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In this paper, we rank the relative importance of the exogenous parameters upon 
the optimal harvesting size in a stochastic rotation problem. We show that when 
the tree growth follows geometric Brownian motion, the harvesting size is most 
elastic to the harvesting cost, followed by the interest rate, and is least elastic to 
the parameters of tree growth. Similar ranking holds for the linear growth case. In 
both cases the harvesting size is increasing and concave in the harvesting cost, 
bounded between two parallel lines. The harvesting decision is made according to 
a stochastic extension of the Faustmann formula. 
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1 Introduction

The Wicksellian tree-cutting problem addresses the issue of the optimal time

to harvest a growing capital. A repeated tree-cutting problem (with replant-

ing) is known as a rotation problem. In a recent article, Willassen (1998)

used the theory of impulse control to put the stochastic rotation problem1 on

solid theoretical grounding, derived explicit solutions for the problem, and

obtained more accurate valuation of the rotation. He also used simulation

to investigate the sensitivity of the optimal harvesting size with respect to

exogenous parameters. This raises an interesting question: To which exoge-

nous parameter is the optimal harvesting size most elastic? In this paper,

we shall rank theoretically the elasticities of the harvesting size with respect

to the harvesting cost, the interest rate, the drift, and the variance of the

growth pattern of a tree.

The answer to the proposed question has implications to other areas of

economics beyond forest rotations. As pointed out in Miller and Voltaire

1Important contributions in this literature are made, for example, by Miller and Voltaire
(1980, 1983), Malliaris and Brock (1982), Brock, Rothschild and Stiglitz (1988), Clarke
and Reed (1989), Reed and Clarke (1990), and Clark (1990). It should be mentioned that
the “maximum sustained yield” solution cherished by forest experts is closely related to the
solution of the rotation problem [see, Mitra and Wan (1986)], and that other parameters
would enter the harvesting rule if the capital market is not perfect [see Tahvonen, Selo
and Kuuluvainen (2001)].

2



(1983), the tree paradigm can be applied to human capital growth models,

job search models, a firm’s entry/exit decision problem, and general renew-

able resources problems. Since the elasticity measures the sensitivity of the

behavioral function with respect to an exogenous parameter, the ranking of

the elasticities tells us the relative importance of each parameter in the anal-

ysis. The findings of this paper could potentially lead to new results in those

areas.

The ranking of elasticities depends in general on the model specification.

As demonstrated in Clarke and Reed (1989) and Reed and Clarke (1990),

the harvesting rules depend on whether the tree growth is age-dependent or

size-dependent. For this reason, we focus on the benchmark case in which

the growth pattern of a tree follows geometric Brownian motion. In the

Appendix we analyze the case of linear growth to strengthen the results.

Our approach to the proposed problem is not a new mathematical theory,

but a return to the basics: exploring the first and the second order condi-

tions of the stochastic rotation problem. As is common in this literature, the

optimal harvesting size is implicitly defined by the first order condition (a

stochastic extension of the Faustmann formula). Even without an explicit

functional form, the optimal harvesting rule has many interesting built-in
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properties that are previously unknown. For example, there are homogene-

ity conditions among these elasticities that are inherent in the Faustmann

formula. By way of Euler’s theorem, we can partially rank some of the elas-

ticities.

Next, we focus on the functional relationship between harvesting size and

harvesting cost. We show that the harvesting size is a strictly increasing and

strictly concave function of the harvesting cost, and is bounded between two

parallel lines. It enables us to obtain estimates of the harvesting size and the

rotation value that are sharper thanWillassen’s. For example, the harvesting

size is almost linear in the harvesting cost and the estimate of the rotation

value is almost exact if the seedling value is small. More important, we can

rank the elasticities as follows. The optimal harvesting size is most elastic

to the harvesting cost, followed by the interest rate. It is least elastic to

the uncertainty elasticity, under certain assumption. We also show that, in

the case of geometric Brownian growth, the optimal harvesting size is highly

elastic to the harvesting cost if the harvesting cost is not much larger than

the seedling value.

