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Abstract 
 
The European Union designates 26% of its landmass as a protected area, limiting economic 
development to favor biodiversity. This paper uses the staggered introduction of protected-area 
policies between 1985 and 2020 to study the selection of land for protection and the causal effect 
of protection on vegetation cover and nightlights. Our results reveal protection did not affect the 
outcomes in any meaningful way across four decades, all countries, protection cohorts, and a wide 
range of land and climate attributes. We conclude that European conservation efforts lack 
ambition because policymakers select land for protection not threatened by development. 
JEL-Codes: Q230, Q240, Q570, R140. 
Keywords: land protection, conservation, biodiversity, deforestation, vegetation cover, 
nightlights, staggered difference-in-differences. 
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1 Introduction

How effective are protected area policies at restoring vegetation cover, constraining economic activ-

ity, and improving biodiversity more broadly? These questions are central to assessing the pledge of

196 countries to protect 30% of the earth’s land and waters by 2030. This ‘30x30 target’, which was

the main outcome of the COP 15 Kunming-Montreal global biodiversity conference and sometimes

referred to as the ‘Paris Agreement for Nature’, was ratified in December 2022 (Einhorn 2022). How

ambitious is this 30% target? This depends strongly on how policymakers select land to protect:

Does protection occur on at-risk land with a high economic opportunity cost, or are sites chosen in

areas with little risk of economic development?

We study these questions with a focus on the European Union (EU), the region that is closest

to reaching the target. As of 2023, the EU has protected over 26% of its total landmass (Eurostat

2022). The EU’s flagship land protection program, Natura 2000, is the largest coordinated land

protection regime in the world (Oceana Europe 2022), and might offer insights into the effectiveness

of the 30x30 target in other regions. Europe has greened substantially over the last 100 years.

Forests have expanded by more than 30% since 1900, an area the size of Portugal, and by 10%

since 1990 (Eurostat 2021). We ask: how much of the EU’s greening did its land protection policy

contribute?

Specifically, we evaluate the causal effect of Europe’s protected area policies on an important

dimension of biodiversity—vegetation cover—and on economic activity—measured by nightlights.

We make three primary contributions. First, we provide unique estimates of the long-term impact

of the world’s largest land protection policy over a time span of four decades. Second, we use recent

econometric advances that yield unbiased estimates in the presence of time-varying site selection in

a staggered policy context. Because the EU has protected more than 100,000 areas over the course

of many decades, we can estimate how the effect of protection varies across countries, across time

since protection, and across earlier and later protected areas. We also estimate treatment-effect

heterogeneity with unprecedented granularity across observable land and climate characteristics.

Third, we provide evidence on the environmental impacts of land protection in advanced economies,

which has been virtually non-existent to date.

We assemble a high-resolution remote sensing dataset that spans the entirety of the European

Union from 1985. Our data include key outcome variables (vegetation cover, nightlights) at the

300x300 meter or 1x1 km level, treatment variables (location of protected areas and date of first

protection), and a wide range of control variables that measure climate, weather, and land char-

acteristics. Our continuous measure of vegetation greenness is of intrinsic interest as it reflects

gradual changes in vegetation cover not captured by discrete land-use measures, and is also an

imperfect yet reasonable indicator of other measures of biodiversity. We also collect alternative

outcomes—discrete land use classes and species counts—for use in robustness analysis.

The gradual implementation of land protection in Europe allows us to employ a staggered
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difference-in-differences design. Because of selection into treatment, treated and untreated land

differ on several dimensions. Moreover, time-varying selection can cause treatment effects to vary

by cohort (the calendar year in which land first gets protected) and event time (years relative to

treatment). Typical two-way fixed effects estimators are biased in such settings. To overcome this

challenge, we apply the doubly-robust estimator of Callaway and Sant’Anna (2021). This estimator

combines cohort-specific inverse probability matching with an outcome regression adjustment to

compare protected areas with observably similar unprotected land and control for time-varying

differences in observable plot attributes.

In addition to time variation in treatment effects, previous literature on tropical forests—

described below—has revealed that the effect of land protection is highly context-specific. This

underscores the importance of testing for treatment-effect heterogeneity along many dimensions of

our covariate space, such as land and climate attributes, and the degree of local economic pressures

from agriculture and forestry. Using our expansive data, we use the recent non-parametric causal

random forest method of Wager and Athey (2018) to estimate highly-granular conditional average

treatment effects (CATEs).

The results are sobering. First, the Europe-wide ATE—aggregated across countries, cohorts,

and event time—is statistically and economically close to zero. In none of the EU member states do

we find evidence for a meaningful causal contribution of protection to vegetation cover. Second, up

to three decades after treatment, event-time treatment effects indicate a zero effect of protection on

vegetation cover. Third, we find no trend in cohort-level ATEs. Land protected later in time does

not contribute more to vegetation cover than land protected early in our sample. Fourth, these

three findings are identical for nightlight measures. Fifth, we find the treatment effects are not

meaningfully heterogeneous across the covariate space; the zero effect is stable and pervasive across

a wide range of CATEs. Sixth, we also show that our conclusions hold up when using discrete land

use data. Neither does the limited species count data suggest a relationship between protection

and biodiversity.

We argue that site selection likely explains the lack of effectiveness of the EU protection policy.

Our results suggest EU policymakers successfully identify land that has never been threatened or

has recently been greening. While protection might be effective against future development threats,

our analysis has uncovered no evidence of such threats in areas protected for several decades. We

also find no evidence for improved effectiveness in countries with a history of strong enforcement.

Instead, our findings are consistent with policymakers selecting sites with little economic oppor-

tunity cost, perhaps motivated by either the private benefit of obtaining “easy” green credentials,

or the focus on area-based targets such as the 30x30 Kunming-Montreal agreement, which may

provide incentives to find the “cheapest” land and protect it first (Maxwell et al. 2020). Overall,

we conclude that Europe’s protected area policy lacks ambition. While current protection may

safeguard against very long-run economic development pressures, there is a significant opportunity

to focus new protection on currently-at-risk land where ecological benefits outweigh economic costs.

3



There is a large literature on protected-area policies in tropical forests in developing countries

(e.g., Sims 2010; Pfaff et al. 2015; Souza-Rodrigues 2019; Assunção et al. 2022; Cheng, Sims, and Yi

2023). Evidence in advanced economies is lacking; Auffhammer et al. (2021)’s study of protection

on land-market impacts in the U.S. is a rare exception. The literature has generally found a modest

impact on forest cover, but estimates are highly context-specific. Stronger effects are observed in

well-enforced areas experiencing economic development pressure (Börner et al. 2020; Assunção,

Gandour, and Rocha 2023; Reynaert, Souza-Rodrigues, and Benthem 2023). Most studies estimate

the effects of land protection over fairly short time frames of a decade or less (e.g., Sims and

Alix-Garcia 2017; Keles, Pfaff, and Mascia 2022); our study spans four decades. Non-random

site selection for protected areas has been a central concern in the literature. Many prior studies

address this through a matching design (e.g., Andam et al. 2008; Joppa and Pfaff 2010; Geldmann

et al. 2019; Maxwell et al. 2020); we build on this by applying recent econometric advances critical

for mitigating bias in a staggered-adoption setting.

2 Policy

The Natura 2000 policy (2009/147/EC) combines two earlier EU directives: the habitat directive

(92/43/EEC) and the birds directive (79/409/EEC). It requires countries to submit a standardized

report on their protected areas to the European Commission, following International Union for

Conservation of Nature (IUCN) guidelines. Europe’s green deal and nature restoration law aim to

protect 30% of its land by 2030 (A9-0220/2023/EP). The Commission oversees and may amend

member states’ proposals, while the member states handle the siting and local enforcement of the

protected areas. The directive covers municipal, regional, and national protected areas. Some areas

restrict all or most human activity (e.g., strict nature reserves and national parks; 7.6% of protected

landmass), while others allow some industrial and agricultural activities (e.g., habitat or species

management areas; 47% of protected landmass). We discuss the breakdown of these categories in

Appendix C.1. Member states have different policies regarding protection and land ownership.1

Our analysis studies protected areas under the early EU directives or member state policies

before 2009 and the complete EU Natura 2000 program after 2009. In 2020, the EU released an

evaluation of the Natura 2000 network (European Environment Agency 2020). The report describes

the difficulty of such an evaluation: “Measuring the ecological effectiveness of a network of protected

areas is difficult, as baseline data are scarce and the data have many limitations, such as the lack

of data enabling comparison of the conservation status of and trends in species and habitats inside

and outside of the Natura 2000 network.” Our study aims to provide large-scale, long-term causal

evidence for the effectiveness of the EU’s land protection policy.2

Site selection of protected areas is a crucial responsibility of EU member states. A social

1. Unfortunately, ownership data at the EU scale are not available to us.
2. We use the term EU, but the data includes the 27 member states and Albania, Bosnia, Montenegro, Macedonia,

Switzerland, and Serbia. We exclude Malta, Iceland, and Liechtenstein due to missing data issues.
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planner’s site selection would prioritize protecting plots with the best balance between ecological

benefits and economic costs (including the opportunity costs of foregone economic activity and

the administration, monitoring, and enforcement costs). For protection to be meaningful, it must

change economic production in the area relative to the status quo and foster natural vegetation cover

and species survival. Protecting land that is never under any economic pressure would be considered

a wasteful expenditure of resources; land at risk of future economic development may warrant

protection. In reality, EU member states’ politicians may prioritize protection differently. They

might emphasize current local economic production, undervalue future biodiversity benefits, or

benefit politically from the “green glow” of protecting any type of land, regardless of the ecological

gains. In such cases, protection will occur first on land with the lowest economic opportunity cost,

typically land not at risk of development. Different policy priorities will change the order in which

land is protected and the resulting time path of treatment effects.3

3 Data

We collect six types of data to assemble two remote-sensing datasets spanning the entirety of the

European Union between 1985-2019. The most granular dataset (to analyze vegetation cover)

divides Europe into 117 million equal-sized grids of 300 by 300 meters. The second dataset (to

analyze nightlights) has grids of one square kilometer. Our data delivers comparable and consistent

measures across space and time (see Appendix A for details):

Policy rollout. For every protected area in the EU, we assign the date of its initial protec-

tion based on data from the Common Database on Designated Areas (CDDA), consolidating land

protection policies across 39 European countries. Focusing solely on terrestrial protection and ex-

cluding marine reserves, our dataset includes details on 118,511 distinct areas that were protected

between 1800 and 2019. We establish a grid cell as protected if any non-zero fraction of its land

area falls under a conservation agreement.

Vegetation cover. We aggregate satellite images from the Landsat 5, 7, and 8 data to construct

a continuous normalized difference vegetation index (NDVI) at a bi-annual frequency, with higher

values on a 0-100 scale indicating denser and richer vegetation.4 The remote sensing measures start

in 1985. We use biennial aggregation to reduce missing data problems caused by cloud coverage and

focus on the summer months when perennial vegetation is most visible. The continuous measure

avoids classification errors that plague categorical land use classifiers (see Torchiana et al. 2020;

3. Conceptually, suppose a limited number of grids can be protected, and that protection is non-retractable. In
that case, the problem of optimal selection is isomorphic to one of resource extraction. The planner’s solution to a
dynamic extraction program is to protect land with the highest benefit-cost ratios first. If instead a policymaker only
cares about ecology and not the economic costs of protection, land with the highest ecological gains from protection
will be protected first, resulting in large treatment effects. In contrast, if a policymaker cares only about the economic
costs, we expect a policy that starts with land that is costless to protect, resulting in near-zero treatment effects.

4. We rescale NDVI indices to be between 0-100 instead of the [-1,1] range standard in the remote-sensing literature.
We focus on the 0-1 range and scale the index to 0-100. We drop observations with NDVI less than 0, as this range
corresponds to snow, water, and clouds.
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Alix-Garcia and Millimet 2022). It also allows us to capture gradual changes in vegetation after

protection that do not necessarily lead to land use re-categorization. We use NDVI because we

can construct the measure with early Landsat data, allowing us to obtain a long panel. Recent

measures such as Vegetation Cover Fields (VCF) are only available since 2000.5 Furthermore,

NDVI correlates equally well as other vegetation measures with the frequently-used biodiversity

marker bird species richness (Nieto, Flombaum, and Garbulsky 2015; Hobi et al. 2017).6 We limit

the sample to plots with an NDVI value of at least 40 at one occurrence. This excludes urban grids,

bare soil, and rocky landscapes.7

Figure 1 maps the levels and changes in NDVI in Europe. Panel (a) shows that NDVI indices

range between 60 and 100 in many areas. Panel (b) plots changes in the NDVI index between 1985

and 2019. We document decreasing NDVI in red and increasing NDVI in green. The map reveals a

substantial greening of Europe, most pronounced in Southeastern Europe and Scandinavia. NDVI

decreases in the east of France, the west of Germany, and the Baltics. Panels (c) and (d) replicate

panels (a) and (b) but only for areas that had received protection by 2019. Protected areas are

very green in 2019; most of them experienced increases in NDVI between 1985-2019. The changes

in greenness over time, together with the staggered implementation of protection, is the primary

identifying variation we exploit in this paper.

Nightlights. We rely on Li et al. (2020) for a 1992-2018 one square kilometer panel of remotely-

sensed nightlights. Nightlights have been used as a proxy for economic development and GDP in

remote areas (Donaldson and Storeygard 2016) and urban/settled areas alike (Gibson et al. 2021).

Here, our goal is to measure human presence on a granular scale. If protected areas limit economic

activity, we expect outward migration from the area, which could reduce nightlights.

