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1. Introduction

It is common practice in applied work to allow for simple linear deterministic trends when 

modelling standard economic and financial series (Bhargava, 1986; Stock and Watson, 

1988; Schmidt and Phillips, 1992). However, some of them appear to be characterised by 

exponential growth as in the case of compound interest. An exponential growth trend can 

be captured by taking logs of the series of interest and regressing it against a constant and 

a linear trend. However, fitting a linear trend with a constant growth rate is in most cases 

too restrictive. Alternatively, the raw data can be used to run a regression including an 

exponential time trend as well as a constant. The present paper takes the latter approach 

based on exponential trends and develops an appropriate modelling and testing 

framework in the context of fractional integration. It uses simulation techniques to 

evaluate the properties of the proposed test and also carries out three empirical 

applications to show that the advocated framework captures well the behaviour of the 

data. Modelling exponential trends in a fractional integration setup is a novel contribution 

and the suggested approach is a useful tool to use in the case of economic and financial 

series, possibly exhibiting long memory as well as exponential deterministic trends. 

The structure of the paper is as follows. Section 2 presents the proposed 

framework and testing procedure. Section 3 reports some Montecarlo simulation results 

to assess the finite sample behaviour of the suggested test. Section 4 discusses three 

empirical applications. Section 5 offers some concluding remarks. 

2. The Model

We consider a time series {yt, t = 1, 2, …. } for which the following regression model is 

specified: 

,...,2,1t,xty tt =++= γβα  (1) 
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where α, β and γ are unknown parameters (the intercept, the time trend coefficient and its 

exponent respectively); in addition, xt is assumed to be an integrated process of order d, 

i.e., 

                          ,...,2,1t,ux)B1( tt
d ==−    (2) 

where d can be any real value, B is the backshift operator, i.e., Bkxt = xt-k, and thus ut is 

an I(0) process, more precisely a covariance-stationary one with a spectral density 

function that is positive and bounded at the zero frequency.  

We test the null hypothesis: 

                          ,dd:H oo =      (3) 

for any real value d0 in the model given by (1) and (2) by choosing specific values for γ, 

for example between 0 and 2, with 0.01 increments. Under the null hypothesis (3), the 

model given by (1) and (2) becomes: 

               𝑦𝑦�𝑡𝑡 = 𝛼𝛼1�𝑡𝑡 + 𝛽𝛽(𝑡̃𝑡𝑡𝑡) + 𝑢𝑢𝑡𝑡 , 𝑡𝑡 = 1,2, . . .,    (4) 

where 

,y)B1(y~ t
d

t o−=  

and 

,1)B1(1~ od
t −=  and     𝑡̃𝑡𝑡𝑡 = (1 − 𝐵𝐵)𝑑𝑑𝑜𝑜(𝑡𝑡)𝛾𝛾. 

Since the value of γ is set, one can follow the same strategy as in Robinson (1994) 

and therefore the test statistic is given by: 

,ˆˆ'ˆ
ˆ

ˆ 1
4 aAaTR −=

σ
    (5) 

where T is the sample size, and 
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where λj = 2πj/T, and the summation in * in the above equations is over all frequencies 

which are bounded in the spectrum.1 I(λj) is the periodogram of ,ˆtu  where 

             𝑢𝑢�𝑡𝑡   = 𝑦𝑦�𝑡𝑡 − 𝛼𝛼�1�𝑡𝑡 − 𝛽̂𝛽(𝑡̃𝑡𝑡𝑡) , 𝑡𝑡 = 1,2, . . .,  
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suitable subset of the Rq Euclidean space. Finally, gu is a known function coming from 

the spectral density of ut:  

          .),;(
2

)(
2

πλπτλ
π

σλ ≤<−= uu gf  

Note that this test is parametric and, therefore, it requires specific modelling assumptions 

about the short-memory specification of ut. In particular, if ut is a white noise, gu ≡ 1, 

whilst if it is an AR process of the form φ(L)ut = εt, then gu = |φ(eiλ)|-2, with σ2 = V(εt) 

and the AR coefficients being a function of τ.  