The paper is organized as follows. In section 2, we set up the model of

forest rotations for geometric Brownian growth of a tree, and establish the
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stochastic version of the Faustmann formula. In section 3, we derive the

major results of the rotation problem, in particular, we rank these elastici-

ties. Similar results can be obtained for the case of linear growth, which are

reported in the Appendix. In section 4, we draw some concluding remarks.

2 The Model

Throughout the paper, we consider only the case of c > x, where c is the

harvesting cost (which include the cutting cost and the replanting cost) and

x > 0 is the seedling value. Let the market interest rate r be constant over

time, and let Xt be the size of a tree at time t. Assume the growth of a tree

follows geometric Brownian motion

dX = µXdt + σXdz, (1)

where µ and σ are constants and zt is the standard Wiener process. Assume

also that the tree is cut when it reaches the size of b, with b > x. The time

at which the tree is cut is a first passage time of (1),

τ = inf {t ≥ 0 : Xt = b} .

Let G (b) be the current value of forest rotations. Based on Willassen’s

(1998) formulation, the value of the rotation can be written as the sum of the
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net present value of the tree up to the first passage time and the discounted

value of future rotations after the first passage time, i.e.

G (b) = Ex

£
(Xτ − c) e−rτ

¤
+ Ex

£
e−rτ

¤
G (b) .

Since Xτ = b, the present value of the rotation is

G (b) =
(b− c)Ex [e−rτ ]
1− Ex [e−rτ ]

.

To ascertain the expected discounted factor Ex [e
−rτ ], it is best to take

the transformation Y = logX. Then, by Ito’s lemma,

dY =
¡
µ− σ2/2

¢
dt+ σdz. (2)

If the tree is cut at X = b, then it is cut at Y = log b, and the first passage

time can be written as

τ = inf {t ≥ 0 : Yt = log b} , (3)

where Yt follows (2) with the initial state Y0 = log x. It is well known that

the expected discounted factor of (3) is

Elog x
£
e−rτ

¤
= e−γ(log b−log x) =

³x
b

´γ
,

where γ is the positive root of the quadratic equation

r = q (γ) =
¡
µ− σ2/2

¢
γ +

¡
σ2/2

¢
γ2.

6



See, for example, Harrison (1985, p. 42). Clearly,

γ =
− (µ− σ2/2) +

q
(µ− σ2/2)2 + 2rσ2

σ2
> 0. (4)

Then the rotation problem is simplified as

max
b

G (b) = max
b

½
(b− c) (x/b)γ

1− (x/b)γ
¾
. (5)

The first order condition of (5) is

xγb1−γ = γc− (γ − 1) b, (6)

which is equation 6.8 of Willassen (1998). Assume for the moment that there

is a unique solution to equation (6). Denote the solution by b∗.

Equation (6) turns out to be the stochastic extension of the Faustmann

formula for geometric Brownian growth of a tree. To prove this, we first

recall that if dX = µXdt (no uncertainty), then the formula is

µX (t) = X
0
(t) = r [X (t)− c] +

µ
e−rt

1− e−rt

¶
r [X (t)− c] ,

where the second term on the right-hand-side is known as the site value.

See, for example, Clark (1990, p.270). The formula says that the marginal

benefit of keeping the tree, X
0
(t), is equal to the marginal cost of keeping

the tree, which is measured in terms of forgone interest, r [X (t)− c], plus
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the site value. At the optimal b∗ and t∗, where t∗ is defined by b∗ = xeµt
∗
,

the formula is

µb∗ = r (b∗ − c) +

µ
e−rt

∗

1− e−rt∗

¶
r (b∗ − c) .

Next, we rewrite the first order condition (6) as

µb∗ = µγ (b∗ − c) +

·
(x/b∗)γ

1− (x/b∗)γ
¸
µγ (b∗ − c) . (7)

Since (x/b∗)γ is the stochastic extension of the discount factor e−rt
∗
, we only

need to show that µγ is the stochastic extension of r. To this end, we recall

Newton’s binomial series: For |a| < 1, and any real number y,

(1 + a)y = 1 + ya+
1

2!
y (y − 1) a2 + 1

3!
y (y − 1) (y − 2) a3 + ....