HILDA. We obtain discrete land-use data via the Historical Land Dynamics Assessment

project, or HILDA, dating back to 1900 at a decadal frequency and a resolution of one square

kilometer (Fuchs et al. 2015). HILDA classifies each grid as settlement, cropland, forest, grassland,

other land, or water. The data is constructed by harmonizing historical land cover information such

as national inventories, maps, and aerial photographs with remote-sensing data. HILDA allows us

to investigate long-term trends in EU land use. We are mainly interested in forests, grassland

(which includes pastures), and cropland. Appendix Figure A.11 shows land-use shares between

1900 and 2010, and Appendix Table A.15 reports the EU’s land-use transition matrix for that

period; both confirm the EU has greened substantially.

Species counts. We use the BioTIME dataset, which is the largest available aggregation of

species count studies across space and time, see also Liang, Rudik, and Zou 2023. Species count

5. The Enhanced Vegetation Index (EVI) targets measurement of tropical forests not present in the EU.
6. The finding that NDVI is an excellent predictor for bird diversity is replicated in our study area for France

(Bonthoux et al. 2018) and Mediterranean landscapes (Ribeiro et al. 2019).
7. Using discrete land-use data from HILDA (see below), we verify that forests, grassland and cropland typically

have a (much) higher NDVI index than 40. For example, in 2010, French forests have an average NDVI of 75,
grasslands 70, and croplands 50. See Appendix D for details and evidence that our results are robust to the chosen
NDVI threshold.
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data allow for more direct measures of biodiversity. However, many count data suffer from one or

all of these issues: nonrandom location of counts, short panels with recent coverage only, a low

number of species, model-based projections across space, and limited regional coverage. Each of

these issues is problematic for the goal of our study: a comprehensive long-term EU-wide evaluation

of protection. None of the species count data sources, including BioTIME, allow us to achieve a

similar causal research design as with remote-sensing data.8

Control variables. Finally, we add data on bio-geographical regions from the European

Environment Agency; climate zones, soil properties, and topography from European Soil Data

Centre; precipitation from the European Centre for Medium-Range Weather Forecasts; and solar

radiation from WorldClim. We merge this rich set of controls with the NDVI and nightlight data

to control for each grid’s natural vegetation growth propensity.

4 Methodology

The unit of observation is a grid, i ∈ {1, 2, . . . , I}. We observe every grid i at a biennial frequency.

Define periods t ∈ T, where T = [1985, 2019] is the sample of years we have data for. Treated

areas correspond to areas that are protected at some time g(i) ∈ T, and control areas are assigned

g(i) =∞ to indicate that they are not treated before T.9 Define G as the group of all units treated

at time g. We use subscript t for calendar time 1985 to 2019 and we define event time e ≡ t − g
as the number of years before or after treatment. We define the treatment indicator Dit ∈ {0, 1}.
The treatment indicator equals one after plot i is protected: Dit = 1[t ≥ g(i)].

We aim to estimate the treatment effect of protection on the plot-level outcomes of vegetation

cover and nightlights. We define the treatment effect of protection at time g on an outcome variable

Yit as:

τigt = E[Yi,t − Yi,t−1|G,Dit = 1]− E[Yi,t − Yi,t−1|G,Dit = 0], (1)

comparing the difference in outcomes of grid i in treatment cohort G with an unobserved difference

in counterfactual outcomes should grid i not have been treated. We hypothesize that a protected

area policy should have a positive treatment effect on vegetation cover and a negative treatment

effect on nightlights.

8. Other species count data include Global Biodiversity Information Facility, Movebank, the PanEuropean Common
Bird Monitoring Scheme, eBird, and the European Bird Census Council. See https://www.gbif.org/, https://www.
movebank.org/cms/movebank-main, https://pecbms.info/, https://ebird.org/home, and https://www.ebcc.info/.

9. Because only 20% of land is treated at the end of our sample we select control units from the remaining 80% of
grids. These are the ’never-treated units’ in our sample.
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4.1 Staggered difference-in-differences design

We apply the doubly-robust difference-in-differences estimator of Callaway and Sant’Anna (2021) to

obtain country, event-time, and cohort-specific average treatment effect estimates θcgt of (1).10 We

estimate average treatment effects at the country level because EU member states have jurisdiction

over the policy and differ in their site selection and enforcement. In addition, we might expect

treatment effect heterogeneity across event time e. For example, when treated plots regenerate

after protection, we expect vegetation cover to increase gradually. Finally, there is reason to expect

cohort-specific treatment effects whenever site selection differs across cohorts g when more and

more land gets protected, and the policymaker selects land with increasing opportunity costs of

protection.

The doubly-robust estimator is a crucial improvement in our setting relative to standard two-way

fixed effects methods for two reasons. First, we observe a staggered introduction of the European

policy over a thirty-five-year window from 1985 to 2019, where time-varying site selection could

cause cohort-specific treatment effects. In such settings, standard two-way fixed effects estima-

tion is biased. To obtain unbiased estimates, the doubly-robust estimator allows for cohort-specific

matching probabilities, outcome correction models, and treatment effects.11 Cohort-specific match-

ing addresses time-varying selection bias stemming from the correlation between unobserved plot-

level economic activity and treatment status. The outcome correction controls for time-varying

differences in observable weather-related plot attributes. This is essential because of the weather-

induced variability in NDVI. Second, we can estimate specific dynamics for each cohort to explore

the policy’s potential heterogeneity across years since treatment and across cohorts.

We specify a model for the matching procedure and the outcome correction based on variables

which drive vegetation growth. We rely on previous literature assessing land conditions and yields

(Schlenker and Roberts 2009) to select yield-relevant variables for the inverse probability matching.

Fixed land factors include a measure of soil suitability for agriculture, elevation, slope angle, a long-

term average of rainfall, and solar radiance. Time-varying matching variables are rainfall, heating-

degree days, and the length of the growing season. Additionally, we include an average greenness

measure over the first three in-sample two-year (pre-treatment) periods to limit level differences

between treatment and control areas. We also include the variance in rainfall and heating degree

days over the three pre-periods. To test for parallel trends, we select plots treated at least three

two-year periods after the first year of our outcome measures so that the first-treated cohort is in

1991.

The outcome regression adjustment linearly projects control units’ change in outcomes between

10. We use a difference-in-differences approach instead of a regression discontinuity design. Many protected areas
border grids with different land uses, causing discrete jumps in NDVI around protected areas.

11. TWFE with cohort-interacted treatment effects introduces bias because whenever there is site selection, the
control group contains not-yet-treated units that differ on observables from the treated units. The estimation proce-
dure of Callaway and Sant’Anna (2021) addresses this by cohort-specific matching. For completeness, we also report
results from standard two-way fixed effects estimation.
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g − 1 and t on plausibly exogenous observables, separately for every cohort group G:

mgt(X) = E[Yigt − Yi,g−1|G,X,Dit = 0].

By subtracting the fitted values of mgt(X) from the outcome difference of treated units, the proce-

dure corrects for the confounding effects of time-varying observable differences in control variables.

The procedure involves estimating the propensity scores, outcome correction, and dynamic

average treatment effect by country-cohort. We estimate standard errors using the multiplier

bootstrap procedure. Because multiple plots are assigned to treatment simultaneously, we cluster at

the assignment level of the CDDA identifier (Bertrand, Duflo, and Mullainathan 2004) in addition

to the default plot-level clustering used by the Callaway and Sant’anna procedure. We provide

details on the estimation in Appendix B.

We aggregate the estimated treatment effects θcgt across different dimensions. First, we ag-

gregate across countries, cohorts, and event time to construct a single treatment effect estimate

across the European Union, θEU . Next, we aggregate across cohorts and event time to obtain a

country-specific θc. Third, we aggregate across countries and cohorts to obtain θe to evaluate how

treatment effects evolve dynamically in the years following protection. Finally, we aggregate across

countries and event time to obtain cohort-country level estimates θg. Appendix B provides details

on the computation of these aggregated average treatment effects.

4.2 Conditional average treatment estimator

In addition to differences in treatment effects across countries, event times, and protection years, we

anticipate treatment effect heterogeneity due to factors such as varying soil, pre-protection green-

ness, or weather conditions impacting vegetation regeneration ability (e.g., previous agricultural

land will green differently than land that was already forested). We use the conditional average

treatment effect framework put forward by Chernozhukov et al. (2017) and test directly whether

there is a statistically significant deviation from the average treatment effect across the covariate

space.

While we could introduce additional heterogeneous treatment effects in the Callaway and

Sant’Anna framework, we have a large set of covariates to consider. We therefore apply the hon-

est random forest estimator of Wager and Athey 2018 to select statistically-relevant dimensions

of heterogeneity, avoid multiple testing problems, and return a causally-valid conditional average

treatment effect (CATE). Both Callaway and Sant’Anna (2021) and Wager and Athey (2018) are

doubly-robust difference-in-differences methods as we apply them: the first is semiparametric and

the second nonparametric. In contrast to current literature, where third differences are chosen by

the researcher, a nonparametric method has the advantage of choosing salient dimensions of het-

erogeneity directly from the data. Thus, the data informs how to construct τx = E[τ |X = x]. The

estimator first constructs plot-level treatment effects by comparing treated units to control plots

9



with a similar propensity score. It uses a random forest as a nonparametric regression: it projects

the plot-level treatment effects on a (potentially large) set of explanatory variables. The random

forest finds maximally informative “splits” of the data by drawing separating hyperplanes in the

covariate space. These splits determine conditional average effects as the maximal deviations from

average treatment effects explained by covariates. This is relevant in estimating what variables

make protection policy successful at fostering vegetation growth. We describe estimation details in

Appendix B.

5 Results

5.1 Average treatment effects on NDVI by country

Figure 2 presents the EU-wide average treatment effect θEU on vegetation greenness aggregated

across all countries, event times, and cohorts, along with the country-specific ATEs θc ordered from

small to large (red and blue bars). Detailed results for Figure 2 and all subsequent figures are pre-

sented in Appendix C. The top panel summarizes θEU across different econometric specifications.

The preferred EU-wide ATE via the doubly-robust Callaway and Sant’anna estimator is 0.08 with

a standard error of 0.01 for the change in the NDVI index that ranges between 0 and 100.12 In eco-

nomic terms, this is a highly-precise zero effect of protection. The figure also displays the estimate

from two naive, and biased, two-way fixed effects estimators (with and without matching).13 Their

EU-wide ATE of 0.5 is similarly small. In Appendix D, we conduct several robustness checks. By

looking at the first differences in greenness as an outcome, we confirm the null result is not driven

by a functional-form assumption. We also show results are unchanged when we lower the NDVI

sample selection threshold from 40 to 30. Finally, we address spillovers between treated and control

units in a spatial first-difference specification.

There are some differences across countries (bottom panel), but the size of all estimated treat-

ment effects in absolute terms is still very small—θc varies between -2 and 2, and is not even

statistically different from zero in many countries. Changes of less than 1 point in NDVI index are

negligible relative to the large improvements in the index of 6-15 points in many areas of the EU

between 1985 and 2019, as shown in Figure 1.

5.2 Average treatment effects on NDVI across event time and cohorts

Figure 3 (left panel) shows the ATE estimates θEU
e and associated 95% confidence intervals—

aggregated across the entirety of the European Union—over event time e, with e = 0 indicating

when protected areas were established. These dynamics reveal no post-protection upward trend in

regeneration or protection benefits for treated land units over time. The effect of conservation on

12. Appendix C.2 shows balance tables with and without cohort-specific matching.
13. For the two-way fixed effects regression, we estimate a difference-in-differences model with grid- and time- fixed

effects, λi and λt: Yit = βDit + λi + λt + εit.
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greenness is consistently close to zero—all confidence intervals are contained within [−1, 1]. Even

thirty years after treatment, we find no evidence of a protection effect. The lack of a pre-trend is

reassuring and suggests the matched controls are appropriate comparisons for the treated areas.

This does not imply that vegetation greenness has been constant over time. Europe has been

greening, but treatment and control plots have been greening in parallel, both before and after the

establishment of land protection policies.

Even if the average treatment effect is zero, we investigate if there is a time trend in the

treatment effects θEU
g by cohort of protection g. As discussed in Section 2, one might expect that

land with low opportunity costs is protected first (small treatment effect). As time progresses and

the land with the lowest opportunity cost has been protected, governments might focus on areas

with higher opportunity costs (larger treatment effect). Figure 3 (right panel) shows the EU-wide

cohort-level treatment-effect estimates. There is no time trend in the treatment effects across

cohorts—the effect of land protection is close to zero regardless of when the land got protected.

To formally establish this result, we compute two test statistics applied at the country level

in Appendix Table A.11. First, we test if there are statistically-significant linear trends in the

country-cohort level estimates θcg. Second, for each country, we split the estimate θcg in an early-

treated and late-treated group and test for a difference in the treatment effect size between the two

groups. With these two tests, we find no statistical evidence for any meaningful positive trends

across cohorts of protection at the individual country level.

5.3 Other outcomes

Having established a precise zero effect of the effect of land protection on NDVI across countries,

event times, and cohorts, we now present evidence on the effect of protection on nightlights. One

might hypothesize that protection reduces human activity relative to matched controls, which will

manifest itself through decreased brightness of night-time light.

Figure 4 shows that—whether broken down by event time or by cohort—there is no evidence

that land protection reduced nightlights. Nightlights vary from 0 to 68 units of luminosity, while

treatment effects are generally within 0.5 units. While often statistically significant, the effects are

not different from zero in an economically meaningful way. Our results suggest a zero impact on

economic output in areas set aside for protection for at least two decades. In addition, the effect

of land protection is close to zero regardless of the year of first protection. This corroborates our

NDVI results.

It is conceivable that land protection increased biodiversity in ways neither measured by NDVI

nor nightlights. The lack of comprehensive granular, consistent and reliable species count data does

not enable us to test this hypothesis causally. Appendix E.1 contains some limited, non-causal,

descriptive results using the BioTIME data. This event-study analysis shows no clear increase in

species counts following CDDA establishments near the BioTIME study locations.

