multi-market case, it is not a priori obvious that this condition
holds, since the weights χd

ft are potentially endogenous to input choices. Nevertheless, we
have

Proposition 1. E [φft|vft,κft] = 0, hence, the share regression (20) identifies the revenue
elasticity of variable input vj, βj

ft, and the residual φft.

Proof: see Appendix A

The key to the proof is that even though the destination weights χd
ft are endogenous to

input choices, the weights are orthogonal to the realized demand shocks udft. Hence, by the

law of iterated expectations, E
[∑

d∈Ωft
χd
ft exp(u

d
ft)
]
= E [exp(u)], a constant, and φft is

orthogonal to input choices.

3.2 Multi-market estimator: second stage

The second stage of the procedure is to use the information from the first stage to recover
the rest of the production function. The basic insight from Gandhi et al. (2020) is that
the variable input elasticity defines a partial differential equation that can be integrated
to compute the part of the production function related to each variable input j.

By the fundamental theorem of calculus, for each variable input vj,

∫ vjft

vj0

βj
ft(vft,κft)dv

j
ft = ρf(vft,κft) + ρC j

(
v1ft, ..., v

j−1
ft , vj+1

ft , ..., vV
ft, κ

1
ft, ..., κ

K
ft

)
(23)

21Since (21) calls for the use of the exponential function, the estimate of ̂exp(−E [ln (ψ)])E [exp(u)] may
be sensitive the presence of extreme outliers. In the French data, we exclude any firm that ever has a
material expenditure share or a labor expenditure share greater than 20 or less than 0.001. This restriction
excludes less than 0.1% of the data.
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where vj0 is the minimum possible value of flexible input vj and C j (·) is a constant of
integration that depends on all quasi-fixed inputs and all flexible inputs except for input
vj. As noted in Appendix O6-3 of Gandhi et al. (2020), these differential equations can
be combined to construct the production function up to a constant that depends only on
predetermined inputs (also see Varian 1992, pages 483-484).22

Substituting this expression of the production function into (18), we compute revenues
net of the contribution of variable inputs and φ̂ft:

r̃ft ≡ rft −
∫ v1ft

v10

β1
ft(z

1, v20, ..., v
V
0 , κ

1
ft, ..., κ

K
ft )dz

1

− ...−
∫ vV

ft

vV
0

βV
ft(v

1
ft, v

2
ft, ..., z

V , κ1ft, ..., κ
K
ft )dz

V + φ̂ft. (24)

We then transform (18) into

r̃ft = αt + βD ln D̂ft +
∑

j∈{1,...,K }

bκjκjft +
∑

j∈{1,...,K }

∑
z∈{κj ,...,κK }

bκjzκ
j
ftzft

+ ϵ1ft + (1− ρ)u1ft + ρωft, (25)

where αt ≡ lnD1
t + ρE [ln (ψ)] collects industry-period terms, with ρE [ln (ψ)] carrying

over from the first-stage estimation of φ̂ft, and D̂ft ≡ (Rft/R
1
ft) exp(φ̂ft) proxies for the

firm-specific demand shock and identifies the demand-side parameter βD ≡ 1 − ρ. The
term ρC

(
κ1ft, ..., κ

K
ft

)
is approximated by a complete polynomial function of degree 2 in

quasi-fixed factors (last two terms in the first line of (25)).
In equation (25), ωft, ϵ1ft, and u1ft are all endogenous to D̂ft both through the endoge-

nous choice of destinations and through realized sales in the domestic market. Additionally,
if ωft, ϵ1ft, and u1ft are persistent, then they correlate with all quasi-fixed inputs through
the investment rule. We assume that ωft and ϵ1ft evolve according to first order Markov
processes and exploit timing for identification. In particular, we assume productivity ωft

follows an AR(1) process and depends on lagged export participation indicator ef,t−1, as
22Combining differential equations for each variable input, we have

ρf(vft,κft) =

∫ v1
ft

v1
0

β1
ft(z

1, v20 , ..., v
V
0 , κ

1
ft, ..., κ

K
ft )dz

1 +

∫ v2
ft

v2
0

β2
ft(v

1
ft, z

2, v30 , ..., v
V
0 , κ

1
ft, ..., κ

K
ft )dz

2

+ . . .+

∫ vV
ft

vV
0

βV
ft(v

1
ft, v

2
ft, ..., z

V , κ1ft, ..., κ
K
ft )dz

V − ρC
(
κ1ft, ..., κ

K
ft

)
.
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in De Loecker (2013):
ωft = hωf,t−1 + µef,t−1 + ω̃ft (26)

where h is a scalar and ω̃ft represents an i.i.d. shock to productivity.23 The parameter
µ indicates the effect of lagged export participation on current productivity—the effect of
“leaning by exporting” (LBE). We further assume that the domestic ex ante demand shock
follows an AR(1) process with the same persistence parameter h,24

ϵ1ft = hϵ1f,t−1 + ϵ̃1ft, (27)

where ϵ̃1ft represents i.i.d. shocks to domestic demand. The assumption that productivity
shocks and demand shocks share the same persistence parameter h allows us to combine
them into a composite shock, in a similar fashion to De Loecker (2011) and Melitz &
Levinsohn (2006): νft ≡ ϵ1ft + ρωft, which by assumptions (26) and (27) gives

νft = hνf,t−1 + ρµef,t−1 + ξft, (28)

where ξft ≡ ϵ̃1ft + ρω̃ft + (1− ρ)u1ft + h(1− ρ)u1ft−1 is an MA(1) error term.
Substituting νft into (25) yields

r̃ft = αt + βD ln D̂ft +
∑

j∈{1,...,K }

bκjκjft +
∑

j∈{1,...,K }

∑
z∈{κj ,...,κK }

bκjzκ
j
ftzft + νft (29)

For any candidate vector
(
βD∗

, b∗κ1 , ..., b∗κK , b∗κ1κ1 , ..., b∗κK κK

)
, we can compute

̂νft + αt = r̃ft − βD∗
ln D̂ft −

∑
j∈{1,...,K }

bκjκjft −
∑

j∈{1,...,K }

∑
z∈{κj ,...,κK }

bκjzκ
j
ftzftκ

j′

ft,(30)

and then regress ̂νft + αt on ̂νf,t−1 + αt−1, the past exporting decision ef,t−1 and time fixed
effects, and compute the residual ξ̂ft

(
βD∗

, b∗κ1 , ..., b∗κK , b∗κ1κ1 , ..., b∗κK κK

)
. We then build the

23De Loecker (2013) assumes a flexible first order Markov process, but with endogenous firm-specific
demand shocks we must impose linearity for estimation.

24Note that at this stage we make no assumptions on the evolution of ϵdft for d ̸= 1, i.e., on any
other market that is not the domestic one; we discuss below assumptions that may be required—but not
necessarily—for identification.
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following moment conditions:

E

ξ̂ft
(
βD∗

, b∗κ1 , ..., b∗κK , b∗κ1κ1 , ..., b∗κK κK

)

ln D̂f,t−2

κ1ft
...(

κK
ft

)2


 = 0 (31)

and minimize deviations from these moments by GMM.
At the true parameter values, ξ̂ft is orthogonal to all quasi-fixed inputs in period t.

This is because ξ̂ft contains only period t innovations to productivity ω̃ft and domestic
demand ϵ̃1ft, and ex post domestic demand shocks u1ft and u1f,t−1, none of which influence
the investment decision in period t − 1. However, even at the true parameter values ξ̂ft
correlates with D̂ft and D̂f,t−1 through the endogenous set of destinations and through
sales on the domestic market.25 Thus, to build the objective function, we use ln D̂f,t−2,
which is orthogonal to ξ̂ft.

Finally, we compute ρ̂ = 1 − β̂D and the output elasticity for each quasi-fixed input
κk:26

σ̂k
ft =

1

ρ̂

(
∂r̃ft
∂κkft

+
∑

j∈{1,...,V }

∂

∂κkft

[∫
βj
ft(·)dv

j
ft

])
(32)

and for flexible inputs

σ̂j
ft = β̂j

ft/ρ̂. (33)

We compute the LBE effect as the point estimate on the export lag from the regression
estimates of the Markov process, deflated by ρ̂.

Since the second stage uses estimated objects from the first stage, we bootstrap the

25Recall that in order to build D̂f,t−1 we use realized domestic sales, which are directly affected by
u1f,t−1.

26Assuming a second degree polynomial for both the first stage and the second stage yields

σ̂k
ft =

1

ρ̂

(
b̂κk + 2b̂κkκkκkft +

∑
j∈{1,..k−1,k+1,..,K }

b̂κjκkκjft +
∑

j∈{1,...,V }

ĝj
κkv

j
ft

+ 2
∑

j∈{1,...,V }

ĝj
κkκkv

j
ftκ

k
ft +

∑
j∈{1,...,V }

∑
z∈{k1,...,kk−1,kk+1..,kK }

ĝj
zκkzftv

j
ft +

1

2

∑
j∈{1,...,V }

ĝj
vjκkv

j
ftv

j
ft

)
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entire two-stage procedure to compute standard errors. The bootstrap procedure samples
firms rather than individual observations, which is akin to clustering standard errors by
firm.

Before proceeding to alternative estimators, we discuss the source of identification of ρ in
(31). As mentioned earlier, the assumptions of the model imply that ln D̂f,t−2 is orthogonal
to ξ̂ft, so the moment condition should hold. But what about relevance? Conditional on
quasi-fixed inputs, time fixed effects, and ̂νf,t−1 + αt−1, there are at least two explanations
for the correlation between ln D̂f,t−2 and ln D̂f,t.

First, persistence in the ex ante foreign demand shocks ϵdft, for d ̸= 1, yields correlation
between ln D̂f,t−2 and ln D̂f,t. To see this, consider two firms with the same evolution of
νft (which includes only domestic demand shocks ϵ1ft) and quasi-fixed inputs, serving the
same set of destinations Ωft. Suppose that the first firm has persistent higher draws for ϵdft
for some d > 1 than the second firm. The former firm will tend to earn a higher share of
revenue from the export market than the latter, and hence will tend to have higher ln D̂ft

in all periods.
The second mechanism that generates correlation between ln D̂f,t−2 and ln D̂ft relies on

persistent firm-specific fixed costs of market entry. To see this, consider two firms with the
same evolution of νft and quasi-fixed inputs, but different fixed costs of reaching different
markets. In this case, the two firms will likely serve different markets. If these fixed costs
are persistent, then the two firms will be exposed to different aggregate shocks. Suppose
that the first firm has lower fixed costs compared to the second firm for serving a particular
large foreign market. Then the former firm will tend to earn more from exporting than the
latter, all else equal, and thus will tend to have a higher ln D̂ft in all periods.27

3.3 Factor share method with no demand correction

When estimating production function parameters with data denominated in value, the vast
majority of researchers simply deflate firm-level revenues by the domestic price deflator
and treat the resulting series as if they were quantities. Given our data generating process,
only under the assumption that ρ = 1 would deflating by the domestic price index convert

27Alternatively, we could exploit a shift-share instrument instead of ln D̂f,t−2 in (31), where the weights
would be pre-period market shares for each firm and the shocks would reflect industry-destination-period
demand Bt. However, this would require knowledge of the entire destination network of each firm and
measures of aggregate demand. We prefer to use ln D̂f,t−2 as the instrument because it requires only
knowledge of the domestic share in revenues and it allows persistence in the ϵdft draws to contribute to the
relevance of the instrument.
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firm-level revenues into firm-level quantities. Rationalizing this common practice therefore
implies that firms produce homogeneous goods. In this case, the conditions from the main
text of Gandhi et al. (2020) would be met, and thus their factor shares estimator could be
applied.

However, in the case that goods are not perfect substitutes (ρ < 1), then deflating
revenues by the domestic price index and implementing the estimation procedure from
Gandhi et al. (2020) will lead to biased estimates of output elasticities and LBE effects.
To see this, we write the second stage estimation equation of Gandhi et al. (2020) in our
notation, assuming that there are in fact multiple destination markets:

r̃NC
ft = α +

∑
j∈{1,...,K }

bκjκjft +
∑

j∈{1,...,K }

∑
z∈{κj ,...,κK }

bκjzκ
j
ftzft

+ ϵ1ft + (1− ρ)u1ft + ρωft + βD
(
lnDft + lnB1

t

)
. (34)

with r̃NC
ft ≡ r̃ft − ln Λ1

t , where Λ1
t is the empirical analogue to the true CES price index in

the domestic market, and α is a constant that absorbs the industry-specific normalization
of the price index.28 Inspecting (34), we see that both lnDft and lnB1

t influence the
residual ξft as constructed in the second stage from Gandhi et al. (2020). The aggregate
term lnB1

t can be controlled for by time fixed effects, but the firm-specific demand shifter
lnDft can not. Since lnDft depends on quasi-fixed input levels, failure to control for lnDft

implies a violation of the second stage moment conditions.29

The violation causes biases in ways that are hard to determine and likely depend on
parameter values. For example, lnDft depends positively on quasi-fixed inputs, since
higher quasi-fixed input levels lead to lower marginal costs, higher marginal revenues,
higher likelihood of exporting to any given destination, and hence higher export share.
Leaving lnDft for the error term will thus tend to generate upward bias in the bj coefficients
(ignoring the bias stemming from lnB1

t ).30 But since the true σk
ft depends on bj terms and

28In fact, even if there are multiple destination markets and only revenues are observed, the moment
condition for the factor shares first stage NLLS from Gandhi et al. (2020) holds. Hence, the bias enters
only in the second stage. This is because the empirical steps outlined in section 3.1 are exactly the same
steps outlined in Gandhi et al. (2020), though the interpretation of the estimated objects differs. The
point of section 3.1 was to prove that the moment condition for the NLLS holds even if there are multiple
destination markets.

29Additionally, it is not possible for lnDft to follow the same AR(1) as ϵ1ft, since lnDft depends inversely
on ϵ1ft. So lnDft cannot simply be absorbed into νft either.

30If there is only one quasi-fixed input that enters linearly in (34), then the bias is clearly positive. With
multiple quasi-fixed inputs and higher order terms and interactions, it is not clear that omitting lnDft

leads to upward bias in all estimated bj terms.
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ρ (see equation (32)), the overall effect on σ̂k
ft is not clear, because implicitly setting ρ = 1

will tend to bias downward σ̂k
ft. The two sources of bias work in opposite directions, and

we cannot in general determine which force dominates.31

3.4 Factor share method with a single-market correction

The few papers that explicitly address the value versus quantity distinction in the context
of production function estimation implement some version of the Klette & Griliches (1996)
procedure, which calls for including a proxy for the CES quantity index in the second stage
GMM (De Loecker, 2011; Grieco et al., 2016). We present a version of this model here and
later estimate it in both simulated data and in the French data for comparison.

