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Abstract 
 
There is strong evidence on the mortality and morbidity external costs of air pollution. This paper 
focuses on another source of air pollution externality: the loss in solar electricity generation from 
increased atmospheric opacity due to air pollution. We use data from residential rooftop solar 
panels and exploit quasi-random variation in air opacity from wildfire smoke and wind conditions 
to estimate that PM2.5 pollution reduced annual solar generation in California by over 450GWh, 
or 4% of total potential generation. This is equivalent to an annual externality of $177 per ton of 
PM2.5 emitted. Our findings suggest that there is a positive feedback from decarbonisation 
policies, where reduced dependence on fossil fuels improves air quality, leading to an even greater 
productivity of solar generation, further reducing emissions. 
JEL-Codes: Q480. 
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1 Introduction

From the Los Angeles smog to the post-Diwali haze in New Delhi, acute pollution events

often highlight the impact of air pollution on visibility. While the salience of such incidents

has led to empirical studies on their health impacts (e.g., Garaga and Kota, 2018), little

attention has been given to the impact of this air quality deterioration on solar generation.

In stark contrast to this absence, small-scale field experiments and engineering simulations

have consistently found evidence of impacts from air pollution on solar photovoltaic (PV)

panel productivity (Bergin et al., 2017; Peters et al., 2018). These studies have found that air

pollution, such as fine particulate matter (PM2.5) pollution, increases atmospheric opacity,

which in turn reduces the amount of solar energy that reaches the surface.

The implications of such an externality of air pollution may be significant, as many federal

and state-level energy transition strategies in the United States involve the expansion of solar

generation. Such increases in solar energy adoption are expected to yield large reductions in

ambient air pollution (Deetjen and Azevedo, 2020; Sergi et al., 2020; Gillingham and Huang,

2020). The possible link between air pollution and solar generation hence suggests a positive

feedback from decarbonization policies. Lower dependence on fossil fuels could improve

atmospheric visibility, leading to higher solar productivity, thus resulting in an additional

increase of renewable energy share in the fuel mix and further reductions in emissions.

This study estimates the causal impact of air pollution on residential rooftop solar gen-

eration. We assess the contemporaneous effect of PM2.5 pollution on metered rooftop solar

generation using day-to-day variations in wind conditions (Knittel et al., 2016; Schlenker

and Walker, 2016) and wildfire smoke influx. The paper takes a two-part approach. We first

establish that atmospheric opacity, measured from spaceborne satellites, is causally linked

with rooftop solar generation in Californian households over a seven-year period. We then

show that this air opacity is also linked with PM2.5 pollution, using plausibly exogenous

day-to-day variations in PM2.5 conditions. This two-part approach is motivated by the

fact that PM2.5 is but one of several pollutants that is affected by wildfire smoke that can

then affect solar generation1, so directly linking PM2.5 to solar generation could miss an

1Borgschulte et al. (2022) also provides insightful discussion on the existence of other pollutants correlated
with smoke exposure.
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important part of the effect of air pollution on solar generation.

We find that a one standard deviation increase in air opacity decreases the average so-

lar generation in that day and the following two days by 9.4%.2 Our empirical approach

uses quasi-experimental variation in wind conditions and smoke influx as instruments for air

opacity and PM2.5 air pollution in the two stages of our estimation respectively, addressing

the possibility of endogeneity from reverse causality and measurement error. The two-stage

least squares (2SLS) estimation results are consistently larger than OLS estimates, suggest-

ing that endogeneity is a real concern in this setting. Using PM2.5 concentration as the

endogenous variable, rather than air opacity, underestimates the effect. This is consistent

with the hypothesis that non-PM2.5 aerosols also reduce solar generation, strongly suggest-

ing the violation of exclusion restriction if we directly model the relationship between PM2.5

and solar generation.

We also find that PM2.5 pollution is causally linked with contemporaneous air opacity.

A 1µg/m3 increase in PM2.5 pollution leads to a 2% increase in air opacity on average, while

summertime pollution is particularly nefarious, with a 3% increase in opacity. This empirical

finding has significant implications, especially in the context of California’s recent growth in

the adoption of residential rooftop solar. Our back-of-the-envelope calculations reveal that as

of 2021, air opacity and PM2.5 reduced potential solar generation from residential rooftops

by 1,616GWh and 459GWh, or 14.8% and 4.2% of potential generation respectively. We

estimate this previously unaccounted externality of PM2.5 pollution is $177/ton/year.

This paper contributes to the existing empirical literature in three useful ways. First, we

add to a rich literature that documents the effect of air pollution on such diverse outcomes as

health (Chay and Greenstone, 2003; Moretti and Neidell, 2011; Schlenker and Walker, 2016),

crop yield (Metaxoglou and Smith, 2020; Proctor, 2021), and human capital formation (Chen

et al., 2018). While our analysis is confined to ZIP codes within California, the impact of air

pollution on solar generation will likely be significantly larger elsewhere in the world with

higher pollution levels (e.g., developing countries, as in Landrigan et al., 2018). Our findings

identify an added benefit of air pollution mitigation policies, an externality whose size will

2We use three-day solar generation to account for lagged effects due to the possibility of deposition on
the solar panels (Deryugina et al., 2019).
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only grow with the expansion of solar energy.

Second, we make methodological contributions to the empirical literature that uses quasi-

random variation in air pollution levels to assess the impact of air pollution on economic

outcomes (Moretti and Neidell, 2011; Schlenker and Walker, 2016; Knittel et al., 2016). The

empirical strategy in these studies relies on atmospheric conditions (e.g., wind conditions)

and the interaction of these conditions with pollution-generating local economic activities

(e.g, local traffic level). In contrast to such local sources of pollution, wildfire smoke in

California originates from distant sources (McClure and Jaffe, 2018). Such spatial exogeneity

has the potential to improve our identification strategy, which relies on the interaction of

smoke influx with wind direction. To the best of our knowledge, this is the first empirical

study to use wildfire smoke as a quasi-experimental source of heterogeneity in wind condition

impact on air quality.3

Third, we add to a very limited literature that studies the impact of air pollution on solar

generation. Studies on the subject have been dominated by small-scale field experiments and

modeling studies. For example, Bergin et al. (2017) studies the global impact of PM2.5 on

solar generation using outdoor experiments in Ahmedabad, India, lasting less than six months

in total. Existing efforts to confirm such results in realistic environments were largely limited

to anecdotal comparisons around a single high-pollution event (e.g., prescribed burns, as in

Gómez-Amo et al., 2019) or OLS regressions without consideration of endogeneity (Son et al.,

2020). Our analysis covers seven years of data from more than 1,800 ZIP codes in California

and takes potential endogeneity concerns seriously.