Finally, we confirm that our main results are consistent with evidence from discrete land-use
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data. Despite the limitations of discrete classifications of land use (see Section 3), we use decadal

data from HILDA in Table 1 to compare land-use transition probabilities between protected and

never-protected areas. We limit the transitions to our study period, 1980 to 2010, to facilitate

comparison with our previous empirical exercises. To focus on a consistent 30-year time window, we

limit treated observations to areas protected in 1970-1980. Controls are matched on 1970 land-use

and time-invariant observables: slope angle, slope steepness, solar radiation, long-run precipitation,

and distance to a shoreline. The forest transition shares are very similar for protected and control

units, which is consistent with our null results for continuous vegetation greenness. The largest

discrepancy is a 5% larger transition of cropland into grassland in protected areas. However, the

grassland-cropland classification is particularly difficult for discrete land-use measures and may be

confounded by pasture.

5.4 Further treatment-effect heterogeneity

As discussed in Section 4.2, our null finding on average does not reject the existence of a (small)

tail of high-impact conservation efforts. We explore whether there is meaningful underlying hetero-

geneity in treatment effects. We apply the Wager and Athey (2018) estimator on a random sample

of the data (whose construction is discussed in Appendix B.3). The sample average treatment effect

on NDVI is −0.51(0.05).

Our data rejects the existence of any meaningful heterogeneity. While our random forest de-

tects statistically-significant heterogeneity in the test of Chernozhukov et al. (2017), economically

meaningful heterogeneity is limited. The CATE in the bottom quartile of the CATE distribution

is only 0.7 (1.2) units smaller than in the top quartile. We precisely estimate limited heterogeneity

around zero across the whole covariate distribution, not just for average land.

We emphasize our precise 0 persists along two key dimensions of heterogeneity. First, we

find no significant variation in treatment effects when considering covariates linked to high-quality

agricultural land. The left panel of Appendix Figure A.6 shows CATEs along the distribution of

the soil phosphorus content, which is often fertilizer-driven in areas with intense agriculture. The

findings show no notable difference in greening patterns between areas with different phosphorus

content. Our null results are thus not driven by differences in NDVI changes between cropland and

natural vegetation. Secondly, regions with lower initial greenness, like bare soil or sparsely-forested

areas, may exhibit more greening potential post-protection than areas already green. In the right

panel, we show that pre-period greenness has a CATE of -0.23 in the top quartile relative to a

CATE of -0.75 in the bottom quartile: this is only one-half of an NDVI point difference on a scale

of 0 to 100 and shows land with lower initial greenness gained less NDVI. The zero effect is thus

not only there for preexisting forests but also for areas not yet forested at the beginning of our

sample.

Regarding the interpretation of our results, this supports a precise zero throughout the distri-

bution of protection. Other CATEs across measures of high-value farmland, distances to shorelines,
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and population density, which we would expect to capture salient dimensions of land pressure, all

trend less than those shown in Appendix Figure A.6. These results are consistent with limited

evidence that protected land was under economic pressure.

5.5 Discussion of the results

There are several potential explanations for the zero results. First, protected plots are infra-

marginal, and hence, there is no change in land use before and after protection. Second, protected

plots were under threat of future development rather than contemporaneous economic activity.

Third, authorities do not enforce the restrictions of economic activity.

The second explanation seems implausible. Our long panel allows us to identify treatment effects

up to 30 years after the first treatment in 1991. Even for the earliest cohorts, we do not see any

positive treatment effects decades later. The third explanation is also unlikely. While enforcement

of land use policy is often imperfect, such as in the Amazon rainforest (Keles, Pfaff, and Mascia

2022), this is less of a concern in the EU institutional context. If enforcement explained the

small effects, treatment effects should vary between countries with varying degrees of institutional

strength. However, our results show near-zero effects for all EU countries. We conclude that the

first explanation is the most likely: Europe has not targeted land at risk of economic development.14

Policymakers have selected land that would have seen equal increases in vegetation cover without

protection.

6 Conclusions

Protecting a quarter of the EU’s landmass has not led to a change in vegetation cover measured by

NDVI or human activity measured by nightlights. We find no meaningful heterogeneity in treatment

effects across event-time, protection cohorts, land, soil, or climate characteristics. Control plots

show equal greening trends as treated plots. So far, Europe’s greening has allowed land protection

to expand with limited opportunity costs. For the most part, un-threatened areas have been

protected, and land at risk of development may not have been. This—perhaps sobering—finding

does not imply that protection may never restrict economic activity in the long run, but it suggests

that Europe’s current land-protection regime has not been well-targeted. One interpretation is

that politicians have focused on protecting land with low economic development value. Yet a

more optimistic interpretation is that there is still significant scope for expanding the protection of

European land at a low economic cost. The administrative blueprint provided by the Natura 2000

network seems well-suited to form the basis for Europe’s pursuit of such more ambitious biodiversity

targets.

14. Appendix Figure A.12 shows that countries with a higher share of land considered nature (forest or grassland)
protect a greater share of land. This association aligns with a story that inframarginal land drives current protection.
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Figures and Tables

Figure 1: CDDA-level NDVI changes across sample

(a) Grid-level NDVI, end of sample (b) Grid-level NDVI changes across sample

(c) CDDA-level NDVI, end of sample (d) NDVI changes 2019-1985 within CDDA’s

Notes: Panel (a) plots the average NDVI across 2015-2019 for each grid. Panel (b) plots the change in average

NDVI between 2015-2019 and 1985-1989. Panel (c) plots the average NDVI within each CDDA for 2015-2019. Panel

(d) plots the change within each CDDA in average NDVI between 2015-2019 and 1985-1989.
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Figure 2: Treatment effects on NDVI, EU-wide and by country

Notes: Top panel reports treatment effects estimated through three distinct estimators: the Callaway & Sant’anna

doubly-robust procedure (CSDR), two-way fixed effects (TWFE), and matched two-way fixed effects (MTWFE).

Bottom panel reports CDSR treatment effects θc aggregated by country with bootstrapped confidence intervals.

Blue bars indicate positive ATEs; red bars indicate negative ATEs. Horizontal black lines indicate 95% confidence

intervals. Sample includes plots which have greenness above 40 at least once in the sample period with non-missing

matching variables. Greenness varies from 0 to 100. Appendix Table A.8 presents the regression results.
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Figure 3: Treatment effects on NDVI over event time and by cohort

Notes: Treatment effects on greenness aggregated by event-study period θEU
e in the left panel, and by cohort θEU

g

in the right panel. Sample includes plots which have greenness above 40 at least once in the sample period with

non-missing matching variables. Greenness varies from 0 to 100. Both panels use the Callaway and Sant’anna doubly

robust estimator with 95% bootstrapped confidence bands. Appendix Tables A.9 and A.10 present the regression

results.
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Figure 4: Treatment effects on night-time lights over event time and by cohort

Notes: Treatment effects on night-time lights aggregated by event-study period θEU
t on the left panel, and by cohort

θEU
g on the right. Night-time lights vary from 0 to 68, with all event-time estimates being smaller than 0.5 units of

lumosity. Both panels use the Callaway and Sant’anna doubly robust estimator with bootstrapped 95% confidence

bands. Appendix Tables A.12 and A.13 present the regression results.
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Table 1: Comparison of discrete land use transitions in protected areas and never-treated areas,
1980-2010

1980 / 2010 Cropland Forest Grassland Other Settlement Water

Control Cropland % row 81.4 3.5 14.3 0.0 0.8 0.0
Forest % row 0.2 96.1 3.6 0.0 0.2 0.0
Grassland % row 3.5 10.8 85.2 0.0 0.4 0.0
Other % row 0.0 0.0 0.0 100.0 0.0 0.0
Settlement % row 0.7 0.2 0.0 0.0 99.1 0.0
Water % row 0.0 0.0 0.2 0.0 0.0 99.8

Treated Cropland % row 77.3 3.4 19.1 0.0 0.2 0.0
Forest % row 0.1 96.9 2.9 0.0 0.1 0.0
Grassland % row 1.5 9.5 88.8 0.0 0.2 0.0
Other % row 0.0 0.0 0.0 100.0 0.0 0.0
Settlement % row 0.2 0.3 0.2 0.0 99.3 0.0
Water % row 0.0 0.1 0.2 0.0 0.0 99.7

Total (2010) % row 18.3 43.4 30.4 2.1 3.4 2.4

Notes: Table reports land use transitions relative to base year of 1980 in 2010. We tabulate transitions by treatment

status: treated units are treated in 1970-80 have at least 50% of landmass in a protected area, and controls are

matched on pre-1970 observables. Transitions are defined based on the HILDA land cover data, which classifies land

into one of 6 land areas in each decade from 1900 to 2010. We omit a small percentage of areas which are classified

as NA values.
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Appendix

A Data

In this data appendix, we describe how we consolidate a variety of publicly available data sources

to create country-level data files containing outcome and control variables. Table A.1 lists all data

sources.

Table A.1: Data sources

Name Description Data source

[1] CDDA Location and foundation date of protected areas Link to source
[2] Eurostat National boundaries Link to source
[3] EEA Shorelines of Europe Link to source
[4] Landsat 5, 7, 8 NDVI/Greenness Link to source
[5] EEA Biogeographical regions of Europe Link to source
[6] EOBS European climate surface observations Link to source
[7] ESDAC Soils and topography Link to source
[8] ESDAC Climate-physical regions Link to source
[9] SEDAC Gridded population data Link to source
[10] ECMWF Precipitation rasters Link to source
[11] HILDA Discrete land-use data Link to source
[12] World Clim Solar radiation Link to source
[13] Li et al. (2020) Harmonized global night time lights Link to source
[14] BioTIME Species count data Link to source

A.1 Creation of grids

We define a unit of observation as a square grid cell. Grid cells divide geographic areas into evenly

spaced areas with corners given by latitude and longitude coordinates. The grids are constant

across time. For our vegetation greenness sample, the grid cell is 300 meters by 300 meters in

resolution. We also generate a 1km by 1km grid for the nightlights analysis.

Grids are spatially joined with vector data that is spatially explicit (e.g., data that comes in

the form of a shapefile or other geodatabase) using ArcGIS. Grids which intersect more than one

geometry are assigned the characteristics of the geometry with the largest intersection.

A.2 Bio-geographical regions and climate zones

We add bio-geographical regions and climate-physical zones from the European Environment Agency

(EEA) and the European Soil Data Centre (ESDAC). Bio-geographical regions describe distribu-

tions and patterns of terrestrial life. The EEA data delineates these bio-geographical regions to

A1

https://www.eea.europa.eu/data-and-maps/data/nationally-designated-areas-national-cdda-16
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/countries
https://www.eea.europa.eu/en/datahub/datahubitem-view/af40333f-9e94-4926-a4f0-0a787f1d2b8f
https://developers.google.com/earth-engine/datasets/catalog/landsat
https://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3
https://surfobs.climate.copernicus.eu/dataaccess/access_eobs_indices.php
https://esdac.jrc.ec.europa.eu/
https://esdac.jrc.ec.europa.eu/content/european-landslide-susceptibility-map-elsus-v2#tabs-0-description=0
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-rev11/data-download
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY
https://landchangestories.org/hildaplus/
www.worldclim.org/data/worldclim21.html
https://gee-community-catalog.org/projects/hntl/
https://biotime.st-andrews.ac.uk/


show distinct habitats across Europe. ESDAC produces climate-physical regions.1 Climate-physical

regions are essentially Köppen climate zones with adjustments for high mountains.

By nature, the 300m by 300m grids are not spatially fine enough to pick up on complex ge-

ographies. When merging with bio-geographical data and climate-physical regions, the grids miss

craggy islands or coastlines of countries such as Norway and Finland. See Figure A.1 for an ex-

ample. Of the 3,777,950 grids in Finland, fewer than 0.05% were null for bio-geographical regions

and 0.5% were null for climate-physical regions. There are similar numbers for Norway. Simpler

coastlines have fewer missings. For example, of Poland’s 3,473,457 grids, only 114 are null for

bio-geographical regions and 3,594 for climate-physical zones. Table A.2 summarizes the different

bio-geographical regions and climate zones in Europe.

Figure A.1: Example of grids outside the climate-physical region boundary (Finland)

Notes: The grids highlighted in cyan are null for climate-physical zones. The country geometry for Finland is more

complicated than the climate-physical zone geometry. It captures more islands and coast edges. Grids were generated

over these more complex geometries. These grids do not intersect with the more simplified climate-physical regions,

so therefore are null.

A.3 Protected sites

We add spatial data on the protected sites from the Common Database on Designated Areas

(CDDA), an inventory of European protected areas for 38 nations. The database, maintained by

the EEA, includes the location and foundation dates of protected areas established as early as 1800.

The foundation dates of 1,447 designated areas in France are missing. We manually search for

the dates of the 127 largest CDDAs with missing foundation dates. We list the dates here with a

URL source and notes. The remaining CDDAs with missing foundation dates did not return search

1. The climate-physical regions are based on an intersection of Köppen climate zones with NORDREGIO mountain
classification deduced from GTOPO30 information.