In Appendix O6-4, Gandhi et al. (2020) present the Klette & Griliches (1996) approach
adapted to the factor shares method.32 The first stage NLLS estimation is exactly the
same as in section 3.1, though the interpretation of the estimated objects differs. Moreover,
whether or not there are multiple destination markets, the moment condition for this NLLS
estimation holds (see footnote 28).

In the second stage, Gandhi et al. (2020) introduce a proxy for the CES quantity index,
which in their model is unique, because they posit only a single market. We call this
aggregate quantity Bproxy

t . Defining r̃KG
ft ≡ r̃ft − ln Λt, where Λt is the empirical price

index, the second stage estimation equation can be written as

r̃KG
ft = α + βD lnBproxy

t +
∑

j∈{1,...,K }

bκjκjft +
∑

j∈{1,...,K }

∑
z∈{κj ,...,κK }

bκjzκ
j
ftzft + νKG

ft (35)

where α absorbs the industry-specific price index normalization, and νKG
ft ≡ ρωft + ϵ1ft =

hνf,t−1 + ρµef,t−1 + ξft. For any candidate vector
(
βD∗

, b∗κ1 , ..., b∗κK , b∗κ1κ1 , ..., b∗κK κK

)
, we

can compute

̂νKG
ft + α = r̃KG

ft − βD∗
lnBproxy

t −
∑

j∈{1,...,K }

bκjκjft −
∑

j∈{1,...,K }

∑
z∈{κj ,...,κK }

bκjzκ
j
ftzft,(36)

regress on ̂νKG
f,t−1 + α and ef,t−1, compute the residual ξ̂ft

(
βD∗

, b∗κ1 , ..., b∗κK , b∗κ1κ1 , ..., b∗κK κK

)
31Since the moment conditions for the first-stage NLLS holds regardless of the number of markets, the

no demand correction estimator should lead to a downward bias in the estimated elasticities for variable
inputs, simply because—given the model—the revenue elasticity is inclusive of ρ < 1 (see equation (33))

32De Loecker (2011) andGrieco et al. (2016) use control function methods.
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and build the moment conditions

E

ξ̂ft
(
βD∗

, b∗κ1 , ..., b∗κK , b∗κ1κ1 , ..., b∗κK κK

)

lnBproxy

t

κ1ft
...(

κK
ft

)2


 = 0. (37)

In the case that there is actually only one destination market (and the empirical price index
and Bproxy

t are computed in a theory-consistent way, see appendix B) we have Λt = Υt/Υ0

and Bproxy
t = Bt/Υ0, where Υ0 captures the price index normalization. In this case,

ξ̂ft is orthogonal to quasi-fixed inputs in period t because at the true parameter values
ξft ≡ ϵ̃ft+ρω̃ft.33 Moreover, the aggregate demand shifter lnBproxy

t is orthogonal to ξ̂ft by
assumption. Hence, the parameter βD is identified by time series variation in industry-wide
demand aggregates. Thus, in the case that there is only one output market, this estimation
procedure identifies the demand parameter ρ = 1− βD, as well as all output elasticities.

However, in the case that there are, in fact, multiple destination markets into which
firms select endogenously, then the moment conditions (37) do not hold. To see this, we
re-write (25), moving the price index for the domestic market to the left hand side,

r̃KG
ft = ρE[lnψ] + βD lnBproxy

t +
∑

j∈{1,...,K }

bκjκjft +
∑

j∈{1,...,K }

∑
z∈{κj ,...,κK }

bκjzκ
j
ftzft

+ ϵ1ft + (1− ρ)u1ft + ρωft + βD lnDft + βD
(
lnB1

t − lnBproxy
t

)
. (38)

Multiple sources of bias arise in (38). First, unless lnDft follows exactly the same
AR(1) process as ϵ1ft and ωft (which we argued above is not possible, given the model),
then ξ̂ft—as constructed via the KG approach—includes lnDft. Since lnDft depends on
quasi-fixed inputs, this implies a violation of the moment conditions in (37). If Bproxy

t ∝ B1
t ,

i.e. measured without error, then the omission of lnDft from the estimation equation will
tend to bias the estimator for all bj coefficients upward and bias the estimator for βD

downward, as lnDft correlates positively with all quasi-fixed inputs, and negatively with
lnB1

t .34 However, even in this case, the effect on σ̂k
ft is not clear, because σ̂k

ft depends

33When all firms serve a single market, the ex post demand shock uft is identified by the factor share
regression in the first stage, and hence does not appear in the second stage.

34As in the case of the no demand correction estimator, this holds if there is only one quasi-fixed input
that enters (38) linearly. If there are multiple quasi-fixed input that enter (38) along with higher order
terms and cross terms, then it is not clear in which direction the bias goes.
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directly on bj coefficients and inversely on ρ̂. Given the preceding argument, we expect all
these coefficients to be biased upwards, which has thus an ambiguous effect on σ̂k

ft.
35

Second, if there are multiple markets, then the demand shifter Bproxy
t is likely measured

with error. Gandhi et al. (2020) do not explain exactly how to construct Bproxy
t from the

data, but they cite De Loecker (2011), who proposes to set Bproxy
t equal to the weighted

sum of deflated total revenues of domestic firms. We show in Appendix B that if the price
deflator is constructed in a theory-consistent way, then the domestic quantity index B1

t can
be constructed up to a normalization from price deflators and total domestic absorption,
i.e. total domestic sales of domestic firms plus total imports from foreign firms. If, instead,
Bproxy

t is constructed from total revenues of domestic firms (either using weights or not),
then Bproxy

t will not be equivalent to B1
t , even up to a normalization. The difference between

the two is the trade deficit, which is relegated to the error term, multiplied by βD. The
trade deficit may be positively or negatively correlated with Bproxy

t , depending on whether
local demand shocks or foreign supply shocks dominate, which means that measurement
error in Bproxy

t can lead to violations of (37), and it may be difficult to predict in which
direction the measurement error biases estimates.

In light of these concerns, a tempting strategy would be to estimate the factor shares
method with a single-market correction for a set of non-exporters. For all non-exporting
firms, Dft = exp(−u1ft) because all sales are domestic (Rft = R1

ft), and there are only
domestic shocks (φft = −u1ft). In this case, although the error term in (25) follows an
AR(1) process and lnDft drops out, bias persists for two reasons. First, Bproxy

t is still likely
measured with error. Second, sample selection bias violates the orthogonality conditions
in (37): the residual from the AR(1) does not have a zero mean conditional on quasi-fixed
inputs. If higher levels of quasi-fixed inputs are associated with a greater probability to
export (e.g., due to increasing returns to scale), then the conditional mean of the residual
will be negatively correlated with them because the sample never admits exporters, and
this innovation may induce a firm to export due to cross-market complementarities. The
direction of the bias may be different under different cross-market complementarities and
overall returns to scale.

Whether estimating the KG model in the full sample or in a sub-sample of non-
exporters, two additional problems arise. First, identification in this model relies on time-
series variation in aggregate demand, which may not be sufficient in short panels. Second,

35Since the moment conditions for the first-stage NLLS holds regardless of the number of markets, the
KG estimator should lead to a downward bias in the estimated elasticities for variable inputs, simply
because – given the model – the revenue elasticity is inclusive of ρ < 1 (see equation (33))
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given our application—the productivity effects of learning by exporting—using the factor
share method with a single-market correction entails an additional conceptual issue: there
is no exporting in a single market model. Of course, the model can be estimated in the
data, because in fact firms do export. But there is a logical inconsistency in positing a
single destination and then studying the effect of serving different markets.

3.5 Control function method

The multi-destination model could also be estimated using an amended control function
method, which we specify in Appendix C. There are two reasons why we prefer the factor
shares method.

First, the control function method relies on time series variation in material input prices
for identification. Gandhi et al. (2020) show that when input price variation is low, the
control function method suffers from finite sample bias. This is because with low material
price variation, the lag of materials is a weak instrument for contemporaneous materials,
conditional on productivity and capital. We replicate this finding in Section 4.1 in Monte
Carlo simulations for a single-market version of the model.

Second, even when the sample size goes to infinity, the GMM objective function admits
multiple solutions in the standard control function framework, as demonstrated recently by
Ackerberg et al. (2020). Ackerberg et al. (2020) argue that choosing among these candidate
solutions is not as simple as just choosing the parameter combination that yields the lowest
objective function value. This is because there are, in fact, multiple parameter vectors
for which the moment conditions are satisfied and the objective equals zero. Hence, the
optimization problem is under identified.36 Ackerberg et al. (2020) argue that additional
moment restrictions are necessary for identification in the control function method, and
they propose a set of such moments, but this procedure is still work in progress.

Our amended multi-market version of the control function method may be less prone
to the weak instrument critique of Gandhi et al. (2020) because it introduces cross-firm
variation in addition to the time series variation. This motivates us to estimate this
amended version of the control function method, in addition to the factor shares procedure
that we develop. However, cross-firm variation does not address the “weak moments”
problem highlighted by Ackerberg et al. (2020).

36It is well known that nonlinear estimation like GMM can be sensitive to initial values as well as
searching algorithms (Knittel et al., 2014). As shown by Ackerberg et al. (2020), the problem with the
control function method is more severe than mere numerical challenges.
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4 Monte Carlo simulations

In this section, we study the consistency and finite sample properties of the different
estimators presented in Section 3 using Monte Carlo simulations.

In the first set of experiments, we simulate data as described in Section 2 assuming
there is just a single destination market. With these simulated data, we estimate output
elasticities and the curvature of the demand function using the factor shares single-market
estimator from Section 3.4 and a single-market version of the control function method that
is described in Appendix C. These simulations extend the Monte Carlo experiments from
Gandhi et al. (2020) and Ackerberg et al. (2020) to the case of heterogeneous products
with missing output price data, and highlight the advantages of the factor share method
over the control function approach.

In the second set of experiments, we simulate the multi-destination model from Section
2. With these simulated data, we estimate output elasticities, the curvature of the demand
function, and LBE using the factor shares multi-market method from Sections 3.1-3.2, the
factor shares approach with no demand correction from Section 3.3, and the factor shares
approach with a single-market correction from Section 3.4. With multiple destination
markets, only the factor shares multi-market model should be consistent.

4.1 Single market simulations

We report results from Monte Carlo experiments in which the data generating process is
described in Section 2 for just a single destination market. We simulate 100 samples of a
single industry with 500 firms over 50 periods.

We assume that firms produce with a Cobb-Douglas production function with one
variable input, materials (M), and one quasi-fixed input, capital (K):

Qft = exp (ωft)M
γM

KγK

(39)

with γM = 0.8 and γK = 0.3. Capital updates each period according to the law of motion:
Kft = 0.9Kf,t−1 + ιf,t−1, where ιft = exp(0.8ρωft + 0.8ϵft) (Kft)

0.2. We fix ρ = 0.8.
Within each replication we draw total expenditures and quantity series, and homoge-

neous (across firms) material input prices. At the firm level, we draw initial capital stocks
Kf,1 ∼ U(1, 201), initial productivity shocks ωf,1 ∼ N(0, 0.01), and initial ex ante demand
shocks ϵf,1 ∼ N(0, 0.0009). We let ω and ϵ update according to the same AR(1) process de-
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scribed in (26) and (27), with h = 0.8 and where ω̃ft ∼ N(0, 0.01) and ϵ̃ft ∼ N(0, 0.0009).
We draw ex post demand shocks uft ∼ N(0, 0.0009). Firm-period quantities, revenues
and inputs Mft are determined given productivity, capital, materials prices and aggregate
demand.

We estimate in each sample of simulated data the factor shares approach and the control
function approach assuming researchers observe Rft, Mft, Kft, WM

t and Bt. For the factor
shares model, we set initial conditions for the first-stage NLLS estimation for M based on
an OLS estimation of the regression

ln

[
Wm

ftMft

Rft

]
= gm0 + gmmmft + gmk kft + gmmmmftmft + gmkkkftkft + gmmkmftkft + ϑft,

where ϑft is a regression residual. For the second stage GMM, we set initial conditions
based on an OLS estimation of the regression

r̃ft = gkkft + gkkkkft + gDBt + ϑ′
ft,

where ϑ′
ft is a regression residual and Bt is the true CES quantity index.

For the control function approach, we set initial conditions for the second-step GMM
based on an OLS estimation of the regression

r̃CF
ft = g0 + gDBt + gmmmft + gmk kft + gmmmmftmft + gmkkkftkft + gmmkmftkft + ϑ′′

ft,

where r̃CF
ft represents log revenues net of the residual from the control function first stage,

and ϑ′′
ft is a regression residual. We denote the resulting control function estimates as “CF

ls”, since the GMM starts from the OLS point estimates. We also start the control function
estimation from the true parameter values and refer to the resulting estimates as “CF tr”.

In Figure 1 we present the distribution of estimates of ρ and the average material and
capital output elasticities across the 100 samples by estimator, along with the average
(“av”) and median (“md”) of the distributions. In the top row we present the case of high
input price variation. True material and capital output elasticities are constant across
firms and over time (σM = γM = 0.8 and σK = γK = 0.3), and are depicted with vertical
black lines.37

37Estimated material and capital output elasticities vary both due to sampling error and with the level of
capital because we allow for higher order terms in capital and interactions between inputs in the estimation
process (see equations (32) and (33)).
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Figure 1: Parameter Estimates in the Single-Market Simulations
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Notes. The figure reports the distribution of averages of estimates across 100 Monte Carlo samples. Top
(bottom) row presents results for high (low) input price variation. True parameter values are depicted as
vertical lines. Averages (“av”) and medians (“md”) of distributions for each estimator are reported below
each subfigure. “FS” indicates the factor shares method. “CF - ls” indicates control function method where
the GMM optimization starts from the OLS values. “CF - tr” indicates control function method where the
GMM optimization starts from the true model parameters.

The distribution of the estimates from the factor shares approach is depicted in solid
blue. For each empirical object ρ, σK , σM , the distribution of estimates appears to be
centered on the true values. Averages and medians of the distributions are identical with the
truth out to at least two decimal places. Similarly, the distribution of the control function
estimates taking true values as the initial conditions (black solid line) also appears to be
centered on the truth, with averages and medians of distributions identical to the truth out
to at least two decimal places. The distribution of the solid blue line is clearly narrower
than the distribution of the solid black line, indicating that the factor shares approach is
more efficient.