A recent study using data from Arizona directly examines the effect of PM2.5 and PM10

pollution on residential and commercial rooftop solar generation using wind direction as

the instrumental variable for PM2.5 (He et al., 2020). Our study is similar to He et al.

(2020) in its use of quasi-experimental variation in PM2.5 to study solar generation. Our

study, however, differs from He et al. (2020) in three important ways. First, we use satellite-

measured air opacity rather than the PM2.5 (or PM10) concentration as the endogenous

3In the usage of wildfire smoke as a driver of local air conditions, we build on a recent study on the impact
of wildfire smoke on labor market outcomes (Borgschulte et al., 2022). We differ from the study, however, in
that we are not interested in the effect of smoke per se on our outcomes. We also do not use wildfire smoke
as an instrument for PM2.5 concentrations.
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variable of interest to better model the causal channel by which air pollution affects solar

generation. As alluded to above, the main issue with a 2SLS estimation directly linking

PM2.5 to solar generation is that it requires that PM2.5 be the only causal pathway through

which wind affects solar generation; this is likely untrue, considering that a plethora of

other pollutants can be influenced by wind and also affect atmospheric opacity and reduce

solar generation. We avoid this violation of the exclusion restriction assumption through

our two-stage approach that also estimates the relationship between air opacity and solar

generation.

A second way that our study differs from He et al. (2020) is that the previous study

uses a linear model to explain the solar generation-air quality relationship. In our study,

we present fundamental principles in atmospheric optic theory (Lambert, 1760; Beer, 1852)

that cast doubt on this linearity assumption. The fundamental principles suggest a log-

linear relationship between solar generation and air pollution. Indeed, this relationship is

supported by evidence from small-scale field experiments (Peters et al., 2018). Put simply,

the physics suggest that air pollution would affect the efficiency of solar cells instead of the

level of solar production. It is possible that the misspecification can explain part or all of the

remarkable difference in the He et al. (2020) estimate of air pollution impact’s on residential

versus commercial solar units (30.6% versus 0.15% decrease for a standard deviation increase

in PM2.5 concentration).4 Lastly, while He et al. (2020) relies strictly on wind conditions

to identify air pollution impacts, we interact wind condition with wildfire smoke influx to

introduce a more robust identification strategy that provides additional statistical power.

We find that all three of these differences in methodology have important implications for

the estimates of the effect of PM2.5 on solar generation.

The remainder of this article is organized as follows. In the following section, we introduce

the definition of aerosol optical depth and its relationship with wind directions, which is

central to our empirical strategy and identification assumptions. We then present our data

and empirical strategy in Sections 3 and 4. Section 5 summarizes our empirical results.

Section 6 discusses the policy implications of our results, and Section 7 concludes.

4The average solar generation in residential units in He et al. (2020) was 7.4kWh/day/consumer, compared
to 85.5kWh/day/consumer for commercial units. Both point estimates (30.6% and 0.15%) are quite far off
estimates from previous engineering-based studies in similar environments (e.g., 6–18%, Bergin et al., 2017).
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2 Background

In this section, we highlight key findings from the engineering and physics literature that

motivate our research design. We then introduce the intuition behind our identification

strategy.

2.1 PM2.5 pollution and solar generation

After entering the atmosphere, radiative energy from the sun is subjected to a process

called “optical extinction,” where the energy is either scattered or absorbed as it collides

with ambient molecules.5 In the lower atmosphere, the two main drivers of such extinction

are: solid- or liquid-state particulates (i.e., aerosols), such as water droplets and PM2.5

molecules, and gas-state molecules with high absorption capacities in select wavelengths,

such as nitrogen dioxide (NO2).
6 An increased concentration of such molecules hence reduces

the penetration of solar radiation, leading to atmospheric opacity. Between the two types of

opacity-inducing molecules, aerosol particulates (i.e., particulates in liquid and solid states)

are the main drivers of visibility reduction, accounting for 50−95% of extinction (Seinfeld

and Pandis, 2016).7

Such interaction of solar radiation with the atmosphere is dictated by the Beer-Lambert

Law, which posits that the rate of optical extinction is a linear function of the incoming

energy itself (Lambert, 1760; Beer, 1852). Appendix Section A.1 demonstrates how a series

of simple manipulations of this well-known law leads to the following theoretical definition

of “optical depth” τ :8

F0 = FTOA exp (−τ) (1)

5Strictly speaking, scattering does not precisely lead to reductions in ground-level irradiance; it is the
backscattering of radiation, which is the strongest in a type of scattering called elastic scattering, that reduces
the net amount of radiation power arriving on the ground surface.

6In the upper atmosphere, the main driver of optical extinction is the stratospheric ozone layer in the
ultraviolet spectrum. But the fluctuation of ozone concentration, conditional on a fixed position, shows very
strong seasonality. The effect of ozone layer absorption is hence subsumed in the time-fixed effect of our
model.

7“Scattering by particles accounts for 50–95% of extinction, depending on location, with urban sites in
the 50–80% range and non-urban sites in the 80–95% range (Seinfeld and Pandis, 2016, p.646.)”

8In principle, the equations here are applied to spectral, or spectrum-specific, measurements of irradi-
ance. We drop the spectrum λ notation here for simplicity, but Appendix Section A.1 provides additional
explanations as to the spectral bands used for our analysis.
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where F0 is the surface-level irradiance (radiative power per area)9. FTOA is the irradiance

at the top of the atmosphere. The units for both F0 and FTOA are W/m2, or power per

area. The optical depth τ is hence a real number that measures the degree to which the

incoming sunlight is extinguished from the atmosphere. For example, an optical depth of 0.1

suggests that approximately 10% of irradiance at the top of the atmosphere will be lost as

it travels through the atmosphere. The advent of spaceborne sensors, such as the Moderate

Resolution Imaging Spectroradiometer (MODIS), have provided continuous measurements

of the optical depth (Appendix Section A.1).

It is this concept of optical depth τ that we use as our endogenous variable of interest.

We are particularly interested in “aerosol optical depth” (AOD), which refers to the value

of τ attributable to aerosol particles. AOD is measured from satellite sensors, such as the

MODIS sensor that we use in our analysis. Equation (1) strongly suggests that it is the log

of rooftop solar generation that the AOD reduces. Previous engineering studies involving

small-scale air sampling experiments have confirmed this theoretical log-linear relationship

(Li et al., 2017; Donaldson et al., 2021; Zhang et al., 2021).10 Further, many engineering

studies (e.g., Styszko et al., 2019) have found a lag of a few days in AOD impacts solar

generation, as the deposition of molecules on panel surfaces can temporally alter the panels’

optical properties.