For given r and µ, 2rσ2 < (µ− σ2/2)
2 is valid for small σ2. Therefore,

q
(µ− σ2/2)2 + 2rσ2

=
¡
µ− σ2/2

¢
+
1

2

2rσ2

(µ− σ2/2)
− 1
8

(2rσ2)
2

(µ− σ2/2)3
+
1

16

(2rσ2)
3

(µ− σ2/2)5
+ ...,

and

γ =
− (µ− σ2/2) +

q
(µ− σ2/2)2 + 2rσ2

σ2
→ r

µ
, as σ2 → 0.

In other words, µγ plays the role of the market discount rate in this stochastic

model. It should be noted that the second term on the right-hand-side of (7)
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is the stochastic extension of the site value for geometric Brownian growth

of a tree.

The second order sufficient condition, at optimal b∗, is

G
00
(b∗) =

(x/b∗)γ (1− γ)

b∗ [1− (x/b∗)γ ] < 0,

if γ > 1 or, equivalently, if µ < r. Thus, the solution will be the maximum

once we show that the optimal solution uniquely exists. This condition (µ <

r) is most intuitive, because the benefit from cutting a tree is to sell it on the

market and deposit the profit in a bank. The interest rate must be greater

than the growth rate of a tree to warrant the harvesting.

The second order necessary condition is G
00
(b∗) ≤ 0, which implies γ ≥ 1.

If γ < 1, then the solution represents the minimal value, not the maximal

value of the rotation. This second-order-condition argument provides an

alternative explanation to why γ < 1 is “nonsensical.” See Remark 6.2 of

Willassen (1998).

To prove the existence of b∗ and to facilitate the analysis, we shall make

some change of variables. Let B = b/x, and C = c/x. Then equation (6) is

simplified to

B1−γ = γC − (γ − 1)B. (8)

We shall assume C > 1, since we are interested only in the case of c > x. In
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1

y = (C - (( - 1)B

y

1 B
B*

y = B1-(

1+((C-1)

Figure 1: The determination of the harvesting size

the (B, y)-plane, the left-hand-side of (8) is a curve decreasing and convex

in B, intercepting the vertical line B = 1 at +1, while the right-hand-side of

(8) is a straight line of slope − (γ − 1) intercepting the vertical line B = 1

at 1 + γ (C − 1). These two curves have a unique intersection as shown in

Figure 1.

Thus, the optimal solution B∗, and hence b∗, is uniquely determined.

Our result of a unique solution may appear at odds with Willassen’s

Lemma 6.2 in which two solutions are asserted. The difference comes from

the fact that Willassen set b ∈ (0,∞) , instead of b ∈ (x,∞) . Indeed, the
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c

y

x0

y = c

y = b*(c)

y = (c/(( - 1)
y = ((c - x)/(( - 1)

-x/(( -1)

Figure 2: b* as a function of c

second solution derived therein lies in the interval (0, x]. While it might make

mathematical sense to have this second solution, it makes no economic sense

to cut a tree below its seedling size.

3 Properties of Harvesting Rules

3.1 A Sharper Estimate of the Harvesting Rule

To have a better understanding of the harvesting rule, we begin with treating

b∗ as a function of c, holding other parameters constant. The next proposition

shows that b∗, as a function of harvesting cost, is well behaved and is depicted

in Figure 2.
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Proposition 1 The optimal harvesting size b∗ is strictly increasing and strictly

concave in c satisfying

lim
c→x

b∗ (c) = x and lim
c→∞

b∗ (c) =∞, (9)

lim
c→x

∂b∗

∂c
=∞ and lim

c→∞
∂b∗

∂c
=

µ
γ

γ − 1
¶
, (10)

such that b∗ (c) is bounded between two parallel lines: y =
³

γ
γ−1

´
c and y =³

γ
γ−1

´
c− x

γ−1 .

Proof. A direct computation from (8) shows that

∂B∗

∂C
=

µ
γ

γ − 1
¶

1

1− (B∗)−γ >
γ

γ − 1 > 1. (11)

It follows that ∂b∗/∂c > 0. Also, from (11), an increase in C raises B∗ and

hence lowers ∂B∗/∂C. This shows the concavity of b∗ (c) in c. From Figure

1, a decrease in C produces a leftward shift of the line y = γC − (γ − 1)B.