In contrast, when the second stage of the control function method starts the optimiza-
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tion algorithm from the OLS values (black dashed line), the distributions of estimates are
clearly biased. Estimates of ρ and σM tend to center around 1, and estimates of σK center
around 0. These values coincide with the results from a naïve OLS estimate of the pro-
duction function, where transmission bias tends to bias upward the estimator for output
elasticities of variable inputs, and tends to bias downward output elasticities of quasi-fixed
inputs.38

Comparing the solid black line to the dashed black line, it is clear that the control
function is sensitive to initial starting conditions. We explore this sensitivity further by
plotting the distribution of parameter estimates from the control function method when
varying systematically the initial values of the second step of the GMM procedure (Ap-
pendix D). The results clearly demonstrate that the control function method is highly
sensitive to initial parameter guesses. Moreover, there appears to be multiple modes of the
distributions. This multi-modal pattern results from the existence of multiple solutions to
the GMM optimization (Ackerberg et al., 2020).39

Also in Figure 1, we present in the bottom row the distribution of estimates for the case
of low input price variation. The factor shares method still recovers unbiased estimates
of structural parameters. However, the estimates from the control function method are
biased even when the GMM optimization starts from the true parameters. As explained
by Nelson & Startz (1990), instrumental variables estimators are biased towards OLS in
finite samples with weak instruments. We can see this pattern from the medians of the
distributions in solid black. The distributions are wide, and outliers severely distort the

38The OLS result can be demonstrated analytically for the case of Cobb-Douglas production. To see
this, consider equation (19) and impose Cobb-Douglas production with a single flexible input (materials)
and a single quasi-fixed input (capital). We have then

ln[(MftW
M
t )/Rft] = ln

[
exp(−E [ln (ψ)])E [exp(u)] ργM

]
+ φft

and rearranging, we get
lnRft = θt + lnMft − φft

where the θt absorbs all constant terms and the homogeneous material price. We see from the last equation
that lnMft enters with a coefficient of 1, and lnKft and lnDft enter with a coefficient of 0 (they drop out
of the equation). Hence, if we regresses lnRft on lnMft , lnKft, and lnDft along with time fixed effects,
we would expect to find regression coefficients of 1, 0, and 0, respectively, which imply returns to scale of
1. Ackerberg et al. (2015) made a similar point with respect to the non-identification of the elasticity of
output with respect to labor in the first stage of the Levinsohn & Petrin (2003) control function estimator.

39The estimates using the factor share method are invariant to starting conditions out to several decimal
places. Both stages of the factor share method rely on non-linear optimization algorithms, so numerical
error can produce some tiny variation in the results. But the variation is so small that it is not worth
presenting in a figure.
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means, but the medians indicate that the estimates of σM are biased up and the estimates
of σK are biased down, as they are in OLS. This is the same pattern found in Monte
Carlo simulations by Gandhi et al. (2020) for the single-market case in which quantities
are observed.

4.2 Multi market simulations

In this section we present results from Monte Carlo simulations in which firms serve multiple
destination markets. For these experiments, in order to keep the computational burden
manageable, we posit 4 destination markets. We simulate 100 samples of a single industry
with 2,000 firms over 6 periods. Industry-wide expenditures and quantity indices are
destination specific and drawn in the same fashion as in the single-market case. Capital,
productivity, and demand shocks are all simulated as in the single-market case, though in
this case demand shocks are firm-destination-period specific.

Fixed costs of reaching the foreign markets rationalizes heterogeneous participation in
the export market. There are no fixed costs of serving the domestic market (d = 1),
whereas fixed costs of entry to foreign markets are drawn from a log normal distribution
with mean 6 and standard deviation 0.6. Taking expectations over the ex post demand
shocks udft, firms choose the combination of destinations that yields the highest expected
profits.

We simulate the model period by period. In the first period, we solve for the set of
destinations that maximizes expected profits for each firm. From these values, we determine
who is active on the export market. We then update firm productivity for period 2 (which
includes the LBE effect), setting the learning-by-exporting coefficient µ = 0.05. Given
ωf,2 and Kf,2, we then solve the combinatorial problem for each firm in period 2. We
again determine which firms are active on the export market in period 2, and update firm
productivity accordingly. We continue in this fashion until the final period.

With these simulated data, we estimate output elasticities, the curvature of demand and
the LBE parameter using our factor shares multi-market method, the factor shares method
with a single-market demand correction, and the factor shares method with no demand
correction. We study the consistency of these estimators in Figure 2. The Figure reports
for each estimator the mean, median and inter-quartile range of estimates of µ, ρ and
returns to scale (σ̂K

ft + σ̂M
ft ) for increasingly larger sample sizes. The true parameter values

are indicated by dashed horizontal lines. We can see that our multi-market estimator,
depicted in blue, is consistent, while the estimator with no demand correction (“No D
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Corr”, in red) and the estimator with a single-market correction (“KG”, in black) are not.

Figure 2: Consistency Properties in the Multi-Market Simulations
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Notes. The figure reports the mean, median and inter-quartile range of three estimators across 100 simula-
tions of the multi-market model with 250, 500, 1,000 and 2,000 firms each. The true parameter values are
depicted as horizontal dashed lines. The first estimator is our multi-market estimator (blue); the second
includes a correction for demand in a single market(“KG”, black); the third makes no correction for demand
(“No D Corr”, red). Means are denoted by squares, medians are denoted by circles, and the inter-quartile
ranges are denoted by the bars.

Figure 3 presents finite sample properties of the estimators. We find that the distribu-
tion of estimates from our multi-market factor shares method (dashed blue line) is centered
on the true parameters, with means and medians quite close to the true values. For the
single-market factor shares method (dashed black line labeled “KG”), the distribution of
the estimates of ρ is biased downwards and the distributions of estimates of σK and σM

are biased upwards. The estimator that assumes no correction for demand yields results
that center far away from the truth.
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Figure 3: Finite Sample Properties in the Multi-Market Simulations
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Notes. The figure reports the distribution of three estimators across 100 simulations of the multi-market
model with 2,000 firms each. True parameter values are depicted as vertical lines. The first is our multi-
market estimator (“Multi-mark”) ; the second includes a correction for demand in a single market as in
Klette & Griliches (1996) using the factor shares approach (“KG”); the third estimator makes no correction
for demand (“No D Corr”). Averages (“av”) and medians (“md”) of distributions for each estimator are
reported below each sub-figure.

Finally, we investigate inference with our estimator compared to the estimator that
corrects only for demand in a single market. We compute for each replication the boot-
strapped 95% confidence interval and investigate the proportion of replications in which the
confidence interval contains the true parameter value. In Figure 4 , we plot the estimated
value and the 95% confidence interval by replication and parameter. Black dots indicate
replications for which the 95% confidence interval includes the true value, and red open
dots indicate replications for which the 95% confidence interval excludes the true value. As
expected, our estimator’s 95% confidence intervals include the true parameter value about
95% of the time. In contrast, Figure 5 illustrates that the 95% confidence intervals for the
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estimator with a single-market correction rarely include the true parameter.40

Figure 4: Coverage Ratios for the Multi-Market Estimator
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Notes. The figure reports point estimates and 95% confidence intervals of our multi-market estimator
across 100 simulations of the multi-market model with 2,000 firms each. Solid dots mark point estimates
for which the true parameter value lies within the 95% confidence interval. Red circles mark point estimates
for which the true parameter value lies outside of the 95% confidence interval. All confidence intervals are
computed using bootstrapped standard errors.

5 Application to French manufacturing

In this section we describe our data sources, report essential descriptive statistics, and
then report estimates of returns to scale, the elasticity of demand, the output elasticities
of inputs, and learning-by-exporting effects for French manufacturing firms. We report

40We note that standard errors of the estimates from the single-market demand correction estimator,
especially for ρ are quite small. This is because we estimate the model using the true, exogenous process
for Bt, which is common to all firms and across all replications (only productivity draws across firms differ
within and across replications).
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Figure 5: Coverage Ratios for the Estimator with Single-Market Correction
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Notes. The figure reports point estimates and 95% confidence intervals of the single-market estimator
across 100 simulations of the multi -market model with 2,000 firms each. Solid dots mark point estimates
for which the true parameter value lies within the 95% confidence interval. Red circles mark point estimates
for which the true parameter value lies outside of the 95% confidence interval. All confidence intervals are
computed using bootstrapped standard errors.

results for our multi-market estimator, the single-market correction estimator, and the
standard estimator that makes no correction for demand. For the main results we assume
that labor is predetermined within the period. In the end we discuss results that assume a
partial adjustment process for labor and results using the control function method, while
relegating detailed results to Appendix F.2 and Appendix F.3, respectively.

5.1 Data and descriptive statistics

We use administrative data sources to build a quasi-exhaustive panel of the universe of
French manufacturing firms in 1994–2016. Most of the data comes from firm balance sheets
from the FICUS and FARE datasets, which originate in firms’ tax declarations. We use
total revenues, material expenditures, employment, and book-value of capital stocks. We
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obtain information on firms’ exports from the French Customs. It is straightforward to
merge the customs data to FICUS/FARE because they use the same firm-level SIREN
identifier. We deflate expenditures on materials by industry-level input price indices that
we obtain from the EU KLEMS dataset. We build firm-level capital stocks using the
methodology of Bonleu et al. (2013) and Cette et al. (2015). Appendix E provides more
information on the source data and explains how we construct firm-level capital stocks
starting from book values.

We report descriptive statistics in Table 1. The skewed firm size distribution is apparent
from the difference between means and medians, for example, in revenue and employment.
This feature is common in many manufacturing datasets. The high percentages of exporting
firms is typical of European economies, who trade intensively within Europe. On average,
25% of firms in our data export at least once, but this varies considerably across industries,
with a low of 6.6% in “Food, beverage, tobacco”, and a high of 71% in “Chemical products”.
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Table 1: Descriptive Statistics

Revenue Labor Materials Capital No. No. Percent
No. Industry (mn euros) (employment) (mn euros) (mn euros) Obs. firms exporters exporters
1 Autos and transport equipment Mean 44.33 144.55 27.78 18.37 50403 5507 2774 50.4

Median 1.01 10.00 0.39 0.21
2 Chemical products Mean 52.54 97.35 29.95 27.82 52047 4943 3510 71.0

Median 2.36 14.00 0.94 0.55
3 Computer, electronics Mean 11.04 59.99 5.04 4.80 52845 5736 3158 55.1

Median 0.79 8.00 0.26 0.12
4 Electrical equipment Mean 13.25 70.62 7.12 5.14 42476 4584 2321 50.6

Median 0.98 9.00 0.35 0.13
5 Food, beverage, tobacco Mean 3.11 12.74 1.81 1.21 884753 113119 7498 6.6

Median 0.24 3.50 0.08 0.10
6 Machinery and equipment Mean 3.78 22.65 1.73 1.01 323815 34802 11297 32.5

Median 0.55 5.00 0.17 0.09
7 Basic metal and fabricated metal Mean 4.46 27.28 1.93 2.23 352083 33769 12975 38.4

Median 0.82 9.00 0.16 0.24
8 Other manufacturing Mean 1.56 12.15 0.62 0.55 250297 30933 6584 21.3

Median 0.22 3.00 0.05 0.06
9 Rubber and plastic Mean 6.95 39.42 3.08 4.16 163847 16121 7006 43.5

Median 0.88 8.00 0.30 0.26
10 Textiles, wearing apparel Mean 3.31 24.42 1.41 0.98 149369 21384 9139 42.7

Median 0.49 6.00 0.14 0.08
11 Wood, paper products Mean 2.75 17.41 1.21 1.62 295484 32356 9789 30.3

Median 0.47 5.00 0.11 0.14
Total Mean 5.54 24.84 2.90 2.47 2617419 303254 76051 25.1

Median 0.38 5.00 0.11 0.11

Notes. The table reports descriptive statistics for the estimation sample, where capital is the book value reported by the firm and materials
are expenditures. Exporters are defined as firms that exported at least once during the sample. Source: FICUS/FARE datasets and French
Customs.
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In Table 2 we report descriptive statistics for the export intensity among firms that
export. Within exporting firms, the export share also varies considerably, both across
industries and across firms within industries. While the median exporter obtains 4.2%
of revenue from exporting, the 90th percentile firm obtains almost 40% of revenue from
foreign markets.

Table 2: Percent exports in revenue for exporters

No. Industry Mean p5 p10 p50 p90 p95
1 Autos and transport equipment 14.6 0.2 0.4 5.8 43.1 55.9
2 Chemical products 22.5 0.2 0.6 11.4 64.6 77.5
3 Computer, electronics 19.5 0.2 0.5 8.3 58.2 74.5
4 Electrical equipment 15.4 0.2 0.5 6.1 46.3 60.1
5 Food, beverage, tobacco 10.1 0.1 0.2 2.8 31.1 48.3
6 Machinery and equipment 12.4 0.1 0.3 4.1 38.8 57.1
7 Basic metal and fabricated metal 10.6 0.1 0.3 3.5 31.7 47.9
8 Other manufacturing 12.8 0.3 0.5 4.8 38.3 52.7
9 Rubber and plastic 11.4 0.1 0.2 3.7 35.7 52.2
10 Textiles, wearing apparel 17.8 0.4 0.8 9.4 48.5 62.2
11 Wood, paper products 7.8 0.1 0.2 1.6 23.8 41.9

Total 12.8 0.1 0.3 4.2 39.7 56.7

Notes. The table reports the distribution of the percent of exports in revenue for exporters in the
estimation sample. Percent exports in revenue for exporters is computed for firms and years in
which exports are positive. Source: FICUS/FARE datasets and French Customs.

Tables 1 and 2 make two important points. First, the fact that many firms sell on more
than their domestic market (at least once) implies that estimation methods that assume
that all sales are on the domestic market ignore important information. In particular,
building theory-consistent demand aggregates for Bproxy

t in (35) is not feasible using only
information from the domestic market. Second, variation in the extensive exporting margin
and the high variation in export intensity among exporting firms jointly indicate that there
is sufficient variation to identify ρ in our setting, coming from, inter alia, the cross section
of firms. This is in contrast to methods that assume only one market, where only time
series variation identifies ρ.