 In this context Robinson (1994) showed that for γ =1: 

         𝑅𝑅� →𝑑𝑑 𝜒𝜒12,𝑎𝑎𝑎𝑎𝑎𝑎 → ∞,   (6) 

where “→d” stands for convergence in distribution. Therefore, unlike in the case of other 

(unit root / fractional) procedures, this is a classical large-sample testing situation. On the 

                                                           
1 For this particular version of the tests of Robinson (1994), the spectrum has a singularity at the zero 
frequency, therefore j runs from 1 to T-1. 
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basis of (5), the null Ho (3) will be rejected against the alternative Ha: d ≠ do if R̂ > 2
,1 αχ , 

with Prob ( 2
1χ > 2

,1 αχ ) = α. It is easy to see that this result holds for any value of γ in the 

interval (0, 1). Specifically, Robinson (1994) used the following regression model 

                     𝑦𝑦𝑡𝑡  =   𝛽𝛽 𝑧𝑧𝑡𝑡  +    𝑥𝑥𝑡𝑡 ,                𝑡𝑡 = 1,2, . . .,   

where zt is a (kx1) observable vector whose elements are assumed to be non-stochastic, 

such as polynomials in t, for example, to include the null hypothesis of a unit root with 

drift if do = 1 and zt = (1,t)T. According to him: “The limiting null and local distributions 

of our test statistic are unaffected by the presence of such regressors. For simplicity, we 

treat only linear regression, but undoubtedly a nonlinear regression will also leave our 

limit distributions unchanged, under standard regularity conditions”. These regularity 

conditions are described in his definition of the class G provided in the Appendix to the 

paper: “ G is the class of k X 1 vector sequences { zt, t = 0, +1, . . } such that zt  = 0, t < 

0 and D defined as 

𝐷𝐷   =   ∑ 𝑤𝑤�𝑡𝑡𝑇𝑇
𝑡𝑡=1  𝑤𝑤�𝑡𝑡𝑇𝑇   ,    and   𝑤𝑤�𝑡𝑡𝑇𝑇    

=    (1�𝑡𝑡, 𝑡̃𝑡𝑡𝑡) 

is positive definite for sufficiently large T.”. G imposes no rate of increase on D; different 

elements can in- crease at different rates, and indeed D need not tend to infinity as T → 

∞. If D is positive definite for T = To, then it is positive definite for all T > To. In the 

empirical applications carried out in Section 4 we set values of γ = 0, 0.10, 0.20, … (0.10), 

…, 1.40 and 1.50, and in each case we estimate the differencing parameter by choosing 

the test statistic (based on Robinson, 1994) with the lowest value. The estimate of d is 

virtually identical to the Whittle one based on the frequency domain used in Robinson 

(1994). Then, for each value of γ and the associated d we compute the residual sum of the 

squares and choose the pair producing the lowest statistic,  𝑅𝑅�, in (6). 
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 Figures 1 to 4 display some realisations of the model given by equations (1) and 

(2). More specifically, we first generate a white noise process with sample size T = 1000, 

and produce time series for t1~ and  tt
~  by setting d0 and γ equal to 0.25, 0.50, 0.75 and 

1 respectively. Then ty~ is obtained from equation (4) with α = 0.2 and β = 0.4 and first 

differences of d0 are taken after removing the first 100 observations. 

FIGURES 1 – 4 ABOUT HERE 

 Figures 1 to 4 correspond to do = 0.25, 0.50, 0.75 and 1 respectively, and each of 

them includes plots of the series (i.e., yt in (1) and (2)) for γ = 0.25, 0.50, 0.75, 1, 1.25 

and 1.50. It can be seen that when γ = 0.25 the trend is almost unnoticeable; however, as 

γ increases the series exhibits a clear trend characterised by convexity, whilst γ = 1 

corresponds to a linear trend, and γ > 1 to one exhibiting concavity. 

 

3. Simulation Results 

In this section we examine the finite sample behaviour of the test statistic proposed above 

by means of Montecarlo simulation techniques (the Fortran codes are available from the 

authors upon request). As Data Generating Processes, we use the GASDEV and RAN3 

routines from Press et al. (1986) to obtain Gaussian series for different sample sizes T = 

100, 500 and 1000 and carry out 10,000 replications in each case; the reported results are 

for a nominal size of 5%. 

 Table 1 displays the rejection frequencies of the test statistic 𝑅𝑅� in (5) for three 

different samples sizes, T = 100, 500 and 1000 and a nominal size of 5%. It can be seen 

that the nominal sizes are too large in all cases, and they approach 0.05 as the sample size 

increases. There is also a bias in the size as higher values are obtained in all cases against 

alternatives of form d < do. Finally, the frequencies against departures from the null 
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increase as the sample size increases, which is consistent with the asymptotic behaviour 

of the test. 