A2

https://github.com/tristangrupp/EUForests/blob/main/ProtectedSites_France_MissingFoundationDates.csv


Table A.2: Distribution of bio-geographical regions and climate zones in Europe

Bio-geographical region Land coverage percentage

Continental 28
Mediterranean 18
Boreal 18
Atlantic 17
Alpine 13
Pannonian 3
Arctic 2
Steppic 1
Black Sea 0.2

Climate zone Land coverage percentage

Cold climate, warm summer 29
Temperate climate without dry period 22
Arid/temperate climate 14
Cold climate, cold summer 13
Polar/cold climate 12
Arid/temperate climate, dry summer 9
Coastal area 2

results. We mainly retrieve the missing foundation dates from site management documents, the

conservation pages of provinces, press articles of site establishment or purchase, on the ”reserves

naturelles” directory, on EEA site factsheets, and tourism pages for CDDAs with recreational and

educational uses. The links provide examples to each of these different types of sources. Modern

CDDAs may have been the result of multiple staggered land acquisitions rather than a single act of

protection. We assign treatment year based on the largest additional acquisition. As a tiebreaker,

we assign the average of the purchase dates. See the notes here for detail.2

Many of the protected area polygons provided by the EEA have topology errors. Self-intersections

are common in the CDDA dataset. These are corrected in ArcGIS.

After these additions and corrections, we relate the CDDA information to the grids via a spatial

join in ArcGIS. For each CDDA we add the foundation year and unique CDDA ID so that we can

match non-spatial information of the CDDA below. We will also calculate the area of overlap of

each CDDA with the grid(s) it covers. Some grids do not fall entirely within CDDAs. Such partial

coverage of grids is important when determining which grids are protected vs. treated. We define

any plot that overlaps a CDDA as treated.

2. One example is Les Pelouses de Blere. In 2003, 14.34 hectares were acquired by Le Conservatoire d’Espaces
Naturels Centre-Val de Loire. In 2005, the municipality gave the conservatory 63.58 hectares to manage. The
second land acquisition was more than four times greater than the original land acquisition. Because the second land
acquisition was larger than the first, we chose the date of the second acquisition for the foundation year. Another
site, Les Friches Des Parterres, was acquired “par le Conservatoire de 22.87 ha entre 1995 et 1999” For this site, we
chose 1997 for the foundation date.
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A.4 Raster-derived variables

Raster data employs a matrix-based structure, where each cell (or pixel) in the matrix stores a

value representing a particular attribute (such as NDVI, elevation, or rainfall). To relate raster

data to our grids, we use the exact extract() function in the exact-extractr R package to efficiently

relate raster data to polygons. Table A.3 gives a description of each of the raster-derived variables

added to the country-level grids data. The table provides a brief description of each variable, the

units of the data, the spatial resolution, the frequency of the time series for time-series variables

(annual, biennial, every 5 years, etc), and the source of the data.
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Table A.3: Table of variables which come from a raster format

Variable name Units Spatial resolution Time step, years Data reference year(s) URL

Climate

Long-run precipitation mm/year 0.5 degrees average, 1970-2000 NOAA
Growing season length days 0.1 degree 1 1985-2019 Copernicus
Heating degree days degC 0.1 degree 1 1985-2019 Copernicus
Rainfall meters 11 km 1 1985-2019 Google Earth Engine

Land characteristics data

Topsoil potassium concentration g/kg 500 meters 2019 ESDAC Website
Topsoil nitrogen concentration mg/kg 500 meters 2019 ESDAC Website
Topsoil phosphorus concentration mg/kg 500 meters 2019 ESDAC Website

Terrain measures

Slope steepness combined LS-factor 100 meters 2015 ESDAC Website
Elevation meters 100 meters 2015 ESDAC website
Slope angle index 0-8 200 meters 2018 ESDAC Website
Soil suitability index 0-4 1000 meters 2016 ESDAC Website

Economic value measures

High-value farmland indicator binary 100 meters 2015 EEA Europa
Distance to shoreline meters 300 meters 2017 EEA Europa
Population density count per km2 30 arc sec 5 1985-2019 SEDAC Website

Outcome measures

Greenness, LANDSAT-5 index 300 meters 2 1985-2013 Google Earth Engine
Greenness, LANDSAT-8 percent 300 meters 2 2013-2019 Google Earth Engine
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https://developers.google.com/earth-engine/datasets/catalog/landsat-8


Here we provide further information on the raster data that we use in our study.

Climate data. We obtain both a long-term average precipitation and a time-varying measure

of precipitation for each grid. We collect monthly long-term averages (long-term mean 1981-2010)

of total rainfall from WorldClim. The month’s values are an average precipitation for that month

from 1981-2010. We average the monthly data to get a total annual figure.

We generate time-varying precipitation from the total precipitation band in the ERA5-Land

Monthly Averaged - ECMWF Climate Reanalysis dataset. The climate measures in ERA-5 have

a resolution of 11,132 meters. The total precipitation band is the depth of monthly precipitation

in meters. ERA-5 total precipitation captures most precipitation but does not include fog, dew, or

precipitation which evaporates before reaching the earth.

We use annual total precipitation, rather than summer precipitation that would coincide with

our NDVI imagery, because of the importance of year-round rainfall for summer vegetation growth.

Pasho et al. (2012) found that larger tree-ring width—an indication that the tree grew more dur-

ing that year—is related to the amount of autumn and winter rain that had recharged the soils.

Dannenberg, Wise, and Smith (2019) and Vieira, Nabais, and Campelo (2021) found that trees in

the United States had decreased radial growth and higher mortality risk when winter and sum-

mer precipitation were lower. These two articles demonstrate the importance of winter rainfall in

vegetation health and justify our use of a yearly total rainfall measure.

To obtain the time-varying climate data from “cold indices” on E-OBS indices, we select “an-

nual” in growing season length and “annual” in heating degree days.

Land characteristics data. The chemical and physical land characteristics are sourced from

ESDAC. ESDAC conducted a large survey with approximately 20,000 topsoil samples of soils in

Europe to produce a coherent pan-European physical and chemical topsoil database, which can

serve as baseline information for an EU wide harmonized soil monitoring. We extract nitrogen,

potassium, and phosphorus levels from the LUCAS 2009/2012 topsoil database. We extract soil

biomass productivity variables from the EEA 2006 classification. The soil suitability score was

created in 2016. We also extract elevation, slope angle, and steepness of slopes from ESDAC.

Economic value measures. The Center for International Earth Science Information Network

(CIESIN) of NASA’s Socioeconomic Data and Applications Center (SEDAC) provides gridded

population density rasters. CIESIN estimates population density every 5 years to be consistent

with national censuses. These numbers are scaled to match UN country-level totals. The data is

available at 30 arc sec (1km x 1km) spatial resolution, slightly coarser than the grids. We interpolate

the population density data linearly across time.

We compute the distance of each grid to the closest shoreline from polyline data available from

the EEA. We compute the the Euclidean Distance in ArcGIS at 300 meter pixel resolution and

store the data as a raster.

The EEA has created a binary image of high nature value farmland (HNVF). This HNVF

measure indicates the potential biodiversity value of existing farms. A value of 1 represents farmland

A6

https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY
https://surfobs.climate.copernicus.eu/dataaccess/access_eobs_indices.php
https://esdac.jrc.ec.europa.eu/
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-rev11/data-download
https://www.eea.europa.eu/data-and-maps/data/eea-coastline-for-analysis-2


of high nature value and 0 represents low nature value farmland. We use the data as a proxy of

the counterfactual value of agricultural land.

Solar radiation data is available from WorldClim for the period 1950-2020 and is based on

ground-based on-site observations and a CERES global radiation satellite product. The data re-

ports average monthly solar radiation levels. From this data, we compute an annual average solar

radiation raster.

A.5 NDVI

A.5.1 Background

NDVI (normalized difference vegetation index) is an index with values between -1 and 1 representing

the level of “greenness” of land cover. It is a well-established index for vegetation monitoring,

indicated level of greenness, and plant health. Negative values of the index correspond to water.

Low values (0.1 to 0.2) correspond to barren areas, settlements, snow and clouds. Values between

0.2 and 1 correspond to vegetation. NDVI is the ratio between the red (R) and near infrared (NIR)

bands:

NDV I = (NIR−R)/(NIR+R)

We use Google Earth Engine (GEE) to transform Landsat surface reflectance imagery to NDVI

and export the NDVI image. Landsat is a satellite imagery program for the entire earth. The early

versions, Landsat 1-4, are very similar, are not of sufficient quality, and do not correspond to later

versions. Landsat 5-8 have much higher resolution and contain the necessary visual information to

capture NDVI consistently across each sensor. We, therefore, use the Landsat 5 data starting in

1985.

We use two-year periods for obtaining NDVI images. Annual data suffers greater missing data

issues related to cloud cover. Because accurate NDVI measurement requires leaf-on conditions, we

limit the sample of images to summer months. We center our search for images around July as

it is the height of summer greenness (Peled et al. 2010; Van Oijen et al. 2014). Ideally, we would

produce a single cloudless image using only a two week period—corresponding to the complete

earth imaging time of 16 days of the Landsat satellites—in July. However, clouds are often present,

requiring that the range of months to search for images be extended to either June through August

or, in exceptional circumstances, May through September, until the percentage of missing images

falls below 5 percent. We discuss the details of the procedure for producing a cloud-free mosaic in

our data repository.

When we compute average NDVI by the discrete land use categories in HILDA, we find that

forests are the greenest land use category with NDVI above 60, except for those in the Mediter-

ranean. Forests in Germany and France have an average NDVI of 70 in 2010, and seven countries

have an average NDVI above 70 in their land that is categorized as forest. Grassland has a some-

what lower NDVI that is mostly between 60 and 70, with a much lower value for the Mediterranean
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countries. Cropland has the lowest NDVI, with values of 58 for Germany and 50 for France in

2010. NDVI variation thus matches our priors about land use but differences between biomes and

climate regions are important. Forests in arid regions of Spain are characterized by shrubs and

greater spacing of vegetation and have an NDVI of only 55 in 2010, while grassland in the United

Kingdom in 2010 has an NDVI of 65. We estimate treatment effects separately by country and

include climate, weather, and soil controls to ensure valid treatment-control pairs.

A.5.2 Landsat 7 scan line correction

The Landsat 7 satellite was launched on April 15, 1999. It collected quality images until May 31,

2003 when the Scan Line Corrector (SLC) in the Enhanced Thematic Mapper (ETM+) instrument

failed. Landsat 7 images after this date are not usable for our analysis. The 1999-2003 Landsat 7

operation period overlaps with Landsat 5 (April 1, 1984 - June 5, 2013). During this time frame,

we use Landsat 7 images and fill in any missing pixels with Landsat 5 data.

A.5.3 Landsat 8 OLI to Landsat 5 ETM+ spectral response correction

Landsat 8 and Landsat 5/7’s sensors are largely comparable; they have the same spatial resolution

and 16-day revisit time. However, the spectral response functions of the two sensors differ. Land-

sat 8’s Operational Land Imager (OLI) is an improvement on Landsat 5/7’s Enhanced Thematic

Mapper Plus (ETM+). However, we need to correct the spectral response function of Landsat 8

to make NDVI directly comparable throughout the panel.

The differences in the spectral response functions of the two sensors lead to a “brighter” NDVI

for Landsat 8 imagery than for Landsat 5. This is clear from the histogram of NDVI for all

European grids in 2011 (Landsat 5 ETM+) and in 2013 (Landsat 8 OLI) in Figure A.2. There is

a noticeable skewing towards higher values of the Landsat 8 NDVI in a brief period of just two

years. Because the differences in NDVI in Figure A.2 appear to come largely from measurement,

we use a correction to harmonize the NDVI measure across each satellite. Roy et al. 2016 provide

the coefficients to apply to each band to harmonize Landsat 8 to Landsat 5. We chose to harmonize

OLI to ETM+ because the thematic mapper makes up the majority of our NDVI imagery (1985

to 2011, 13 two-year images).

B Econometrics

B.1 Treatment effect aggregations

The estimated average treatment effects θcgt vary across countries, over event time e = t− g, and

across treatment-assignment cohorts g. Define the set of countries as C and the set of cohorts as

G. Recall we defined T ∈ {1992, · · · , 2019} as the set of time periods in our study sample; we will

refer to the last year of the sample as T . The country-specific treatment effects reported in Figure
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Figure A.2: Spectral response affecting NDVI 2011-2013

Notes: The histogram shows a strong skewing towards higher NDVI values from 2011 to 2013 across all of Europe.

This is not attributable to large scale land cover shifts; this is the result of the difference in the spectral response

functions of ETM+ and OLI. Between 2011 and 2013, Landsat 5 was decomissioned and Landsat 8 became operational.

2 are computed by averaging over the treated time periods and cohorts:

θc =
∑
g∈G

wcg

T∑
t>g

weθcgt =
∑
g∈G

Ncg∑
g∈G Ncg

T∑
t>g

1

T − g + 1
θcgt, (A.1)

where Ncg is the number of observations in country c that were treated in foundation year g. We

average treatment effects across all cohorts; within each cohort, we average over all treated periods

for that cohort in our sample. Because our panel is balanced, every event time has an equal weight

we = 1
T−g+1 within its cohort.

We compute the overall treatment effect estimate across the European Union with a weighted

average of the country-specific θcgt parameters where the weights depend on the number of treated

observations for each tuple {c, g, t}. Define the number of plots i treated in cohort g and observed

in period t within country c as Ncgt. Then, define the EU-wide θEU
gt as:

θEU
gt =

∑
c∈C

wcgtθcgt =
∑
c∈C

Ncgt∑
c∈C Ncgt

θcgt. (A.2)

Generally, such a weighted sum requires estimating the weights wcgt. In our setting, we observe the

true weights on observations because we have the land census in the European Union. As a result,

we directly adjust standard errors without calculating a separate standard error for the weights.

We obtain the overall θEU as the arithmetic mean over cohorts and their treated periods.
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The EU-wide aggregation is asymptotically valid when treatment effects are i.i.d. across coun-

tries. Violations of this aggregation where standard errors would need to be adjusted include cases

where multiple countries create and implement regional conservation plans.3 We do not observe

such coordination in practice; EU member states independently decide which land to protect. The

choice of aggregation technique is also motivated by the computational cost of the doubly-robust

estimator.