5.2 Main results

In this section we report results for the factor shares method using our multi-market esti-
mator, the single-market estimator, and the standard estimator that makes no correction
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for demand.
An important decision when taking the factor shares method to the data is whether

to classify inputs as flexible or predetermined. It is quite standard in production function
applications to treat capital as a quasi-fixed input and to treat materials as a flexible
input. The treatment of labor varies by application. Many applications in the developing
world (e.g., Colombia, Chile, Mexico) treat labor like a flexible input. Applications to
developed-world data sometimes treat labor as a flexible input, and sometimes treat it as a
quasi-fixed input. Presumably, developed economies have stricter labor market regulations,
which makes it harder to adjust labor stocks to contemporaneous shocks. With French
data, researchers tend to treat labor as a quasi-fixed input (Harrigan et al., 2023). This is
the assumption that we adopt for our main specification.41

Total Returns to Scale. We present estimates of total returns to scale (RTS) in the
top left panel of Figure 6. Detailed estimates are reported in Tables F.1, F.2, and F.3,
where we also report the persistence parameter h, the demand curvature parameter ρ, and
the long run effect of exporting µ/(1− h), as well as bootstrapped standard errors for all
estimates.

We start with the estimator that makes no demand correction (red triangles) in order
to assess the bias in this commonly-used estimator, and to compare to our preferred spec-
ification. Measured on the left axis of the upper left panel in Figure 6, we find estimated
total returns to scale slightly below 1 for most industries. The mean and median of the
industry-specific average returns to scale are both equal to 0.96. These estimates are close
to what researchers tend to find with this approach. For example, in their factor shares
approach (deflating revenues by industry-wide price indices and interpreting as quantities)
Gandhi et al. (2020) find average returns to scale in Colombia between 0.99 and 1.06, and
between 1.04 and 1.15 for Chile.

Interestingly, the factor share estimates of total returns to scale from Gandhi et al.
(2020) do not differ much from naïve OLS estimates of returns to scale (see Gandhi et al.
2020, Table 2). We find a similar result; OLS estimates of total returns to scale, which we
report in appendix Figure F.4 (top left panel) are remarkably similar to a more elaborate
estimator that neglects any correction for demand in Figure 6.42 This reinforces Klette &

41We later investigate the sensitivity of the results to the possibility that firms partially adjust labor to
contemporaneous shocks; we find that this does not materially alter the main results.

42Recall that the naïve OLS is expected to yield estimated total returns to scale of around 1. See
footnote 38 for more details.
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Griliches (1996) and our argument, that controlling for price variation is essential, even if
adequately controlling for supply shocks.

The upper left panel in Figure 6 also reports our estimates of returns to scale using
the multi-market estimator (depicted by blue circles, left axis). Average total returns to
scale range from 1.05 (Electrical equipment) to 1.22 (Wood, paper products), and for one
industry up to 1.37 (Food, beverage, tobacco). The mean (median) estimate across the 11
industries is 1.15 (1.13), which in line with estimates in Antweiler & Trefler (2002), and
is substantially higher than corresponding OLS estimates (Figure F.4). As hypothesized
by Klette & Griliches (1996), the constant returns to scale estimated by the no demand
correction model mask returns that are actually increasing (in our notation, σM

ft+σ
L
ft+σ

k
ft >

1). Klette & Griliches (1996) argue that ignoring unobserved firm-specific prices would tend
to lead to a downward bias in estimated returns to scale, ceteris paribus. As we discuss
in section 3.3, there are, in fact, several forces that bias the estimator with no demand
correction, and the overall sign cannot be determined in general. Nevertheless, the evidence
in the upper left panel of Figure 6 is consistent with the central hypothesis from Klette &
Griliches (1996).

If the data generating process coincides with the multi-destination model from section
2, then the single market estimator from Klette & Griliches (1996) (and more recently, the
appendix of Gandhi et al. 2020) does not entirely address the transmission bias stemming
from missing output prices. But it remains to be seen how well our version of the single
market estimator from Section 3.4 performs in practice. In the top left panel of Figure 6,
it is clear that the answer is: not very well. Estimates (depicted by black squares) vary
wildly across industries—so much so that we cannot comfortably fit the estimates on the
same scale with the other two estimators. Measured on the right axis (KG only), we find
that the average returns to scale range from -2.4 (Rubbers and plastics) to 7.3 (Chemicals).
For the KG estimator we find only three industries with plausible estimates for returns to
scale: Auto and transportation (1.07), Communication electronics (1.29), and Electrical
equipment (1.36). Estimated average returns to scale are implausibly high or implausibly
low for all other industries.43

The large range of estimates for returns to scale is largely due to the range of estimates
of ρ. Recall that the KG estimator uses the estimate of ρ to “deflate” the revenue elastici-
ties. With the KG estimator, we estimate a range for ρ from -0.64 to 1.48 across industries.
When ρ is estimated to be close to zero, then the returns to scale become very large in

43The high and low estimates of average returns to scale is not just a matter of outlier observations
either. Medians within the industry are very close to the means.

37



absolute value, as they do for Chemicals. When the estimate of ρ is negative, this leads
to negative estimates of returns to scale (Rubbers and plastics and Other manufacturing).
These extreme estimates of ρ are not merely due to estimation uncertainty; the estimates
are quite precise (see Table F.3 for bootstrapped standard errors).

Figure 6: Estimates by Industry
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Notes. The figure reports factor share estimates of average returns to scale, returns to materials, the
demand curvature η = 1/ (ρ− 1), and the LBE learning by exporting (LBE) parameter µ by industry and
estimator. For total and variable returns to scale, the KG estimator is reported on the right axis, while
the multi-market and no demand correction estimators are reported on the left axis. Detailed estimates
are reported in Tables F.1, F.2, and F.3

In Section 3.4, we show that both transmission bias and measurement error in Bproxy
t

could bias the KG factor shares estimator when the true data generating process features
multiple destinations. Even when the sign of the bias on estimated coefficients is clear,
the sign of the bias on estimated returns to scale is ambiguous, since estimated returns
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to scale is a nonlinear transformation of estimated coefficients with biases of potentially
different signs. Consistent with this, there is no discernible pattern in the comparison of
the estimated returns to scale with the KG estimator versus the multi-market estimator.

The wide range of KG estimates of returns to scale is notable because we find much
smaller range of estimated returns to scale in the Monte Carlo experiments when using
the KG estimator. A likely explanation for the difference is that in the Monte Carlo
simulations, we assume the researcher observes the true domestic quantity index B1

t . In
the application we follow the common practice to approximate B1

t using all of the firms’
revenues (not distinguishing exports and domestic sales, nor adding imports) and use price
indices built from producer prices in the domestic market. These discrepancies highlight an
additional, practical advantage for our multi-market estimator: it does not require making
such data compromises, as it does not require building B1

t , nor does it require to deflate
firm revenues.

Given the theoretical drawbacks of applying the KG estimator to a sample of multi-
destination firms, we can alternatively apply the KG estimator to a sample of never ex-
porters, as discussed in Section 3.4. In this case measurement error in Bproxy

t and selection
bias could still lead to biased estimates. Table F.4 reports results for the sample of non
exporters, where we find very similar results to the main KG estimates when we do not
drop exporters (Table F.3). This suggests that measurement error in Bproxy

t is likely the
key driver of the wide range of estimates in the KG estimator. This is not surprising, since
identification in the KG estimator relies on time series variation in aggregate consumption,
for which there are at most 21 observation per industry in our sample. If this key vari-
able is measured poorly—or does not vary much over time—estimates should indeed vary
substantially.44

In our preferred specification (Figure 6, blue circles) average returns to scale are greater
than 1 for all industries. This indicates that there are efficiency gains from size embedded
in the technology used by firms, regardless of how total factor productivity evolves. Our
estimates imply that returns to scale are increasing for virtually all firm-year observations,
not just on average (see F.3).45 From a welfare perspective, increasing returns imply a cost

44Recall that the measurement error is not classical, so the direction of the bias is not necessarily towards
zero.

45Several mechanisms could explain this phenomenon. The simplest explanation for increasing returns
to scale is the presence of fixed costs of operation. Alternatively, complementarities within the firm could
generate increasing returns at any point along the firm-size distribution. For example, externalities across
workers could lead to increasing returns (e.g., learning by doing), as in for example Kellogg (2011); Hjort
(2014), among others.
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to diversification that weighs against love of variety, as hypothesized by Krugman (1979).
In addition, increasing returns imply larger business cycle fluctuations, and may provide a
rationale for targeted interventions during downturns.

Returns to Variable Inputs. We turn to estimates of returns to scale for variable
inputs (VRTS), which, in the case that labor is pre-determined each period, are just the
output elasticity with respect to materials. The top right panel of Figure 6 reports averages
across industries by estimator. The mean (median) of the average estimates across indus-
tries is 0.34 (0.35) with the multi-market estimator and 0.30 (0.30) with the no demand
correction estimator. Notice that the first stage for both estimators is identical—but their
interpretation differs. In the no demand correction case the first stage identifies directly
the output elasticity, whereas in the multi market estimator the first stage identifies the
revenue elasticity with respect to materials, and must be divided by ρ in order to obtain
the output elasticity. Since ρ is estimated to be less than 1 when using the multi-market
estimator, the estimated output elasticity of materials is larger.

Returns to variable inputs well below 1 imply negative cross-market complementarities
in the short-to-medium run. For example, a positive demand shock in one market leads to
more sales to that market, an increase in marginal costs, lower sales to other markets and
a reduction in the likelihood of selling to other markets. This is consistent with findings in
Almunia et al. (2021), who argue that the massive negative demand shock in Spain during
the financial crisis caused an increase in exporting, presumably due to a reduction in scale
and in marginal costs.46

Variable returns to scale estimated via the single-market correction method (measured
on the right axis, KG only) yield implausibly large or even negative estimates, ranging
from -0.79 (Rubber and plastic) to 2.53 (Chemical products), with an average and median
around 0.45. As noted above, this variation is mostly due to variation in the estimates of
ρ.

Elasticity of Demand. In the bottom left panel of Figure 6 we report estimates of the
price elasticity of demand η = 1/(ρ−1). With the single-market correction estimator, most
of the demand elasticities fall within the range -4.14 to -0.6, which is a range that is mostly
lower (in magnitude) than what people tend to estimate in the literature. For example,

46Almunia et al. (2021) perform production function and productivity estimation, but when develop-
ing their estimator they ignore cross-market complementarities. We explain how their estimator differs
fundamentally from ours in Appendix G.
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using data on trade flows and trade costs, Shapiro (2016) estimates an average trade
elasticity across industries of -8.16 (see Shapiro 2016, Table 2), which translates into a price
elasticity of demand of -9.16.47 Additionally, with the KG method, we estimate a positive
demand elasticity for Textile and apparel (η = 2.05), and a very high (in magnitude)
demand elasticity for Autos and transport equipment (-58.7).48

With the multi-market estimator, we estimate a range of demand elasticities from -21.5
(Chemicals) to -3.4 (Food, beverage and tobacco), with no implausible outlier estimates.
The mean (median) estimate across industries is -9.9 (-5.8), which is much closer to the
mean and median estimates that are typically estimated in gravity regressions (e.g., Shapiro
2016). Bootstrapped standard errors are reported in Table F.1. Standard errors for η
become extremely large as ρ approaches 1 (as in the case of electrical equipment). It is
more instructive to look at the standard errors for ρ. Here, the bootstrapped confidence
interval is very small. For instance, we can easily reject ρ = 1 for all industries, which
indicates—as expected—that we can reject a homogeneous good hypothesis.

Learning by Exporting. Finally, in the bottom right panel, we report estimates of
LBE effects by industry and estimator. With the multi-market estimator, we estimate LBE
effects in the range of -0.004 (Food, beverage and tobacco) to 0.040 (Textile and apparel).
For the two industries with very low estimated LBE effects (Food, beverage and tobacco
and Rubbers and plastics), we cannot reject zero effect; for all other industries, we do reject
0. Across all 11 industries, the mean (median) estimate of LBE is 0.017 (0.018). These
estimates are lower than the estimates with the no demand correction estimator (mean =
0.04 and median = 0.038) and the single-market correction estimator (mean = 0.035 and
median = 0.030). The comparison suggests that estimated LBE effects are biased upward
in the other estimators, possibly because these estimators mistakenly attribute the effect
of foreign demand shocks to LBE.

It is often stated in the literature that LBE effects are only found in developing-world
firms. With French manufacturing data, we find robust evidence of significant LBE effects,
contrary to this perception. With our multi-market procedure, our estimates translate into
as much as 40% long run cross-sectional differences in productivity between exporters and
non-exporters (Table F.1, last column).49 These estimates are quite precisely estimated,

47In Shapiro (2016), the trade elasticity is equal to 1 minus the elasticity of substitution across varieties,
which is equal to 1 + η in our notation.

48We leave the estimate for Autos and transportation equipment out of Figure 6 for ease of reading.
49The long run, cross-sectional difference is computed as µ/(1 − h), where µ is the effect of exporting

today on productivity tomorrow and h is the persistence parameter in the AR(1) process for productivity.
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which is not surprising given the high number of firm-year observations per industry. Com-
pared to previous work, these effects are smaller than those estimated via RCT with Egyp-
tian firms (Atkin et al., 2017) and via structural approaches with Chilean, Colombian, and
Mexican firms, e.g., (Garcia-Marin & Voigtländer, 2019), but larger than estimates from
Danish firms using a quasi-natural experiment (Buus et al., 2022).50

5.3 Results assuming partial labor adjustment or using the control

function method

In this section, we report two additional sets of results. The first allows for dynamic,
partial adjustment for labor and serves as a robustness check for the main results. The
second set of results applies the control function method, which is just for comparison, as
we expect finite sample bias and weak moments problems.

We start with results that allow labor to partially adjust to contemporaneous produc-
tivity and demand shocks. This permits entertaining the possibility that firms have the
ability to flexibly adjust part of employment, while another part is pre-determined within
the period. This is particularly interesting in the context of the French dual labor mar-
ket, which features both short-term fixed employment contracts and long term indefinite
duration contracts. Even though the French dual labor market is known for its rigidity, it
is certainly possible that French firms adjust the current labor stock to contemporaneous
supply and demand shocks, even if not completely (Saint-Paul, 1996; Reshef et al., 2022).
To allow for this possibility, we need only adjust the factor shares second stage moment
condition (31) to replace all contemporaneous labor measures with lagged measures.