TABLES 1 AND 2 ABOUT HERE 

 Table 2 is similar to Table 1 but reports the results based on the t3-Student 

distribution for the error term. Once again the sizes are higher than the 5% level and 

higher values are observed against departures of the form d < do. The rejection frequencies 

are also higher for this type of departures, and even for small ones the rejection 

frequencies are relatively high. 

 

4. Three Empirical Applications 

For illustration purposes, we use the proposed framework to model three US time series. 

The first is the US real GNP per capita series analysed in Omay et al. (2016); it is quarterly 

and spans the period from 1947 Q1 to 2018 Q1, for a total of 285 observations (see Figure 

5); the source is the FRED database of the Federal Reserve Bank of St Louis 

(https://www.stlouisfed.org/). The second one is the S&P500 weekly series from January 

1, 1970 up to October 23, 2023, obtained from Yahoo Finance (see Figure 6). The third 

one is the US Consumer Price Index for All Urban Consumers, monthly, from January 

1913 until October 2023 (see Figure 7). The issue of interest is whether the effects of 

exogenous shocks are transitory of permanent, and thus whether the series can be 

characterised as trend stationary or difference stationary (Omay et al., 2016). 

 Table 3 reports the results for US real GNP, more precisely the estimates of α, β, 

γ and d in the model given by equations (1) and (2) under the assumption that u(t) is a 

white noise process with zero mean and constant variance. It can be seen that when 

choosing values of γ from 0 to 1.50 with 0.10 increments, the estimates of d are very 

similar and range from 1.28 to 1.30. The estimated model exhibits an exponential trend 

https://www.stlouisfed.org/
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with γ = 0.80, d = 1.28 and the 95% confidence interval being given by (1.17, 1.42), with 

the remaining two parameters, α and β, both being statistically significant. Thus, the unit 

root null hypothesis is rejected in favour of d > 1 and γ < 1, which indicates the presence 

of a concave time trend in the data. 

 Table 4 has the same layout as the previous one but concerns the S&P500 stock 

market index. The estimates of d now range between 0.91 and 1.24 and the lowest statistic 

is obtained with γ = 1.00 and d = 0.97 (0.92, 1.24). Thus, a linear time trend with a unit 

root seems to be a plausible hypothesis; this is consistent, for t >2, with a random walk 

model with an intercept, and thus with the Efficiency Market Hypothesis (EMH) in its 

weak form (Fama, 1970). 

 Finally, Table 5 reports the corresponding results for the US Consumer Price 

Index. In this case d is much higher than 1 (specifically, 1.44), with a confidence interval 

given by (1.38, 1.52), and thus the unit root null hypothesis is rejected in favour of d > 1; 

also, the estimate of γ = 1.10 implies a convex time trend. 

 

5. Conclusions 

This paper puts forward a modelling and testing framework that allows for exponential 

deterministic trends in a fractional integration context. The Montecarlo simulations 

carried out to examine the properties of the proposed test indicate that it performs well in 

finite samples.  As an illustration, the proposed framework is then applied to model the 

behaviour of US real GDP, the S&P500 stock market index, and US Consumer Prices. 

The empirical exercise shows that the suggested model captures well the behaviour of the 

series under examination and is data congruent.  

The proposed modelling approach is widely applicable to time series exhibiting 

an exponential trend. However, it should be noted that, although unlimited exponential 
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growth might characterise some economic and financial series, this is not likely to occur 

whenever real resources are involved. In this case there will necessarily be an upper bound 

which should also be introduced into the model, for instance through a logistic curve. 

This issue is left for future research.  
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Figure 1: Realisations from Equations (1) and (2) with d = 0.25 

γ  =  0.25 γ  =  0.50 

  
γ  =  0.75 γ  =  1.00 

  
γ  =  1.25 γ  =  1.50 

  
Note: We generate Gaussian series with T = 1000, and then produce the realisations of yt in (1) and (2) 
with d = 0.25. 
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Figure 2: Realisations from Equations (1) and (2) with d = 0.50 

γ  =  0.25 γ  =  0.50 

  
γ  =  0.75 γ  =  1.00 

  
γ  =  1.25 γ  =  1.50 

  
Note: We generate Gaussian series with T = 1000, and then produce the realisations of yt in (1) and (2) 
with d = 0.50. 
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Figure 3: Realisations from Equations (1) and (2) with d = 0.75 

γ  =  0.25 γ  =  0.50 

  
γ  =  0.75 γ  =  1.00 

  
γ  =  1.25 γ  =  1.50 

  
Note: We generate Gaussian series with T = 1000, and then produce the realisations of yt in (1) and (2) 
with d = 0.75. 
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Figure 4: Realisations from Equations (1) and (2) with d = 1.00 

γ  =  0.25 γ  =  0.50 

  
γ  =  0.75 γ  =  1.00 

  
γ  =  1.25 γ  =  1.50 

  
Note: We generate Gaussian series with T = 1000, and then produce the realisations of yt in (1) and (2) 
with d = 1.00. 
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Figure 5:  US Real GNP Per Capita 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: the data source is the FRED database of the Federal Reserve Bank of St Louis 
(https://www.stlouisfed.org/); the series is quarterly and the sample period goes from 1947 Q1 to 2018 Q1. 
 

