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Abstract 
 
This paper presents a framework for empirical analysis of dynamic macroeconomic models using 
Bayesian filtering, with a specific focus on the state-space formulation of New Keynesian 
Dynamic Stochastic General Equilibrium (NK DSGE) models with multiple regimes. We outline 
the theoretical foundations of model estimation, provide the details of two families of powerful 
multiple-regime filters, IMM and GPB, and construct corresponding multiple-regime smoothers. 
A simulation exercise, based on a prototypical NK DSGE model, is used to demonstrate the 
computational robustness of the proposed filters and smoothers and evaluate their accuracy and 
speed. We show that the canonical IMM filter is faster than the commonly used Kim and Nelson 
(1999) filter and is no less, and often more, accurate. Using it with the matching smoother 
improves the precision in recovering unobserved variables by about 25%. Furthermore, applying 
it to the U.S. 1947-2023 macroeconomic time series, we successfully identify significant past 
policy shifts including those related to the post-Covid-19 period. Our results demonstrate the 
practical applicability and potential of the proposed routines in macroeconomic analysis. 
JEL-Codes: C110, C320, C540, E520. 
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1 Introduction

In the evolving landscape of macroeconomic analysis, the empirical examination of dynamic

models has become increasingly sophisticated and computationally demanding. This paper con-

tributes to this area by presenting a comprehensive framework for the empirical analysis of dy-

namic macroeconomic models using Bayesian �ltering. We focus on New Keynesian Dynamic

Stochastic General Equilibrium (NK DSGE) models with multiple regimes. Our work introduces

enhanced �lter and smoother algorithms, crucial for accurate macroeconomic modelling and es-

timation.

Our study is motivated by the increasing popularity of Bayesian methods in macroeconomic

time series analysis, particularly within the DSGE framework. These methods have gained trac-

tion due to their ability to e¤ectively handle complex models with latent variables and structural

changes. Bayesian perspective is invaluable for disentangling convoluted macroeconomic phenom-

ena, such as di¤erentiating between external shocks and policy-driven economic patterns.

Despite signi�cant advancements in the literature, the �eld continues to face various chal-

lenges, especially when estimating macroeconomic dynamic models with multiple regimes. One

such challenge is selecting an e¢ cient and accurate �lter for likelihood computation. Another

challenge is the task of reconstructing latent variables through the smoothing of estimated state

variables and regime probabilities.

The prevalent use of the Kim and Nelson (Kim, 1994, Kim and Nelson, 1999) �lter in macro-

economic applications (see, inter alia, Davig and Doh, 2014, Chang, Maih, and Tan, 2021, Chen,

Leeper, and Leith, 2022) suggests limited exploration of alternative methods in this �eld. Despite

its unquestionable power, Kim and Nelson �lter is known to have certain �aws. Namely, it is

computationally intensive and, when extended to smoothing algorithms, computationally unsta-

ble. Perhaps, the latter is the reason for scant use of smoothing for more accurate recovery of

latent variables in multiple regime models in the existing economic literature.

Our paper makes both theoretical and empirical contributions in this domain. First, we

introduce and extend the Interactive Multiple Model (IMM) �lter, originally developed by Bar-

Shalom (Blom and Bar-Shalom, 1988). Despite its recognition in the engineering literature, the

IMM �lter remains underutilised in economic applications. In addition, we extend the Kim

and Nelson �lter, to accommodate di¤erent orders of approximation. Finally, we develop a

computationally stable and easily implementable smoothing algorithm that can be conveniently

adapted to a wide range of �lters in multiple regime setting. Empirically, we apply these methods
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to a prototypical NK DSGE model and the U.S. macroeconomic time series spanning from 1947

to 2023. This exercise succeeds in identifying signi�cant policy shifts, particularly in the post-

Covid-19 era, and thus demonstrates the practical relevance of our methods.

We validate the superiority of the proposed �lter-smoother algorithm using rigorous simulation

exercises. Our �ndings indicate that the IMM �lter outperforms the Kim and Nelson �lter in terms

of computational speed while maintaining comparable accuracy. Moreover, the implementation

of our proposed smoother signi�cantly enhances the precision in the recovery of latent variables,

with an approximate 25% reduction in estimation errors. These empirical insights reveal the

importance of smoothing in this framework, overlooked in the existing literature.

One should note that while the Kim and Nelson �lter has dominated the analysis of multiple-

regime macroeconomic models, there have been a few exceptions. Liu, Wang, and Zha (2013)

apparently applied IMM to study the role of land-price dynamics in macroeconomy. Binning and

Maih (2015) showed how sigma-point �lters can be adapted to the multiple regime setting based

on the IMM, using a prototypical NK DSGE model. Bjørnland, Larsen and Maih (2018) applied

it to study the interplay between oil price shocks and macroeconomic instability. More recently,

Leith, Kirsanova, Machado, and Ribeiro (2024) used IMM in a study of monetary and �scal policy

changes in the United States. We are unaware of other IMM applications in macroeconomics to

date.

All computations presented in this paper were implemented in the RISE c toolbox (Maih,

2015).1

The paper is organised as follows. The next section presents theoretical foundations. We

derive two families of �lters, one of which encompasses the Kim and Nelson �lter and the other

one encompasses the canonical IMM. We derive a Markov-switching smoother adapted to the

appropriate �lter family. Section 3 tests the e¢ cacy of the proposed �lter and smoother algorithms

on arti�cial data. An empirical investigation is presented in Section 4. Section 5 concludes.

1RISE stands for �Rationality in Switching Environments�. The codes and documentation are available at
https://github.com/jmaih/RISE_toolbox
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2 Switching Filters and Smoothers

2.1 The Filtering Problem

We start with a general multiple-regime state-space representation of a linear discrete-time dy-

namic model consisting of a measurement equation (1) and a transition equation (2),

yt = cy;st + Zst�t + gst"t; (1)

�t = c�;st + Tst�t�1 +Rst�t; (2)

where yt a p� 1 vector of observations, �t is a m� 1 vector of unobserved state variables, and "t
and �t are independent standard Gaussian random variables, t = 1; : : : ; n. All model parameters,

fcy;st ; c�;st ;Zst ; Tst ; gst ; Rstg, depend on regime st, which is an outcome of a Markov process with
h � 1 discrete regimes. This process is described by the transition probability matrix with the

generic element Q(st�1; st) = Pr [st j st�1], so that
Ph

st=1
Q(st�1; st) = 1 for every regime st�1

and every time t.

The information available at time t is fully contained in the vector of observations Yt :=

fy1; :::; ytg. The object of interest is an estimate of the unobserved state vector �t; for which
three estimators, �tjt�1; �tjt and �tjn are available in Bayesian framework. The �rst estimator is

the forecast of �t based on information Yt�1,

�tjt�1 := E [�t j Yt�1] :

Its mean square error (MSE) is de�ned as

Ptjt�1 := E
h�
�t � �tjt�1

� �
�t � �tjt�1

�0 j Yt�1i :
In the linear single-regime setting with Gaussian shocks these objects and the associated

likelihood f (yt j Yt�1) are computed by the well-established technique of the standard Kalman
�lter (KF), which in this case is exact and optimal (Kalman, 1960). Working in a multiple-regime

environment is more challenging because of the explosive dimensionality of the problem.

Speci�cally, in a multiple-regime environment, exact estimation is infeasible because the num-

ber of histories that a Kalman-type �lter needs to take into account increases exponentially with

every time period. At any given time t, a multiple-regime dynamic system can be in one of

h possible regimes, each corresponding to a realisation of h mutually exclusive and exhaustive

random events. Denote the sequence of realised regimes from the beginning of observations up

to time t by Jt:
Jt = fs1; s2; :::; st�1; stg 2 Ht;t
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where HN;t is the set of all possible histories of length N that end at period t. There are ht

possible mutually exclusive and exhaustive histories up to time t. Using the total probability

theorem, the conditional pdf at time t is obtained as a Gaussian mixture with the number of

terms equal to ht:

f (yt+1 j Yt) =
X
Jt

f (yt+1 j Jt; Yt) Pr [Jt j Yt] :

The probability of a given regime history is computed using Bayes formula:

Pr [Jt j Yt] = Pr [Jt j yt; Yt�1] =
f (yt j Jt; Yt�1) Pr [Jt j Yt�1]

f (yt j Yt�1)

=
f (yt j Jt; Yt�1) Pr [st;Jt�1 j Yt�1]

f (yt j Yt�1)

=
f (yt j Jt; Yt�1) Pr [st j Jt�1; Yt�1]

f (yt j Yt�1)
Pr [Jt�1 j Yt�1]

When the regime switches have Markov property, Pr [st j Jt�1; Yt�1] = Pr [st j st�1] = Q(st�1; st),

which simpli�es the second term in the numerator. However, conditioning on the entire past

history is still needed for the last term even if the regimes follow a Markov process.

In practice, one has to resort to some approximation. In this sense, all practical multiple-

regime �lters are approximate and, therefore, suboptimal. One popular approach involves merging

two or more histories into one. A version of this approach is well known in economic applications

as the Kim and Nelson �lter. We focus on this framework and study two families of �lters with

di¤erent mechanisms of approximation.

In the next section, we present the Generalised Pseudo-Bayesian (GPB) �lters, and Interacting

Multiple Models (IMM) �lters of arbitrary order (length of tracked histories) N:

2.2 Two Practical Families of Filters

We begin with the GPB(N) family, which includes the Kim and Nelson �lter as a special case of

GPB(2); see Kim (1994) and Bar-Shalom et al. (2001) for an exposition. Following commonly

used notations, the GPB(N) �lter uses information from the previous N periods, including the

current one. Thus, GPB(1) ignores past history and uses current period information only, GPB(2)

incorporates information from the current period and one immediately preceding period, and so

on. The IMM algorithm is conceptually di¤erent from the GPB in the way it combines past

histories. The version of IMM developed in Blom and Bar-Shalom (1988) corresponds to IMM(1);

we refer to it as canonical IMM.