Since the curve y = B1−γ is convex and is of slope − (γ − 1) at B = 1, the

optimal harvesting size B∗ satisfies

lim
C→1

B∗ (C) = 1 and lim
C→∞

B∗ (C) =∞, (12)

which implies (9).

Next, from (11), we have

lim
C→1

∂B∗

∂C
=∞ and lim

C→∞
∂B∗

∂C
=

µ
γ

γ − 1
¶
,
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which implies (10). Thus, b∗ (c) is asymptotic to a straight line y =
³

γ
γ−1

´
c+

a, for some constant a. Also, from (10), for c > x, b∗ (c) is bounded from

below by a straight line of slope −γ/ (γ − 1) passing through the point (x, x) ,

i.e., by y =
³

γ
γ−1

´
c− x

γ−1 . The distance between these two lines is a+
x

γ−1 ,

which is also the supremum of the distance between the curve y = b∗ (c) and

and the line y =
³

γ
γ−1

´
c− x

γ−1, i.e.,

a+
x

γ − 1 = sup
c>x

½
b∗ (c)−

µ
γ

γ − 1
¶
c +

x

γ − 1
¾

= sup
c>x

(
−x

γ [b∗ (c)]1−γ

γ − 1 +
x

γ − 1

)
=

x

γ − 1 ,

using (6). Thus, a = 0.

Since b∗ (c) is bounded between y =
³

γ
γ−1

´
c and y =

³
γ

γ−1

´
c − x

γ−1 , we

have µ
γ

γ − 1
¶
c− x

γ − 1 ≤ b∗ ≤
µ

γ

γ − 1
¶
c. (13)

The estimation of the harvesting size is almost exact (and is linear in c) if

the seedling value is very small. Inequality (13) also provides a sharper lower

bound than Willassen’s equation 6.13:

c ≤ b∗ ≤
µ

γ

γ − 1
¶
c,

because

γc− x

γ − 1 > c⇔ c > x.
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Similarly, the net present value of the rotation is, using (6),

G (b∗) =
(b∗ − c) (x/b∗)γ

1− (x/b∗)γ =
b∗ (b∗ − c) (x/b∗)γ

γ (b∗ − c)
=

xγ

γ

µ
1

b∗

¶γ−1
.

Using (13), we have

µ
c

γ

¶³x
c

´γ µγ − 1
γ

¶γ−1
≤ G (b∗) ≤

µ
c

γ

¶³x
c

´γ µ γc− c

γc− x

¶γ−1
.

It is obvious that this inequality is sharper than Willassen’s equation 6.14:

0 < G (b∗) < c/γ. The estimate of the rotation value is almost exact if

the seedling value is small. It should be mentioned that, in the case of

linear growth, harvesting size remains to be a strictly increasing and strictly

concave function of the harvesting cost and is bounded by two parallel lines.

See the Appendix for details.

3.2 Comparative Dynamics

Proposition 2 (i) The comparative dynamics are: ∂b∗/∂c > 0, ∂b∗/∂x < 0,

∂b∗/∂r < 0, ∂b∗/∂µ > 0, and ∂b∗/∂σ2 > 0. (ii) If J (c, r, µ, σ2) is the value

function of (5), then Jc < 0, Jx > 0, Jr < 0, Jµ > 0, and Jσ2 > 0.

Proof. The inequality, ∂b∗/∂c > 0, follows from (11). Similarly, from (6),

∂b∗

∂x
= −

µ
γ

γ − 1
¶
(x/b∗)γ−1

1− (x/b∗)γ < 0.
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To derive other comparative dynamics, we note that, from (4) ,

∂γ

∂µ
=
1

σ2

−1 + µ− σ2/2q
(µ− σ2/2)2 + 2rσ2

 < 0, (14)

∂γ

∂σ2
=

µ
q
(µ− σ2/2)2 + 2rσ2 − [µ (µ− σ2/2) + rσ2]

σ4
q
(µ− σ2/2)2 + 2rσ2

< 0, (15)

if r > µ, and

∂γ

∂r
=

1q
(µ− σ2/2)2 + 2rσ2

> 0, (16)

we only need to determine the sign of ∂b∗/∂γ. Thus, the comparative dynam-

ics will be complete if we can show that

∂B∗

∂γ
=

C −B∗ + (B∗)1−γ logB∗

(γ − 1) £1− (B∗)−γ¤ < 0. (17)