 

Figure 6:  S&P500 Stock Market Index 

 
 
 
 
 
 
 
 
 

Note: the data source is the Yahoo finance (https://es.finance.yahoo.com/); the series is weekly and the 
sample period goes from January 1, 1970 to October 23, 2023. 
 

Figure 7:  US Consumer Price Index for All Urban Consumers 

 
 
 
 
 
 
 
 
 
 

Note: the data source is the  U.S. Department of Labor Bureau of Labor Statistic (https://www.bls.gov); 
the series is monthly and the sample period goes from 1913m1 to 2023m10. 
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Table 1: Rejection frequencies against one-sided alternatives with Gaussian errors 

 do T = 100 T = 500 T = 1000 
 
 

Ho: d > do 

0.20 0.688 0.983 1.000 
0.30 0.478 0.688 0.808 

0.40 0.296 0.354 0.499 
0.50 0.099 0.069 0.057 

 
 

Ho: d < do 

0.50 0.104 0.099 0.068 
0.60 0.319 0.449 0.676 
0.70 0.665 0.883 0.997 

0.80 0.997 1.000 1.000 
Note:   The values reported in this table are the rejection frequencies of the test against fractional 
alternatives. In bold the size of the test. 

 

 

Table 2: Rejection frequencies against one-sided alternatives with t3-distributed 
errors 

 do T = 100 T = 500 T = 1000 
 
 

Ho: d > do 

0.20 0.709 0.878 0.998 
0.30 0.526 0.735 0.910 

0.40 0.314 0.359 0.651 
0.50 0.112 0.089 0.067 

 
 

Ho: d < do 

0.50 0.127 0.109 0.083 
0.60 0.414 0.565 0.712 
0.70 0.727 0.899 1.000 

0.80 1.000 1.000 1.000 
Note:   The values reported in the table are the rejection frequencies of the test against fractional 
alternatives. In bold the size of the test. 
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Table 3: Estimated coefficients for the log of US real GNP per capita 

γ d 95% band α (t-value) β (t-value) Stastistic 

0 1.29 (1.18,  1.42) 9.568  (1120.32) --- 0.02218 
0.10 1.29 (1.18,  1.43) 9.625  (80.19) -0.00584 (-0.47) 0.04994 
0.20 1.29 (1.18,  1.43) 9.585  (172.36) -0.01811 (-0.31) 0.04412 

0.30 1.29 (1.18,  1.43) 9.572  (299.66) -0.00473 (-0.13) 0.03298 
0.40 1.29 (1.18,  1.43) 9.565  (404.95) 0.00347 (0.14) 0.00959 

0.50 1.29 (1.18,  1.43) 9.561  (550.26) 0.00823  (0.46) 0.02218 
0.60 1.29 (1.17,  1.42) 9.559  (712.56) 0.01068 (0.83) -0.05273 
0.70 1.28 (1.17,  1.42) 9.559  (882.03) 0.01165 (1.33) 0.05811 

0.80 1.28 (1.17,  1.42) 9.561  (1008.38) 0.00981  (1.68) 0.00337 
0.90 1.28 (1.17,  1.42) 9.583  (1079.09) 0.00709 (1.92) 0.01557 

1.00 1.28 (1.17,  1.42) 9.565 (1107.19) 0.00453  (2.04) 0.01978 
1.10 1.28 (1.17,  1.42) 9.567  (1115.28) 0.02653 (2.05) 0.05558 

1.20 1.29 (1.18,  1.42) 9.567  (1119.87) 0.00147 (1.91) -0.03381 
1.30 1.29 (1.19,  1.42) 9.568  (1119.53) 0.00079 (1.83) 0.02787 
1.40 1.30 (1.19,  1.42) 9.568  (1122.12)  0.00041 (1.63) -0.06320 