One would expect that a higher N leads to increased accuracy at the cost of a larger amount

of computations. We investigate relative accuracy and speed for di¤erent N within each family.
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Another interesting question is whether the canonical IMM outperforms the KN �lter in accuracy

and speed in a prototypical macroeconomic application.

In this section, we present the GPB(N) and the IMM(N) algorithms in turn, using uniform

notations for the entire GPB family. Where relevant, we will remind the reader that KN is the

same as GPB(2).

2.2.1 Preliminaries

Let Ht denote the history of regimes in N consecutive periods ending with period t,

Ht := fst�N+1; :::; st�1; stg 2 HN;t;

and let Ct be the �collapsed�history, de�ned as

Ct := fst�N+2; :::; stg 2 HN�1;t:

Hence

Ht = fCt�1; stg = fst�N+1; Ctg;

and

Ht�1 = fst�N ; :::; st�2; st�1g 2 HN;t�1;

Ht�1 [Ht = fst�N ; :::; st�2; st�1; stg 2 HN+1;t:

Let

�
(Ht)
tjt := Pr [Ht j Yt]

be the probability of realisation of a particular history Ht conditional on information at time t.

2.2.2 Family of GPB Filters

The GPB algorithm of order N , denoted GPB(N), takes into account all hN possible histories

of the �xed length N , �nishing at the current time period. It is implemented as follows.

De�ne

�
(Ct)
tjt := Pr [Ct j Yt] =

hX
st�N+1=1

�
(Ht)
tjt

as the probability of the collapsed history, Ct, conditional on information at time t.

Algorithm 1 GPB(N) Algorithm
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Step 0. Start at t = 1. Initialise hN�1 versions of the state vector �(Ct�1)t�1jt�1; the MSE matrix

P
(Ct�1)
t�1jt�1; and probabilities �

(Ct�1)
t�1jt�1, Ct�1 2 HN�1;t�1:

Step 1. Compute hN standard KF forecasts to obtain

GPB(N) Forecast GPB(N) Update

�
(Ht)
tjt�1 = c�;st + Tst�

(Ct�1)
t�1jt�1; �

(Ht)
tjt = �

(Ht)
tjt�1 + P

(Ht)
tjt�1Z

0
st

h
F
(Ht)
tjt�1

i�1
v
(Ht)
tjt�1;

P
(Ht)
tjt�1 = TstP

(Ct�1)
t�1jt�1T

0
st +RstR

0
st ; P

(Ht)
tjt =

�
I � P (Ht)

tjt�1Z
0
st

h
F
(Ht)
tjt�1

i�1
Zst

�
P
(Ht)
tjt�1;

where

v
(Ht)
tjt�1 = yt � Zst�

(Ht)
tjt�1 � cy;st ; F

(Ht)
tjt�1 = ZstP

(Ht)
tjt�1Z

0
st +Hst ; Hst = gstg

0
st :

Compute the associated likelihood

�
(Ht)
t = f (yt j Ht; Yt�1) = (2�)

�p=2
���F (Ht)
tjt�1

����1=2 exp��1
2
v
(Ht)0
tjt�1

h
F
(Ht)
tjt�1

i�1
v
(Ht)
tjt�1

�
:

Step 2. Compute probabilities �(Ht)
t according to2

�
(Ht)
tjt = Pr [Ht j Yt] = Pr [Ht j Yt�1; yt]

=
f (yt;Ht j Yt�1)
f (yt j Yt�1)

=
f (yt j Ht; Yt�1) Pr [Ht j Yt�1]

f (yt j Yt�1)

=
f (yt j Ht; Yt�1) Pr [st j Ct�1; Yt�1]

f (yt j Yt�1)
Pr [Ct�1 j Yt�1]

' �
(Ht)
t Q (st�1; st)P

Ht
�
(Ht)
t Q (st�1; st)�

(Ct�1)
t�1jt�1

�
(Ct�1)
t�1jt�1;

where in the last line we used approximation

Pr [st j Ct�1; Yt�1] ' Pr [st j st�1] = Q (st�1; st) ; (3)

and

f (yt j Yt�1) =
X
Ht

f (yt j Yt�1;Ht) Pr [Ht j Yt�1]

=
X
Ht

f (yt j Yt�1;Ht) Pr [st j Ct�1; Yt�1] Pr [Ct�1 j Yt�1]

'
X
Ht

�
(Ht)
t Q (st�1; st)�

(Ct�1)
t�1jt�1: (4)

2This procedure is a generalised version of the Hamilton (1989) �lter.
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where the sum is taken over all possible realisations of Ht:

Step 3. Next, hN KF outputs are merged into hN�1 using conditional probabilities

Pr[st�N+1jYt; Ct] computed as:

Pr[st�N+1jYt; Ct] =
Pr (st�N+1; CtjYt)

Pr (CtjYt)
=
Pr (HtjYt)
Pr (CtjYt)

=
�
(Ht)
tjtPh

st+1�N=1
�
(Ht)
tjt

:

Thus,

�
(Ct)
tjt =

hX
st�N+1=1

Pr[st�N+1jYt; Ct]�(Ht)
tjt ; (5)

P
(Ct)
tjt =

hX
st�N+1=1

Pr[st�N+1jYt; Ct]
�
P
(Ht)
tjt +

�
�
(Ct)
tjt � �(Ht)

tjt

��
�
(Ct)
tjt � �(Ht)

tjt

�0�
(6)

�
(Ct)
tjt = Pr [Ct j Yt] =

hX
st�N+1=1

Pr [Ht j Yt] =
hX

st�N+1=1

�
(Ht)
tjt : (7)

Updated �(Ct)tjt ; P
(Ct)
tjt and �(Ct)tjt serve as initialisations for the next time period (t = 2; 3; :::; n)

in a recursion at Step 1.

The t-increment likelihood

Lt = log f (yt j Yt�1) ;

is computed using (4) as part of the �lter algorithm.

To continue the recursion to the end of the sample we only need to computen
�
(Ct)
tjt ; P

(Ct)
tjt ; �

(Ct)
tjt

o
(Ct)2HN�1;t

at each step of the algorithm. These quantities are also used to

compute the state vectors and the MSE matrices
�
�tjt; Ptjt

	
t=1:n

for each time t, and the proba-

bility �(st)t of the system being in regime st conditional on information at time t:

�tjt =
X
Ct

Pr [Ct j Yt]�(Ct)tjt =
X
Ct

�
(Ct)
tjt �

(Ct)
tjt ; (8)

Ptjt =
X
Ct

Pr [Ct j Yt]
�
P
(Ct)
tjt +

�
�tjt � �

(Ct)
tjt

��
�tjt � �

(Ct)
tjt

�0�
(9)

=
X
Ct

�
(Ct)
tjt

�
P
(Ct)
tjt +

�
�tjt � �

(Ct)
tjt

��
�tjt � �

(Ct)
tjt

�0�
;

�
(st)
tjt = Pr[st j Yt] =

X
Ct�1

Pr[Ht j Yt] =
X
Ct�1

�
(Ht)
tjt : (10)

These objects can be computed outside of the recursion.
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This algorithm works for any N � 1. Note that for N = 1 we have Ct = ?;Ht = st: This

implies that the GPB(1) algorithm considers possible regime histories only at their latest instant

and merges all preceding regime sequences into one, using common initial conditions �t�1jt�1 at

each time step.

2.2.3 Family of IMM Filters

IMM(N) maintains the dimensionality of histories at hN at every time period. This is achieved

by mixing histories in every recursion of the algorithm immediately after making a step forward

in time, which would otherwise result in an increase of dimension to hN+1: E¤ectively, at every

t, mixing replaces hN+1 extended �exact�histories by hN reduced approximate histories weighted

by probabilities of transition from the earliest state, st�N , into the sequence of most recent states,

fst�N+1; :::; stg. These hN histories are then �ltered and updated in the usual way.

A comparison of the IMM and the GPB shows that the dimension reduction is performed

at the di¤erent stages of the algorithms.3 In the IMM, mixing is done after the state update

and before the measurement update, and in the GPB, collapsing is done after the state and

measurement updates.4

Let Qtjt�1 := Qtjt�1
Qt�1jt�2
 :::
Qt�N+1jt�N denote the grand transition matrix of format
hN � hN :

Algorithm 2 IMM(N) Algorithm.