To this end, denote the numerator of ∂B∗/∂γ by

g (C) = C −B∗ + (B∗)1−γ logB∗,

which satisfies g (1) = 0, by (12). Using γ > 1, B∗ > 1, and (B∗)−γ < 1,

g
0
(C) =

(B∗)−γ − 1− γ (γ − 1) (B∗)−γ logB∗
(γ − 1) £1− (B∗)−γ¤ < 0,

we can conclude that g (C) < 0 for all C > 1. Thus, ∂B∗/∂γ < 0.

To prove (ii), we invoke the envelope theorem: Jc < 0, Jx > 0, Jγ < 0,

and then applying (14), (15), and (16).
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It is interesting to point out that some of the results in part (ii) were

anticipated by Willassen using simulation method. In contrast, we have

proved them theoretically.

3.3 Homogeneity Condition

The first order condition (6) implicitly defines some functional relationship

between the harvesting size B∗ and the exogenous parameters C, µ, r, and

σ2, which is summarized in the following proposition.

Proposition 3 Let ε (b∗, θ) be the elasticity of the optimal harvesting size

with respect to the exogenous variable θ. Then we have

ε (b∗, µ) + ε (b∗, r) + ε
¡
b∗, σ2

¢
= 0. (18)

Proof. First, we note that γ, as defined in (4), is homogeneous of degree 0

in (µ, r, σ2). Then

B∗
¡
C, λµ, λr, λσ2

¢
= B∗

¡
C, γ

¡
λµ, λr, λσ2

¢¢
= B∗

¡
C, γ

¡
µ, r, σ2

¢¢
= B∗

¡
C, µ, r, σ2

¢
,

i.e., B∗ is homogeneous of degree 0 in (µ, r, σ2) . Then, by Euler’s theorem,

this homogeneity condition can be stated as

ε (B∗, µ) + ε (B∗, r) + ε
¡
B∗, σ2

¢
= 0, (19)
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Since B = b/x, ε (B∗, θ) = ε (b∗, θ) for θ = µ, r, σ2. Thus, we have (18).

It should be mentioned that equation (18) remains valid when the tree

growth is linear. In fact, there is another homogeneity condition in that case.

This extra homogeneity condition makes it easier to rank the elasticities in

the linear growth case than the geometric Brownian growth case. See the

Appendix for details.

An immediate corollary of the proposition is the following ranking of

elasticities:

Corollary 4 The optimal harvesting size is more elastic to the interest rate

than the growth pattern of a tree as represented by the drift and the variance

of the growth process.

Proof. It follows from

−ε (b∗, r) = ε (b∗, µ) + ε
¡
b∗, σ2

¢
> max

©
ε (b∗, µ) , ε

¡
b∗, σ2

¢ª
,

since ε (b∗, µ) > 0 and ε (b∗, σ2) > 0.

Some comments are in order. Because of the built-in homogeneity in

the Faustmann formula, we can partially rank some of the elasticities. As

commented earlier, equation (18) remains valid in the case of linear growth.

Therefore, the expected-growth-rate elasticity and the uncertainty elasticity
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remain smaller than the interest elasticity in that case. This corollary con-

firms the intuition that the interest rate is more important than the growth

parameters of a tree in determining the harvesting rule. It remains to com-

pare the relative importance of the interest rate with the harvesting cost.

3.4 Ranking the Elasticities

From (11), the harvesting-cost elasticity is

ε (b∗, c) = ε (B∗, C) =
C

B∗
∂B∗

∂C
=

µ
γ

γ − 1
¶

C

B∗
£
1− (B∗)−γ¤ . (20)

The next result shows that the harvesting-cost elasticity, as a function of the

harvesting cost, is very well behaved.

Proposition 5 The harvesting-cost elasticity ε (b∗, c) is a decreasing func-

tion of c (for c > x) with limc→x ε (b
∗, c) =∞ and limc→∞ ε (b∗, c) = 1, i.e.,

it has an asymptotic limit 1.