1.50 1.30 (1.20,  1.43) 9.568  (1121.49) 0.02166 (1.54) -0.01687 
Note: The first column reports the values of the exponent for the trend. The second and third columns refers 
respectively to the estimated differecing parameter and the associated 95% confidence intervals. The 
following columns display the intercept and the slope of the exponential trend along with their associated 
t-values. The final column reports the test statistics. 
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Table 4: Estimated coefficients for the log of US real GNP per capita 

γ d 95% band α (t-value) β (t-value) Stastistic 

0 0.96 (0.93,  1.02) 41.119   (0.171) --- 0.227 
0.10 0.96 (0.93,  1.02) 42.633   (0.143) 49.836   (0,16) 0.219 

0.20 0.97 (0.92,  1.23) 52.366   (0.399 39.924  (0.31) 0.203 
0.30 0.97 (0.92,  1.23) 54.121   (0.70) 37.914  (0.56) 0.239 

0.40 0.95 (0.91,  1.22) 57.445   (1.09) 34.327   80.90) 0.202 
0.50 0.95 (0.91,  1.22) 59.009    (1.18) 34.327   (0.90) 0.200 
0.60 0.96 (0.92,  1.22) 73.080   (1.99) 18.523   (1.71) 0.188 

0.70 0.97 (0.92,  1.23) 80.733   (2.28) 10.997   (2.08) 0.161 
0.80 0.97 (0.92,  1.23) 85.950   (2.46) 5.941   (2.38) 0.091 

0.90 0.97 (0.92,  1.23) 89.053   (2.55) 3.004   (2.62) 0.006 

1.00 0.97 (0.92,  1.22) 90.718   (2.60) 1.461   (2.81) -0.001 
1.10 0.97 (0.92,  1.23) 91.577   (2.63) 0.693   (2.96) -0.154 
1.20 0.98 (0.92,  1.22) 92.010   (2.64) 0.324   (3.09) -0.225 
1.30 0.97 (0.92,  1.23) 92.228   (2.65) 0.149   (3.20) -0.289 

1.40 0.98 (0.93,  1.23) 92.341   (2.65) 0.068   (3.30) -0.346 
1.50 0.97 (0.92,  1.24) 92.042  (2.61) 0.031  (3.39) -0.398 

Note: The first column reports the values of the exponent for the trend. The second and third columns refers 
respectively to the estimated differecing parameter and the associated 95% confidence intervals. The 
following columns display the intercept and the slope of the exponential trend along with their associated 
t-values. The final column reports the test statistics. 
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Table 5: Estimated coefficients for the US Consumer Price Index 

γ d 95% band α (t-value) β (t-value) Stastistic 

0 1.43 (1.36,  1.51) 9.921   (3.13) --- 0.144 
0.10 1.43 (1.36,  1.51) 9.938   (1.71) -0.144  (-0.02) 0.147 

0.20 1.42 (1.36,  1.50) 9.851   (3.60) -0.056  (-0.01) 0.129 
0.30 1.43 (1.36,  1.52) 9.814   (5.81) -0.018  (-0.03) 0.122 

0.40 1.43 (1.35,  1.52) 9.784   (8.36) -0.015  (-1.21) 0.124 
0.50 1.42 (1.37,  1.50) 9.871   (4.44) -0.017  (-1.22) 0.108 
0.60 1.43 (1.36,  1.51) 9.742   (4.26) 0.123  (-0.02) 0.119 

0.70 1.42 (1.36,  1.50) 9.796   (7.88) 0.125  (0.59) 0.114 
0.80 1.43 (1.37,  1.52) 9.475   (5.76) 0.166  (0.60) 0.094 

0.90 1.44 (1.38,  1.52) 9.697   (24.36) 0.171  (0.87) 0.088 
1.00 1.44 (1.37,  1.50) 9.722   (26.15) 0.151  (1.11) 0.079 

1.10 1.44 (1.38,  1.52) 9.755   (26.85) 0.106  (1.32) -0.055 
1.20 1.44 (1.38,  1.50) 9.780   (27.05) 0.064  (1.91) -0.079 
1.30 1.44 (1.37,  1.51) 9.741   (27.11) 0.034  (1.93) -0.087 

1.40 1.44 (1.38,  1.51) 9.799   (26.14) 0.018  (1.98) -0.119 
1.50 1.44 (1.37,  1.51) 9.801   (27.13) 0.009  (1.65) -0.145 

Note: The first column reports the values of the exponent for the trend. The second and third columns refers 
respectively to the estimated differecing parameter and the associated 95% confidence intervals. The 
following columns display the intercept and the slope of the exponential trend along with their associated 
t-values. The final column reports the test statistics. 
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