While engineering studies have effectively confirmed the relationship between AOD and

solar generation as posited in (1), one cannot directly translate the engineering results to em-

pirical estimates because the engineering studies themselves (e.g., Perry and Troccoli, 2015)

have found that air opacity’s impact on solar generation can be heterogeneous, depending

on the material and manufacturing technique used for the panel in question. For example,

Li et al. (2017) estimates the impact of aerosols in East China to be 21% and 34% of solar

generation for fixed-array and two-axis tracking solar systems, respectively.

The heterogeneous impact of air pollution, as identified by engineering studies, limits the

applicability of engineering estimates in empirical settings. This is because the engineering

9Throughout this paper, we use the terms “irradiance” and “radiation” interchangeably.
10Such studies have involved small-scale experiments that, in a set outdoor environment, simultaneously

measure both the ambient aerosol composition and the performance of an experimental solar PV panel.
Based on the collected air sample, the studies have backtracked the AOD of the atmosphere using a priori
knowledge of the optical properties of individual aerosol molecules.
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studies are based on short data collection campaigns at specific sites under circumstances

that may not be representative of real-world environments faced by rooftop solar systems in

California. For example, while Peters et al. (2018) provides global estimates of the impact

of PM2.5 on solar generation, their estimates are based on a 13-month measurement record

with two PV systems and a single pyranometer (irradiance measurement equipment) in Delhi,

India. Solar generation in California very likely differ from the experimental conditions in

the maintenance, installation, and composition of panels.

We also note that equation (1) pertains to the AOD, not PM2.5. Recent studies in the

remote sensing literature have shown a robust link between day-to-day variations in AOD

and those in PM2.5. This has motivated studies that use satellite AOD imagery to estimate

PM2.5 concentration with unprecedented resolution (Ma et al., 2022).11 However, AOD is

a measurement of air opacity attributable to all aerosol matter in the atmosphere. There

is no guarantee that an increase in AOD is the result of PM2.5 pollution. Increases in

ambient water droplet concentration from high humidity, for example, may increase AOD

even without changing the PM2.5 concentrations.

These relationships between PM2.5, AOD, and solar generation have two implications

for our identification strategy. First, to the extent that it is AOD, not PM2.5, that explains

fluctuations in solar generation, the use of PM2.5 concentrations as the covariate of interest in

an IV framework will violate the exclusion restriction whenever the instrument is correlated

with other factors that contribute to AOD. Given the many factors that can influence AOD,

it may be difficult to find an instrument that does not violate the exclusion restriction.

Second, it is useful to empirically disentangle the share of PM2.5 in AOD fluctuations to

better understand how this important pollutant influences opacity.

2.2 Air quality, wildfire, and wind

Wildfire smoke is one of the strongest drivers of day-to-day variations in air quality in

the western United States (McClure and Jaffe, 2018). While some wildfire events lead to

statewide impacts on air quality, most smoke episodes are local in nature (Appendix Figure

11Such fine-scale PM2.5 data have recently been used for more detailed empirical analysis on the distri-
bution of pollution exposure (Currie et al., 2023).
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F1). The spatial extent of wildfire smoke is strongly influenced by daily weather conditions, in

particular wind direction and wind speed. These properties make wildfire smoke especially

useful for empirical analyses by providing a source of quasi-experimental variation in air

quality driven by wind conditions.

Upon wildfire ignition, the position of a ZIP code with regards to wildfire smoke (i.e.,

downwind or upwind from smoke origin) is determined by two factors: the angle between the

smoke plume and the ZIP code, and the wind direction at each ZIP code. For example, if the

smoke is placed east (90◦) of a ZIP code, then this ZIP code will be downwind from the smoke

when its local wind direction is easterly (90◦). The ZIP code will be upwind under westerlies

(270◦). For the two cases, the cosine of difference in the two angles is cos(0◦) = 1 and

cos(180◦) = −1. The difference between these two angles thus becomes a useful instrument

for wildfire smoke exposure. The sign of the cosine of this angle summarizes whether a ZIP

code is downwind from smoke or not, where a positive “cosine of angle difference” implies

that the ZIP code is downwind of the smoke. Surface radiation in downwind regions (with

positive cosine angle differentials) will be strongly affected by wildfire smoke than the upwind

regions (with negative cosine angle differentials).

Figure 1 shows this relationship in action. We focus on a local wildfire smoke event near

Los Angeles on October 19, 2016. The smoke’s impact was local, as is the case for most

wildfire smoke events. The blue arrows show wind direction in each ZIP code, while ZIP

codes with wildfire smoke as of are demarked in red borders. Point “A” shows the origin of

the smoke plume. The smoke spread across the Los Angeles metropolitan area following the

wind direction, resulting in a smoke plume with centroid at point “D.” The smoke plume

is shown in red box in the top left subfigure of Figure 1a. Figure 1a shows the demeaned

surface-level radiation, where radiation averages are taken in each ZIP code.

Point “B” in Figure 1 was dominated by easterly wind (90◦), with the smoke plume’s

centroid to the west (270◦). Point B was hence upwind of the wildfire smoke. This favorable

wind condition led to B and its adjacent regions to experience a less severe drop in surface

radiation than the rest of the ZIP codes in the area (Figure 1a). Figure 1b shows that the

cosine of the angle difference at point B (180◦) was negative.

On the contrary, point “C” was dominated by southeasterly winds (135◦), with the smoke
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polygon to the southeast (135◦). Point C, being downwind, experienced a stronger drop in

radiation than point B (Figure 1a). The cosine of angle differential was positive (Figure 1b).

The importance of local wind conditions in modulating smoke impact is a key part of our

identification strategy. For each wildfire smoke episode, we measure the angle between the

smoke’s centroid and each ZIP code and calculate its difference from local wind direction, as

in Figure 1b. We also include wind speed as an instrument, as low wind speed can accentuate

smoke exposure.

Our approach builds on previous studies that have used wind direction as drivers of

pollutant transport (e.g., Schlenker and Walker, 2016). Contrary to such studies, which

compared wind direction to a stationary pollution source (e.g., airports), our method has

the added benefit of allowing the position of the pollution source to vary. The random nature

of wildfire ignition, combined with day-to-day shifts in wind direction, provide a plausibly

exogenous driver of local air conditions.