Step 0. Initialise hN versions of the state vector �(Ht�1)
t�1jt�1; the MSE matrix P

(Ht�1)
t�1jt�1; and

regime probabilities �(Ht�1)
t�1jt�1, Ht�1 2 HN;t�1: Compute Qtjt�1:

Step 1. Compute the mixing probabilities de�ned as

�
(Ht�1jHt)
t�1jt�1 := Pr [Ht�1 j Yt�1;Ht] :

Note that

Pr[Ht�1 [Ht j Yt�1] = Pr [Ht�1 j Yt�1;Ht] Pr[Ht j Yt�1]

= Pr [Ht j Ht�1; Yt�1] Pr[Ht�1 j Yt�1];

and

Pr[Ht j Yt�1] =
X
Ht�1

Pr [Ht j Ht�1; Yt�1] Pr [Ht�1 j Yt�1] :

3See Tables B1 and B2 in Appendix A.
4We use mixing in the description of the IMM and collapsing in the description of the GPB following the

convention in the literature.
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Therefore,

�
(Ht�1jHt)
t�1jt�1 = Pr [Ht�1 j Yt�1;Ht] =

Pr [Ht j Ht�1; Yt�1] Pr[Ht�1 j Yt�1]
Pr[Ht j Yt�1]

=
Pr [Ht j Ht�1; Yt�1] Pr[Ht�1 j Yt�1]P

Ht�1
Pr [Ht j Ht�1; Yt�1] Pr [Ht�1 j Yt�1]

'
Qtjt�1(Ht�1;Ht)�

(Ht�1)
t�1jt�1P

Ht�1
Qtjt�1(Ht�1;Ht)�

(Ht�1)
t�1jt�1

Step 2. Compute the mixed state vectors and MSE matrices for each history:

�̂
(�;Ht)
t�1jt�1 =

X
Ht�1

Pr [Ht�1 j Yt�1;Ht]�
(Ht�1)
t�1jt�1 =

X
Ht�1

�
(Ht�1jHt)
t�1jt�1 �

(Ht�1)
t�1jt�1; (11)

P̂
(�;Ht)
t�1jt�1 =

X
Ht�1

Pr [Ht�1 j Yt�1;Ht] (12)

�
�
P
(st�1)
t�1jt�1 +

�
�
(Ht�1)
t�1jt�1 � �̂

(�;Ht�1)
t�1jt�1

��
�
(Ht�1)
t�1jt�1 � �̂

(�;Ht�1)
t�1jt�1

�0�
=

X
Ht�1

�
(Ht�1jHt)
t�1jt�1

�
P
(Ht�1)
t�1jt�1 +

�
�
(Ht�1)
t�1jt�1 � �̂

(�;Ht�1)
t�1jt�1

��
�
(Ht�1)
t�1jt�1 � �̂

(�;Ht�1)
t�1jt�1

�0�
:

Here, �̂(�;Ht)
t�1jt�1 is conditional on a particular sequence of regimes, and it is computed for all

possible sequences, or histories, in HN;t: When computing P̂
(�;Ht)
t�1jt�1 in (12) we take the sum over

all possible sequences Ht�1 of length N ending at t� 1 such that they overlap with Ht between

times t � N + 1 and t � 1: Note that once states and MSEs are mixed, the memory of st�N is

�cleared�, so we put an asterisk in place of the now non-existent index st�N = Ht�1n(Ht \Ht�1):

This reduces the dimensionality from hN+1 to hN :

Step 3. For each history compute the standard KF to obtain

IMM(N) Forecast IMM(N) Update

�
(Ht)
tjt�1 = c�;st + Tst�̂

(�;Ht)
t�1jt�1; �

(Ht)
tjt = �

(Ht)
tjt�1 + P

(Ht)
tjt�1Z

0
st

h
F
(Ht)
tjt�1

i�1
v
(Ht)
tj�1 ;

P
(Ht)
tjt�1 = TstP̂

(�;Ht)
t�1jt�1T

0
st +RstR

0
st ; P

(Ht)
tjt =

�
I � P (Ht)

tjt�1Z
0
st

h
F
(Ht)
tjt�1

i�1
Zst

�
P
(Ht)
tjt�1;

where

v
(Ht)
tjt�1 = yt � Zst�

(Ht)
tjt�1 � cy;st ; F

(Ht)
tjt�1 = ZstP

(Ht)
tjt�1Z

0
st +Hst ; Hst = gstg

0
st :

Compute the associated likelihood:

�
(Ht)
t = f (yt j Ht; Yt�1)

= (2�)�p=2
���F (Ht)
tjt�1

����1=2 exp��1
2
v
(Ht)0
tjt�1

h
F
(Ht)
tjt�1

i�1
v
(Ht)
tjt�1

�
:
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Step 4. Update the probabilities �(Ht)
tjt ,

�
(Ht)
tjt = Pr [Ht j Yt] = Pr [Ht j Yt�1; yt]

=
f (yt;Ht j Yt�1)
f (yt j Yt�1)

=
f (yt j Ht; Yt�1) Pr [Ht j Yt�1]

f (yt j Yt�1)

=
f (yt j Ht; Yt�1)

P
Ht�1

Pr [Ht j Ht�1; Yt�1] Pr [Ht�1 j Yt�1]
f (yt j Yt�1)

'
�
(Ht)
t

P
Ht�1

Qtjt�1(Ht�1;Ht)�
(Ht�1)
t�1jt�1P

Ht
�
(Ht)
t

P
Ht�1

Qtjt�1(Ht�1;Ht)�
(Ht�1)
t�1jt�1

;

where in the last line we used

f (yt j Yt�1) =
X
Ht

f (yt j Yt�1;Ht) Pr [Ht j Yt�1]

=
X
Ht

f (yt j Yt�1;Ht)

�
X
Ht�1

(Pr [Ht j Ht�1; Yt�1] Pr [Ht�1 j Yt�1])

'
X
sHt

�
(Ht)
t

X
Ht�1

Qtjt�1(Ht�1;Ht)�
(Ht�1)
t�1jt�1 (13)

The KF outputs and the updated probabilities,
n
�
(Ht)
tjt ; P

(Ht)
tjt ; �

(Ht)
tjt

o
, serve as initialisations

for the next time step in a recursion. The t-increment likelihood is

Lt = log f (yt j Yt�1)

and it is computed using formula (13) as part of the �ltering algorithm. The state vectors,

the MSE matrices, and updated regime probabilities
n
�tjt; Ptjt; �

(st)
tjt

o
t=1:n

for each time t are

computed using the same formulae (8)-(10) as in the GPB algorithm.

2.3 Smoothing

After estimating the states and regime probabilities through forward recursion, we can improve

the inference on st and �t using the information from the entire sample. This process, known

as smoothing, is usually conducted by backward recursion. However, since smoothing algorithms

employ approximations, the smoothed estimates may not necessarily be more precise than the

�ltered and updated estimates for every time period. Thus, the overall performance of smoothing

algorithms is evaluated using simulations.

10



A practical algorithm for computing smoothed probabilities for a KN-GPB(2) �lter is detailed

in Kim (1994). In this paper we generalise it for arbitrary length of history to make it applicable

to �lters of higher order.

Smoothing state vectors, even in single-regime models, can be challenging, and is even more

so in models with multiple regimes. Kim (1994) introduces an algorithm speci�cally designed

to work with the KN-GPB(2) �lter. However, this algorithm is computationally unstable as it

requires inverting large auxiliary matrices. Existing smoothers developed for engineering appli-

cations typically exploit measurement errors and require the invertibility of matrix Hst = gstg
0
st ,

a condition often not met in economic applications. In this section, we adapt a single-regime

smoothing algorithm proposed by Durbin and Koopman (2012), based on De Jong (1988), for

use in a Markov-switching multiple-regime model with arbitrary history lengths. This adapted

algorithm requires only matrix inversions that are part of the corresponding �lter and would have

been computed at the �ltering stage.

2.3.1 Smoothed Probabilities

Smoothed probabilities are computed using the total probability theorem. The probability of

history Ht conditional on the information contained in the full sample, Yn, can be written as

�
(Ht)
tjn := Pr[Ht j Yn] =

X
st+1

Pr[Ht; st+1 j Yn]:

To compute Pr[Ht; st+1 j Yn], we use the following approximation:

Pr[Ht; st+1 j Yn] = Pr [st+1 j Yn] Pr [Ht j st+1; Yn]

' Pr [st+1 j Yn] Pr [Ht j st+1; Yt]

= Pr [st+1 j Yn]
Pr [Ht; st+1 j Yt]
Pr [st+1 j Yt]

= Pr [st+1 j Yn]
Pr [Ht j Yt] Pr [st+1 j Ht; Yt]P
Ht
(Pr [st+1 j Ht; Yt] Pr [Ht j Yt])

= �
(st+1)
t+1jn

�
(Ht)
tjt Q (st; st+1)P

Ht
Q (st; st+1)�

(Ht)
tjt

Upon substitution, we get

�
(Ht)
tjn '

X
st+1

�
(st+1)
t+1jn

�
(Ht)
t Q (st; st+1)P

Ht
Q (st; st+1)�

(H0t)
tjt

(14)

The smoothing algorithm is implemented by backward recursion as follows.

11



Algorithm 3 Smoothed Probabilities

Step 0. Initialise �(sn)njn = Pr [sn j Yn] ; sn = 1; :::; h:
Step 1. For t = n� 1 use (14) to compute the smoothed probability of �(Ht)

tjn for history Ht .

Step 2. Compute smoothed probabilities of each regime:

�
(st)
tjn = Pr [st j Yn] =

X
Ct�1

Pr [Ht j Yn] =
X
Ct�1

�
(Ht)
tjn

Use �(st)tjn to initialise the algorithm for t = n� 2:

2.3.2 Smoothed Variables

The smoother is based on the properties of the joint Gaussian distribution of the forecast errors

of the vector of latent state variables and the estimation errors of the vector of observations

produced by the �lter.