We report detailed results for the four models estimated above (multi-market, no de-
mand correction, single market, and single market with no exporters) in Appendix F.2. The
results are quite similar to our main specification, in which we treat labor as quasi-fixed.
We estimate slightly higher returns to scale and lower elasticities of substitution for the
multi-market estimator, and a slightly larger range of values for LBE (−0.014 to 0.045).
Estimates based on the single-market correction estimator still vary wildly by industry,
and the estimates of LBE still appear biased up in the two misspecified estimators.

We now turn to report results using the control function approach across the four models
50The other notable comparisons in the literature is De Loecker (2013), who estimates LBE effects in the

range of 0.017 to 0.066 across Slovenian manufacturing industries. Note that De Loecker (2013) does not
correct for demand, so these estimates are best compared to the results from our no-demand-correction
estimator, with which we find in a similar range of 0.016 to 0.092.
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estimated above in Appendix F.3. The three models that apply some correction for demand
(multi-market, single market, and single-market while excluding exporters) yield implau-
sible returns to scale and output elasticities, or implausible demand curvatures, or both.
For example, with the multi-market estimator, we estimate positive demand elasticities for
5 out of 11 industries (though these estimates are quite imprecise). Estimated returns to
scale with the multi-market control function model are also quite close to 1, which is similar
to results applying the naïve OLS approach.51 The single market correction model yields
erratic and implausible estimates of both returns to scale and demand elasticities, regard-
less of whether we exclude exporters. The model with no correction for demand yields
mostly plausible estimates of returns to scale (except for Wood and paper products), but
with quite low estimates of returns to capital and high returns to materials—a telltale sign
of transmission bias. We conclude that the control function approach delivers, in practice,
a poor estimator of the production function and demand parameters, which is consistent
with the results from the Monte Carlo simulations.

6 Conclusion

This paper attempts to narrow the gap between the conditions assumed in production func-
tion theory and those confronted by applied researchers. While many factors potentially
contribute to this gap, we address what is arguably one of the most significant factors:
production function estimation routines are built for datasets that report outputs in real
terms, while most firm-level datasets report outputs in value. When estimating production
functions with data denominated in value, researchers tend either to (1) deflate firm-level
revenues and treat the resulting series as if they were real quantities, or (2) implement some
version of the Klette & Griliches (1996) procedure in an attempt to control for unobserved
demand shocks. We show that if the data generating process coincides with a standard
heterogeneous firm trade model, then these two options lead to misguided inference on
factor output elasticities, demand curvature, and determinants of productivity.

We develop an estimator that overcomes the empirical challenges in this setting. Our
estimator is no harder to implement than existing methods and requires only one additional
piece of information: firms’ export shares. Given the model, our procedure is consistent
and has appealing finite sample properties.

51Since we use initial conditions from naïve OLS estimates of the production functions and demand
curvature, we are not surprised to find similar results after performing the GMM search for the non-linear
estimator (Ackerberg et al., 2020).
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When we apply our procedure to French manufacturing firms data, we recover estimates
of demand elasticities between -21.5 and -3.4, which are in a range that is consistent with
much of the literature. We estimate average returns to scale ranging from 1.05 to 1.22
with one industry at 1.37, and average returns to variable inputs below 1. The latter result
implies cross-market complementarities: additional production for a given market raises
the cost of serving all other markets in the short run.

We also estimate that exporting leads to higher firm productivity. We estimate learning-
by-exporting effects ranging from 0 to 4% per year, which imply cross-sectional differences
in productivity between exporters and non-exporters up to 40%. Contrary to the perception
in the literature, we find robust evidence that LBE can affect firms in a developed economy,
France.

Beyond our central methodological point, we re-iterate the messages from Gandhi et al.
(2020) and Ackerberg et al. (2020): the control function approach requires substantive time-
series variation in variable input prices for identification, and is often sensitive to initial
conditions. In contrast, our estimator does not have these drawbacks.

A limitation of our approach is our reliance on CES demand, and the implication for
firm-level markups. But just as one can not squeeze water from a stone, one cannot
circumvent missing output price data without structural assumptions. We believe it is
better to make these assumptions explicit than to resort to an estimator that is internally
inconsistent. Even when output prices are observed, researchers must confront a range
of other problems, such as harmonization of units across firms, multi-product firms, and
the unobserved mapping from inputs to multiple outputs. Thus, when quantity data is
available, our estimator could still be useful as an alternative to multi-product estimators,
which are yet fairly underdeveloped in the literature.

Two additional frontiers that we leave for future research are to incorporate other
realistic dimensions of the data, such as heterogeneous input pricing and quality, and
developing a method to identify which inputs should be treated as variable.
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Appendix

A Proof of proposition 1

Identification of equation (20) requires orthogonality between φft and all variable and
quasi-fixed inputs. The term φft depends on output shares χft, which depend on the levels
of D and ϵ, as do all variable and quasi-fixed inputs.

We must show thatE
[
φft|v1ft, ..., vV

ft, κ
1
ft, ..., κ

K
ft

]
= 0. Suffice to show that E (lnψft|D, ϵ) =

constant (it is not equal to zero; see above) and does not depend on D and ϵ.
First, we develop the Taylor expansion of ln

∑
j χje

uj around u = 0 (mean value for
u’s). The base term is

∑
j

χje
uj

∣∣∣∣∣
u=0

= ln
∑
j

χje
0 = ln

∑
j

χj = ln 1 = 0 . (A.1)

The first order expansion term is:
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The second order expansion term is:
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because (eu)n = eu for any n. And so on. The Taylor expansion around u = 0 is thus

ln
∑
j

χje
uj =

∑
j

χjuj +
1

2

∑
j

χju
2
j +

1

3!

∑
j

χju
3
j ... (A.4)

The structure is linear, and thus amenable to the expectation operator. Substituting into
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E (lnψft|D, ϵ) we have

E (lnψft|D, ϵ)
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which is a constant that does not depend on ϵ. QED.
As a by-product, we now know what E (lnψft) is equal to:

E (lnψft) = ED,ϵ [E (lnψft|D, ϵ)] = E (lnψft|D, ϵ) . (A.10)

where we apply the law of iterated expectations.

B Building market quantity proxy from price indices

In a single-market estimation model, the demand-side parameter is identified from time
series variation in the industry-wide CES demand index. In this section, we discuss how
to construct this index.

Essentially, the quantity index can be recovered from expenditure data and industry-
wide price deflators. Assuming just a single market (hence dropping the d superscript),
and using (2) and (4), we can write

Bρ
t =

∑
f∈Θt

exp (ϵft + uft)X
ρ
ft =

∑
f∈Θt

Rft

Υt

Bρ−1
t (B.11)
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This implies

Bt =
∑
f∈Θt

Rft

Υt

(B.12)

Hence, if we observe the true CES price index in levels, we can construct the CES quantity
index from aggregate deflated revenues.52

But of course, the true CES price index is not observed in levels. First, price indices
are almost always reported relative to some base year normalization. This implies

Bt =
∑
f∈Θt

Rft

Υt

= Υ0

∑
f∈Θt

Rft

Λt︸ ︷︷ ︸
≡Bproxy

t

(B.13)

where Λt is the empirical analogue to the true CES price index normalized to base-year
t = 0, and Υ0 is the unobserved base-year normalization.

Second, the CES price index is a theoretical construct that depends on structural
parameters. How does this theoretical object correspond to Λt? Sato (1976) and Vartia
(1976) prove for a symmetric CES with no entry and exit, there exists a set of weights wtft
such that

ln
Υt

Υ0

=
∑
f∈Θt

wtft ln

(
pft
pfi0

)
(B.14)

I.e., the log change in the true CES price index is a weighted average of the log change in
the prices of individual firms. Sato (1976) and Vartia (1976) give the analytical expression
for these weights, which ends up being very close to a simple chain weight. Feenstra
(1994) extends to the case of entry and exit. Redding & Weinstein (2020) extends to the
asymmetric CES (which corresponds to our demand system (2)). If we assume that Λt is
computed using Weinstein-Redding weights, then (B.13) holds.

52In the only work we are aware of that explains how to construct the CES quantity index, De Loecker
(2011) computes the weighted average of deflated revenues (see De Loecker (2011) equation B.1.9 in the
appendix), though – as we show in (B.12) – theory indicates the gross sum is called for.

52



C Control function method

In this section, we describe the control function approach to estimating our multi-destination
model. The procedure is based on the control function estimation of the gross output pro-
duction function described by Gandhi et al. (2020).53

The control function approach proceeds in two steps. In the first step, ex post shocks
(possibly inclusive of measurement error) are computed as the residual of a non-parametric
regression of revenues on all input levels. Identification relies on substituting for the en-
dogenous unobservable with the material demand function. In the second step, the ex post
shock is subtracted off from revenues and all structural parameters are identified via GMM.

In the first step, Gandhi et al. (2020) invert the material demand function to substitute
for the unobserved shock (νft = ρωft + ϵ1ft, in our case). Since we assume cost minimizing
behavior, we can use the first order conditions instead to accomplish this substitution.
Labeling material demands v1ft, we substitute (12) into (18) and write

rft = f(vft,κft)− ln
[∂F (vft,κft)

∂ev
1
ft

]
+ lnW v1

t − ln ρE [exp (u)] + lnψft (C.15)

Collecting the first two terms into an unknown function, we get

rft = Φ(v1ft, ..., v
V
ft, κ

1
ft, ..., κ

K
ft ) + lnW v1

t − ln ρE [exp (u)] + lnψft (C.16)

We estimate this model approximating Φ(·) with polynomials, including time fixed effects
to control for input prices, and label the residual φ̂ft.54

53The procedure from Gandhi et al. (2020) is virtually the same as the procedure proposed by Ackerberg
et al. (2015), except that Ackerberg et al. (2015) consider the value-added production function. Hence,
Ackerberg et al. (2015) do not identify the material input elasticity.

54We could alternatively substitute for νft using the inverse material demand. In this case, the demand

shifter ln

[
Rft

R1
ft

]
does not cancel. With this method, we could write

rft = Φ(v1ft, ..., v
V
ft, κ

1
ft, ..., κ

K
ft , ln

[
Rft

R1
ft

]
) + δt + ρ lnψft (C.17)

In this formulation, we identify ρ lnψft in the first stage, not lnψft. If we identify ρ lnψft, then we can
subtract it off from both sides of (18) to write

r̃ft = αt + ρF (vft,κft) + (1− ρ) ln

[
Rft

R1
ft

]
+ νft (C.18)

The difference between this approach to the control function first stage and the approach using the first
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In the second step, we subtract off φ̂ft from the both sides of (18) to write

r̃ft = αt + ρf(vft,κft) + (1− ρ) ln D̂ft + νft (C.19)

with r̃ft ≡ rft−φ̂ft, αt = lnD1
t +E [lnψ] and D̂ft =

[
Rft exp(−̂φft)

R1
ft

]
. By assumptions (26) -

(27), we have that νft = hνf,t−1+µef,t−1+ξft and ξft ≡ ϵ̃1ft+(1−ρ)u1ft+h(1−ρ)u1f,t−1+ρω̃ft.
We adopt a complete polynomial of degree 2 and write

r̃ft = αt + βD ln D̂ft +
∑

j∈{1,...,V }

gvjv
j
ft +

∑
j∈{1,...,K }

bκjκjft +
∑

j∈{1,...,V }

∑
z∈{vj ,...,vV ,κ1,...,κK }

gvjzv
j
ftzft

+
∑

j∈{1,...,K }

∑
z∈{κj ,...,κK ,v1,...,vV }

bκjzκ
j
ftzft + νft (C.20)

For any candidate vector, we can compute ̂νft + αt, regress ̂νft + αt on ̂νf,t−1 + αt−1, ef,t−1,
and time fixed effects, and compute the residual ξ̂ft (·). We then build moment conditions
by multiplying ξ̂ft (·) with the levels of all quasi-fixed inputs and ln D̂f,t−2 and all variable
inputs, along with the appropriate interaction and square terms. At the true parameter
values, ξ̂ft correlates with ln D̂ft and all variable inputs in period t. But given the timing
assumptions, ξ̂ft is orthogonal to the lags of all variable inputs and ln D̂f,t−2.

Finally, we compute ρ̂ = 1 − β̂D, deflate all the ĝ , b̂ coefficients, and compute factor
output elasticities.

order condition is that here, we condition on ln

[
Rft

R1
ft

]
in the first stage and then leave φft out of the

construction of the firm-specific demand shifter in the second stage. Since we already assume monopolistic
competition and cost minimizing behavior to solve the model, there is no reason not to use the first order
condition in the control function first stage. But we certainly could adopt this alternative method.

54



D Sensitivity to initial guesses in the control function

approach

In order to investigate the sensitivity to initial values discussed by Ackerberg et al. (2020),
we return to the single-market data generating process from section 4.1. In the main text
we present Monte Carlo results for the control function approach when the second-step
GMM procedure starts from the true parameter vector and when the GMM starts from
the OLS estimates. We document in Figure 1 that the solution to the GMM varies with
the starting value.

Here, we confirm the analysis from Ackerberg et al. (2020) by systematically varying the
starting conditions. We run the same Monte Carlo simulations as in the main text. We vary
initial conditions for βD

0 ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25}, βM
0 ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}

and βK
0 ∈ {0, 0.1, 0.2, 0.3, 0.4}. We compute the GMM solution starting from every combi-

nation defined by these three sets. Recall that the true parameter values are βD = 1− ρ =

0.2, βM = ρσM = 0.64 and βK = ρσK = 0.24.
In Figure D.1 (D.2), we present results when the data is simulated with a high (low)

degree of time series variation in material input prices. We display the distribution of
GMM solutions for each parameter for two different Monte Carlo samples, one in each
row. Results starting from the OLS estimates are depicted with a vertical red dashed line.
Results from all other starting values are depicted in solid bars in blue.

In Figure D.1, we see that the estimates based on the OLS initial values coincide with
the results in Figure 1: starting from the OLS values, the GMM solution tends towards
ρ = 1, σM = 1, and σK = 0 (red dashed line). In Figure D.1, we also see that when the
GMM starts from other initial conditions there is a mass point of convergence around the
same values, although we also see other mass points. This bunching pattern is consistent
with Ackerberg et al. (2020).

In Figure D.2, we see that the estimates converges more often towards the OLS results.
That is, the distribution is bunched more tightly around the OLS estimates than in Figure
D.1. This is what we would expect, as with low input price variation, the GMM suffers
from weak instruments, which tends to bias the esitmates towards the OLS result.

Overall, we see that given the exact same data, the GMM solution can vary wildly
depending on the initial guess for the parameters.