Proof. A direct computation from (20) shows that ∂ε (B∗, C) /∂C < 0 if

B∗
¡
1− (B∗)−γ¢ < C

µ
γ

γ − 1
¶·
1 +

γ (B∗)−γ

1− (B∗)−γ
¸
. (21)

From the first order condition (8), C = B∗
£
γ − 1 + (B∗)−γ¤ /γ, inequality

(21) becomes

(γ − 1) £1− (B∗)−γ¤ < £γ − 1 + (B∗)−γ¤ ·1 + γ (B∗)−γ

1− (B∗)−γ
¸
,

18



which is easily verified to be true.

Using the fact that, as C → 1, B∗ → 1 and (B∗)−γ → 1, we have

limC→1 ε (B∗, C) =∞. To find limC→∞ ε (B∗, C), we first note that

∂
£
B∗
¡
1− (B∗)−γ¢¤
∂C

=

µ
γ

γ − 1
¶·
1 +

γ (B∗)−γ

1− (B∗)−γ
¸
.

Then, using the fact that, as C →∞, B∗ →∞ and (B∗)−γ → 0, we have

lim
C→∞

ε (B∗, C) =
1

lim(B∗)−γ→0
h
1 + γ(B∗)−γ

1−(B∗)−γ
i = 1,

by l’Hopital’s rule. The conversion to lowercase is straightforward.

To compare −ε (B∗, r) with ε (B∗, C), we note that, from (16) and (17),

the interest elasticity is

−ε (b∗, r) = −ε (B∗, r) = r

B∗
B∗ − C − (B∗)1−γ logB∗
(γ − 1) £1− (B∗)−γ¤ 1q

(µ− σ2/2)2 + 2rσ2
,

and the ratio of the two elasticities is

R =
−ε (b∗, r)
ε (b∗, c)

=
−ε (B∗, r)
ε (B∗, C)

=
r
£
B∗ − C − (B∗)1−γ logB∗¤
γC
q
(µ− σ2/2)

2
+ 2rσ2

.

The numerator of R approaches the value of 0 when c → x (or C → 1).

Thus, we have

Proposition 6 The ratio of the interest elasticity to the harvesting-cost elas-

ticity satisfies

lim
c→x

−ε (b∗, r)
ε (b∗, c)

= 0.
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The proposition says that the interest elasticity is much smaller than the

harvesting-cost elasticity if the harvesting cost is not very large. In practice,

the harvesting cost would most likely fall in this range. It should be men-

tioned that the interest elasticity is uniformly dominated by the harvesting-

cost elasticity in the case of linear growth without any restrictions. See the

Appendix for details.

A natural question arises. When is the interest elasticity uniformly dom-

inated by the harvesting-cost elasticity? The answer is the following

Proposition 7 If the inequality

r ≤ γ (γ − 1)
q
(µ− σ2/2)2 + 2rσ2 (22)

is satisfied, then −ε (B∗, r) < ε (B∗, C) and −ε (b∗, r) < ε (b∗, c).

Proof. From the definition of R, we have

−ε (b∗, r)
ε (b∗, c)

=
r
£
B∗ − C − (B∗)1−γ logB∗¤
γC
q
(µ− σ2/2)2 + 2rσ2

<
r (B∗ −C)

γC
q
(µ− σ2/2)2 + 2rσ2

≤ r

γ (γ − 1)
q
(µ− σ2/2)2 + 2rσ2

≤ 1,

where the second inequality is obtained by invoking the upper bound of (13),

B∗ ≤ [γ/ (γ − 1)]C.

20



Condition (22) is approximately equivalent to γ ≥ 2 (or r ≥ 2µ) if σ2 is

small, because in that case γµ ≈ r. It does not seem like a very stringent

restriction.

To complete the ranking, we have the following

Proposition 8 The uncertainty elasticity is smaller than the expected-growth-

rate elasticity, i.e., ε (b∗, µ) ≥ ε (b∗, σ2) if and only if (r − 2µ)σ2 ≤ 4µ2.

Proof. Since ∂B∗/∂γ < 0, ε (B∗, µ) ≥ ε (B∗, σ2) if and only if µ (∂γ/∂µ) ≤

σ2 (∂γ/∂σ2). Then, from (14) and (15), it is equivalent to

2µ
¡
µ− σ2/2

¢
+ rσ2 ≤ 2µ

q
(µ− σ2/2)2 + 2rσ2,

which can be simplified as rσ2 − 2µσ2 ≤ 4µ2.