By de�nition, smoothed state vectors and MSE matrices are:

�
(Ht)
tjn = E

h
�
(Ht)
t j Yn;Ht

i
; (15)

P
(Ht)
tjn = E

��
�
(Ht)
t � �(Ht)

tjt�1

��
�
(Ht)
t � �(Ht)

tjt�1

�0
j Yn;Ht

�
: (16)

De�ne the forecast error of the state vector at time t with history Ht as

�
(Ht)
tjt�1 := �t � �(Ht)

tjt�1 (17)

Then,

P
(Ht)
tjt�1 = E

h
�
(Ht)
tjt�1�

(Ht)0
tjt�1 j Yt�1;Ht

i
: (18)

De�ne the Kalman gain matrix:

K
(Ht)
tjt�1 = P

(Ht)
tjt�1Z

0
st

h
F
(Ht)
tjt�1

i�1
: (19)

To calculate �(Ht)
tjn de�ned in (15), we split the history into two components at t� 1 and use

the formula for the conditional mean of multivariate Gaussian distribution:

�
(Ht)
tjn = E [�t j Ht; Yn] = E

�
�t j Ht; Yt�1; fvkjk�1gk=t:n

�
= �

(Ht)
tjt�1 +

nX
k=t

E
h
�tv

0
kjk�1 j Yt�1;Ht

i �
Fkjk�1

��1
vkjk�1

= �
(Ht)
tjt�1 +

nX
k=t

E
h�
�
(Ht)
tjt�1 + �

(Ht)
tjt�1

��
�0kjk�1Z

0
sk
+ [gsk"k]

0
�
j Yt�1;Ht

i �
Fkjk�1

��1
vkjk�1

12



where we used

v
(Ht)
tjt�1 = yt � Zst�

(Ht)
tjt�1 � cy;st = yt � Zst

�
�t � �(Ht)

tjt�1

�
� cy;st = gst"t + Zst�

(Ht)
tjt�1:

So, �nally,

�
(Ht)
tjn = �

(Ht)
tjt�1 +

nX
k=t

E
h
�
(Ht)
tjt�1�

0
kjk�1 j Yt�1;Ht

i
Z 0sk

�
Fkjk�1

��1
vkjk�1: (20)

In this derivation we do not specify the future regime sequences starting from st under the

summation. We introduce them in the calculations of expectations E [� j �] for every step going
backward, as shown later.

For now, we will need the following recursion for �(Ht)
tjt�1: The recursion is slightly di¤erent for

the two families of �lters.

Lemma 1 1. For GPB(N) �lter

�
(Ht)
tjt�1 = Tst

hX
st�N=1

Pr[st�N jYt�1; Ct�1]
�
I �K(Ht�1)

t�1jt�2Zst�1

�
�
(Ht�1)
t�1jt�2 + !t�1; (21)

where

!t�1 = Rst�t � Tst
hX

st�N=1

Pr[st�N jYt�1; Ct�1]K(Ht�1)
t�1jt�2gst�1"t�1:

2. For IMM �lter

�
(Ht)
tjt�1 = Tst

X
Ht�1

Pr [Ht�1 j Yt�1;Ht]
�
I �K(Ht�1)

t�1jt�2Zst�1

�
�
(Ht�1)
t�1jt�2 + !t�1; (22)

where

!t�1 = Rst�t � Tst
X
Ht�1

Pr [Ht�1 j Yt�1;Ht]K
(st�1)
t�1jt�2gst�1"t�1:

Proof. For GPB(N) we have

�
(Ht)
tjt�1 = �t � �(Ht)

tjt�1 = Tst

�
�t�1 � �(Ct�1)t�1jt�1

�
+Rst�t;

and, using �(Ct�1)t�1jt�1 from equation (5),

�
(Ht)
tjt�1 = Tst

0@�t�1 � hX
st�N=1

Pr[st�N j Yt�1; Ct�1]�(Ht�1)
t�1jt�1

1A+Rst�t: (23)

13



Similarly, for IMM(N) we have

�
(Ht)
tjt�1 = Tst

�
�t�1 � �̂(Ht�1jHt)

t�1jt�1

�
+Rst�t

and using �̂(Ht�1jHt)
t�1jt�1 from (11),

�
(Ht)
tjt�1 = Tst

0@�t�1 � X
Ht�1

Pr [Ht�1 j Yt�1;Ht]�
(Ht�1)
t�1jt�1

1A+Rst�t: (24)

Denote

M ( ) =

�
Pr[ j Yt�1; Ct�1];  = st�N ; for GPB(N),
Pr [ j Yt�1;Ht] ;  = Ht�1; for IMM(N).

Then expressions (23) and (24) can be written in the same form,

�
(Ht)
tjt�1 = Tst

0@�t�1 �X
 

M ( )�
(Ht�1)
t�1jt�1

1A+Rst�t;
and the rest of the proof is identical for both families of �lters.

Use the KF update for �(Ht�1)
t�1jt�1 and the de�nition of Kalman gain (19) for K

(Ht�1)
t�1jt�2 to rewrite

the last expression as:

�
(Ht)
tjt�1 = Tst

0@�t�1 �X
 

M ( )

�
�
�
(Ht�1)
t�1jt�2 + P

(Ht�1)
t�1jt�2Z

0
st�1

h
F
(Ht�1)
t�1jt�2

i�1
v
(Ht�1)
t�1jt�2

��
+Rst�t

= Tst
X
 

M ( )
�
�t�1 � �(Ht�1)

t�1jt�2

�
�Tst

X
 

M ( )K
(Ht�1)
t�1jt�2v

(Ht�1)
t�1jt�2 +Rst�t

Next, use the KF output for v(Ht�1)
t�1jt�2 along with the de�nition (17) for �

(Ht�1)
t�1jt�2 and equation (1)

for yt�1 to obtain the recursions in Lemma 1:

�
(HN;t)
tjt�1 = Tst

X
 

M ( )
�
�t�1 � �(Ht�1)

t�1jt�2

�
�Tst

X
 

M ( )K
(Ht�1)
t�1jt�2

�
yt�1 � Zst�1�

(Ht�1)
t�1jt�2 � cy;st�1

�
+Rst�t
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= Tst
X
 

M ( ) �
(Ht�1)
t�1jt�2

�Tst
X
 

M ( )K
(Ht�1)
t�1jt�2Zst�1�

(Ht�1)
t�1jt�2

+Rst�t � Tst
X
 

M ( )K
(Ht�1)
t�1jt�2gst�1"t�1

= Tst
X
 

M ( )
�
I �K(Ht�1)

t�1jt�2Zst�1

�
�
(Ht�1)
t�1jt�2 + !

(Ht�1)
t�1

where we used the notation

!t�1 = Rst�t � Tst
X
 

M ( )K
(Ht�1)
t�1jt�2gst�1"t�1:

Note that in this derivation for GPB(N) the sum is taken over all possible regimes at time

t�N when st�N is unknown. If the regime st�N is known, this recursion is given by

�
(st�N ;Ht)
tjt�1 = Tst

�
I �K(st�N ;Ht�1)

t�1jt�2 Zst�1

�
�
(st�N ;Ht�1)
t�1jt�2 + !t�1: (25)

Similarly, for IMM, when Ht�1 = ~Ht�1 is known, then

�
( ~Ht�1;Ht)
tjt�1 = Tst

�
I �K(

~Ht�1;Ht�1)
t�1jt�2 Zst�1

�
�
( ~Ht�1;Ht�1)
t�1jt�2 + !t�1: (26)

The remaining derivations are identical for GPB and IMM.

We apply formula (20) recursively, starting from the observation at the �nal period, n, in

regime sn:

�
(Hn)
njn = �

(Hn)
njn�1 + E

h
�
(Hn)
njn�1�

(Hn)0
njn�1 j Yn�1;Hn

i
Z 0sn

h
F
(Hn)
njn�1

i�1
v
(Hn)
njn�1

= �
(Hn)
njn�1 + P

(Hn)
njn�1Z

0
sn

h
F
(Hn)
njn�1

i�1
v
(Hn)
njn�1 = �

(Hn)
njn�1 + P

(Hn)
njn�1r

(Hn)
njn�1

where

r
(Hn)
njn�1 = Z 0sn

h
F
(Hn)
njn�1

i�1
v
(Hn)
njn�1:

Next, we move one step back to t = n� 1.

�
(Hn�1)
n�1jn = �

(Hn�1)
n�1jn�2 +

nX
k=n�1

E
h
�
(Hn�1)
n�1jn�2�

0
kjk�1 j Yn�2;Hn�1

i
Z 0sk

�
Fkjk�1

��1
vkjk�1
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= �
(Hn�1)
n�1jn�2 + P

(Hn�1)
n�1jn�2Z

0
sn�1

h
F
(Hn�1)
n�1jn�2

i�1
v
(Hn�1)
n�1jn�2

+
hX

sn=1

Pr [sn j Yn�2;Hn�1]

�E
h
�
(Hn�1)
n�1jn�2�

(sn�N ;Hn�1)0
njn�1 j Yn�2;Hn�1; sn

i
Z 0sn

h
F
(Hn)
njn�1

i�1
v
(Hn)
njn�1

= �
(Hn�1)
n�1jn�2 + P

(Hn�1)
n�1jn�2Z

0
sn�1

h
F
(Hn�1)
n�1jn�2

i�1
v
(Hn�1)
n�1jn�2

+
hX

sn=1

Pr [sn j Yn�2;Hn�1]E
h
�
(Hn�1)
n�1jn�2�

(Hn�1)0
n�1jn�2 j Yn�2;Hn�1

i
�
�
I � Z 0sn�1K

(Hn�1)0
n�1jn�2

�
T 0stZ

0
sn

h
F
(Hn)
njn�1

i�1
v
(Hn)
njn�1

= �
(Hn�1)
n�1jn�2 + P

(Hn�1)
n�1jn�2Z

0
sn�1

h
F
(Hn�1)
n�1jn�2

i�1
v
(Hn�1)
n�1jn�2

+P
(Hn�1)
n�1jn�2

hX
sn=1

Pr [sn j Yn�2;Hn�1]

�
�
I � Z 0sn�1K

(Hn�1)0
n�1jn�2

�
T 0stZ

0
sn

h
F
(Hn)
njn�1

i�1
v
(Hn)
njn�1

In this derivation we used P
(Hn�1)
n�1jn�2 = E

h
�
(Hn�1)
n�1jn�2�

(Hn�1)0
n�1jn�2 j Yn�2;Hn�1; sn

i
=

E
h
�
(Hn�1)
n�1jn�2�

(Hn�1)0
n�1jn�2 j Yn�2;Hn�1

i
as conditioning on sn becomes irrelevant.