55



Figure D.1: Different Starting Values for Control Function Estimation, High Material Price
Variation
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Notes. The figure reports the distribution of estimates of ρ and averages of estimates of factor output
elasticities resulting from the control function method taking different parameter vectors as starting values
for the second-step GMM procedure. Each row reports results for a single Monte Carlo sample. Data is
generated based on the single-market scenario described in Section 4.1, with high input price variation.
The true parameter values are ρ = 0.8, σM = 0.8 and σK = 0.3.
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Figure D.2: Different Starting Values for Control Function Estimation, Low Material Price
Variation
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Notes. The figure reports the distribution of estimates of ρ and averages of estimates of factor output
elasticities resulting from the control function method taking different parameter vectors as starting values
for the second-step GMM procedure. Each row reports results for a single Monte Carlo sample. Data
is generated based on the single-market scenario described in Section 4.1, with low input price variation.
The true parameter values are ρ = 0.8, σM = 0.8 and σK = 0.3.
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E Data

Firm-level balance sheet information is reported in the FICUS (Fichier complet unifié de
SUSE ) and FARE (Fichier Approché des Résultats ESANE ) datasets, which cover the
periods 1994–2007 and 2008–2016, respectively. These data originate in tax declarations
of all firms in France, and are collected by the French National Institute of Statistics and
Economic Studies, INSEE. We use total revenue, expenditure on materials, employment
and the book value of capital.

We construct capital stocks following the methodology proposed by Bonleu et al. (2013)
and Cette et al. (2015). We start with the book value of capital. Since the stocks are
recorded at historical cost, i.e., the value at the time of entry into the firm i’s balance
sheet, an adjustment has to be made to move from stocks valued at historic cost (KBV

i,s,t) to
stocks valued at current prices (Ki,s,t). We deflate KBV by an industry-specific price index
(sourced from INSEE) that assumes that the price of capital is equal to the sectoral price
of investment T years before the date when the first book value was available, where T is
the corrected average age of capital, hence pKs,t+1 = pIs,t−T . The average age of capital is
computed using the share of depreciated capital, DKBV

i,s,t in the capital stock at historical
cost:

T =
DKBV

i,s,t

KBV
i,s,t

× Ã

where

Ã = mediani∈S

(
KBV

i,s,t

∆DKBV
i,s,t

)

where S the set of firms in a sector. We use the median value Ã to reduce the volatility in
the data, as investments within firms are discrete events.

Data on firms’ exports are from the French Customs. For each observation, we know
the value of exports of the firm. We use the firm-level SIREN identifier to match the trade
data to FICUS/FARE. This match is not perfect. The imperfect match is because there
are SIRENs in the trade data for which there is no corresponding SIREN in FICUS/FARE.
This may lead to measurement error: for some firms, we will observe zero exports even
when true exports are positive. This is not a big concern because most of the missing
values are in the oil refining industry, which we drop from our sample.
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F Additional Results from French Manufacturing

F.1 Results with pre-determined labor
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Table F.1: Estimates using Multi-Market Estimator, Predetermined Labor Input

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1− h)

Food, beverage, tobacco 0.488 0.546 0.346 1.380 0.710 -3.453 -0.004 0.792 -0.019
(0.009) (0.010) (0.007) (0.025) (0.013) (0.163) (0.003) (0.005) (0.013)

Textiles, wearing apparel 0.339 0.560 0.237 1.136 0.798 -4.956 0.040 0.898 0.396
(0.024) (0.037) (0.017) (0.076) (0.051) (1.486) (0.003) (0.004) (0.023)

Wood, paper products 0.312 0.719 0.187 1.218 0.807 -5.178 0.019 0.830 0.111
(0.006) (0.013) (0.005) (0.022) (0.014) (0.357) (0.001) (0.006) (0.006)

Chemical products 0.384 0.535 0.177 1.096 0.954 -21.523 0.013 0.870 0.102
(0.007) (0.015) (0.009) (0.015) (0.012) (6.614) (0.002) (0.015) (0.016)

Rubber and plastic 0.360 0.536 0.203 1.099 0.923 -13.015 0.000 0.870 0.002
(0.010) (0.016) (0.012) (0.036) (0.027) (5.364) (0.001) (0.007) (0.010)

Basic metal and fabricated metal 0.269 0.734 0.209 1.212 0.808 -5.195 0.010 0.836 0.060
(0.006) (0.017) (0.006) (0.028) (0.018) (0.500) (0.001) (0.005) (0.007)

Computer, electronics 0.325 0.595 0.150 1.070 0.918 -12.266 0.019 0.838 0.117
(0.007) (0.015) (0.007) (0.021) (0.017) (2.952) (0.002) (0.008) (0.014)

Electrical equipment 0.366 0.533 0.156 1.055 0.931 -14.575 0.017 0.833 0.105
(0.011) (0.019) (0.009) (0.029) (0.025) (27.360) (0.003) (0.010) (0.014)

Machinery and equipment 0.341 0.676 0.141 1.158 0.829 -5.838 0.029 0.786 0.137
(0.014) (0.028) (0.012) (0.052) (0.033) (0.653) (0.002) (0.008) (0.007)

Autos and transport equipment 0.386 0.562 0.172 1.120 0.942 -17.316 0.018 0.792 0.086
(0.006) (0.014) (0.010) (0.018) (0.014) (3.865) (0.003) (0.018) (0.012)

Other manufacturing 0.273 0.631 0.227 1.131 0.827 -5.767 0.024 0.856 0.167
(0.006) (0.012) (0.007) (0.021) (0.017) (0.631) (0.001) (0.006) (0.008)

Notes. The table reports estimates based on the multi-market estimator, treating labor as predetermined (like capital):
average output elasticities σj for materials input (j =M), labor (j = L) and capital (j =M), overall returns to scale (RTS),
the demand elasticity η = 1/(ρ − 1), the coefficient to learning by exporting µ, the persistence parameter in the controlled
Markov h, and the long run effect of exporting µ/(1− h). Bootstrap standard errors clustered by firm in parentheses.
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Table F.2: Estimates using no Demand Correction, Predetermined Labor Input

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1− h)

Food, beverage, tobacco 0.346 0.401 0.160 0.907 - - 0.092 0.923 1.185
(0.001) (0.003) (0.002) (0.003) (0.002) (0.002) (0.027)

Textiles, wearing apparel 0.271 0.455 0.169 0.895 - - 0.041 0.951 0.822
(0.002) (0.006) (0.004) (0.005) (0.002) (0.002) (0.029)

Wood, paper products 0.252 0.581 0.145 0.977 - - 0.035 0.949 0.695
(0.001) (0.004) (0.003) (0.003) (0.002) (0.002) (0.019)

Chemical products 0.366 0.511 0.167 1.044 - - 0.023 0.969 0.751
(0.004) (0.013) (0.009) (0.006) (0.003) (0.005) (0.084)

Rubber and plastic 0.333 0.493 0.179 1.006 - - 0.016 0.971 0.546
(0.002) (0.005) (0.005) (0.003) (0.001) (0.002) (0.039)

Basic metal and fabricated metal 0.218 0.596 0.156 0.969 - - 0.035 0.931 0.505
(0.001) (0.004) (0.003) (0.003) (0.001) (0.002) (0.014)

Computer, electronics 0.299 0.536 0.144 0.979 - - 0.038 0.936 0.597
(0.004) (0.010) (0.006) (0.009) (0.003) (0.007) (0.044)

Electrical equipment 0.341 0.484 0.144 0.969 - - 0.034 0.953 0.710
(0.004) (0.011) (0.008) (0.008) (0.003) (0.004) (0.051)

Machinery and equipment 0.283 0.556 0.109 0.948 - - 0.053 0.880 0.446
(0.002) (0.007) (0.003) (0.007) (0.002) (0.008) (0.020)

Autos and transport equipment 0.363 0.541 0.147 1.052 - - 0.045 0.924 0.586
(0.004) (0.010) (0.008) (0.008) (0.005) (0.014) (0.069)

Other manufacturing 0.226 0.531 0.166 0.923 - - 0.039 0.943 0.681
(0.001) (0.005) (0.003) (0.004) (0.002) (0.002) (0.021)

Notes. The table reports estimates without correcting for demand at all, using the factor share approach, treating labor as
predetermined (like capital): average output elasticities σj for materials input (j =M), labor (j = L) and capital (j =M),
overall returns to scale (RTS), the demand elasticity η = 1/(ρ−1), the coefficient to learning by exporting µ, the persistence
parameter in the controlled Markov h, and the long run effect of exporting µ/(1 − h). Bootstrap standard errors clustered
by firm in parentheses.
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Table F.3: Estimates using Single-Market Estimator (KG), Predetermined Labor Input

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1− h)

Food, beverage, tobacco 0.843 0.964 0.411 2.218 0.411 -1.698 0.085 0.849 0.563
(0.018) (0.024) (0.010) (0.050) (0.009) (0.025) (0.004) (0.005) (0.019)

Textiles, wearing apparel 0.182 0.310 0.113 0.605 1.487 2.054 0.027 0.894 0.257
(0.003) (0.006) (0.003) (0.010) (0.022) (0.094) (0.001) (0.004) (0.008)

Wood, paper products 0.497 1.141 0.296 1.935 0.506 -2.025 0.036 0.848 0.236
(0.029) (0.064) (0.020) (0.112) (0.030) (0.126) (0.002) (0.007) (0.016)

Chemical products 2.534 3.532 1.183 7.249 0.144 -1.169 0.101 0.873 0.797
(0.537) (0.786) (0.243) (1.553) (0.025) (0.034) (0.026) (0.015) (0.220)

Rubber and plastic -0.790 -1.158 -0.452 -2.399 -0.421 -0.704 -0.007 0.875 -0.059
(0.083) (0.125) (0.041) (0.247) (0.051) (0.024) (0.002) (0.008) (0.015)

Basic metal and fabricated metal 0.448 1.161 0.373 1.982 0.486 -1.944 0.029 0.851 0.192
(0.014) (0.033) (0.014) (0.058) (0.014) (0.054) (0.002) (0.006) (0.010)

Computer, electronics 0.393 0.719 0.181 1.293 0.759 -4.150 0.031 0.837 0.189
(0.028) (0.052) (0.016) (0.093) (0.055) (1.559) (0.003) (0.009) (0.019)

Electrical equipment 0.477 0.698 0.188 1.362 0.715 -3.511 0.031 0.834 0.188
(0.018) (0.030) (0.011) (0.049) (0.025) (0.338) (0.003) (0.011) (0.017)

Machinery and equipment 0.498 0.982 0.194 1.674 0.568 -2.316 0.061 0.794 0.296
(0.057) (0.106) (0.031) (0.193) (0.042) (0.153) (0.005) (0.014) (0.065)

Autos and transport equipment 0.370 0.545 0.159 1.073 0.983 -58.695 0.023 0.795 0.111
(0.005) (0.010) (0.009) (0.009) (0.004) (14.148) (0.002) (0.018) (0.010)

Other manufacturing -0.352 -0.818 -0.304 -1.475 -0.640 -0.610 -0.034 0.876 -0.271
(0.074) (0.175) (0.060) (0.308) (0.108) (0.042) (0.009) (0.007) (0.054)

Notes. The table reports estimates based on the single-market estimator à la Klette & Griliches (1996), using the factor
share approach, treating labor as predetermined (like capital): average output elasticities σj for materials input (j = M),
labor (j = L) and capital (j = M), overall returns to scale (RTS), the demand elasticity η = 1/(ρ − 1), the coefficient to
learning by exporting µ, the persistence parameter in the controlled Markov h, and the long run effect of exporting µ/(1−h).
Bootstrap standard errors clustered by firm in parentheses.
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Figure F.3: Returns to Scale by Industry

Notes. This figure presents estimated returns to scale via the multi-market factor shares estimator by
firm-year against log of capital. Labor is assumed to be pre-determined.
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Table F.4: Estimates using Single-Market Estimator (KG) on Sample of Non-Exporters, Predetermined Labor Input

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1− h)

Food, beverage, tobacco 0.824 0.950 0.421 2.196 0.420 -1.725 - 0.857 -
(0.018) (0.024) (0.010) (0.050) (0.009) (0.026) (0.005)

Textiles, wearing apparel 0.179 0.318 0.127 0.624 1.515 1.942 - 0.913 -
(0.003) (0.007) (0.003) (0.011) (0.024) (0.092) (0.003)

Wood, paper products 0.521 1.210 0.325 2.056 0.483 -1.935 - 0.851 -
(0.032) (0.071) (0.023) (0.124) (0.030) (0.115) (0.006)

Chemical products 2.838 4.035 1.361 8.235 0.129 -1.148 - 0.874 -
(0.729) (1.078) (0.343) (2.136) (0.026) (0.034) (0.014)

Rubber and plastic -0.789 -1.162 -0.454 -2.405 -0.422 -0.703 - 0.874 -
(0.082) (0.125) (0.041) (0.247) (0.051) (0.024) (0.008)

Basic metal and fabricated metal 0.456 1.193 0.395 2.044 0.477 -1.913 - 0.854 -
(0.014) (0.034) (0.014) (0.059) (0.014) (0.051) (0.005)

Computer, electronics 0.458 0.852 0.229 1.539 0.652 -2.874 - 0.843 -
(0.039) (0.073) (0.024) (0.133) (0.058) (0.618) (0.009)

Electrical equipment 0.489 0.727 0.212 1.428 0.697 -3.304 - 0.838 -
(0.019) (0.031) (0.012) (0.053) (0.026) (0.299) (0.011)

Machinery and equipment 0.510 1.025 0.219 1.753 0.555 -2.245 - 0.804 -
(0.073) (0.140) (0.043) (0.255) (0.046) (0.155) (0.013)

Autos and transport equipment 0.370 0.555 0.168 1.093 0.982 -55.556 - 0.801 -
(0.005) (0.011) (0.009) (0.010) (0.004) (12.718) (0.018)

Other manufacturing -0.309 -0.738 -0.276 -1.323 -0.729 -0.578 - 0.881 -
(0.055) (0.132) (0.045) (0.231) (0.108) (0.037) (0.007)

Notes. The table reports estimates based on the single-market estimator à la Klette & Griliches (1996), using the factor
share approach, treating labor as predetermined (like capital), where we restrict the sample to non-exporting firms: average
output elasticities σj for materials input (j = M), labor (j = L) and capital (j = M), overall returns to scale (RTS),
the demand elasticity η = 1/(ρ − 1), the coefficient to learning by exporting µ, the persistence parameter in the controlled
Markov h, and the long run effect of exporting µ/(1− h). Bootstrap standard errors clustered by firm in parentheses.
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F.2 Results allowing partial adjustment for labor
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Table F.5: Estimates using Multi-Market Estimator, Partially Adjusting Labor Input