The proposition says that the ranking of the expected-growth-rate elas-

ticity and the uncertainty elasticity depends on the parametric specification.

The inequality in the proposition is easily satisfied if σ2 is small.

4 Concluding Remarks

In this paper we have ranked the elasticities of the optimal harvesting size

with respect to exogenous parameters, and obtained good estimates for the

optimal harvesting size and the present value of the rotation when the tree
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growth is linear or follows geometric Brownian motion. We show that the

harvesting size is strictly increasing and strictly concave in harvest cost,

bounded between two parallel lines. We also show that the harvesting size is

most elastic to the harvesting cost, followed by the interest rate, and is least

elastic to the variance of the tree growth under certain conditions.

Our findings have interesting policy implications. Within the framework

of profit maximization, the ranking of the elasticities suggests that the poli-

cies that raise the harvesting cost such as unit tax would be most effective

in slowing down the logging because the most elastic parameter would have

the largest impact. On the other hand, the rotation problem is a part of

the economics of forestry. As pointed out in Samuelson (1976, p.469), the

harvesting decision imposes externalities such as “flood control, pollution

abatement, species preservation, vacationers’ enjoyment, etc.” Obviously, we

should go beyond solving the rotation problem solely for its lumber value

by explicitly including the externalities in the analysis so that the policy

implications would be more accurate.

There are at least two directions to which this research can be potentially

extended. We can specify the external effect of harvesting upon the rest of the

economy. There is no doubt that the way to which the externality is specified
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changes the harvesting rule and the corresponding policy implications. The

pioneering works in this area include Reed (1993) and Reed and Ye (1994)

in which they explicitly considered environmental amenities of old-growth

forests in their models and treated the harvesting of old-growth forests as

a Wicksellian tree-cutting problem. Alternatively, we can examine the elas-

ticities of the harvesting size to exogenous parameters when tree growth is

age-dependent or when it is size-dependent. More structural restrictions will

have to be imposed to come up with meaningful implications. These are,

however, for future research.
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5 Appendix

In this Appendix we analyze the case of linear growth. This case is well known

(see, for example, Miller and Voltaire (1980, 1983)) and we shall report only

new results. The proofs are similar to the geometric Brownian growth case

and are left as an exercise.

Suppose the growth pattern of a tree is linear, i.e.

dXt = µdt+ σdz.

Then

Ex

£
e−rτ

¤
= e−η(b−x),

where

η =
−µ+pµ2 + 2rσ2

σ2
> 0,

and the problem becomes

max
b

G (b) = max
b

½
(b− c) e−η(b−x)

1− e−η(b−x)

¾
. (23)

The first order condition is

1 + ηc− ηb = e−η(b−x). (24)

Equation (24) can be written as

µ = µη (b− c) +

·
e−η(b−x)

1− e−η(b−x)

¸
µη (b− c) ,
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which is the stochastic version of the Faustmann formula when the tree

growth is linear (X
0
(t) = µ) because η → r/µ as σ2 → 0. Using the change

of variables, B = b− x and C = c− x, (24) is changed to

1 + ηC − ηB = e−ηB . (25)

The solution to (25) is well known.

1. Harvesting size as a function of harvesting cost

Proposition 9 The optimal harvesting size b∗ is increasing and concave in

c satisfying (i) limc→x b∗ (c) = x and limc→∞ b∗ (c) =∞, (ii) b∗ (c) is bounded

between two straight lines: y = c and y = c + 1/η, (iii) b∗ (c) satisfies

limc→x ∂b
∗ (c) /∂c =∞, and is asymptotic to y = c+ 1/η.

The proposition is best summarized in Figure 3.