This can be written as:

�
(Hn�1)
n�1jn = �

(Hn�1)
n�1jn�2 + P

(Hn�1)
n�1jn�2r

(Hn�1)
n�1jn�2

where, using the approximation Pr [sn j Yn�2;Hn�1] ' Q (sn�1; sn) ; we express r
(Hn�1)
n�1jn�2 recur-

sively:

r
(Hn�1)
n�1jn�2 = Z 0sn�1

h
F
(Hn�1)
n�1jn�2

i�1
v
(Hn�1)
n�1jn�2 +

�
I � Z 0sn�1K

(Hn�1)0
n�1jn�2

� hX
sn=1

Q (sn�1; sn)T
0
snr

(Hn)
njn�1:

Thus, for t = n� 2 in regime sn�2; we obtain

�
(Hn�2)
n�2jn = �

(Hn�2)
n�2jn�3 + P

(Hn�2)
n�2jn�3r

(Hn�2)
n�2jn�3

where

r
(Hn�2)
n�2jn�3 = Z 0sn�2

h
F
(Hn�2)
n�2jn�3

i�1
v
(Hn�2)
n�2jn�3 +

�
I � Z 0sn�2K

(Hn�2)0
n�2jn�3

�
�

hX
sn�1=1

Q (sn�2; sn�1)T
0
sn�1r

(Hn�1)
n�1jn�2;
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and so on.

The procedure can be summarised in the following algorithm.

Algorithm 4 State Smoothing

Step 0. Initialise the smoother by setting r(Hn)
njn�1 = Z 0sn

h
F
(Hn)
njn�1

i�1
v
(Hn)
njn�1, Hn 2 HN;n. Here

�
(Hn)
njn is the output of the corresponding �lter at t = n.

Step 1. Compute the smoothed estimates of the state vector for each history Ht, using

recursion:

L
(Ht)
t+1;t = Tst+1

�
I �K(Ht)

tjt�1Zst

�
r
(Ht)
tjt�1 = Z 0st

h
F
(Ht)
tjt�1

i�1
v
(Ht)
tjt�1 +

hX
st+1=1

Q (st; st+1)L
(Ht)0
t+1;tr

(Hn�1)
t+1jt ;

�
(Ht)
tjn = �

(Ht)
tjt�1 + P

(Ht)
tjt�1r

(Ht)
tjt�1;

for t = n� 1; n� 2; :::; 1:
Use the smoothed probabilities,

n
�
(Ht)
tjn

o
, to compute the smoothed state vectors:

xtjn =
X
Ht

�
(Ht)
tjn �

(Ht)
tjn :

3 Validating the Filters

3.1 Model and Parameterisation

To compare the performance of �lters and smoothers, we use the model developed in Fernandez-

Villaverde, Guerron-Quintana, and Rubio-Ramirez (2015), hereafter referred to as FGR2015. It is

a relatively standard medium-scale New Keynesian DSGE model, which we modify to investigate

the aspects of good luck and good policy.

The model consists of a household sector, �rms, and a monetary authority. Households derive

utility from consumption relative to their habit stock and from leisure. They supply di¤erentiated

labour to monopolistically competitive �rms and choose wages subject to Calvo wage-setting

friction. Firms produce di¤erentiated output using capital, labour, and a neutral technology

process. They set prices, also subject to Calvo pricing frictions. The capital stock evolves in

the usual way, except for the inclusion of embodied technology in new investment goods. The

model is closed by imposing a Taylor-type rule for the monetary authority. We present the full

speci�cation of the model in Appendix B.
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We base the structural parameters of the model on the estimates reported in FGR2015; see

column (1) in Table C1 in Appendix B. Our treatment of policy and shock volatilities is di¤erent

from FGR2015, who estimated a single-regime nonlinear policy function and a single-regime

stochastic volatility process. We introduce two Markov-switching processes into the model. The

�rst, SP;t, governs policy parameters in the following monetary policy rule:

rt
rss

=

�
rt�1
rss

�r(SP;t) � �t
�targ

��(SP;t)� Yd;t
�ydYd;t�1

�y(SP;t)!1�r(SP;t)
exp (�� (SV;t) "�;t) : (27)

The literature typically categorizes monetary policy approaches into hawkish and dovish modes,

characterized by more and less aggressive responses to in�ation, respectively. Accordingly, we

assume that the �parameters are high in state SP;t = 1 (hawkish state) and low in state SP;t = 2
(dovish state). We explain below how we chose these values. The second two-state process, SV;t;

governs the shock volatilities for all shocks, including the policy shock in equation (27).

3.2 Monte-Carlo Simulations Design

In our simulations, we aim to di¤erentiate between periods of infrequent large shocks and periods

of more frequent regular shocks. We set the probability of remaining in the low volatility state

to 0.95. This parameterisation implies an average of 20 quarters between high shocks, with a

standard deviation of 19 quarters.5 This probability accurately re�ects the fact that recessions

in the US have occurred approximately every 8-10 years since the end of World War II. We set

the probability of staying in the high volatility state to 0.8, resulting in an average duration of

high shock periods of 5 quarters (with a standard deviation of 4.5 quarters). Interpreting periods

of large shocks as recessions suggests that a typical recession lasts slightly for less than a year, a

duration that our parameterisation appropriately captures.

In formulating our policy model, we applied considerations similar to those used in the assump-

tions in the shock volatility experiments. The existing literature tends to report that hawkish

policies have been predominant since the 1980s, spanning approximately 40 years.6 However,

considering the data starting from 1955 and acknowledging the evident dovish tendencies since

2008, we infer that the time split between these regimes is roughly equal. Therefore, we assume

symmetric diagonal elements in the transition probability matrix. As the benchmark case, we

calibrate the probability to remain in either of these states at 0.95. This implies an average of

5 If probability to leave one of the two Markov states is q, then the expected length of stay in this state is 1=q
with the standard deviation of

p
1� q=q:

6See e.g. Bianchi and Melosi (2017), Chen, Kirsanova, and Leith (2017).
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20 quarters between policy changes, allowing for a wide range of durations between policy shifts.

In addition, we consider an alternative calibration, with this probability set to 0.1. All transition

matrices are presented in Table 1.

Table 1: Parameterisation of shock and policy regimes
Transition matrices

Shocks Benchmark Case Alternative Case

Ps =

�
0:95 0:05
0:2 0:8

�
P Ip =

�
0:95 0:05
0:05 0:95

�
P IIp =

�
0:9 0:1
0:1 0:9

�

Parameters of Taylor Rule:

Hawkish Feedback Dovish Feedback
Base� 1:7 0:9
Altern:� 1:5 0:9

As for the policy coe¢ cients that are time-varying (or depend on the state), we describe the

hawkish policy mode with feedback on in�ation Base� = 1:7 in the hawkish state and Base� = 0:9

in the dovish state, consistent with �ndings in other studies7. We also consider an alternative

parameterisation where these two feedbacks are less distinct, as shown in Table 1. In these

simulations, we keep the feedback on output and the interest rate smoothing parameter the same

in both hawkish and dovish states.

As reported in column (1) in Table C1, the standard deviations of all shocks in the low-

volatility state, SV;t = 1; are set to be equal to the mean estimates of corresponding variables in

FGR2015, and they are doubled in the high-volatility state, SV;t = 2:

In order to generate arti�cial data, we solve and simulate this non-linear model using a

perturbation approach with the functional iteration algorithm developed for RISE c (Maih,

2015).

We chose to generate 500 samples of 1,000 observations each. We consider output growth,

price in�ation, wage in�ation, the Federal Funds rate, and the relative price of investment goods

as observable variables. The latent variables are listed in Table 2 and other relevant tables. We

then use the simulation results to investigate the performance of the discussed �lters, controlling

for the sample length. Within each sample, we use the initial 300 observations as a proxy for a

typical real-life scenario with post-WW2 quarterly data, where the in�uence of initial conditions

can be substantial. Additionally, we analyze the full sample of 1000 observations, in which we

7See, e.g. Bianchi (2012), Chang, Kwak, and Qiu (2021), Chen, Leeper, and Leith (2022).

19



expect the impact of initial conditions to be signi�cantly diminished.

3.3 Results

3.3.1 Evaluation Criteria

We need some criteria to rank the �lters for practical purpose, based on their accuracy and speed.

For accuracy, or goodness-of-�t, in our exercise we cannot use measures linked to the likelihood

Lt = log f (yt j Yt�1) returned by the �lters. This is because di¤erent �lters employ di¤erent
approximations when computing the likelihood, and so comparison based on this measure is

not compelling for comparison of the �lters. An alternative and, perhaps, more straightforward

approach in our case is to use root mean squared errors (RMSE) for each latent variable �t, given

by the formula

R' =
1

nsim

nsimX
i=1

vuut 1

n

nX
t=1

�
�t � �'
�ss

�2
:

We present the comparison of the accuracy of the �lters based on the updated variables (' = t j t)
and smoothed variables (' = t j n) in Tables 2-7.8 Here, n is the length of each data sample, and
nsim is the number of simulations.