Figure 3 aggregates θEU
gt over event time and cohorts. We first recast θEU

gt as θEU
ge by setting

e = t − g. Aggregating over cohorts gives an event-study type estimator θEU
e indexed by event

times:

θEU
e =

∑
g∈G

wgθ
EU
ge , (A.3)

where we equals the fraction of cohorts treated at event time e.

Finally, aggregating over event times gives a measure of the average effect of being treated at

time g:

θEU
g =

1

T − g + 1

T−g∑
e=0

θEU
ge , (A.4)

where we weight each event time within cohort g the same, implying a balanced panel.

Event-study style aggregations represent multiple underlying mechanisms if the composition

of cohorts represented in each θe is different.4 To ensure that results are not driven by sample

composition alone, we construct a series of panels requiring units to be in-sample for at least three

periods before and after treatment. This functionally excludes the earliest treated and latest treated

plots from the sample.

We also use equivalent aggregations at the country-level to test for selection mechanisms that

vary across countries. We aggregate within-country and across event time to obtain θcg in Appendix

C.3.

B.2 Estimation details: Staggered difference-in-differences design

We use the ‘did’ package in the R programming language.5 We select all observations for which there

are no missing variables and keep grids that cross the greenness threshold of NDVI 40 at least once in

the sample. Plots that fully or partially overlap a CDDA are considered treated units for our results

on NDVI. We construct our estimator in the syntax of the ‘att gt’ command. We treat the data

as a panel, using the rounded year of protection as the cohort definition. The command constructs

3. As a consequence of this assumption, our standard errors for the EU-level effects are likely smaller relative to a
confidence band that incorporates covariance in country-level treatment effects.

4. Because we aggregate across cohorts, the sample is densest close to event time 0, with fewer units used to
calculate effects in the earliest pre-periods and latest post-periods. For example, if a unit is treated in 2019, it has
only one post-period (2019) but has 17 biennial pre-periods dating back to 1985. No other cohort is represented in
the dynamic effect for the bin t− g = −34 as 2019 is the last in-sample cohort.

5. See: https://www.rdocumentation.org/packages/did/versions/2.1.2).

A10

https://www.rdocumentation.org/packages/did/versions/2.1.2)


bootstrapped confidence intervals. We keep all computational defaults regarding bootstrap size

and sampling procedures. Our estimator is calculated at the country level.

For large countries, the did package is too slow to produce estimates in a reasonable timeframe.

Therefore, we conduct a subsampling procedure of the estimator, where we draw subsamples at

the cohort-observation level. We do this for Finland, France, Germany, Italy, Poland, Romania,

Spain, Sweden, and the United Kingdom. The subsampling procedure mirrors the bootstrap of

the estimator by ensuring that every cohort and event time is represented in each subsample, so

that the full set of θgt is estimable for each subsample. We subsample with replacement and define

new plot identifiers (e.g., a new grid cell-level ID) to ensure the command runs with potential

duplicates in the data. We sample 100 clustered 5% draws for each country, bootstrapping the

entire matrix θcgt, θce, θcg, and θc as well, obtaining bootstrapped standard errors. Because we

already find the estimator to be slow with this bootstrapping scheme, we do not apply the Callaway

& Sant’anna wild bootstrap to compute uniform confidence bands. These could, in principle, widen

our standard errors as they account for covariance between dynamic treatment effects, but given the

level of precision at which our treatment effects are computed, we do not anticipate these change

the interpretation of our results as a precise 0.

Estimates for Cyprus, Malta, and Liechtenstein are not computed due to missing data in the

time-varying weather patterns. There are significant missing shares of time-invariant variables for

Switzerland, Luxembourg, and Montenegro. A subset of countries have a very high (> 99%) share

of one or more matching variables: these are matched on the remaining covariates. Countries

lacking slope sleepness and soil suitability measures are Switzerland, Serbia, Bosnia, Albania, and

Montenegro. Malta lacks rainfall data on 60% of its landmass. We report results for estimators

that omit time-invariant variables from the matching procedure.

The ‘did’ package computes clustered standard error at default by clustering at the plot level,

allowing for serial correlation in the error terms at the observation level. Additionally, we cluster at

the protected area unit level (CDDA number) to account for potential spatial correlation. This two-

way clustering makes standard errors robust to correlation in the time and cross-sectional (spatial)

dimensions.

We maintain the same matching variables and technical specifications for our nightlights anal-

ysis. There are two key exceptions. Rather than matching on pre-period greenness, we match on

pre-period nightlights. We require a single pre-period of 1992 as the nightlights data do not cover

the same breadth of data as the greenness data. Because nightlight imagery is taken at night,

it is less frequently missing than greenness and we obtain an annual panel. We therefore have

treated cohorts from 1993 through 2019 (27 total potential values of g). Our nightlights data is

also collected at a lower spatial resolution (1 km grid cells, see A), so we reconsider our treatment

definition. As our second deviation from the greenness strategy, treated grid cells must overlap at

least 50% (in area terms) with a protected area.
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B.3 Estimation details: Conditional average treatment effects (CATE)

We use the CATE estimator provided in the R package ‘grf’, generalized random forest.6. Our data

matches the package’s description of a medium-sized dataset. We follow the package documentation

to construct a suitable estimator for our dataset. Computationally, we target an accurate calibration

that passes the test in Chernozhukov et al. (2017) and precisely separates the top and bottom

quartiles of estimated CATEs. This latter point ensures heterogeneity is rejected with precision if

no significant heterogeneity exists.

We apply the Wager and Athey (2018) estimator to a sample of plots. From each country, we

draw a 5% sample clustered at the cohort level. We replicate the research design of our Callaway

and Sant’Anna (2021) estimator and focus on plots that had a greenness measure above 40 at

some point in the sample and omit plots protected before 1991. We estimate our CATEs on the

full sample (a stacked design) rather than calculating cohort-time-specific treatment effects, as in

the Callaway and Sant’anna estimator. Econometrically, estimating the stacked design remains

unbiased as our prior results reject the existence of heterogeneity across cohort and event time.

We supply all potential exogenous variables to compute the forest. We include interaction

terms: initial greenness and elevation, initial greenness and distance to shore, and initial greenness

and climate zone. Exogenous variables are used for matching classification trees and heterogeneity

regression trees, but each tree is trained on separate sub-samples (“honesty”, in the language of

Wager and Athey (2018)). We omit missing observations. Categorical variables are converted to

indicator variables.

Finally, treatment is defined by an indicator equal to 1 as long as t ≥ g, and 0 otherwise. With

a matrix of observables, an outcome vector of greenness, and a treatment indicator, we split the

data into a training and a test dataset. We retain 30% of the data for training, and the remainder

for testing. Training data is used to calibrate the random forest. The algorithm statistically tests

the calibrated random forest on a separate, withheld test dataset.

We change three computational parameters to calibrate the estimator. These are: (1) we

increase the number of trees trained to 4000 to account for our large sample size, (2) we set a

minimum node size of 10,000 to aggressively prune trees and ensure calibration is only on meaningful

heterogeneity, and (3) we lower the sample fraction to 20% to make computation tractable. We find

a higher minimum node size is critical to passing our heterogeneity tests. Meanwhile, the number

of trees should be seen as a minimum—more trees do not improve calibration (we have tested up

to 10,000). The sample fraction is largely dictated by computational constraints.

We report the results of the Chernozhukov et al. (2017) test of meaningful heterogeneity using

the ‘test calibration’ command. For all computed conditional average treatment effects, we ensure

that they are estimated on the subsample of data with overlap (the ‘target.sample’ parameter)

and we test both a doubly robust and an inverse propensity weight (option ‘AIPW’) approach.

Reported values are doubly robust. CATEs are thus calculated using the ‘average treatment effect’

6. See: grf-labs.github.io/grf/
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Figure A.3: Fraction of landmass in the study area which was protected in or before the given year

Notes: Data aggregates up from the 300 meter grid-cell level. Any 300 meter grid cell with non-zero overlap of a

protected area is defined as treated. The y-axis thus reports the percent of grid cells which overlap any protected

area founded on or after the year reported on the x-axis.

command, subsetting to the portion of data of interest.

C Additional Tables and Figures

C.1 Summarizing greenness and protection across the EU

Our large data collection effort gives us the unique opportunity to collate novel descriptive statistics,

both about vegetation growth and conservation policy. Our data in Figure A.3 shows that in the

study period, by 2020, around 20% of European landmass is protected. Further, relative to the

start of our study period in 1985, this is a 300% increase in protected landmass. Our sample period

thus captures the epoch with the largest percentage point increase in protected area growth.

There is variation in protection regimes. Some areas restrict all human access, while others allow

industrial and agricultural activities. While we do not observe the realized level of enforcement,

the IUCN categorizes protected areas by their relative strictness. For example, categories Ia and

Ib indicate the strictest level of protection, where due to wildlife preservation human activity

is strictly limited to either indigenous communities with prior claims to that land or approved

research activities. Table A.4 shows that these strict reserves comprise around 7% of the treated

areas, or around 5,600 unique protected areas. They are also on average the greenest classification

among areas which have IUCN classifications. 47% of protected areas are habitat and species

management areas, 14% are protected landscapes, 12% are nature reserves, national parks, and
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Table A.4: Average greenness in 1989 by IUCN protected area category

IUCN category Percent Mean greenness

National park 0.55 56.32
Natural monument 4.35 63.20
Protected area with sustainable use of natural resources 1.39 63.18
Protected landscape 14.02 62.49
Species management area 46.58 66.52
Strict nature reserve or wilderness area 7.02 70.80
No IUCN 26.09 72.63

Notes: Table summarizes the strictness of protection of CDDAs. Sample restricted to terrestrial protected areas

with non-missing greenness. Excludes areas with missing (NA) IUCN data. Percentages as a percent of the total

number of grid cells in this sample, where a grid cell is included in the IUCN category if it overlaps any CDDA.

natural monuments, and 26% lack an IUCN category. Species management areas (IUCN category

IV) are designed to encourage the propagation of a particular species in the region but are not

necessarily as limited in their economic uses. Notably, areas which are protected but are not

assigned an IUCN category are on average greener than the areas with the strictest protection.

C.2 Propensity score weighting and balance tables

The main identification challenge we face is the nonrandom selection of land for treatment. While

the aggregate picture in the EU suggests (Table A.5) that there may be overlap between treated

and never-treated units, zooming into countries suggests significant imbalances. We demonstrate

this imbalance in Table A.6 for the case of France (chosen because it is relatively large and has

highly-heterogeneous protected areas). Protected areas are in less populated areas (lower popu-

lation density), and steeper and less accessible areas (elevation and slope). To obtain balance,

the algorithm of Callaway and Sant’Anna (2021) applies cohort-specific propensity score weighting.

This is important in our setting as we expect that later-treated cohorts consist of different land than

early-treated cohorts. In each cohort, the procedure develops a propensity weight based on variables

that appear in the vegetation greenness production function: elevation, slope steepness, soil qual-

ity, solar radiance, growing season length, heating degree days, rainfall, and lagged greenness. In

each cohort, the resulting estimator weighs control units by their similarity on vegetation-relevant

observables to treated protected areas. Table A.7 shows an example of how the inverse propensity

weighting shrinks the difference in means of variables between treated and untreated units in the

year before treatment, in France and for the cohort treated in 2005.

C.3 Treatment effect estimates: NDVI

Here we report the results of the Callaway and Sant’Anna estimators in more detail. Table A.8

lists the average treatment effect aggregated over both event time and cohort for each country in
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Table A.5: Balance table for the entire European Union

Never-treated Treated

N Mean (Std. dev.) N Mean (Std. dev.)

NDVI 584, 120, 807 60.90 (13.46) 98, 347, 631 63.70 (12.52)
Growing season length 583, 331, 749 255.97 (28.13) 98, 020, 824 248.10 (29.47)
Heating degree days 583, 331, 749 2, 779.79 (637.83) 98, 020, 824 3, 004.24 (631.23)
High-value farmland fraction 569, 877, 764 0.14 (0.27) 95, 463, 575 0.18 (0.30)
Population density 583, 331, 749 99.36 (298.25) 98, 020, 824 105.58 (258.29)
Rainfall (mm) 583, 331, 749 0.02 (0.01) 98, 020, 824 0.03 (0.01)
Slope angle 584, 120, 807 2.06 (1.14) 98, 347, 631 2.45 (1.23)
Slope steepness 584, 120, 807 1.51 (1.70) 98, 347, 631 2.12 (1.95)
Soil suitability index 584, 120, 807 3.51 (0.79) 98, 347, 631 3.34 (0.81)
Solar radiance 584, 120, 807 11, 350.22 (651.39) 98, 347, 631 11, 090.44 (569.62)

Notes: Tables compares observables for ever- vs. never-treated units. The table aggregates over areas with a

greenness of at least 40 at one point in the sample period. We enforce that land has non-missing values of controls

to be included in the table. Plots which were protected before 1990 are trimmed to ensure we can compare several

periods’ worth of pre-trends. Time-varying variables (heating degree days, rainfall, and growing season length) are

averaged at their 1989 levels, the last pre-period before we analyze treatment effects.