2. Comparative Dynamics

Proposition 10 (i) The comparative statics are: ∂b∗/∂c > 0, ∂b∗/∂x < 0,

∂b∗/∂r < 0, ∂b∗/∂µ > 0, and ∂b∗/∂σ2 > 0. (ii) If J (c, x, r, µ, σ2) is the

value function of (23), then Jc < 0, Jx > 0, Jr < 0, Jµ > 0, and Jσ2 > 0.
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c

y

1/0

x

y = c + 1/0

y = cy = b*(c)

Figure 3: b* as a function of c

The proposition was also obtained and succinctly explained by Miller and

Voltaire (1980, p.139). While their reasoning and their intuition were impec-

cable, one of their equations is incorrect. To prove ∂b∗/∂r < 0, ∂b∗/∂µ > 0,

and ∂b∗/∂σ2 > 0, it suffices to show that ∂B∗/∂η < 0. A direct computation

from (25) shows that

∂B∗

∂η
=

C −B∗ +B∗e−ηB
∗

η (1− e−ηB∗)
. (26)

Instead, what Miller and Voltaire (1982) obtained is

∂B∗

∂η
=

C −B∗ −B∗e−ηB
∗

η (1 + e−ηB∗)
,

which makes the sign of ∂B∗/∂η obvious “by inspection.” The correct proof
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goes as follows. Note that the function f (C) = C − B∗ + B∗α, where

α = e−ηB
∗
, satisfies f (0) = 0 (using limC→0B∗ = 0) and

f
0
(C) = 1− 1

1− α
+

α

1− α
− ηB∗α
1− α

= −ηB
∗α

1− α
< 0.

It follows that f (C) < 0 for all C > 0, and ∂B∗/∂η < 0.

3. Homogeneity Conditions

Similar to the geometric Brownian growth case, we have (19). There is

another homogeneity condition in this case, albeit it is less obvious. If we

rewrite η as

η =
−µ +pµ2 + 2σ2/ (1/r)

σ2

so that we can treat η as a function of (µ, 1/r, σ2) , then B∗ is a function of

(C,µ, 1/r, σ2) , i.e., B∗ = B∗ (C, µ, 1/r, σ2) . Note that if we double C, 1/r,

and σ2, followed by a doubling of B∗, then equation (25) remains unchanged.

In other words, B∗ is homogeneous of degree 1 in (C, 1/r, σ2) . By Euler’s

theorem and using the fact that ε (B∗, 1/r) = −ε (B∗, r), we have

ε (B∗, C)− ε (B∗, r) + ε
¡
B∗, σ2

¢
= 1. (27)

4. Ranking the Elasticities
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The ranking of the elasticities is similar to the case of geometric Brownian

growth: the harvesting size is most elastic to the harvesting cost, followed by

the interest rate; it is least elastic to the parameters of the growth process.

What makes this case interesting is that the additional homogeneity condition

(27) for the linear growth case enables us to show that the interest elasticity

is dominated by the harvesting-cost elasticity without any restrictions and

that we can find the range of each elasticity. Specifically, from (27) and (19) ,

we have

1− ε (B∗, C) = −ε (B∗, r) + ε
¡
B∗, σ2

¢
= ε (B∗, µ) + 2ε

¡
B∗, σ2

¢
.

It follows that

max
©−ε (B∗, r) , ε (B∗, µ) , 2ε ¡B∗, σ2¢ª < 1− ε (B∗, C) .

Our claims are verified once we have the following proposition describing

ε (B∗, C) as a function of C and its range.

Proposition 11 The harvesting-cost elasticity ε (B∗, C) is an increasing func-

tion of C with limC→0 ε (B∗, C) = 1/2 and limC→∞ ε (B∗, C) = 1, i.e., it

satisfies 1/2 < ε (B∗, C) < 1 and has an asymptotic limit 1. Consequently,

−ε (B∗, r) < 1/2, ε (B∗, µ) < 1/2, and ε (B∗, σ2) < 1/4.
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Notice that the harvesting-cost elasticity is increasing in c in this case,

which is opposite of the geometric Brownian growth case. The ranking be-

tween the expected-growth-rate elasticity and the uncertainty elasticity is

dictated by the parameters of the tree growth.

Proposition 12 The the uncertainty elasticity ε (B∗, σ2) is smaller than

expected-growth-rate elasticity ε (B∗, µ) if and only if µ/σ ≥ √r/2.

It is interesting to note that the inequality µ/σ ≥ √r/2 is trivially satis-

fied if σ2 is small.
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