3 Data and Descriptive Statistics

3.1 Rooftop solar generation

We obtain data on our primary outcome variable, rooftop solar generation, from California

Solar Initiative’s (CSI) “15-minute interval” data set (California Public Utilities Comission,

2016). The data set compiles production meter records from 504 rooftop PV systems reg-

istered in the CSI program over a seven-year period from 2010 to 2016, at a fifteen-minute

interval. Each PV system in the data set can be identified using their unique CSI ID codes,

and we pair these with the “CSI Application” data set, which includes data on the charac-

teristics of each PV system (e.g., installed ZIP code).

As the CSI data set is obtained from automated production meters, removing PV systems

with anomalous records becomes a key component of our data preparation process. We apply

three major criteria to filter out spurious data inputs. First, to assess the degree of data

omission at each production meter, we aggregate the fifteen-minute interval data to hourly

levels, and count the number of missing entries. We remove 26 PV systems which either (i)

had more than 20% of their entries missing or (ii) had more than 10% of entries consecutively
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unrecorded.12 Second, we identified seven PV systems which had excessively large negative

production records.13 While negative production is theoretically possible after sunset (e.g.,

some power used for the inverter), the negative production should be negligible compared to

the amount of solar production. We hence drop these systems from the data set. Third, for

remaining observations, we treat negative entries as missing values; this constitutes 0.4% of

the entire data set.14

The data cleaning process presented here is analogous to that taken by a CSI-commissioned

report that used the same data to analyze the solar generation potentials of ZIP codes in Cal-

ifornia (Clean Power Research, 2018). We conduct robustness checks on these data cleaning

procedures and find that they do not change our results.

We aggregate the PV system-level data to the ZIP code level by calculating the average

of solar energy generated in each ZIP code. For compatibility with other data, we aggregate

the 15-minute data set to total daily production. The resulting data set contains 470 PV

systems over 288 ZIP codes.

3.2 Simulated surface-level irradiance

We supplement our CSI production meter data set with a simulated solar irradiance data

from the National Solar Radiation Database (NSRDB) (Sengupta et al., 2018). NSRDB

provides a gridded estimate of surface-level solar radiation, based on an algorithm combining

physical models of the atmosphere, cloud and aerosol measurements, and in situ weather

observations. NSRDB data have shown superb performance when compared with on-the-

ground precision measurements of irradiance, especially when they were aggregated to daily

intervals (Habte et al., 2017).

We obtain three different types of surface-level radiation estimates from NSRDB. First,

global horizontal irradiance (GHI) is a measure of the intensity of solar energy reaching the

surface per unit area from all directions, and is a proxy of solar PV cell productivity. Second,

12The 20% and 10% thresholds were set by conducting unsupervised k-means clustering on the missing
entry ratio of the PV systems. k was set at 3.

13PVs with “excessive negative production record” are defined as those whose sum of negative entries
throughout the seven-year period exceeded −10,000kWh.

142,159 rows out of 505,960 observations. The mean of these records is −1.13kWh/day, compared to an
average of 38kWh/day for the entire data set.
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direct normal irradiance (DNI) isolates the share of GHI that originates from the direction

of the sun. Diffuse horizontal irradiance (DHI) measures the level of radiance that does not

come directly from the sun, but has been diffused via collision with atmospheric particles.

Theories in atmospheric physics dictate that increases in atmospheric opacity will reduce

DNI, while potentially increasing DHI due to intensified scattering.

We use the GHI data in NSRDB to evaluate the external validity of our findings. Specif-

ically, we assess whether the GHI of our CSI-included ZIP codes show a systematically

different response to those across the entire state of California. The DHI and DNI data

are used to understand the mechanisms of air opacity impact on surface-level irradiance.

Appendix Figure F2 illustrates the coverage of our CSI data, and the expansion of data

coverage conferred by NSRDB.

3.3 Satellite-measured air opacity and downscaled PM2.5

The variable of interest in our first analysis is satellite-measured air opacity, which is instru-

mented for with daily wind conditions and wildfire smoke influx. We obtain estimates of

AOD from the MODIS sensor on board the Terra and Aqua satellites. We specifically refer to

the Multi-angle Implementation of Atmospheric Correction (MAIAC) data set’s AOD esti-

mates, which is accessed via Google Earth Engine (Gorelick et al., 2017), a cloud computing

platform that facilitates acquisition of gridded geospatial data.

While the MODIS AOD data that we access is already quality-controlled for spurious

variations (e.g., those from “water glints,” or production of overly bright retrievals from

sunlight reflections from adjacent water bodies), the data set does flag best-quality obser-

vations. We use the full AOD data set for our main analysis to maximize statistical power,

but we conduct robustness check with only “best” AOD observations, as flagged by the data

provider.

While AOD is our variable of interest, we also use downscaled PM2.5 for comparison

purposes to show the implications of directly modeling the effect of PM2.5 on solar gener-

ation. To this end, we use a recently developed data set (Reid et al., 2021) that estimates

PM2.5 concentration at the census tract level in California.15 These data have shown good

15These data are obtained from Machine Learning algorithms, applied to a composite data set of satellite
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downscaling performance in the state of California (R2 > 0.76, RMSE around 4µg/m3),

with a particular strength in its urban regions, where the great majority of our ZIP codes

are located.

3.4 Wildfire smoke and measured PM2.5

We collect wildfire smoke data from NOAA’s Hazard Mapping System (HMS, Brey et al.,

2018), which uses satellite imagery to capture the spatiotemporal extent of wildfire smoke à

la Figure 1. We declare that a ZIP code has been “exposed” to wildfire smoke if its boundary

intersects with the smokes’ boundary. A given day is declared as “wildfire smoke day” if at

least one of the ZIP codes in California was exposed to smoke. Appendix Figure F3 shows

that the smoke days are concentrated in California’s “wildfire season,” from June to October.

On each smoke day, we identify the centroid of each smoke polygon.16 We then calculate

the difference between two angles: (1) the angle between each ZIP code and its smoke

polygon, and (2) the azimuth angle of wind direction (direction measured in degrees from

the north) at each ZIP code. As shown in Figure 1b, the cosine of this difference shows

whether a region is downwind from the closest smoke polygon.

For our analysis of AOD-PM2.5 relationship, it is important to use measured, not down-

scaled, PM2.5 data. This is because downscaling algorithms of PM2.5 often include AOD

among the variables used for the downscaling. Any results from regressing downscaled PM2.5

on AOD thus risk being a simple artifact of the original model used. We thus collect PM2.5

concentrations from years 2010 to 2016 in Environmental Protection Agency’s (EPA) air

quality measurement sites across California.

One possible concern with measured PM2.5 data is that the distribution of EPA moni-

tors within each county and ZIP code may not be random (Grainger and Schreiber, 2019).