3.3.2 The Best Performing Filter

Table 2 shows the results for four �lters: the IMM(1) and GPB(N) for N = 1; 2; 3, which includes

the KN �lter as it is equivalent to GPB(2).9 Our simulations reveal that increasing the order of

the GPB(N) �lter beyond N=3 o¤ers no practical value. We do not present results for IMM(2)

as it does not noticeably improve accuracy of the IMM(1).

We focus on the updated variables, as these variables contribute to the likelihood used in

estimation. The average RMSEs (denoted asRtjt) for all 500 draws in the Monte Carlo experiment

are presented in columns (1)-(4) of Table 2. They vary in magnitude, re�ecting �ndings similar

to those in Binning and Maih (2015), where it is observed that highly persistent latent variables,

such as capital, pose greater challenges for reconstruction.

The relative RMSEs in columns (5)-(8) are computed by dividing the RMSE for each variable

by the lowest RMSE for that particular variable across investigated �lters. In other words, for

the best-performing �lter it has the value of 1, while for all other �lters its value is greater than

one.
8 In computing RMSEs, we normalise all variables, except state probabilities, by their steady-state levels, as in

this model the steady state is identical for all regimes.
9Appendix A presents selected �ltering and smoothing algorithms in a form convenient for implementation.
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Table 2: MRSEs for update variables from four �lters
Absolute RMSEs Rtjt Relative RMSEs

IMM(1) GPB(2) GPB(1) GPB(3) IMM(1) GPB(2) GPB(1) GPB(3)
KN KN

variables (1) (2) (3) (4) (5) (6) (7) (8)
consumption 0.032 0.032 0.033 0.032 1.0003 1 1.030 1.0002
capital 0.226 0.226 0.238 0.226 1.0001 1 1.051 1.0006
output 0.030 0.030 0.030 0.030 1.0005 1.00004 1.016 1
real wage 0.002 0.002 0.002 0.002 1.0002 1 1.035 1.0003
Tobin�s Q 0.010 0.010 0.010 0.010 1.0001 1 1.025 1.0001
investment 0.302 0.302 0.321 0.302 1 1.00004 1.065 1.0010
lab supply 0.029 0.029 0.030 0.029 1.0005 1.00004 1.016 1
pref shock 0.043 0.043 0.044 0.043 1.0001 1 1.015 1.00006
lab sup shock 0.070 0.070 0.072 0.070 1.0005 1.0001 1.019 1
tech shock 0.001 0.001 0.001 0.001 1.0004 1 1.066 1.0015
shock reg. probs 0.265 0.265 0.266 0.265 1.00002 1 1.002 1.0004
policy reg. probs 0.335 0.335 0.344 0.335 1 1.00001 1.023 1.00003

Table 2 suggests, as expected, that in terms of accuracy GPB(1) is dominated by two other

�lters. While KN-GPB(2) �lter performs the best for more variables than IMM(1), the maximal

di¤erence in their performance is only 0.04%. In contrast, GPB(1) is outperformed by about

2-7%. The GPB(3) has shown performance very similar to that of GPB(2) and IMM �lters,

without clear dominance over GPB(2).

Table 3: Computational times for �ltering 1000 observations
A: IMM(1) vs. GPB(2)-KN B: Relative speed

updating updating and updating
only smoothing only
sec sec ratio ratio

GPB(1) 0.28
IMM(1) 0.27 1.49 GPB(2) 1 IMM(1) 1
GPB(2) 1.38 2.59 GPB(3) 4.21 IMM(2) 5.81

GPB(4) 17.74 IMM(3) 52.70
GPB(5) 79.97 IMM(4) 691.14

These RMSEs are visualised by a red dash-dotted line in Figure 1, illustrating the recovery of

latent variables and probabilities of being in a particular Markov state in one particular simulation.

The true values are shown by the solid black lines. We plot only the initial 300 observations for

clarity of visualisation.
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Figure 1: Updating and smoothing produced by IMM �lter.

In terms of computational burden, IMM(1) has an advantage over KN-GPB(2) as it works

with h histories, rather than with h2. Panel A of Table 3 shows indicative computational times

for these two �lters, both independently and in conjunction with the corresponding smoother.10

These times serve merely as an indication of computational speed, as all �lters implemented in

RISE c perform additional tasks beyond algorithm computation, which, even if not used, hold

the potential to reduce speed.11 It is important to note that at the estimation stage, where speed

is particularly crucial, smoothing is not applied.

One can see in panel B of Table 3 how quickly the computation burden of IMM rises with

higher orders. This is because the algorithm keeps track of all possible histories of �xed length

10These numbers are achieved on a Ryzen 3950X with 64GB RAM using MATLAB c R2022b.
11This includes checking for and accomodating properties such as time-varying states and parameters, missing

observations, nonstationarity, and occasionally-binding constraints. See Appendix D for further notes on imple-
mentation.
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where the histories contain all possible combinations of regimes in every time period of recursion.

Therefore, the number of terms containing probabilities of di¤erent combinations of regimes is

much bigger in IMM than in GPB.

One can reduce the computational burden in IMM(N) by using approximation similar to (3).

However, because of the repeated use the disrepancy created by this approximation accumulates

and leads to lower accuracy, especially for higher N .

On the balance between accuracy and speed, it is clear that IMM(1) dominates the GPB(N)

family of �lters. Based on that, we argue that in practical applications, IMM(1) is the best. In

what follows, we use IMM to denote IMM(1).

3.3.3 Updating and Smoothing

To visualize the e¤ect of smoothing, in Figure 1 we plot updated and smoothed probabilities and

latent variables, alongside their true values. When comparing all lines, we see that smoothing

reduces high-frequency noise in the recovered probabilities and often helps to identify the timing

of regime changes more accurately. It is also apparent that the initial gap between the updated

and actual values of latent variables is substantially corrected, although the improvement is not

uniform across the entire sample. There are time periods where smoothing does not improve

these particular variables at all. Notably, while the impact of initial conditions on the �lter�s

e¤ectiveness for economic variables is very clear, such an e¤ect is less prominent for probabilities.

Table 4: Accuracy improvement by smoothing, 1� (RtjT =Rtjt)
vars: IMM GPB(2) GPB(1) GPB(3)
consumption 0.29 0.27 0.31 0.27
capital 0.21 0.21 0.23 0.21
output 0.42 0.37 0.47 0.38
real wage 0.18 0.18 0.18 0.18
Tobin�s Q 0.25 0.25 0.23 0.25
investment 0.30 0.28 0.32 0.28
labour supply 0.42 0.37 0.47 0.38
preference shock 0.14 0.13 0.14 0.13
labour supply shock 0.37 0.33 0.40 0.34
technology shock 0.10 0.10 0.04 0.10
shock state probs 0.15 0.15 0.15 0.15
policy state probs 0.18 0.18 0.16 0.18

Figure 1 illustrates the work of smoothing for the IMM �lter. For all considered �lters, Table

4 reports the fractions of RMSEs that is removed by smoothing, 1� RtjT
Rtjt

:
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While the RMSEs for some variables are only improved by 4%, for some others the improve-

ment is as large as 47%, and the average improvement is about 25%. For state probabilities, the

average improvement is 16%. Notably, the less computationally intensive smoothers for IMM and

GPB(1) improve accuracy better than more complex algorithms for higher order of GPB �lters.

3.3.4 Information

The following experiments aim to address the importance of working with longer series of data.

In the �rst experiment, we use the IMM �lter; other �lters show very similar results. Column

(1) of Panel A in Table 5 presents RMSEs for updated variables using the �rst 300 observations

in each simulation. Columns (2) and (3) present RMSEs for smoothed variables for the �rst

300 observations, where smoothing starts from the last of these 300 observations in column (2)

and from the last of all 1000 observations in column (3). The comparison is consistent with the

intuition that more information improves accuracy. However, this intuition is not necessarily true

in our setting because �ltering and smoothing procedures involve numerous approximations. It is

remarkable that, despite these approximations, the improvement in accuracy is substantial: close

to 10% for some variables.

Table 5: Importance of Information. Panel A: RMSE for updated (1) and smoothed (2,3) vari-
ables. Panel B: Accuracy improvement by smoothing.

Panel A Panel B
sample size 300 300 300 300 250 200 100

Rtjt Rtj300 Rtj1000 1-
Rtj300
Rtjt

1-
Rtj250
Rtjt

1-
Rtj200
Rtjt

1-
Rtj100
Rtjt

vars: (1) (2) (3) (1) (2) (3) (4)
consumption 0.051 0.036 0.033 0.30 0.30 0.30 0.26
capital 0.352 0.277 0.266 0.21 0.21 0.20 0.14
output 0.050 0.029 0.026 0.43 0.43 0.42 0.33
real wage 0.003 0.002 0.002 0.17 0.17 0.17 0.11
Tobin�s Q 0.010 0.008 0.008 0.26 0.26 0.26 0.22
investment 0.466 0.317 0.300 0.32 0.32 0.32 0.27
labour supply 0.049 0.028 0.026 0.43 0.42 0.42 0.32
pref. shock 0.051 0.042 0.041 0.18 0.19 0.20 0.19
lab. supp. shock 0.110 0.066 0.061 0.40 0.40 0.40 0.30
techn. shock 0.002 0.001 0.001 0.10 0.10 0.11 0.11
shock state probs 0.265 0.225 0.225 0.15 0.15 0.15 0.15
policy state probs 0.335 0.275 0.275 0.18 0.18 0.18 0.19

Panel B of Table 5 shows an improvement in the RMSEs from smoothing obtained in the
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second experiment. Here we explore di¤erent sample sizes, n 2 f300; 250; 200; 100g. We know
that RMSEs of updated variables are larger in shorter samples. One might expect that the e¢ cacy

of smoothing will also deteriorate in shorter samples. However, Panel B reveals that this is not

the case, except for n = 100. This suggests that the sample size should be in excess of 100 and,

perhaps, at least 200 to ensure that the smoother improves accuracy.