Table A.6: Balance table for France

Never-treated (N=4,552,137) Treated (N=472,741)

Mean Std. dev. Mean Std. dev. Diff. in means Std. error

Greenness 57.58 12.87 61.80 12.54 4.22 0.02
Population density 98.47 369.26 45.85 157.06 -52.62 0.15
High-value farmland fraction 0.12 0.29 0.26 0.38 0.14 0.00
Rain 25.33 6.73 28.08 8.23 2.75 0.01
Heating degree days 2291.87 609.08 2408.68 767.18 116.81 1.08
Growing season length 316.91 36.50 295.19 52.22 -21.72 0.07
Soil suitability index 3.67 0.73 3.34 0.89 -0.33 0.00
Slope angle 1.95 1.36 2.91 1.85 0.96 0.00
Slope steepness 1.39 2.23 2.80 3.27 1.41 0.00
Elevation 275.84 318.55 545.61 472.87 269.77 0.67
Solar radiance 12224.16 1117.75 13172.44 1139.29 948.28 1.57

Notes: Treated data are aggregated across all cohorts. The sample selection procedure for this table is the same as

the rest of the paper. Plots which were protected before 1990 are trimmed to ensure we can compare several periods’

worth of pre-trends. Plots which never attain a greenness value above 40 in the entire sample are trimmed from

the sample. Plots with a missing covariate are also omitted. Time-varying variables are captured in 1989, the last

pre-period year in the sample. Standard errors computed assuming independent populations.
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Table A.7: Balance table for France, specific to the cohort treated in 2005 after propensity-score
matching

Never-treated (N=1,080,841) Treated (N=54,838) Raw IPW

Mean Std. dev. Mean Std. dev. Diff. in means Std. error Diff. in means Std. error

Greenness 69.13 9.83 71.01 8.97 1.88 0.04 0.85 0.04
Population density 53.85 150.81 17.71 34.14 -36.14 0.015 -23.71 0.22
High-value farmland fraction 0.21 0.35 0.35 0.38 0.14 0.002 0.11 0.002
Rain 30.70 8.42 36.64 4.88 5.94 0.02 3.87 0.02
Heating degree days 2068.74 749.14 2555.52 743.92 486.78 3.09 232.00 2.78
Growing season length 277.11 46.70 246.20 41.69 -30.91 0.17 -19.75 0.17
Soil suitability index 3.57 0.76 3.40 0.85 -0.17 0.004 -0.19 0.004
Slope angle 2.39 1.64 3.03 1.57 0.64 0.012 0.66 0.01
Slope steepness 2.01 2.64 2.77 2.88 0.76 0.012 1.07 0.02
Elevation 512.96 461.92 899.64 512.99 386.68 2.15 196.19 1.90
Solar radiance 12542.72 1158.48 13144.22 1061.73 601.50 4.39 364.77 4.12

Notes: Balance table calculated in first pre-treatment panel year, 2003. IPW = inverse probability weight matching.

Matching variables were long-run precipitation, elevation, solar radiance, slope steepness, a soil suitability index, slope

angle, rainfall, heating degree days, a second-order polynomial in greenness. These variables were taken in the pre-

period. Additionally, we included a three-year average and variance of rainfall, greenness, and heating degree days

between 1985-1989. The sample here is trimmed for balance: propensity scores lower than 0.01 and higher than 0.99

are removed.

the European Union. We report bootstrapped standard errors using the Callaway and Sant’Anna

methodology. We also report the number of unique individual plot identifiers remaining in our

data for each country. Some countries, such as Switzerland, are under-represented due to missing

data. Others are under-represented because of a lack of sufficient overlap in some of the control

variables. Most countries are very precisely estimated (less-represented or smaller countries such as

Albania or Bosnia are less precise): protected areas on average experience a change in greenness of

less than one. Exceptions tend to skew in the negative direction: protected areas became relatively

less green, rather than more green. The single well-powered exception is Latvia, where one unit of

greenness is gained on average due to protection.

We report examples of dynamic treatment effect plots θce here. These dynamic effects are most

useful as visual tests of the parallel trends assumption. It would be expositionally overwhelming

to report visual evidence for all countries; instead, we show two examples (Poland and Spain) that

are representative of an overall absence of (trends in) treatment effects.

We start with the results for Poland, a large country with lots of standing old-growth forest.

Figure A.4 shows the estimated dynamic treatment effects θ̂ct for Poland. The treatment effect

for the base period −2 is fairly close to 0, suggesting that we have decent claim to a conditional

parallel trends assumption. We see that up to 20 years after protection, all treatment effects are

less than 2 in absolute value.

We provide a second example of parallel trends. Spain is in a different bio-geographical region

and climate zone from Poland. It is also less densely vegetated. In Figure A.5, the treatment effect

for the base period −2 is a precise 0, visually confirming that we have obtained conditional parallel

trends for this base period. We see that up to 20 years after protection, all treatment effects are less
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Table A.8: Estimated average treatment effect on vegetation greenness for each country, aggregated
over cohort and event time

ATT Estimate (SD) Non-missing, matched grid cells

CSDR 0.08 (0.01) 81, 728, 332
MTWFE 0.49 (0.30) 81, 728, 332
TWFE 0.45 (0.29) 81, 728, 332

Albania −2.29 (0.84) 633
Austria −0.12 (0.03) 728, 440
Bosnia 1.89 (0.68) 3, 448
Bulgaria −0.22 (0.02) 1, 103, 802
Croatia 0.65 (0.07) 522, 525
Cyprus −0.75 (0.14) 21, 195
Czech −0.38 (0.04) 750, 218
Denmark −1.66 (0.27) 401, 326
Estonia 0.41 (0.02) 326, 705
Finland 0.20 (0.53) 4, 530, 486
France 0.22 (0.21) 8, 248, 952
Germany 0.21 (0.03) 17, 605, 764
Greece 0.44 (0.18) 2, 814, 637
Hungary 0.35 (0.02) 927, 980
Ireland −0.40 (0.14) 342, 171
Italy 0.22 (0.05) 3, 165, 318
Latvia 1.19 (0.08) 659, 158
Lithuania 0.76 (0.03) 696, 176
Luxembourg 0.26 (0.06) 19, 817
Macedonia 0.17 (0.80) 1, 173
Montenegro 0.04 (0.08) 140, 316
Netherlands −0.09 (0.89) 356, 550
Poland 0.95 (0.37) 13, 679, 208
Portugal −1.73 (1.40) 588, 064
Romania 0.08 (0.06) 2, 443, 662
Serbia 0.71 (0.28) 3, 241
Slovakia 0.15 (0.03) 494, 283
Slovenia 0.43 (0.03) 196, 302
Spain −0.52 (0.04) 8, 441, 838
Sweden −0.12 (0.12) 9, 503, 885
Switzerland 0.04 (0.24) 3, 547
UK −0.05 (0.19) 3, 007, 512

Notes: Average treatment effect θc of conservation on vegetation greenness (an index varying between 0 and 100)

in Equation (A.1) estimated within each country in the European Union using data from 1985-2019 on a biannual

basis. Top three rows report the Callaway & Sant’anna, Doubly robust estimator (CSDR), Matched Two-way Fixed

Effects (MTWFE), and Two-way Fixed Effects (TWFE, no matching), respectively. Observations are at a 300 meter

resolution and are restricted to those plots which had a greenness value above 40 at some point in the sample period.

To ensure adequate pre-period variation, treated units are limited to those units protected in or after 1991. Reported

p-values test whether θc > 0 relative to the null θc ≤ 0. n represents the number of unique grid cells were identified

in the borders with non-missing matching variables across foundation years between 1991 and 2019.
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Figure A.4: Plot of dynamic treatment effects on vegetation greenness for Poland

Notes: Plots estimates and confidence bands for θce for Poland. Poland-wide treatment effect was 0.95(0.37),

indicated by the dashed blue line. Confidence bands are based on a bootstrapping procedure discussed in the

Appendix B. Plot window trimmed to [−10, 20] for visual clarity.

than 2 in absolute value. Note that both this warmer and sunnier climate and the densely-forested

Poland demonstrate similar conclusions: very little impact on greenness up to 20 years after the

date of land protection. This long time horizon shows neither a change in greenness nor evidence of

a trend in greenness which might indicate more gradual vegetation growth. If anything, treatment

effects are negative.

The overall EU effects, shown in the main text in Figure 3 (left panel), are presented numerically

here in Table A.9. There is no meaningful trend in EU-wide dynamic treatment effects, rejecting

that protection has led to long-term vegetation (re-)growth for the average protected area. We trim

the plot window to [−10, 20] for visual clarity as standard errors grow large outside this window.

We also report the overall EU cohort-level effects in Figure 3 (right panel) as Table A.10 here.

There are 15 cohorts, each with several million observations contributing to estimation (the land

area of the smallest cohort is about 129,000 sq. km.). The treatment effects again center around

0, with no discernible trend in treatment effects moving from early- to late-treated cohorts. Larger

treatment effects generally appear in the later cohorts, where there are fewer post-treatment periods

(e.g., we only observe one period of treatment for the 2019 cohort, which could be confounding

treatment with a number of unobservables specific to 2019).

Finally, Table A.11 indicates summary statistics for the cohort-level effects aggregated to the

country level in our sample (rather than at the EU level in Table A.10). We use these country-level

aggregations to test for selection of protected areas over time (and to compare any potential selection

across regimes). The first column indicates the number of cohorts for which treatment effects are

calculated in the range 1991-2019. The second column reports a trendline from regressing θcg, the

country-level analog of Equation (A.4), on cohorts g− 1991 (we difference out 1991 so changes are
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Figure A.5: Plot of dynamic treatment effects on vegetation greenness for Spain

Notes: Plots estimates and confidence bands for θce for Spain. Spain-wide treatment effect was−0.52(0.04), indicated

by the dashed blue line. Confidence bands are based on a bootstrapping procedure discussed in the estimation

appendix B. Plot window trimmed to [−10, 20] for visual clarity.

Table A.9: Dynamic treatment effects on vegetation greenness across the EU

Event time Mean (Std. dev.) Event time Mean (Std. dev.)

-34 0.00 (0.00) -2 0.07 (0.01)
-32 0.38 (0.15) 0 −0.08 (0.02)
-30 −0.01 (0.09) 2 0.23 (0.02)
-28 −0.47 (0.05) 4 0.21 (0.03)
-26 0.15 (0.04) 6 −0.12 (0.04)
-24 −0.15 (0.04) 8 0.18 (0.03)
-22 0.29 (0.03) 10 0.14 (0.09)
-20 0.24 (0.03) 12 0.24 (0.10)
-18 0.32 (0.02) 14 0.22 (0.10)
-16 0.12 (0.03) 16 0.13 (0.07)
-14 0.05 (0.04) 18 0.42 (0.09)
-12 0.32 (0.04) 20 −0.01 (0.05)
-10 0.23 (0.03) 22 0.41 (0.02)
-8 0.39 (0.03) 24 −0.47 (0.01)
-6 0.25 (0.02) 26 −0.30 (0.02)
-4 0.22 (0.03) 28 0.43 (0.00)

Notes: Dynamic treatment effect θEU
t of conservation on vegetation greenness (an index varying between 0 and

100) estimated for the entire European Union. Estimates are aggregated from country-level estimates of θc(g, t) as

detailed in Appendix B. Underlying dataset spans 1985-2019 on a biannual basis. Observations are at a 300 meter

resolution and are restricted to those plots which had a greenness value above 40 at some point in the sample period.

The earliest included foundation year period is 1991, meaning the latest event-time in the sample is 28. Similarly,

the last valid foundation year is 2019.
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Table A.10: Cohort-level treatment effects on vegetation greenness across the EU

Mean (Std. dev.) N

1991 0.15 (0.08) 8,346,043
1993 0.07 (0.09) 6,399,360
1995 0.25 (0.10) 6,821,430
1997 −0.02 (0.11) 6,508,460
1999 0.22 (0.17) 7,505,035
2001 0.09 (0.05) 7,110,196
2003 0.13 (0.11) 4,309,810
2005 −0.05 (0.08) 6,484,608
2007 0.30 (0.06) 3,249,503
2009 0.15 (0.07) 3,352,802
2011 0.01 (0.21) 1,825,835
2013 0.06 (0.06) 1,442,024
2015 0.12 (0.14) 3,251,702
2017 0.41 (0.07) 3,589,112
2019 −0.69 (0.09) 4,456,613

Notes: Cohort-level treatment effect θEU
cg of conservation on vegetation greenness (an index varying between 0 and

100) estimated for the entire European Union. Estimates are aggregated from country-level estimates of θc(g, t) as

detailed in Appendix B. We sum across all available event-times. Underlying dataset spans 1985-2019 on a biannual

basis. Observations are at a 300 meter resolution and are restricted to those plots which had a greenness value above

40 at some point in the sample period. Treated units are excluded if they had a foundation year earlier than 1991 to

ensure at least 2 periods of parallel trends (3 data observations: 1985, 1987, and 1989).
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interpreted as the effect of being treated 2 years later). Trends are economically small, suggesting

that the change in treatment effect across successive cohorts varies by as little as 0.01% of maximum

NDVI. The largest trends are in Ireland (0.51) and Denmark (-0.29). Ireland’s trend suggests that

on average, plots treated in the last cohorts in 2019 experienced a treatment effect 7.5 units higher

than those treated in 1991—though it is estimated over 6 cohorts only. Denmark, on the other hand,

suggests that the same difference in treatment timing results in treatment effects 4 units lower. The

third column constitutes a less parametric approach to estimating trends. These “split-difference”

estimators compare average treatment effects θcg in the back half of the study period to those in

the first half. The estimators find similar results with less extrapolation involved. Overall, these

results demonstrate that the selection of protected areas does not appear to manifest in significant

trends in cohort-level effects of land protection on greenness.

C.4 Treatment effect estimates: nightlights

Nightlight outcomes are measured on a luminosity scale ranging from 0 to 68. Across the EU in 2021,

the unconditional average luminosity is 9.9. However, 30% of our sample has 0 luminosity (at a 1-

kilometer grid cell resolution. A 0 requires no indoor nor outdoor electricity: these 0s correspond to

clear “undisturbed” land area). Conditional on having positive luminosity, the average luminosity

is 14.3. Countries vary in average nightlights from very bright in Belgium (conditional on a positive

luminosity, mean of 30.5) and the Netherlands (26.2) to relatively less so in Ireland (7.9) or Bulgaria

(9.3). Classically, long-run changes in nightlights have been associated with long-run GDP growth.