Appendix Figures F4 to F7 address this possibility. Using downscaled data, Appendix Fig-

ure F4 illustrates that the census tracts that host EPA monitors do not have substantially

higher PM2.5 pollution than other tracts in the same ZIP code. Appendix Figure F5 finds

imagery, land cover, chemical transport model, and weather observations.
16If the smoke is such that there are multiple polygons overlapped on one another (representing the

spreading of smoke across space), we select the smallest polygon as the “original” polygon and identify its
centroid.
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strong alignment between monitor-observed PM2.5 levels and ZIP code-wide PM2.5 levels

from downscaled data (with complete spatial coverage). Both figures suggest the PM2.5

monitors reasonably represent their ZIP codes’ average PM2.5 levels in our setting.

Appendix Figure F6 compares each census tracts’ average PM2.5 levels with their coun-

ties’ average, and find that tracts with and without monitors show similar distribution in this

deviation. Lastly, in Appendix Figure F7 we rank the PM2.5 level at each tract within its

county, and find no evidence consistent with systematic sensor concentration in low-pollution

areas. However, we find a weakly bimodal concentration of monitors on either low- or high-

pollution areas. We thus test the robustness of our results to dropping sensors outside the

10% to 90% percentile range.

3.5 Daily weather and nitrogen dioxide (NO2)

We obtain data on daily weather conditions from a 4km-resolution gridded daily weather data

set called gridMET (Abatzoglou, 2013). The data set merges a temporally rich interpolated

weather reanalysis product (NLDAS-2) with a spatially rich data set (PRISM) to produce

a spatially continuous data set of daily temperature, relative humidity, wind speed, and

wind direction. We take the cosine of the wind direction to assure continuity. We access

the gridMET data via Google Earth Engine and retrieve information from each ZIP code

centroid over the seven-year period.

To the extent that wind could be representative of large-scale weather conditions, the use

of wind conditions as an instrument for PM2.5 conditions is vulnerable to a violation of the

exclusion restriction. We hence obtain two proxies of large-scale weather17, 700hPa vertical

velocity (“omega” measure) and mean sea level pressure from the NCEP-DOE Reanalysis II

product (Kanamitsu et al., 2002).

Lastly, we note that AOD by definition focuses on atmospheric opacity from aerosols.

Thus, AOD only measures opacity from pollutants in liquid and solid states, not in gaseous

states, for aerosols are defined to be liquid or solid particles or droplets. As NO2 is the pri-

17Weather events are categorized into synoptic scale, mesoscale, or microscale depending on their horizontal
size. Here we define “large-scale weather” as “synoptic scale weather,” which refers to large-scale properties
of the weather system that has a spatial scale of around 1,000 km or more; common examples of synoptic
scale weather include high and low pressure systems and weather fronts.
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mary source of gas radiation absorption (Seinfeld and Pandis, 2016), we collect tropospheric

NO2 concentration estimates from the Ozone Monitoring Instrument (OMI) sensor on board

the Aura satellite (Krotkov et al., 2019).

3.6 Socioeconomic characteristics

To assess the possibility of disproportionate exposure to adverse air quality conditions and

potential heterogeneity, we collect data on socioeconomic characteristics of each ZIP code in

California. The data are accessed through EPA’s EJScreen data set (US EPA, 2022). We

aggregate EJScreen’s census tract-level data to the ZIP code level. The collected socioeco-

nomic characteristics are % of people of color, % of population with less than high school

education, % of low income households. Appendix Table F1 summarizes the data sources

and definitions used for this research. While we use EJScreen data from 202118, we examine

other years and find no notable shifts over time in the distribution (Appendix Figures F8

to F10). We also find that within each ZIP code, the socioeconomic characteristics do not

show strong changes from 2016 to 2021 (Appendix Figures F11 to F13).

3.7 Summary statistics

Three characteristics stand out from the summary statistics of our data, shown in Table 1.

First, there are significant day-to-day fluctuations in PM2.5 and AOD, with coefficients of

variation (CV) 0.8 and 0.6 for the two measures. Similarly, rooftop solar generation shows

considerable variation (CV around 0.7), while GHI estimates are relatively stable (CV around

0.3). NO2 and wind direction also show very strong day-to-day fluctuations.

Second, the scales of the four outcome variables (panel A) are all different. The mean of

DNI in particular is almost eight times as large as that of DHI. Although DNI and DHI are

two subcomponents of GHI, reductions in the two outcomes by the same percentage should

not be given the same weight. This further justifies the log-transformation of the outcome

variable. Third, due to the nature of retrieving algorithms, the PM2.5 and NO2 estimates

182016 is the earliest year from which we have access to EJScreen data. We do not use EJScreen data
set from 2022 as it has a different spatial unit of analysis compared to those in previous years (2020 Census
blocks versus 2010 Census blocks).
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in the data set show some negative values. While our primary results drop these entries, we

run robustness checks with these observations included.

4 Empirical Strategy

This study aims to analyze the effect of air pollution on rooftop solar generation to quan-

tify its externality. As discussed above, we develop a two-stage approach motivated by

the fact that PM2.5 is but one source of air opacity, and that other sources can be cor-

related with PM2.5 pollution. Under this circumstance, wind conditions will likely be an

invalid instrument for PM2.5 when directly examining the relationship between PM2.5 and

solar generation because the exclusion restriction would require that PM2.5 is the only way

through which the instrument affects solar generation. Wind conditions can affect other pol-

lutants and thus are not likely to satisfy this condition. Our approach is to first establish the

casual effect between air opacity and solar generation, and then quantify the causal effect of

air pollution on this air opacity measure. Combined, these two analyses allow us to quantify

the causal relationship between PM2.5 pollution and solar generation.

4.1 Air opacity and solar generation

The first part of our analysis aims to estimate the contemporaneous effect of air opacity

on rooftop solar generation and on other related outcomes (e.g., DHI). The reduced-form

equation of interest is:

log(yiswt) = βAODiswt +X ′
iswtλ+ αis + γw + εiswt, (2)

where yiswt is the outcome variable, rooftop solar generation, in ZIP code i, year s, week w,

day t. β is the coefficient of interest, which estimates the marginal effect of AOD, a measure

of air opacity, on the log of outcome variable. In light of fundamental theories in atmospheric

physics (Lambert, 1760; Beer, 1852) discussed in Section 2 and encapsulated in equation (1),

we adopt a log-linear model specification.

While our primary outcome variable of interest is the rooftop solar generation, we also

assess the effect of AOD on simulated ground-level irradiance, a strong predictor of solar

15



generation with statewide data coverage. The simulated irradiance data are particularly

useful in testing the external validity of the results from production meters. If we find

similar β estimates from the 288 ZIP codes (with rooftop solar data) and from the entire

state of California using the simulated ground-level irradiance, this suggests that the results

based on the subsample with production meters are likely to have external validity to all of

California.