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1− h)

Food, beverage, tobacco 0.486 0.846 0.199 1.532 0.712 -3.475 0.006 0.723 0.021
(0.008) (0.013) (0.004) (0.024) (0.012) (0.142) (0.003) (0.004) (0.010)

Textiles, wearing apparel 0.373 0.779 0.185 1.337 0.725 -3.641 0.045 0.849 0.296
(0.021) (0.072) (0.013) (0.089) (0.039) (0.541) (0.003) (0.005) (0.020)

Wood, paper products 0.323 0.941 0.102 1.365 0.780 -4.545 0.011 0.776 0.051
(0.005) (0.019) (0.004) (0.024) (0.012) (0.246) (0.002) (0.005) (0.007)

Chemical products 0.390 0.703 0.105 1.198 0.937 -15.926 -0.000 0.821 -0.002
(0.006) (0.023) (0.012) (0.017) (0.010) (2.817) (0.003) (0.012) (0.016)

Rubber and plastic 0.374 0.736 0.124 1.233 0.890 -9.120 -0.014 0.818 -0.079
(0.009) (0.032) (0.005) (0.041) (0.022) (1.453) (0.003) (0.006) (0.015)

Basic metal and fabricated metal 0.277 0.898 0.126 1.301 0.786 -4.683 0.005 0.802 0.024
(0.006) (0.024) (0.004) (0.030) (0.017) (0.364) (0.001) (0.004) (0.007)

Computer, electronics 0.328 0.711 0.095 1.133 0.911 -11.225 0.009 0.810 0.046
(0.007) (0.024) (0.008) (0.027) (0.018) (2.619) (0.003) (0.007) (0.016)

Electrical equipment 0.368 0.644 0.099 1.112 0.926 -13.430 0.012 0.799 0.062
(0.010) (0.031) (0.012) (0.032) (0.024) (5.545) (0.003) (0.008) (0.016)

Machinery and equipment 0.348 0.811 0.092 1.251 0.813 -5.360 0.019 0.758 0.080
(0.015) (0.055) (0.004) (0.071) (0.034) (0.583) (0.003) (0.005) (0.010)

Autos and transport equipment 0.382 0.637 0.129 1.148 0.951 -20.317 0.009 0.767 0.037
(0.006) (0.016) (0.010) (0.018) (0.013) (4.929) (0.003) (0.015) (0.013)

Other manufacturing 0.292 0.962 0.138 1.392 0.771 -4.374 0.008 0.775 0.035
(0.005) (0.022) (0.005) (0.027) (0.014) (0.277) (0.002) (0.004) (0.010)

Notes. The table reports estimates based on the multi-market estimator, allowing labor to partially adjust to current period
shocks: average output elasticities σj for materials input (j = M), labor (j = L) and capital (j = M), overall returns to
scale (RTS), the demand elasticity η = 1/(ρ − 1), the coefficient to learning by exporting µ, the persistence parameter in
the controlled Markov h, and the long run effect of exporting µ/(1 − h). Bootstrap standard errors clustered by firm in
parentheses.
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Table F.6: Estimates using Single-Market Estimator (KG), Partially Adjusting Labor Input

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1− h)

Food, beverage, tobacco 0.469 0.914 0.084 1.466 0.739 -3.826 0.054 0.775 0.238
(0.012) (0.018) (0.007) (0.033) (0.018) (0.262) (0.003) (0.003) (0.013)

Textiles, wearing apparel 0.171 0.287 0.115 0.573 1.586 1.706 0.029 0.852 0.195
(0.003) (0.012) (0.007) (0.010) (0.029) (0.085) (0.002) (0.005) (0.012)

Wood, paper products 0.508 1.429 0.193 2.130 0.496 -1.982 0.026 0.810 0.137
(0.032) (0.095) (0.016) (0.136) (0.030) (0.120) (0.003) (0.004) (0.013)

Chemical products 23.606 44.825 5.790 74.221 0.015 -1.016 -0.310 0.836 -1.890
(85.397) (163.150) (19.452) (267.802) (0.151) (0.471) (0.804) (0.015) (5.118)

Rubber and plastic -0.803 -1.554 -0.293 -2.650 -0.415 -0.707 0.020 0.830 0.116
(0.087) (0.154) (0.034) (0.272) (0.054) (0.025) (0.003) (0.007) (0.016)

Basic metal and fabricated metal 0.352 0.900 0.274 1.526 0.618 -2.615 0.024 0.810 0.127
(0.008) (0.034) (0.012) (0.041) (0.014) (0.096) (0.002) (0.005) (0.010)

Computer, electronics 0.428 0.893 0.150 1.471 0.697 -3.300 0.020 0.812 0.107
(0.030) (0.069) (0.016) (0.107) (0.049) (0.649) (0.003) (0.008) (0.017)

Electrical equipment 0.485 0.828 0.134 1.448 0.702 -3.358 0.023 0.799 0.115
(0.021) (0.062) (0.018) (0.071) (0.030) (0.372) (0.004) (0.012) (0.020)

Machinery and equipment 0.554 1.218 0.172 1.944 0.510 -2.042 0.056 0.776 0.251
(0.078) (0.176) (0.033) (0.286) (0.044) (0.131) (0.007) (0.010) (0.053)

Autos and transport equipment 0.370 0.615 0.127 1.112 0.982 -54.193 0.011 0.770 0.050
(0.004) (0.016) (0.011) (0.011) (0.004) (14.038) (0.003) (0.015) (0.010)

Other manufacturing 2.353 7.098 1.496 10.948 0.096 -1.106 0.252 0.803 1.274
(9.305) (28.465) (5.755) (43.521) (0.060) (0.075) (0.928) (0.005) (4.851)

Notes. The table reports estimates based on the single-market estimator à la Klette & Griliches (1996), using the factor
share approach, allowing labor to partially adjust to current period shocks: average output elasticities σj for materials input
(j = M), labor (j = L) and capital (j = M), overall returns to scale (RTS), the demand elasticity η = 1/(ρ − 1), the
coefficient to learning by exporting µ, the persistence parameter in the controlled Markov h, and the long run effect of
exporting µ/(1− h). Bootstrap standard errors clustered by firm in parentheses.
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Table F.7: Estimates using Single-Market Estimator (KG) on Sample of Non-Exporters, Partially Adjusting Labor Input

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1− h)

Food, beverage, tobacco 0.455 0.905 0.084 1.444 0.761 -4.179 - 0.777 -
(0.012) (0.018) (0.008) (0.033) (0.019) (0.331) (0.003)

Textiles, wearing apparel 0.162 0.305 0.114 0.581 1.673 1.487 - 0.850 -
(1.479) (1.440) (1.419) (4.338) (0.248) (0.361) (0.012)

Wood, paper products 0.522 1.491 0.200 2.214 0.482 -1.930 - 0.811 -
(0.034) (0.101) (0.017) (0.145) (0.030) (0.114) (0.004)

Chemical products 18.729 35.354 4.628 58.711 0.020 -1.020 - 0.836 -
(36.482) (69.525) (8.114) (114.013) (0.098) (0.079) (0.015)

Rubber and plastic -0.812 -1.548 -0.299 -2.659 -0.410 -0.709 - 0.832 -
(0.088) (0.157) (0.035) (0.277) (0.054) (0.025) (0.007)

Basic metal and fabricated metal 0.357 0.933 0.280 1.569 0.610 -2.563 - 0.811 -
(0.008) (0.034) (0.012) (0.041) (0.013) (0.089) (0.005)

Computer, electronics 0.465 0.997 0.163 1.625 0.642 -2.792 - 0.815 -
(0.035) (0.083) (0.019) (0.129) (0.050) (0.456) (0.008)

Electrical equipment 0.494 0.870 0.140 1.504 0.690 -3.222 - 0.801 -
(0.022) (0.063) (0.019) (0.073) (0.030) (0.338) (0.011)

Machinery and equipment 0.578 1.312 0.186 2.076 0.489 -1.958 - 0.783 -
(0.094) (0.221) (0.041) (0.355) (0.045) (0.125) (0.009)

Autos and transport equipment 0.370 0.627 0.128 1.124 0.981 -53.237 - 0.773 -
(0.004) (0.016) (0.011) (0.011) (0.004) (13.594) (0.015)

Other manufacturing 3.197 10.031 1.991 15.219 0.071 -1.076 - 0.804 -
(406.503) (1280.868) (252.535) (1939.906) (0.059) (0.069) (0.005)

Notes. The table reports estimates based on the single-market estimator à la Klette & Griliches (1996), using the factor
share approach, allowing labor to partially adjust to current period shocks, where we restrict the sample to non-exporting
firms: average output elasticities σj for materials input (j = M), labor (j = L) and capital (j = M), overall returns to
scale (RTS), the demand elasticity η = 1/(ρ − 1), the coefficient to learning by exporting µ, the persistence parameter in
the controlled Markov h, and the long run effect of exporting µ/(1 − h). Bootstrap standard errors clustered by firm in
parentheses.
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Table F.8: Estimates using no Demand Correction, Partially Adjusting Labor Input

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1− h)

Food, beverage, tobacco 0.346 0.635 0.070 1.052 - - 0.142 0.861 1.024
(0.001) (0.008) (0.004) (0.006) (0.003) (0.004) (0.041)

Textiles, wearing apparel 0.271 0.433 0.192 0.896 - - 0.046 0.948 0.869
(0.002) (0.021) (0.009) (0.013) (0.003) (0.003) (0.038)

Wood, paper products 0.252 0.708 0.092 1.052 - - 0.046 0.908 0.507
(0.001) (0.010) (0.005) (0.006) (0.001) (0.005) (0.025)

Chemical products 0.366 0.830 0.025 1.221 - - 0.011 0.869 0.088
(0.004) (0.339) (0.153) (0.186) (0.091) (0.027) (0.902)

Rubber and plastic 0.333 0.689 0.097 1.118 - - 0.026 0.944 0.462
(0.002) (0.022) (0.010) (0.013) (0.002) (0.005) (0.041)

Basic metal and fabricated metal 0.218 0.629 0.129 0.976 - - 0.041 0.898 0.400
(0.001) (0.010) (0.005) (0.006) (0.002) (0.007) (0.021)

Computer, electronics 0.299 0.611 0.115 1.025 - - 0.043 0.903 0.443
(0.004) (0.023) (0.011) (0.014) (0.003) (0.016) (0.062)

Electrical equipment 0.341 0.569 0.105 1.015 - - 0.054 0.920 0.675
(0.004) (0.040) (0.022) (0.021) (0.008) (0.037) (0.174)

Machinery and equipment 0.283 0.624 0.085 0.992 - - 0.055 0.858 0.390
(0.002) (0.006) (0.003) (0.005) (0.002) (0.007) (0.021)

Autos and transport equipment 0.363 0.602 0.120 1.085 - - 0.046 0.937 0.730
(0.004) (0.014) (0.010) (0.010) (0.004) (0.009) (0.084)

Other manufacturing 0.226 0.680 0.129 1.035 - - 0.053 0.922 0.686
(0.001) (0.012) (0.005) (0.009) (0.002) (0.003) (0.033)

Notes. The table reports estimates without correcting for demand at all, using the factor share approach, allowing labor
to partially adjust to current period shocks: average output elasticities σj for materials input (j = M), labor (j = L) and
capital (j =M), overall returns to scale (RTS), the demand elasticity η = 1/(ρ− 1), the coefficient to learning by exporting
µ, the persistence parameter in the controlled Markov h, and the long run effect of exporting µ/(1− h). Bootstrap standard
errors clustered by firm in parentheses.
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F.3 Results using the control function method in French manu-

facturing data

We report here estimates of production functions, demand parameters and controlled
Markov processes across different models—multi-market model, single market model with
and without exporters, and without correction for demand—using the control function
method. In doing so we cannot apply a quasi-non-parametric approach as we did above
when using the factor shares approach. Instead, we must make a slightly stronger as-
sumption on the structure of the production function. Since the data clearly reject a
Cobb-Douglas production function, we apply a translog, which is a second order approxi-
mation.

We use OLS estimates for setting the initial values for the GMM search, which is a
common practice. This procedure is prone to the Ackerberg et al. (2020) critique, whereby
the GMM search tends not to move away from the OLS point estimates. However, this
does not restrict the results to be similar across different models. Indeed, the results are
distinct across models.
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Table F.9: Estimates using Multi-Market Model, Control Function Estimator

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1− h)

Food, beverage, tobacco 0.685 0.246 0.107 1.038 0.909 -11.021 -0.002 0.847 -0.014
(0.086) (0.041) (0.024) (0.087) (0.116) (23.559) (0.002) (0.020) (0.013)

Textiles, wearing apparel 0.468 0.416 0.093 0.977 1.020 50.659 0.002 0.860 0.013
(0.055) (0.029) (0.014) (0.041) (0.047) (280.992) (0.003) (0.014) (0.019)

Wood, paper products 0.398 0.464 0.073 0.935 1.035 28.470 0.001 0.718 0.003
(0.333) (0.097) (0.038) (0.370) (0.208) (32.896) (0.016) (0.042) (0.088)

Chemical products 0.592 0.356 0.100 1.049 0.971 -34.610 -0.002 0.871 -0.016
(1.354) (0.443) (0.046) (1.832) (0.185) (706.536) (0.178) (0.018) (1.176)

Rubber and plastic 0.541 0.420 0.085 1.045 0.941 -16.945 -0.003 0.806 -0.018
(0.412) (0.023) (0.065) (0.488) (0.149) (103.942) (0.028) (0.014) (0.160)

Basic metal and fabricated metal 0.324 0.483 0.112 0.919 1.058 17.159 0.003 0.807 0.014
(0.051) (0.015) (0.017) (0.068) (0.076) (134.295) (0.003) (0.016) (0.017)

Computer, electronics 0.527 0.431 0.088 1.045 0.957 -23.480 -0.004 0.820 -0.023
(0.092) (0.058) (0.015) (0.103) (0.094) (228.626) (0.010) (0.023) (0.053)

Electrical equipment 0.520 0.373 0.079 0.972 1.020 49.988 0.001 0.818 0.006
(8.582) (3.284) (0.292) (12.149) (0.462) (279.117) (0.502) (0.017) (2.980)

Machinery and equipment 0.441 0.488 0.069 0.998 0.993 -136.461 -0.002 0.767 -0.008
(0.032) (0.039) (0.004) (0.067) (0.076) (617.599) (0.005) (0.009) (0.019)

Autos and transport equipment 0.623 0.379 0.078 1.081 0.931 -14.571 -0.003 0.831 -0.017
(0.310) (0.686) (0.059) (0.774) (0.504) (139.466) (0.026) (0.022) (0.138)

Other manufacturing 0.372 0.444 0.115 0.931 1.018 55.878 0.001 0.836 0.007
(0.013) (0.008) (0.004) (0.019) (0.024) (3157.226) (0.001) (0.012) (0.006)

Notes. The table reports estimates based on the multi-market model, using the control function estimator: average output
elasticities σj for materials input (j = M), labor (j = L) and capital (j = M), overall returns to scale (RTS), the demand
elasticity η = 1/(ρ−1), the coefficient to learning by exporting µ, the persistence parameter in the controlled Markov h, and
the long run effect of exporting µ/(1− h). Bootstrap standard errors clustered by firm in parentheses.