Another important observation is that there is no sample size e¤ect for the smoothing of

state probabilities, as can be seen in the last two rows of Panel B. This is consistent with the

results presented in Figure 1, where the e¤ect of initial conditions is only observed for latent

economic variables: in a shorter sample initial conditions play bigger role, but this not the case

for probabilities.

3.3.5 Policy States

For the next experiment, we simulate arti�cial data for less and more distinct policy states as

measured by di¤erent probabilities of remaining in a given policy state in the next period, and by

larger di¤erence in the feedback coe¢ cient � in two policy states. Table 6 reports the results.

Table 6: RMSE for Pobability of Hawkish Policy State.
policy description � PHH = PDD updated smoothed

more distinct states, less distinct feedback 1.5 0.95 0.366 0.310
less distinct states, less distinct feedback 1.5 0.9 0.412 0.380
more distinct states, more distinct feedback 1.7 0.95 0.335 0.275
less distinct states, more distinct feedback 1.7 0.9 0.386 0.349

We conclude that the greater the di¤erence between the states, the better is their identi�ca-

tion. This is true for both updated and smoothed policy state probabilities.

3.3.6 Model Misspeci�cation

We investigate several cases of the model misspeci�cation relevant for the Markov-switching

nature of our model. We assume that the true data-generating process contains two Markov-

switching processes as described above, but a researcher only considers one of them, either in

policy or in volatility.

In the �rst scenario, we assume that the researcher believes in a single policy stance: the

hawkish state.12 We then execute the �ltering and smoothing algorithm with Base� , which is

12This is the common assumption in constant-parameter DSGE model estimations, see e.g. Chen, Kirsanova,
and Leith (2017)
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Figure 2: Model Misspeci�cations

the correct policy feedback but only for one of the two policy Markov states. Panel A in Figure

2 illustrates the outcomes of updating and smoothing for the same simulation, focusing on the

initial 300 observations. The updated and smoothed variables are shown to accurately identify

the patterns in the data, although with larger errors than in the correctly speci�ed model.

One can get further insights from Table 7 by comparing the RMSEs for updated and smoothed

variables obtained from 500 simulations of the entire sample of 1000 observations in columns (1)

and (2). Despite e¤ectively handling data patterns, RMSEs for smoothed latent variables show

a substantial increase. However, the RMSEs for smoothed heteroskedasticity state probability

show only a small increase, as Figure 2 also demonstrates.

In the second scenario, we assume that the researcher believes the volatility is always low.

Panel B of Figure 2, which shows the results of this scenario, con�rms that the �lter correctly

identi�es the patterns in the data. Column (3) in Table 7 further supports this observation, as it

shows a much smaller increase in RMSEs compared to column (1), and even smaller estimation

errors for some variables. At the same time, the RMSE for smoothed probability of a policy state

is higher than in the correctly speci�ed model. This suggests that incorrectly specifying shock

volatilities signi�cantly worsens the identi�cation of policy states.
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Table 7: MRSEs of smoothed variables Rtj1000.

vars: No Missp-d Missp-d Missp-d
missp-b Policy H Shocks L Shocks H
(1) (2) (3) (4)

consumption 0:023
[0:032]

0:057
[0:070]

0:022
[0:036]

0:021
[0:035]

capital 0:178
[0:226]

1:472
[1:683]

0:186
[0:259]

0:164
[0:239]

output 0:017
[0:030]

0:020
[0:038]

0:012
[0:032]

0:011
[0:031]

real wage 0:002
[0:002]

0:005
[0:005]

0:002
[0:002]

0:002
[0:02]

Tobin�s Q 0:007
[0:010]

0:036
[0:037]

0:011
[0:013]

0:007
[0:010]

investment 0:210
[0:302]

2:151
[2:533]

0:224
[0:349]

0:182
[0:317]

labour supply 0:017
[0:029]

0:019
[0:036]

0:011
[0:031]

0:011
[0:031]

preference shock 0:037
[0:043]

0:112
[0:113]

0:045
[0:051]

0:037
[0:044]

labour supply shock 0:044
[0:070]

0:174
[0:199]

0:045
[0:080]

0:035
[0:073]

technology shock 0:001
[0:001]

0:002
[0:002]

0:001
[0:001]

0:001
[0:001]

shock state probs 0:224
[0:265]

0:247
[0:280]

� �

policy state probs 0:275
[0:335]

� 0:390
[0:408]

0:282
[0:339]

Note: MRSEs of updated variables Rtjt are in square brackets.

In the �nal experiment, reported in column (4), we revisit the second scenario, but this time

we assume that the researcher believes the volatility is always high. Although the RMSEs for

updated latent variables in column (4) are higher than those in column (1), the RMSEs for

smoothed variables are sometimes lower than in the correctly speci�ed model. The unexpectedly

superior performance of the misspeci�ed model after smoothing can be attributed to the larger

variance of shocks. By allowing for a large variance in the shocks distribution, it accommodates

both large and small shocks. The smoother then revises the estimated values using the complete

sample and adjusts the estimates by factoring in information about the realized shocks.

3.4 Interim Summary

Overall, the �ndings in this section demonstrate the e¤ectiveness of the canonical IMM �lter, par-

ticularly when combined with the appropriate smoother, in enhancing the accuracy and e¢ ciency

of Bayesian estimation of state-space models.

The canonical IMM outperforms the Kim and Nelson �lter in terms of computational speed
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while delivering comparable accuracy. The implementation of the new smoothing algorithm with

the IMM �lter substantially enhances precision in estimating latent variables, reducing errors by

approximately 25%. We do not �nd any substantial improvement in accuracy when using higher

order �lters in our example. It is hard to predict whether the same will be true for other models.

Our simulations con�rm that, despite approximations, adding more information improves

the performance of the suggested �ltering-smoothing procedure. We �nd that, as long as the

sample length remains above 200 observations, there is no reduction in the smoother�s e¢ cacy

in reducing RMSEs for updated variables. We �nd that the �lter identi�es probabilities of more

distinct policy regimes with higher accuracy.

Finally, we demonstrate that we can still successfully recover latent variables even when the

policy or shock volatility regimes in the model are misspeci�ed.

Having established the superiority of the canonical IMM paired with the matching smoother,

we focus on this �lter and smoother in the empirical application.

4 Empirical Application

In this section, we further investigate the practicality of the IMM �lter with the corresponding

smoother. We estimate a modi�ed version of the FGR2015 model but using the same data for

1959Q2-2013Q4 as in that paper (see Table C2 in Appendix C). In our estimation we impose

relatively wide priors and use the Arti�cial Bee Colony algorithm by Karaboga and Basturk

(2007) for global optimisation.

Table 8 displays the estimated mode of the distribution of transition probabilities and policy

parameters. We present the remaining parameters in Table C1 in Appendix C.

Table 8: Estimation of parameters that govern the two Markov processes
Transition matrices

Shocks Policy

Ps =

�
0:939 05 0:060946
0:04625 0:95375

�
Pp =

�
0:983 96 0:016039
0:043428 0:956 57

�

Parameters of Taylor Rule:

Hawkish Feedback � 1.6574
Dovish Feedback � 0.93984

We note that both regime-switching processes are highly persistent, and therefore their iden-
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ti�cation is likely to be correct, as suggested by our simulation results. The policy process, in

particular, shows that there is only a 2% probability of leaving the hawkish state.
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Figure 3: Smoothed State Probabilities

Panels A and B in Figure 3 report the smoothed probabilities of being in the dovish state and

the high volatility state. We used the canonical IMM at the estimation stage and six di¤erent

�lters at the �ltering stage.

One can notice that the lines plotted for six �lters are very close to one another. The GPB

�lters of order 2 to 5 produce nearly identical results and they are also extremely close to those

produced by the canonical IMM. This suggests, �rst, that using a more computationally intensive

higher-order GPB �lter does not necessarily improve regime identi�cation compared to the KN-

GPB(2) �lter, and, second, that the canonical IMM and the KN �lter are practically identical in

accuracy. While GPB(1) stands out as less accurate, it still identi�es all main events similarly to

the other �lters.

Panel A shows the probability of being in the dovish policy state. Note that it indicates that

our approach succeded in identifying all major changes in the US post-war policy stance: the

Great In�ation, the Volcker Disin�ation, the Great Moderation, the Great Financial Crisis, and

the subsequent Zero Lower Bound (ZLB) period. We did not assume a special regime for ZLB
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monetary policy but identify this period as a dovish state.

Panel B shows the probability of being in the high volatility state. Our approach correctly

identi�es most of the recessions and suggests that the pre-1990s period experienced larger shocks

than the more recent past.

For panels C and D the dataset includes the period 1947Q2-2023Q3 (see Appendix C for

details). The extended data covers a longer period, adding observations at the beginning, which

should improve the identi�cation of the Great In�ation episode, and at the end, which includes

the post-Covid period with rising in�ation in 2022-23. In these two panels we only show the

results obtained using the IMM �lter (with the associated smoother) to this extended dataset.