Aerosol conditions on a specific day could have lagged effects, as aerosol particles can be

deposited on the surface of solar PV panels, temporarily altering their optical properties.

Following previous empirical literature (e.g., Deryugina et al., 2019), we account for this

lagged effect by calculating yiswt using the three-day sum of rooftop solar generation. The β

hence measures the effect of AOD on day t on the sum of solar generation on days t, t+ 1,

and t+2. For both OLS and 2SLS estimation, we include leaded covariates and instrumental

variables. This prevents the time-varying covariates and AODs of days t+ 1 and t+ 2 from

affecting the three-day outcome. We also estimate separate regressions with different lags

(up to five-day sums) to identify the lag structure of (2). For placebo tests, we substitute

the yiswt by the outcome variable thirty days into the past.

We include a vector of time-varying covariates Xiswt to control for important observables.

Six covariates are used: temperature minimum & maximum, relative humidity minimum

& maximum, precipitation, and tropospheric NO2 concentration. The last time-varying

covariate is of particular importance, as AOD does not account for non-aerosol (i.e., gaseous)

molecules that extinguish solar radiation. To the extent that NO2 levels may be correlated

with AOD, omission of this variable exposes the model to endogeneity. We account for

nonlinear effects by including quadratic and cubic transformations of these covariates.

We add nonparametric controls for time-invariant characteristics in each ZIP code and

ZIP code-specific year shocks by the fixed effect term αis. We also control for within-

year fluctuations of AOD and solar generation (notably from day length) using the week-

fixed effect γw. We run robustness checks with month-fixed effects. All standard errors are

clustered by ZIP code and year-week; the former accounts for temporal autocorrelation, the

latter accounts for spatial correlation of errors within each year-week.

OLS estimation of the β term in equation (2) will be unbiased if the AOD variable is not
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exposed to measurement error, is not correlated with any other factors that affect rooftop

solar generation, and if there is no simultaneity. Such assumptions are likely untrue for two

reasons. First, to the extent that we obtain AOD estimates at the centroid of each ZIP

code,19 there is a risk of measurement error, which could place a downward bias on the

coefficient estimates (Moretti and Neidell, 2011).

More importantly, OLS estimates of (2) are vulnerable to simultaneity. Empirical litera-

ture has found that the fuel mix for electricity generation affects local air pollution conditions

(Johnsen et al., 2019; Sexton et al., 2021). Shocks in solar generation productivity thus likely

lead to changes in AOD. The sign of bias is not obvious; increases in solar generation may

reduce the overall share of fossil fuel in the fuel mix, but could also increase demand for dis-

patchable energy sources upon sunset (following what is often called the “duck curve,” from

the shape of the dispatchable energy demand curve under strong solar share in the fuel mix).

On top of this electricity generation-related source of reverse causality, there can be natural

sources of reverse causality. Well-known principles in atmospheric chemistry suggest that

high solar irradiance can facilitate the formation of atmospheric pollutants, independently

from temperature and humidity conditions.20

To support this claim, Appendix Section B and Appendix Table B1 present a series of

tests that provide suggestive evidence of reverse causality. Intuitively, the tests show that

ZIP codes with natural gas power plants have lower OLS β estimates than those without

gas plants. Such findings are consistent with favorable radiation conditions (i.e., positive

solar anomaly) causing a decrease in gas generation by altering the daily fuel mix, leading

to reductions in AOD levels. The heterogeneity grows with the increased adoption of solar

in California over the 2010-2016 period.

Faced with this possibility, we adopt a two-stage least squares (2SLS) method exploiting

quasi-random variations in atmospheric opacity from wildfire smoke influx and wind condi-

tions. As shown in Figure 1, daily wind conditions play an important role in the transport

and dispersion of wildfire smoke. The interaction of daily wind conditions and wildfire smoke

19This is due to computational limits; assigning multiple sampling points within each ZIP code leads to
exponential increases in Google Earth Engine query time.

20A prime example is the facilitation of photolysis under high radiation conditions.
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hence constitute a plausibly exogenous shock to AOD. The first-stage regression is:

AODiswt = SMOKEDAYt ×DOWNWINDiswt × f(WSiswt)
′δ1

+ SMOKEDAYt ×DOWNWINDiswt × f(WDiswt)
′δ2

+X ′
iswtλ+ αis + γw + ϵiswt,

(3)

where SMOKEDAYt is a dummy variable indicating smoke days, defined as a day in which

at least one ZIP code in California was affected by wildfire.

The definitions of DOWNWINDiswt and WDiswt differ depending on SMOKEDAYt.

When SMOKEDAYt = 1, we first take the difference of two angles: the wind direction,

and the angle between ZIP code i and its closest smoke polygon. We then define WDiswt

as the cosine of this angle differential. As shown in Figure 1b, this measure effectively cap-

tures the position of each ZIP code relative to wildfire smoke origin. DOWNWINDiswt is an

indicator variable with = 1 when this cosine measure is above zero, hence being downwind

(blue ZIP codes in Figure 1b). If SMOKEDAYt = 0, then WDiswt is simply the cosine of

wind direction, and DOWNWINDiswt the sign of WDiswt. We run robustness checks on

alternative definitions of SMOKEDAYt and WDiswt, where SMOKEDAYt = 1 only for ZIP

codes within the 100km perimeter of each smoke polygon.

WSiswt is the wind speed observed for ZIP code i on day t. f(·) is a third-order polynomial

that accounts for nonlinear effects of wind direction and wind speed. The fixed effects are

identical to the structural equation (3).

The first-stage regression (3) exploits plausibly random variation in the occurrence of

wildfire smoke exposure (SMOKEDAYt) and the position of each ZIP code with regards to

the smoke itself (DOWNWINDiswt) to identify the effect of AOD on solar generation. The

exclusion restriction assumption is that AOD on day t is the only channel through which

same-day wildfire smoke conditions, interacted with wind conditions on day t, t + 1, and

t + 2, can affect solar generation. This assumption is reasonable, especially in light of the

“catch-all” characteristic of AOD measurement and the rich set of covariates and fixed effects

included. The 2SLS estimate of β will be biased if day-to-day wind changes and wildfire

smoke influx are correlated with the measurement error or the errors from reverse causality.
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This is unlikely, considering the random nature of daily wind conditions and the position of

each smoke polygon with regards to its neighboring ZIP codes.