71



Table F.10: Estimates using Single-Market Model (KG), Control Function Estimator

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1− h)

Food, beverage, tobacco 6.272 1.400 1.386 9.059 0.101 -1.112 -0.006 0.824 -0.032
(2.624) (0.351) (0.681) (3.627) (0.285) (0.557) (0.012) (0.046) (0.072)

Textiles, wearing apparel 0.242 0.341 0.040 0.624 1.734 1.362 -0.009 0.816 -0.048
(0.136) (0.147) (0.048) (0.054) (0.370) (11.992) (0.018) (0.020) (0.097)

Wood, paper products 1.052 -4.057 -0.015 -3.019 -0.525 -0.656 0.017 0.824 0.095
(2.211) (21.919) (0.577) (20.339) (0.849) (19.361) (0.155) (0.029) (0.896)

Chemical products 1.288 0.259 0.344 1.891 0.501 -2.006 0.036 0.853 0.246
(0.480) (0.501) (0.076) (0.961) (0.226) (2.695) (0.025) (0.052) (0.164)

Rubber and plastic -2.141 -1.671 -0.391 -4.203 -0.233 -0.811 -0.001 0.805 -0.004
(5.523) (1.390) (1.112) (7.943) (0.263) (0.437) (0.264) (0.030) (2.012)

Basic metal and fabricated metal 0.671 0.041 0.215 0.927 0.920 -12.504 -0.004 0.931 -0.058
(0.180) (1.772) (0.110) (1.708) (0.453) (5.492) (0.008) (0.010) (0.141)

Computer, electronics 0.491 0.459 0.082 1.032 0.968 -30.831 0.001 0.767 0.003
(0.016) (0.384) (0.043) (0.351) (0.199) (46.306) (0.003) (0.030) (0.016)

Electrical equipment 0.541 0.332 0.080 0.953 1.034 29.313 -0.001 0.815 -0.004
(0.017) (0.092) (0.020) (0.091) (0.070) (237.863) (0.006) (0.022) (0.045)

Machinery and equipment 1.207 0.973 0.181 2.361 0.420 -1.723 -0.014 0.805 -0.073
(0.322) (4.167) (0.119) (4.345) (0.906) (117.510) (0.211) (0.021) (0.821)

Autos and transport equipment 0.776 0.105 0.104 0.985 0.995 -198.898 -0.006 0.828 -0.034
(0.411) (0.538) (0.052) (0.087) (0.021) (558.209) (0.011) (0.026) (0.064)

Other manufacturing 0.985 0.624 0.365 1.974 0.464 -1.865 -0.013 0.786 -0.061
(1.134) (1.643) (0.376) (2.942) (1.066) (0.796) (0.018) (0.011) (0.086)

Notes. The table reports estimates based on the single-market model à la Klette & Griliches (1996), using the control
function estimator: average output elasticities σj for materials input (j = M), labor (j = L) and capital (j = M), overall
returns to scale (RTS), the demand elasticity η = 1/(ρ − 1), the coefficient to learning by exporting µ, the persistence
parameter in the controlled Markov h, and the long run effect of exporting µ/(1 − h). Bootstrap standard errors clustered
by firm in parentheses.
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Table F.11: Estimates using Single-Market Model (KG), on Sample of Non-Exporters, Control Function Estimator

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1− h)

Food, beverage, tobacco 6.288 1.403 1.390 9.081 0.101 -1.112 - 0.824 -
(2.568) (0.355) (0.666) (3.555) (0.234) (14.683) (0.050)

Textiles, wearing apparel 0.243 0.350 0.044 0.637 1.672 1.489 - 0.817 -
(0.425) (0.432) (0.127) (0.125) (0.312) (1.979) (0.020)

Wood, paper products 0.831 -2.156 0.048 -1.277 -1.568 -0.389 - 0.821 -
(1.818) (17.279) (0.628) (16.420) (0.869) (42.193) (0.023)

Chemical products 7.214 6.731 0.830 14.776 0.071 -1.077 - 0.849 -
(0.403) (0.683) (0.078) (0.983) (0.252) (1.442) (0.051)

Rubber and plastic -2.143 -1.671 -0.391 -4.205 -0.233 -0.811 - 0.805 -
(7.894) (2.003) (1.711) (11.467) (0.289) (0.338) (0.030)

Basic metal and fabricated metal 0.669 0.029 0.211 0.908 0.929 -14.178 - 0.931 -
(0.407) (2.157) (0.286) (2.056) (0.537) (4.951) (0.012)

Computer, electronics 0.483 0.550 0.065 1.097 0.913 -11.504 - 0.793 -
(0.025) (0.103) (0.026) (0.080) (0.076) (32.094) (0.030)

Electrical equipment 0.599 0.361 0.127 1.087 0.924 -13.227 - 0.844 -
(0.022) (0.084) (0.020) (0.076) (0.060) (3113.756) (0.022)

Machinery and equipment 1.241 1.002 0.190 2.433 0.405 -1.681 - 0.803 -
(0.339) (3.677) (0.107) (3.900) (0.962) (5.230) (0.019)

Autos and transport equipment 0.775 0.101 0.104 0.980 0.995 -195.595 - 0.829 -
(0.274) (0.375) (0.038) (0.071) (0.016) (1405.936) (0.024)

Other manufacturing -0.015 -1.166 -0.002 -1.183 -1.041 -0.490 - 0.801 -
(0.736) (1.293) (0.241) (2.135) (1.278) (1.202) (0.009)

Notes. The table reports estimates based on the single-market model à la Klette & Griliches (1996), using the control function
estimator, where we restrict the sample to non-exporting firms: average output elasticities σj for materials input (j = M),
labor (j = L) and capital (j = M), overall returns to scale (RTS), the demand elasticity η = 1/(ρ − 1), the coefficient to
learning by exporting µ, the persistence parameter in the controlled Markov h, and the long run effect of exporting µ/(1−h).
Bootstrap standard errors clustered by firm in parentheses.
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Table F.12: Estimates using No Demand Correction, Control Function Estimator

Industry σM σL σK RTS ρ η = 1
(ρ−1) µ h µ/(1− h)

Food, beverage, tobacco 0.613 0.264 0.094 0.971 - - 0.026 0.948 0.505
(0.004) (0.010) (0.005) (0.008) (0.004) (0.002) (0.063)

Textiles, wearing apparel 0.463 0.427 0.114 1.005 - - 0.018 0.955 0.401
(0.038) (0.067) (0.010) (0.031) (0.010) (0.015) (0.177)

Wood, paper products -1.383 3.542 -0.090 2.070 - - 0.161 0.828 0.934
(0.531) (0.906) (0.047) (0.329) (0.052) (0.048) (0.301)

Chemical products 0.581 0.309 0.117 1.007 - - 0.021 0.916 0.253
(0.019) (0.049) (0.020) (0.018) (0.007) (0.043) (0.263)

Rubber and plastic 0.360 0.878 0.045 1.283 - - 0.016 0.879 0.134
(0.249) (0.589) (0.055) (0.311) (0.030) (0.026) (0.254)

Basic metal and fabricated metal 0.388 0.458 0.126 0.972 - - 0.011 0.958 0.271
(0.018) (0.026) (0.006) (0.004) (0.002) (0.014) (0.049)

Computer, electronics 0.711 0.061 0.209 0.982 - - -0.108 0.834 -0.647
(0.277) (0.389) (0.102) (0.020) (0.106) (0.048) (0.693)

Electrical equipment 0.532 0.394 0.058 0.984 - - 0.071 0.889 0.634
(0.245) (0.360) (0.064) (0.075) (0.078) (0.041) (0.649)

Machinery and equipment 0.483 0.433 0.063 0.979 - - 0.002 0.910 0.020
(0.340) (0.385) (0.029) (0.021) (0.038) (0.055) (0.242)

Autos and transport equipment 0.632 0.271 0.092 0.994 - - 0.022 0.879 0.178
(0.084) (0.110) (0.015) (0.017) (0.023) (0.037) (0.272)

Other manufacturing 0.397 0.443 0.118 0.958 - - 0.012 0.957 0.273
(0.045) (0.093) (0.019) (0.031) (0.011) (0.033) (0.081)

Notes. The table reports estimates without correcting for demand at all, using the control function estimator: average output
elasticities σj for materials input (j = M), labor (j = L) and capital (j = M), overall returns to scale (RTS), the demand
elasticity η = 1/(ρ−1), the coefficient to learning by exporting µ, the persistence parameter in the controlled Markov h, and
the long run effect of exporting µ/(1− h). Bootstrap standard errors clustered by firm in parentheses.
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F.4 OLS Results

In this section, we present results from OLS estimates of (18), assuming translog form for
f (·).

For the multi-market estimator (blue circles) we proxy Dft with just Rft

R1
ft

, as with OLS
there is no first stage to identify ψft. In this case, the outcome variable is simply log
revenues. We include time fixed effects to absorb the D1

t term.
For the KG method (black squares), we deflate revenues and control for Bproxy

t . In this
case, we cannot control flexibly for time effects, as the indicator variables would absorb
the Bproxy

t term.
The no demand correction model (red triangles) includes time fixed effects.

Figure F.4: Estimates using näive OLS
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Multi-market No Demand Correction KG

Notes. The figure reports OLS estimates of average total returns to scale, ρ, µ, and average factor output
elasticities by industry and estimator. For total returns to scale, the KG estimator is reported on the right
axis, while the multi-market and no demand correction estimators are reported on the left axis.
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G Comparison to Almunia et al. (2021)

In recent work, Almunia et al. (2021) also specify a model with multiple destinations,
monopolistic competition, and quasi-fixed capital. They also estimate production function
parameters and the elasticity of demand, as we do. There are three key differences between
the production function estimation in Almunia et al. (2021) and ours. First, Almunia
et al. (2021) do not control for firm-specific demand shifters when estimating the capital
coefficients. Implicitly, Almunia et al. (2021) assume that all firms within a sector sell to the
same unique market, despite having written a model with multiple destinations. Second,
Almunia et al. (2021) assume that firms are myopic with respect to ex post destination
specific demand shocks (E [euft ] = 1). Third, Almunia et al. (2021) implicitly assume
constant returns to flexible inputs when estimating the elasticity of demand, which is
inconsistent with the thrust of their main findings.

Almunia et al. (2021) claim (see Appendix F.1 of Almunia et al. (2021)) that the
assumption of monopolistic competition implies (in their notation) that

Rit − Cv
it =

1

σ
Rit, (G.1)

where Rit is total revenues of firm i at time t, Cv
it denotes the total variable cost of firm i at

time t, and σ is the elasticity of substitution. Equivalently, we can define in our notation
the total variable cost of firm f in time t,

Costft (Qft) =
∑
j

ev
j
ftW j

t , (G.2)

or assuming just two flexible inputs—materials and labor—(G.2) becomes

Costft (Qft) = emftWm
t + elftW l

t . (G.3)

We can then re-write (G.1) in our notation

Rft − Costft (Qft) = (1− ρ)Rft. (G.4)

Based on assumption (G.1), and substituting for Cv
t with expenditures on flexible in-
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puts, Almunia et al. (2021) derive the following moment condition (in their notation)

E

[
ln

(
σ − 1

σ

)
+ robsit − ln

(
PM
it Mit + witLit

) ]
= 0, (G.5)

or in our notation

E

[
ln ρ+ rft − ln

(
Wm

fte
mft +W l

fte
lft
) ]

= 0. (G.6)

If the assumption in (G.1) were to hold, then indeed the moment condition (G.6) could be
exploited to identify the curvature of demand (ρ, in our notation). But as we show below,
(G.1) requires both (in our notation) E [euft ] = 1 and constant marginal costs. This implies
that firms are myopic with respect to ex post destination specific demand shocks, and that
variable returns to scale are unitary.

We can rewrite the optimization problem of a firm from section 2 for a fixed set of
destinations using the variable cost function (G.3):

max
χft,Qft

L = E

[
Qρ

ft

∑
d∈Ωft

(
χd
ft

)ρ
Dd

t e
ϵdft+ud

ft

]
− Costft (Qft) + λft

1−
∑
d∈Ωft

χd
ft

(G.7)

which leads to first order condition for Qft

ρ (Qft)
ρ−1

[ ∑
d∈Ωft

(
Dd

t e
ϵdft
) 1

1−ρ

]1−ρ

E [eu] =
∂Costft (Qft)

∂Qft

, (G.8)

Multiplying both sides by Qft, we have

ρ (Qft)
ρ

[ ∑
d∈Ωft

(
Dd

t e
ϵdft
) 1

1−ρ

]1−ρ

E [eu] =
∂Costft (Qft)

∂Qft

Qft, (G.9)

and substituting with total revenues

ρE [eu]Rftψ
−1
ft =

∂Costft (Qft)

∂Qft

Qft, (G.10)

Now if we set E [eu] = 1 and we assume
∂Costft(Qft)

∂Qft
Qft = Costft (Qft), we get the mo-

77



ment condition (G.6). But with non-constant marginal cost,
∂Costft(Qft)

∂Qft
Qft ̸= Costft (Qft).

In particular, with decreasing returns to variable inputs – the necessary condition for cross-

market complementarities –
∂Costft(Qft)

∂Qft
Qft ̸= Costft (Qft).

Hence, the assumptions necessary for identification of the curvature in demand in (G.1)
are inconsistent with the mechanism under study in (G.1). Moreover, if one wants to
estimate returns to variable inputs, as we do, the assumptions embedded in (G.6) entail
that returns to variable inputs are unitary, so there is no need to estimate them.
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