The message is similar to what is suggested by panels A and B. We identify the dovish state

during the ZLB and a shift to hawkish policy a year after the ZLB lift-o¤. In addition, we see the

return to the dovish policy during the Covid-19 pandemic which lasted until 2023Q1, at which

time tough measures against in�ation were taken. The post-Covid period is also characterised by

relatively large shocks.

5 Conclusions

Our focus in this paper has been on improving multiple-regime Bayesian �ltering techniques,

alongside the development of multiple-regime smoothers.

We introduced the family of IMM �lters, along with an extension of the Kim and Nelson �lter,

to accommodate tracking of longer regime histories. In addition, we developed a robust smoothing

algorithm that can be adapted to these extended �lters. Our simulation exercises demonstrate

that the IMM �lter with our proposed smoother deliver the best combination of computational

speed and accuracy in a prototypical macroeconomic application of Bayesian �ltering.

Our paper provides a comprehensive toolkit for researchers working with complex macroeco-

nomic models. We demonstrate its practical relevance in an empirical application using a NK

DSGE model with long U.S. macroeconomic time series.
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Online Appendix
to

On Bayesian Filtering for Markov Regime Switching Models
by

Nigar Hashimzade Oleg Kirsanov Tatiana Kirsanova Junior Maih

A Selected Algorithms

Let My
j;t = fZj;t; cy;j;t; Tj;t; c�;j;t; gj;t; Rj;t; ytg be state-space system matrices for regime j and

information at time t: Let K() be a KF operator. The �ltering algorithms are summarised in
Tables A1-A2. Smoothing algorithms are summarised in Table A3.

Table A1: GPB Filtering Algorithms
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Regime probabilities
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Table A2: IMM Filtering Algorithms

IMM(1) IMM(2)
Regime probabilities

�jtjt := Pr [st = j j Yt] �ijt�1jt = Pr [st�1 = i; st = j j Yt]
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Table A3: Smoothing Algorithms

GPB(1) and IMM(1) GPB(2) and IMM(2)
Smoothed Probabilities
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B The Model

This section summarises the model in Fernandez-Villaverde et al. (2015). We present the list of

variables and all the model equations. We then present parameterisation of the model used in

Section 3, and estimated parameters obtained in the empirical investigation discussed in Section

4.

Table B1: List of Variables

dt Shifter to intertemp. preference Ct Consumption
Gt Government consumption �t Marginal utility of consumption
rt gross nominal interest rate Rkt Rental rate of capital
�t Gross in�ation �t Cost of use of capital
Qt Tobin�s Q �0t derivative of the capital adj. cost
Xt Investment ut capital utilization
st Investment adjustment cost s0t derivative of invest. adj. cost
ft Calvo wage parameter W�;t Optimal real wage
Wt real wage ld;t labor demand
't labor supply shifter ��w;t Relative optimal real wage
g1;t Calvo price process 1 ��;t Relative Price
g2;t Calvo price process 2 mct Real marginal cost
Yd;t Output vp;t Price dispersion
Kt Capital At Neutral technology
Zt Combined technology MUt Investment-speci�c tech. level
vw;t Wage dispersion lt hours worked/labor supply
"�;t Monetary policy shock, scale �� "';t labor supply shock, with scale �'
"g;t Government spending shock, scale �g "�;t Invest.-spec. technology shock, scale ��
"d;t Preference shock, scale �d "A;t Neutral technology shock, scale �a
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Table B2: Model Equations

Households

Capital accum-n Kt = (1� �)Kt�1 +MUt

�
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�
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�
��t�1
�t

�1�"
+ (1� �p)�1�"�;t
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�
��t�1
�t

��"
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continued on the next page
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Table B2: Model Equations �continued

Market Clearing and Policy

Production function Yd;t =
At(utKt�1)

�(ld;t)
1����yZt

vp;t

Capital-labor ratio utKt�1
ld;t

= �
1��

Wt
Rkt

Aggregate labour lt = vw;tld;t

Resource constraint Yd;t = Ct +Gt +Xt +
�[ut]
MUt

Kt�1

Marginal costs mct =
�

1
1��

�1�� �
1
�

�� W 1��
t R�kt
At

Taylor rule rt
rss
=
�
rt�1
rss

�r �� �t
�targ

�� � Yd;t
�ydYd;t�1

�y�1�r
exp (��"�;t)

Government spending log
�
Gt
Zt

�
=
�
1� �g

�
log g + �g log

�
Gt�1
Zt�1

�
+ �g"g;t

Exogenous processes
Intertemporal preference log (dt) = �d log (dt�1) + �d"d;t
Labor supply log ('t) = �' log

�
't�1

�
+ �'"';t

Investment-spec. technology MUt =MUt�1 exp (�� + ��"�;t)
Neutral technology At = At�1 exp (�a + �a"A;t)

Combined technology Zt = A
1

1��
t MU

�
1��
t

C Model Parameters and Empirics

Table C1: Model Parameters

Parameters Description FGR2015 Estimated
Values Values
(1) (2)

� Time Preference 0.99 0.9992
h Habit Formation 0.9 0.92747
psi labor supply coe¤ in utility 8.0
vartheta Disutilty of Labor Scaling 1.17
� Depreciation Rate 0.025
� Captial Share in Production 0.21 0.14991
� Weight on Investment Adjustment Costs 9.5 3.7946
" Elast. of Subst. btw. Di¤erntiated Goods 10
eta Elast. of Subst. btw Di¤. Types of Labour 10
phi2 Weight on Adj. Costs for Capital Utilization 0.001
�w Wage Indexation 0.6340
� Price Indexation 0.6186 0.00011223
�w Probability of not changing wages 0.6869
�p Probability of not changing prices 0.8139 0.8379

continued on the next page
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Table C1: Model Parameters �continued

Parameters Description FGR2015 Estimated
Values Values
(1) (2)

Policy Parameters
r (SP=1) Interest rate smoothing 0.7855 0.80302
r (SP=2) Interest rate smoothing 0.7855 0.87472
y (SP=1) Reaction to output growth exp(-1.4034) 0.41649
y (SP=2) Reaction to output growth exp(-1.4034) 0.32918
�targ Inlfation target 1.0005 1.0057
Persistence of Shocks
�d Consumption preference 0.1182 0.72554
�' Labor supply 0.9331 0.92016
�a Neutral technology 0.0028
�� Investment-speci�c technology 0.0034
�g Government spending shock 0.75 0.0024123
Standard Deviation of Shocks
�d (SV=1) Consumption Preference Regime 1 exp(-1.9834) 0.031211
�d (SV=2)

� Consumption Preference Regime 2 2*exp(-1.9834) 0.16311
�' (SV=1) Labor Supply Regime 1 exp(-2.4983) 0.29752
�' (SV=2)

� Labor Supply Regime 2 2*exp(-2.4983) 0.20313
�� (SV=1) Investment-speci�c technology Regime 1 exp(-6.0283) 0.003998
�� (SV=2)

� Investment-speci�c technology Regime 2 2*exp(-6.0283) 0.0071897
�a (SV=1) Neutral technology Regime 1 exp(-3.9013) 0.037752
�a (SV=2)

� Neutral technology Regime 2 2*exp(-3.9013) 0.048111
�g Government Spending shock exp(-3.9013) 0.0074137
�� Monetary Policy exp(-6.000) 0.0020286

Note: � denotes a parameter which is calibrated by the authors.
Table C2: Data Sources

Data series Description Units FRED
series

(1) (2)
DY_DATA Output Growth %pa A939RX0Q048SBEA
DP_DATA In�ation rate %pa GDPDEF
R_DATA Federal Funds Rate %pa FEDFUNDS
DW_DATA Wage In�ation %pa COMPRNFB
DMU_DATA Relat. price of invest. goods %pa PIRIC

Note: FRED database https://fred.stlouisfed.org/

38



19
47

Q2

19
57

Q1

19
66

Q4

19
76

Q3

19
86

Q2

19
96

Q1

20
05

Q4

20
15

Q3

5

0

5

Output Growth(DY_DATA)

new old

19
47

Q2

19
57

Q1

19
66

Q4

19
76

Q3

19
86

Q2

19
96

Q1

20
05

Q4

20
15

Q3

2

1

0

1

2

3

CPI Inflation(DP_DATA)

19
54

Q3

19
63

Q2

19
72

Q1

19
80

Q4

19
89

Q3

19
98

Q2

20
07

Q1

20
15

Q4

1

2

3

4

Feds Funds rate(R_DATA)

19
47

Q2

19
57

Q1

19
66

Q4

19
76

Q3

19
86

Q2

19
96

Q1

20
05

Q4

20
15

Q3

2

0

2

4

6

Wage inflation(DW_DATA)

19
47

Q2

19
56

Q4

19
66

Q2

19
75

Q4

19
85

Q2

19
94

Q4

20
04

Q2

20
13

Q4
2

1

0

1

2

Relative price of Inv. goods(DMU_DATA)

Figure C1: Updated Data

D Notes on Implementation

All computations in this paper were coded in RISE c (Maih, 2015). RISE toolkit accepts the

model description as a text �le containing list of commands and mathematical expressions, con-

verts it into a state-space form, loads the data, and applies �lters and smoothers discussed in this

paper.

In panel A of Table 3, the speed results were obtained with implementing IMM(1) and KN-

GPB(2) as stand-alone procedure, with optimisation for speed where possible. As discussed

in the text, their implementation in RISE allows handling various non-linearities and missing

observations.

In panel B of Table 3, for comparison of speed within either GPB or IMM families we em-

ploy single GPB(N) and IMM(N) �lters that accept an arbitrary order as input, rather than

separate codes for di¤erent orders of �ltration. Consequently, the number of nested loops is not

predetermined but is managed throughout the computation.
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