4.2 Air pollution and air opacity

AOD is a catch-all measure of aerosol concentration in the atmosphere. Fluctuations in AOD

thus cannot be attributed solely to changes in PM2.5 air pollution. Thus, linking PM2.5 air

pollution to reductions in solar generation requires an additional step to estimate the casual

effect of PM2.5 on AOD.

One distinct characteristic of the PM2.5-AOD relationship is its seasonal heterogeneity.

PM2.5 pollution in California has different sources depending on the season (Hu et al., 2014),

which also have different optical properties (i.e., potential to increase opacity). We thus run

separate regressions for each season. The structural equations are, for seasons a = 1, 2, 3, 4,

AODisawt = β̃aPM2.5isawt + X̃ ′
isawtλ̃+ α̃is + γ̃w + ε̃isawt, (4)

where AODisawt is the AOD at ZIP code i, year s, season a, week w, day t. β̃a is the

coefficient of interest. The fixed effects are identical to the first part (2), and the standard

errors are once again clustered by ZIP code and year-week. We also estimate the model for

the entire year (without seasonal coefficients) to test seasonality.

Equation (4) differs from the solar-AOD structural equation (2) in three important ways.

First, rather than the log-linear specification, we adopt the linear specification in light of

previous studies on the theoretical basis of AOD-PM2.5 relationship (Appendix Section

A.2). Second, as the variable of interest in the AOD-solar generation model was single-day

air opacity, we also focus on single-day PM2.5 concentration PM2.5isawt.

Lastly, the covariate vector X̃isawt has three additional components. We control for large-

scale (“synoptic”) weather conditions: mean sea level pressure (MSLP) and 700hPa vertical

velocity. This controls for the potential correlation between PM2.5 pollution levels and

weather conditions (e.g., temperature inversion), which may be correlated with air opacity

(Sager, 2019). We also control for PM10 levels for the annual model, to account for possible
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correlations in PM2.5 and PM10 shocks.21

While using single-day PM2.5 concentration eases the linking of our previous results

(AOD-solar generation) from (2) to those from (4), the approach could be problematic for

identification. PM2.5 pollution could easily have a lagged/leaded effect on AOD (due to

atmospheric chemistry or anticipatory behaviors), so that PM2.5 pollution is correlated

across days. If this is the case, a regression of AOD on same-day PM2.5 may end up

confounding the true effect of same-day PM2.5 with the effect from previous days.

We address this concern by two methods. First, we instrument for PM2.5 using daily

wind conditions, using the first-stage regression

PM2.5isawt = f(WSisamwt)
′δ̃1m + f(WDisamwt)

′δ̃2m + X̃ ′
isawtλ̃+ α̃is + γ̃w + ϵ̃it, (5)

where all variables are identical to (3), except for WDisamwt. Wind direction is now simply

the cosine of daily wind direction. Assuming that day-to-day wind conditions are not serially

correlated, 2SLS estimates with (5) will reveal the contemporaneous impact of same-day

PM2.5 concentration.

Second, we perform robustness checks that simply add leads and lags of PM2.5isawt and

covariates to test changes in the coefficients. The additional regression is:

AODisawt = β̃0
aPM2.5isawt+β̃1

aPM2.5isaw,t−1+β̃2
aPM2.5isaw,t+1+X̃ ′

isawtλ̃+α̃is+γ̃w+ε̃isawt (6)

In Appendix Section C.1, we show that this augmented model will lead to significant dif-

ferences in estimates of β̃0
a when (a) the true Data Generation Process (DGP) includes the

lag and lead terms, and (b) PM2.5 concentration is serially correlated. The contrapositive

tells us that, the absence of changes in β̃0
a coefficient estimates (versus (4) and (6)) would

imply either that (a) the true DGP does not include leads and lags or (b) there is no se-

rial correlation in PM2.5isawt. We present evidence against (b) in Appendix Section C.2.

The comparison of original model (4) to its augmented version (6) thus provides a useful

(although still suggestive) test for whether the DGP includes lagged and leaded effects.

21We do not fit PM10 regressions for seasonal models due to lack of observations; for most EPA sites,
PM10 samples are not collected at a daily interval.
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5 Results

5.1 Air opacity and solar generation

Table 2 presents the main results of our analysis. Panel A shows the result of the OLS re-

gression examining the impact of air opacity (AOD on solar generation (equation (2)). Panel

B shows results from the panel IV regression, instrumenting for AOD by wind conditions

(equation (3)). Each column represents separate regressions; all columns use AOD as the

endogenous variable of interest, except for column 2.

Column 1 presents the estimates examining AOD’s impact on rooftop solar generation,

the first part of our two-part analysis. While OLS estimates demonstrate that a unit increase

in AOD leads to a 22.6% drop ((e−0.256−1)×100) in three-day rooftop solar generation, panel

IV estimates a significantly larger impact of 79.0% ((e−1.559− 1)× 100). This translates to a

1.6% and 9.4% drop under one standard deviation (0.063) increase in air opacity, with 2.6%

and 15.1% reductions in solar generation from average AOD levels (0.105). The latter figure

is in line with Bergin et al. (2017), which used short-run experimental observations from

India to estimate an aerosol impact of 6-18% in California solar production. The remarkable

difference between OLS and IV estimates is consistent with previous studies involving IV

methods (Schlenker and Walker, 2016), and suggests that measurement error and/or reverse

causality may be a major issue. The large F -statistics of our first-stage regressions attest to

the strength of our instruments.

Column 2 presents results from an alternative approach, which directly links PM2.5 with

rooftop solar generation. The estimation hence involves substituting AOD by PM2.5 in

equations (2) and (3). The OLS and IV estimates show that a 1µg/m3 increase in PM2.5

concentration leads to a 0.5% and 1.2% decrease in three-day rooftop solar generation, re-

spectively. A standard deviation increase of PM2.5 concentration (4.5µg/m3) hence leads to

a 5.03% drop in rooftop solar generation, according to IV estimates. The smaller size of the

PM2.5 impact compared to that of AOD, which includes all sources of atmospheric opacity,

is consistent with PM2.5 not being the only pollutant that reduces solar generation.

Column 3 shows that for ZIP codes included in our CSI data, the negative relationship

between AOD and solar generation is also shown in NSRDB surface-level irradiance mea-
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surements. Column 4 confirms that such trends are also true when expanded to the entire

state of California. The coefficient estimate of −0.95 is striking, as this is very close to the

theoretical value of the coefficient suggested by well-known principles in atmospheric physics

(−1, Appendix A.1). The remarkable similarity of coefficient estimates in columns 3 and 4

also suggest that the ZIP codes included in our data set do not show a substantially different

response to air opacity, when compared to the remaining California ZIP codes. Columns

3 and 4 hence indirectly establish the external validity of our findings in column 1. Both

columns also show the same trend of IV estimates being stronger in magnitude compared to

OLS estimates.