When regressing GDP growth on changes in nightlights, Henderson, Storeygard, and Weil (2012)

report that a 1% change in nightlights is associated with a 0.3% increase in GDP growth over a

20-year panel.

Here, we provide tables that summarize the treatment effects depicted in Figure 4. We identify a

grid cell as treated if it is at least 50% covered by a protected area. Table A.12 indicates the average

treatment effects from the dynamic aggregation θEU
t , corresponding to the left panel of Figure 4.

Standard errors indicate bootstrapped standard errors on treatment effects. Our estimates are

statistically indistinguishable from 0 until event-time 18, at which point they indicate a 0.30 point

drop in luminosity. This treatment effect is inconsistent over the remaining periods, rising to −0.39

in event time 20 dropping to −0.14 by the last event time, suggesting that if there is a drop in

nightlights, it is (1) not sustained at its initial levels and (2) occurs 20 years after treatment, making

it difficult to attribute to protection alone.

Table A.13 indicates the average treatment effects from the cohort-level aggregation θEU
g , cor-

responding to the right panel of Figure 4. As with the previous table, we find little evidence of

treatment effects, which are significantly more negative than −0.5 with the exception of the 2005

cohort and the 2013 cohort. These later cohorts appear to have some larger drop in their night-

lights. However, this drop in nightlights is not a persistent feature of the data. Compositionally,

we find no heterogeneity in treatment effects across any observables in later exercises, making these
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Table A.11: Testing for differences in treatment effects across cohorts

Number of Cohorts Trend: Split difference:
Estimate (Std. dev.) Estimate (Std. dev.)

Austria 15 0.02 (0.0027) 0.20 (0.74)
Bulgaria 12 0.14 (0.0043) 0.98 (1.13)
Croatia 10 −0.01 (0.0010) −0.09 (0.59)
Czech 15 0.03 (0.0003) 0.11 (0.48)
Denmark 11 −0.29 (0.0059) −4.82 (1.43)
Estonia 14 0.03 (0.0002) 0.61 (0.31)
Finland 15 −0.02 (0.0001) −0.27 (0.21)
France 15 0.01 (0.0004) 0.16 (0.45)
Germany 15 −0.02 (0.0002) −0.38 (0.40)
Greece 11 0.01 (0.0006) −0.15 (0.50)
Hungary 14 −0.06 (0.0018) −1.07 (0.70)
Ireland 6 0.51 (0.0946) 4.24 (4.76)
Italy 10 0.03 (0.0007) 0.25 (0.38)
Latvia 7 −0.09 (0.0037) 0.43 (1.19)
Lithuania 5 −0.10 (0.0009) −0.78 (0.88)
Luxembourg 6 −0.05 (0.0008) −0.68 (0.62)
Montenegro 4 0.02 (0.0004) 0.00 (0.22)
Poland 15 0.00 (0.0009) −0.12 (0.37)
Portugal 11 −0.06 (0.0018) −1.45 (1.20)
Romania 11 0.00 (0.0002) −0.19 (0.28)
Slovakia 13 −0.05 (0.0004) −0.61 (0.43)
Slovenia 14 −0.01 (0.0006) 0.19 (0.42)
Spain 15 0.01 (0.0008) 0.00 (0.50)
Sweden 15 0.02 (0.0003) 0.56 (0.30)
Switzerland 10 −0.03 (0.0010) −0.21 (0.63)
UK 15 −0.03 (0.0005) 0.20 (0.72)

Notes: Table reports the number of cohorts in each country (note that the maximum number here is 15 as our sample

contains biannual cohorts from 1991-2019). The trend estimates a linear regression of the cohort level treatment effect

θcg against the cohort itself g − 1991. The split difference estimates a difference of means in θcg in the later half of

the treated cohorts relative to the first half of the treated cohorts.
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Table A.12: Dynamic treatment effects on nightlight luminosity across the EU

Event time Mean (Std. dev.) Event time Mean (Std. dev.)

-26 0.21 (0.09) 1 −0.05 (0.02)
-25 −0.08 (0.04) 2 −0.01 (0.02)
-24 −0.20 (0.04) 3 −0.06 (0.02)
-23 −0.11 (0.03) 4 −0.09 (0.03)
-22 0.14 (0.03) 5 −0.10 (0.03)
-21 0.07 (0.03) 6 −0.16 (0.03)
-20 −0.04 (0.03) 7 −0.20 (0.02)
-19 0.04 (0.03) 8 −0.15 (0.03)
-18 0.06 (0.02) 9 −0.06 (0.03)
-17 −0.03 (0.03) 10 −0.10 (0.03)
-16 −0.03 (0.03) 11 −0.01 (0.03)
-15 −0.03 (0.03) 12 −0.06 (0.03)
-14 −0.18 (0.03) 13 −0.01 (0.03)
-13 0.02 (0.03) 14 0.00 (0.03)
-12 0.00 (0.02) 15 0.08 (0.04)
-11 −0.08 (0.02) 16 0.18 (0.04)
-10 −0.11 (0.02) 17 0.02 (0.04)
-9 0.05 (0.02) 18 −0.30 (0.05)
-8 −0.04 (0.02) 19 −0.29 (0.05)
-7 −0.07 (0.02) 20 −0.39 (0.06)
-6 −0.09 (0.02) 21 −0.33 (0.06)
-5 0.04 (0.02) 22 −0.15 (0.08)
-4 −0.13 (0.02) 23 −0.41 (0.08)
-3 −0.08 (0.02) 24 −0.16 (0.09)
-2 0.01 (0.02) 25 −0.26 (0.14)
-1 −0.07 (0.02) 26 −0.14 (0.22)
0 −0.01 (0.02)

Notes: Dynamic treatment effect θEU
t of conservation on nightlight luminosity (an index varying between 0 and

68) estimated for the entire European Union. Treatment effect defined at the grid-cell observation level, 300 by 300

meters. Treatment requires grid cells overlap with a protected area over at least 50% of their area. Estimator is

detailed in B. Underlying dataset spans 1992-2019 on an annual basis. The earliest included foundation year period

is 1993, meaning the latest event-time in the sample is 26.
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two cases outliers. Indeed, in this table, one is nearly as likely to find a positive effect on nightlights,

a proxy for GDP, as a negative treatment effect. There is no discernible pattern in selection that

indicates any systematic variation in these nightlights effects, either.

Table A.13: Cohort-level treatment effects on nightlight luminosity across the EU

Year Mean (Std. dev.)

1993 0.08 (0.15)
1994 0.08 (0.05)
1995 −0.34 (0.06)
1996 0.13 (0.07)
1997 −0.25 (0.06)
1998 −0.47 (0.08)
1999 −0.58 (0.10)
2000 0.19 (0.07)
2001 −0.25 (0.11)
2002 0.71 (0.08)
2003 0.12 (0.08)
2004 0.00 (0.06)
2005 −1.78 (0.19)
2006 −0.30 (0.10)
2007 0.81 (0.14)
2008 −0.39 (0.25)
2009 0.45 (0.10)
2010 −0.05 (0.05)
2011 0.12 (0.08)
2012 −0.04 (0.18)
2013 −1.01 (0.19)
2014 0.34 (0.07)
2015 −0.36 (0.13)
2016 −0.07 (0.06)
2017 −0.03 (0.11)
2018 −0.56 (0.07)
2019 −0.22 (0.11)

Notes: Cohort-level treatment effect θEU
g of conservation on nightlight luminosity (an index varying between 0 and

68) estimated for the entire European Union. Treatment effect defined at the grid-cell observation level, 300 by 300

meters. Treatment requires grid cells overlap with a protected area over at least 50% of their area. Estimator is

detailed in B. Underlying dataset spans 1992-2019 on an annual basis. The earliest included foundation year period

is 1993.

C.5 Heterogeneous treatment effects

Here we describe in more detail the heterogeneous treatment effects obtained via the random forest

method of Wager and Athey (2018). We present results estimated on a random sample of the data

as described in Appendix B. In the sample, the average treatment effect is -0.51 (0.05).
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The first result is a test of heterogeneity in treatment effects. We use the test in Wager and

Athey (2018), which amounts to a random forest implementation of Chernozhukov et al. (2017).

The results are shown in Table A.14. The test reports two coefficients in a regression. Observed

greenness Y are projected onto the average treatment effect estimated by the random forest and

the conditional average treatment effect estimated by the random forest:

Yit = β0ATEit + β1(CATEit −ATEit) + εit

Intuitively, the true average treatment effect should contribute a coefficient of exactly 1 as a

one-unit increase in the average treatment effect drives a 1 unit increase in expected counterfactual

outcomes. Thus, the test for the coefficient on the ATE is a two-sided test for whether the coefficient

is statistically different from 1. We find an estimate of 1.08 (0.10). Similarly, the coefficient on the

CATE should be at least 1: if the CATE changes by 1 unit, we should expect the outcome itself

to change by at least this much if the CATE is meaningful. The test on the CATE is one-sided,

determining if the coefficient is greater than 1: rejection implies that the CATE the random forest

has predicted is not driving deviations from the average treatment effect. Our results indicate our

measured CATE is accurate, with a coefficient of 25 (2.49). Thus, our random forest has picked up

on statistically significant deviations from the average treatment effect.

Table A.14: Test of the random forest model calibration

Coefficient Standard error

Mean forest prediction 1.08 (0.10)
Differential forest prediction 25.32 (2.49)

Notes: Tests calibration of the Wager and Athey (2018) heterogeneous treatment effects model. The causal random

forest is trained with 500 trees and a minimum node size of 10,000 using a 5% sample fraction rate. The first

coefficient describes whether the model captures the mean forest prediction. As it is statistically indistinguishable

from 1, the random forest appears to be fit well. The second coefficient describes whether the model is able to find

heterogeneity in calibrated treatment effects. The coefficient is robustly greater than 1, confirming that we have

found salient heterogeneity.

Despite the statistically significant heterogeneity in the data, treatment effects vary little in

economic terms. The top quartile of treatment effects is noisily 0.71 (1.21) NDVI units above

the lowest quartile of treatment effects. To further test the economic significance of the CATE

measures, we plot conditional average treatment effects along the distribution of selected control

variables X in Figure A.6.

We are interested, in particular, if variables associated with high-quality agricultural land may

change the predicted CATE. If we see, for example, that high soil phosphorus content, indicating

soil that is highly agriculturally productive, has a higher treatment effect, it suggests protection

causes plots more suitable for agriculture to green more than plots less suitable for agriculture.

Such a result is consistent with a subset of land protection having positive treatment effects due
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Figure A.6: Plot of distribution of conditional average treatment effect for phosphorus content in
soil (left) and mean pre-period greenness (right)

Notes: The dependent variable on these plots indicates the quantile of a particular control, q(x). The plotted treat-

ment effect is a conditional average treatment effect (CATE) given by E[τ |X > q(x)]. Thus, each point corresponds

to a smaller sample of the data. In the first bin, we see the ATE as this is E[τ |X ≥ min(x)]. In the right-most bins,

we plot the CATE at the largest values of the controls. Confidence bands are 95% confidence intervals constructed

through a doubly-robust procedure. Figures are overlaid with a trend line through the estimates and associated

confidence band. Figures report variable importance ratio as reported by random forest: both have very high relative

importance, meaning they are highly informative of changes in CATE.
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to a valuable counterfactual land value. We present the phosphorus CATE plot in Figure A.6 (left

panel). While there does appear to be a significant positive trend in the treatment effect, the top

25% of the data has a treatment effect barely discernible from 0 and less than half of an NDVI

point on a scale of 100 units. This result is inconsistent with a pattern of high agricultural value

soil returning to natural use.

While a number of our control variables do display trends, we find that magnitudes are small

for any deviations from a 0 treatment effect. For example, the pre-period mean greenness in

Figure A.6 (right panel) exhibits a statistically significant trend. Plots in the top 5% of the sample

with respect to their pre-period greenness have a precise conditional average treatment effect of 0,

which is statistically discernible from the sample-level ATE of −0.5. Yet, this result can again be

interpreted as a “precise 0”. Overall, we conclude from this exercise that our high-powered dataset

has returned another set of heterogeneous treatment effects that are effectively zero.

D Robustness checks

In this section we discuss various robustness checks of the doubly-robust difference-in-differences

estimator discussed in Appendix B.

Functional form: first differences. Our main specification considers differences in levels of

greenness at the time of protection. We test whether our null result is driven by this functional form

assumption by testing the same specification in first differences of the outcome variable. We apply

the exact same matching function with the exception of matching on pre-period average greenness

in levels and in trends. The aggregate treatment effect θEU is 0.05 (0.02).

We report the EU-wide aggregated treatment effects in Figure A.7. The left panel illustrates

the dynamic treatment effects on changes in vegetation greenness, θEU
t . We can see weak evidence

of a positive trend in the slope of greenness for the full range of event times. There is no evidence

of a kink in greenness at the time of treatment: slopes do not change around protection. While

treatment effects in levels may take time to appear, we should see an immediate kink in first

differences if there is indeed vegetation growth occurring post-treatment which was not present in

the counterfactual. In other words, we should see an immediate increase in the slope of vegetation

greenness indicating a divergence in vegetation growth rates between treated and untreated units.

However, any positive treatment effects are equivalently supported by negative treatment effects in

the post-treatment portion of the figure. The right panel of Figure A.7 illustrates the cohort-level

treatment effects. Aside from a single positive effect for the 1993 cohort, we reject any trends in

cohort-level treatment effects.

Collectively, our first-difference results does not suggest that the specification in levels finds

a precise 0 purely due to a model misspecification. There is no evidence of a kink in vegetation

growth driven by protection.
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Figure A.7: Treatment effects on a first difference of vegetation greenness over event time and by
cohort

Notes: Treatment effects on a first difference of greenness aggregated by event-study period θEU
t in the left panel,

and by cohort θEU
g on the right. Sample includes plots which have greenness above 40 at least once in the sample

period with non-missing matching variables. Sample trims first calendar year, 1985, due to first differencing: we

match on values from 1987 and 1989 for all cohorts treated on or after 1991. Both panels use the Callaway and

Sant’anna doubly robust estimator with bootstrapped confidence bands.
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Sample definition: NDVI thresholds. Our main specification trims the total EU to a

subset that meets a minimum NDVI threshold of 40 at least once in the period 1985-2019. We

motivate this by noting that land below this NDVI threshold is unlikely ever to be forest or dense

vegetation. The matching and outcome regression procedures model the suitability of land for

vegetation growth. Here, we test the sensitivity of the results to the threshold of NDVI 40 by

choosing a larger sample with a more permissive NDVI threshold of 30. Because our heterogeneity

analysis (see Appendix B.3) finds no heterogeneity across initial NDVI for land above the NDVI

threshold of 40, we are confident that restricting the sample to higher NDVI cutoffs would not

change our precise 0.

Our overall average treatment effect for an NDVI threshold of 30 is again a precise 0: −0.07(0.02).

The difference between this estimate and our baseline estimate is materially quite small, if precise.

The direction of the change in estimates suggests that, if anything, protected land which never

attained an NDVI of 40 greened relatively less than land in our main sample.

Figure A.8: Treatment effects on NDVI: expanded sample definition

Notes: Treatment effects on greenness aggregated by event-study period θEU
t on the left panel, and by cohort θEU

g

on the right. Sample includes plots which have greenness above 30 (note: in our main specification, this number

is 40) at least once in the sample period with non-missing matching variables. Both panels use the Callaway and

Sant’anna doubly robust estimator with bootstrapped confidence bands.

When plotting EU-wide dynamic treatment effects θEU
t in the left panel of Figure A.8, we find

little evidence of aggregate greening. We obtain precise balance in the key first pre-period with an
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estimated difference of 0.04 (0.01). The overall dynamics are centered at zero for the first 12 years

of treatment. After this, we encounter some minimal variation—first positive effects on the scale

of 0.5 NDVI points, then a negative jump of -1 NDVI points. We make two observations about

these later treatment effects. (1) These late-stage jumps in greenness are driven by a changing

sample composition, and (2) the largest evidence for protection-driven greenness is the a positive

treatment effect of 0.75 in period 19. Overall, the treatment effects are noisily negative rather than

positive, again suggesting that protection does not contribute to greening.

In the right panel of Figure A.8, we plot treatment effects at the cohort-level θEU
g . These cohort

effects largely resemble our baseline specification: there is no discernible trend which would indicate

site selection across treated cohorts.

Spatial correlation: spatial first differences. If some of our control units are affected by

treatment, our difference-in-differences estimate violates the stable unit treatment value (SUTVA)

assumption. A conventional method for testing for such spillovers is a “donut” difference-in-

differences design. In such a design, the researcher discards potentially contaminated units nearest

a protected area and recomputes treatment effects. It thus calculates a treatment effect based only

on non-local variation in greenness. We find the donut approach is prohibitively expensive from

a computational perspective: it requires calculating an individual buffer for each of our 100,000

treated areas, many of which may have overlapping buffers and therefore no plausible donut con-

trols.

Instead, we use a method of spatial first differences (SFD). This methodology takes a first

difference of the data along a given spatial axis, thus creating comparisons between areas that are

close by in space. We difference observations along the x-dimension so that areas with the same

latitude are differenced against their neighbors. Introducing the index i = (x, y) to identify a grid

cell by the coordinates of the centroid of that grid cell, the outcome variable is:

∆Y LAT
xyt = Yxyt − Yx−1,yt

In principle, we could re-estimate SFD for many axes, such as a vertical or diagonal axis.

When we estimate treatment effects, the SFD method estimates the difference-in-differences on the

spatially differenced outcome variable. Intuitively, a difference-in-differences estimator with SFD

data captures the relative change in ∆LATYxyt in treated and control units. Thus, rather than

computing a direct comparison of greenness between treated units and distant controls through

donuts, we focus on estimating the greenness differences between treated units and their nearest

neighbors.

When calculating the spatial first difference across the x dimension, we obtain an EU-wide

treatment effect of 0.01 (0.02). Figure A.9 plots the event-study (left panel) and cohort-level

aggregations (right panel). The left panel demonstrates an exact 0 in the post-treatment periods.

There is a slight dip in the pre-treatment coefficients, suggesting that treated areas were greening

slightly less relative to neighbors than a comparable control unit in the lead-up to treatment, with
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a magnitude of around −0.2 in the second-to-last pre-treatment period. We then attain a precise

balance on the key pre-treatment period. Cohort effects show no trend through 2015, with a

slightly lower treatment effect in the 2017 and 2019 cohorts. Overall, the SFD estimates an even

more precise 0 than our main specification.

Figure A.9: Treatment effects on NDVI: spatial first differences

Notes: Treatment effects on greenness aggregated by event-study period θEU
t on the left panel, and by cohort θEU

g on

the right. Outcomes are spatially differenced in the x direction. Sample includes plots which have greenness above 40

at least once in the sample period with non-missing matching variables. Both panels use the Callaway and Sant’anna

doubly robust estimator with bootstrapped confidence bands. Dotted blue lines indicate the EU-wide ATE of 0.01.

E Other Outcome Variables

E.1 Biodiversity outcomes from species counts

BioTIME data consist of a panel of animal species and vegetation flora biomass studies. Studies

enter and exit the panel as they are conducted by biologists and ecologists. Records consist of a

year, a species identifier, a study identifier, and either a count of species abundance or a measure

of vegetation biomass. When focusing on the landmass of the European Union, there are a total of

58 studies, most of which focus on animal counts. We restrict our analysis in this section to species

counts of animals as a measure of biodiversity.

Of the 58 BioTIME studies in the EU, 51 are within 25 kilometers of a protected area listed in
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the CDDA system. Notably, there are only 7 BioTIME studies further than 25km from a CDDA.

These seven studies are too few to serve as a valid control group to establish causal effects as in

our core analysis of greenness and nightlights. Instead, we construct event-study estimators of the

impact of nearby CDDA openings on measured abundance. As a result, rather than leveraging

variation relative to control units, we only look at within-study variation to determine whether

structural breaks appear around the foundation of protected areas. The potential selection of these

few study sites and the lack of a valid control group in the BioTIME data limits the external

validity of these results. We thus present our specification as descriptive evidence rather than

causal designs.

Our econometric specification considers a study i, species s, and year t. We construct a buffer

of distance b kilometers around the study area, the neighborhood N b
i . We assign treatment of

the study area according to the minimum foundation year g of overlapping CDDAs. That is, the

treatment indicator is Db
it = 1[t ≥ minNb

i
g] with event time eb = t−minNb

i
g. Then, the event-study

design amounts to the following regression, where λ is used to denote a fixed effect:

yist =

10∑
eb=−10

βbebD
b
it + λi + λs + εist (A.5)

In Figure A.10 we plot the event-study coefficients βb
eb

for two buffer distances: 2.5 km and 5 km.

We estimate the regression in logs. Event-study coefficients are indistinguishable from 0 in the

immediate time frame around the first foundation year in the vicinity. The average effect across

post-periods was 0.03 (0.05) and 0.10 (0.06) at the 2.5 and 5 km buffers, respectively. Overall, we

cannot reject the null of no structural break in these settings.

The BioTIME data is spatially concentrated in a few areas within Europe. This lack of spatial

variation means many sites are close to one another, and close to many potential CDDAs. When

expanding the treatment buffer from 2.5 km to 5 km, we move from 35 to 39 treated studies out of

the original pool of 58. The jump in species counts represented is much larger, from 750 to 2,422

total species tabulated. Hence, there is a large density of species studies within the 5 km boundary.

This indicates the biodiversity data lacks spatial breadth, making valid inference difficult.

E.2 Discrete land use data

The HILDA dataset provides over 100 years of land-cover maps at a 1 kilometer grid cell resolution.

As we discuss in Section 3, it has severe limitations as a main outcome variable for measurement

of biodiversity. However, HILDA does provide descriptive insights into long-run land-cover trends

since 1900. HILDA omits a subset of countries which are included in our analysis sample. These

are Albania, North Macedonia, Montenegro, Croatia, Bosnia and Herzegovina, Serbia, Norway, and

Iceland. We omit HILDA reporting on several smaller nations which are not in our main analysis

sample: Andorra, Monaco, Jersey, Guernsey, Isle of Man, and Faroes.

HILDA categorizes land into one of six discrete classes: cropland, forest, grassland, other (such
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Figure A.10: Event-study coefficients measuring species abundance with respect to nearby protected
area foundation

as mountains or barren land surface), settlement, and water. In Figure A.11 we plot the share of

each land use in the HILDA data. The data is at a decadal frequency since 1900. The data confirms

the century-long growth in vegetation across the EU. HILDA reports a forest share in the EU of

just over 20% in 1900 and a 35% forest share in 2010.

In Table A.15, we report a transition matrix over the full breadth of the HILDA data. Looking

at the diagonal entries, it is clear that cropland and grassland experienced the greatest land-cover

shifts in percentage terms: 30% and 40% point of the 1900 landcover has transitioned to other

land uses. The chief beneficiary of both appears to have been forest, though there is non-negligible

transition between grassland and cropland. This latter transition can be both a true return of

cropland to natural use (or vice versa), or can encompass measurement error as cropland and

grassland are less readily discerned by classifiers, or finally can also indicate conversion between crop

and pasture (which is not a dimension of biodiversity we are particularly interested in). However,

overall, Europe is clearly greening: 10% of cropland in 1900 appears to be forest in 2010, and 27%

of grassland in 1900 is forest by 2010. Settled areas also transition to forest—some subset of land

returned to natural use.

We also report a cross-tabulation of land-cover data in the final year of the HILDA data, 2010,

against one treatment definition of protection in Table A.16. Because HILDA has larger grid

cell sizes (1 km) than in our core dataset, we report a more stringent treatment definition which

identifies a grid cell as treated if it is at least 50% covered by a protected area. The cross-tabulation

is not very sensitive to this decision: raising the proportion required to be considered protected

decreases the total number of protected areas but does not affect the composition of those protected
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Figure A.11: Land share in the EU by decade and land use category

Notes: HILDA land classes report dominant classified land use in a 1 km grid. We omit land which is classified as

NA or missing from this sample.

Table A.15: Discrete land use transitions for the entirety of Europe between 1900-2010

Land-use transition probabilities
Land use in 1900 / 2010 Cropland Forest Grassland Other Settlement Water

Cropland % row 68.5 9.6 17.7 0.0 4.1 0.0
Forest % row 0.8 89.7 8.8 0.0 0.8 0.0
Grassland % row 11.7 27.2 58.8 0.0 2.3 0.0
Other % row 0.0 0.0 0.0 100.0 0.0 0.0
Settlement % row 7.4 5.0 6.8 0.0 80.8 0.0
Water % row 1.2 0.2 0.9 0.0 0.4 97.2

Land-use shares
Land use in 2010 Cropland Forest Grassland Other Settlement Water
Total (2010) % row 27.7 35.2 28.4 1.6 4.2 2.9

Notes: Table reports land use transitions relative to base year of 1900 in 2010. Transitions are defined based on the

HILDA landcover data, which classifies land into one of 6 land areas in each decade from 1900 to 2010. We omit a

small percentage of areas which are classified as NA values.
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Table A.16: Break-down of land use under protection in 2010

landuse Less than 50% protected At least 50% protected

Cropland % row 91.0 9.0
Forest % row 78.8 21.2
Grassland % row 80.5 19.5
Other % row 58.9 41.1
Settlement % row 91.7 8.3
Water % row 79.4 20.6

Notes: We cross-tabulate the land cover reported in the last decade of the HILDA data (2010) according to whether

the 1 kilometer grid cell is at least 50% treated at any time before 2023. Column headers indicate ever-treatment

status, and row-headers indicate measured land cover in 2010.

areas (results available on request). The table shows that cropland and settlement are far less likely

to be protected than forests, grassland, or water. Notably, the “other” category (which includes,

for example, mountain ranges that are protected in larger clusters of land) is most likely to have a

protected status.

Finally, we explore evidence supporting our hypothesis that protected land is a highly selected

sample. Recall that the EU Directive does not provide country-specific quotas. Then, under a

selection scheme that minimizes the economic opportunity costs of land set aside for protection,

countries with higher land area in natural use are likely the countries with the highest share of

land protected—large protected areas are likely remote and to a large extent at minimal risk of

development. That is, the supply of natural land would be correlated with actual protection as

policy-makers avoid protecting economically valuable cropland or settlement. Figure A.12 illus-

trates that natural land availability and protection are slightly positively associated. We find some

evidence that countries with particularly high nature shares protect more land. A higher natural

land share is associated with a higher share of total land protected.

However, we supply this evidence with two caveats. Our definition of the supply of natural

land (forest and grassland) is incomplete. Thus, our measure of nature “budget” across countries

is limited: we would ideally be able to include mountains, permafrost, wetlands, and other natural

land uses that HILDA does not report. In addition, the share of available natural land is endogenous

to previous protection choices.
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Figure A.12: Natural land supply and protection

Notes: Observations represent countries. The blue line is the line of best fit. The figure is produced with a 1-

kilometer resolution grid. We compute the share of natural land in HILDA’s 2010 dataset as the total land area

classified as forest or grassland over a country’s total land area.
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