Columns 5 and 6 perform a placebo test. Solar generation and surface-level irradiance

thirty days into the past (our placebos) should not have any functional relationship with

contemporaneous AOD. Both OLS and IV estimations fail to find any meaningful estimates

for such outcomes.

Table 3 suggests an explanation for the mechanisms driving the AOD impact on solar

generation. The table presents regression results for model (2), but with irradiance subcom-

ponents (direct and diffused irradiance) as the outcome in separate regressions. Columns 1

and 2 show that it is the direct component of irradiance (i.e., solar radiation that is coming

from the direction of the sun) that is adversely affected by AOD. Three-day direct irradiance

is reduced by 10.9% under one SD increase in AOD. On the contrary, higher AOD increases

diffused irradiance (i.e., radiation that reaches the surface after scattering) by 14.7%. The

significantly larger dimensions of the direct radiation (Table 1) result in a net decrease in

the surface-level irradiance from AOD. Such findings are congruous with fundamental theo-

ries of atmospheric physics, which find that ambient particulates reduce irradiance directly

originating from the sun, but increase solar ray interference mid-air. Again, the coefficient

estimates are similar for the rooftop data-sample and the augmented state-wide sample (col-

umn 1 versus 2, 3 versus 4). IV models consistently find a stronger effect compared to their

OLS counterparts. Coefficients are not significant for placebo outcomes.
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5.2 Air pollution and air opacity

We now show that there is a clear link between daily shifts in PM2.5 air pollution and daily

changes in air opacity. This constitutes the second part of our analysis and allows us to

causally link PM2.5 pollution to solar generation losses.

Panel A of Table 4 estimates model (5) using fixed effects OLS methods. Panel B uses

wind conditions to instrument for PM2.5 conditions using first-stage regression (5). Panel

C estimates an OLS model with lagged and leaded terms (equation (6)) to see if controlling

for lagged or leaded effect influences our coefficient of interest. Columns 1 to 4 are results

from seasonal subsamples, while columns 5 and 6 use the entire data set. Column 6 includes

PM10 data to test for potential omitted variable bias from co-emission of PM10 with PM2.5,

which could affect atmospheric opacity.

Columns 1 to 4 suggest that PM2.5 concentration in the summer has a larger impact

than in other seasons. An increase in PM2.5 by 1µg/m3 leads to an increase of AOD by

0.0019 in the winter versus 0.0041 in the summer, equivalent to 2.9% and 6.3% of the

standard deviation of AOD in the sample, respectively. The similar impacts of PM2.5 in fall

and winter are consistent with atmospheric sampling studies which found similar sources of

PM2.5 pollution (e.g., residential wood stoves) in these two seasons (Hu et al., 2014).

Across all columns, the three approaches in Panels A, B, and C show similar coefficient

estimates. All leaded and lagged term coefficients in panel C are not significant and the

coefficients on the same-day PM2.5 are nearly identical to those in Panel A. As previously

mentioned, given serial correlation in PM2.5 levels, comparisons between estimates in panels

A to C indirectly test the violation of strict exogeneity (Appendix C). The very little differ-

ence in coefficients is consistent with the true DGP not including leaded and lagged terms

of PM2.5. The addition of contemporaneous PM10 concentrations, in column 6, also do not

shift the results. Overall, these results suggest quite robust results.

Combining Table 4 results with Table 2 column 1, panel B results allows us to estimate

the effect of PM2.5 on solar generation. Using column 5, panel B of Table 4 estimates, the

average PM2.5 level in California (10.3µg/m3) leads to an increase in AOD by 0.0258, which

translates into 4% drop in solar generation (e−0.0258×1.559 − 1). This is a larger effect than in
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Peters et al. (2018), which used experimental estimates from Delhi, India, to estimate the

impact of PM2.5 in Los Angeles to be 2.2±0.2%.

One can also compare the results from Tables 2 and 4 with those from a recent empirical

study on the impact of PM2.5 on solar generation in Arizona (He et al., 2020). As previously

discussed, this study differs from He et al. (2020) in the usage of AOD as the endogenous

variable, the use of wildfire in first-stage regression, and in the functional specification.

Appendix Section E explores the implications of relaxing these differences. The results from

using PM2.5 (not AOD) as the endogenous variable support the hypothesis that there are

other pollutants correlated with PM2.5 that affect solar generation (i.e., violation of exclusion

restriction). We also find that adopting the He et al. (2020) first-stage regression fails to

identify the AOD impact on solar generation. The linear specification does not lead to large

differences in estimates of AOD effects, but changes the interpretation of the results in a

way that is not consistent with well-known theories in atmospheric physics.

It is also notable that OLS and 2SLS models for the AOD-PM2.5 relationship show similar

coefficient estimates (Table 4), contrary to the large differences in the solar-AOD analysis

(Tables 2 and 3). One potential explanation for this difference is the vulnerability of solar-

AOD analysis to measurement errors. The independent variable for the latter analysis is

measured at the centroid of the ZIP code, while the former analysis uses PM2.5 measured

at EPA sensors. Under classical measurement error, OLS coefficient estimates will be biased

towards zero. This is consistent with the estimate differences found in Tables 2 to 4.

5.3 Lagged and heterogeneous effects of AOD on solar generation

We now explore the lagged effect of AOD on solar generation. To this end, we run IV

regressions as in (2) and (3), but with same-day to five-day solar generation as outcome

variables (versus the three-day solar generation shown in Table 2). Table 5 shows that while

a SD increase in AOD leads to a sharp decrease in same-day solar generation, the effects of

this increase persist even after four days (11.62% for same-day, 4.9% for five-day generation).

Similar trends are observed for surface-level irradiance. The lasting impacts of AOD are likely

signs of atmospheric particulates being deposited on PV panels, a phenomenon observed in

field experiments (Styszko et al., 2019).
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Appendix Table F2 explores the heterogeneity in AOD impact on rooftop solar genera-

tion. To assess heterogeneity, we divide the ZIP codes into two groups depending on their

socioeconomic characteristics, and run separate 2SLS regressions with (2) as the structural

equation. We find very little difference in the effect of air opacity across subgroups.

5.4 Robustness checks

Table 6 shows the robustness of our IV estimates to different conditions. The results in

columns 1, 2, and 3 are obtained from various changes to the data set. Column 1 expands

the number of solar panels in the data to include those with more than 10% of entries

consecutively unrecorded. Column 2 only keeps AOD measurements with “best” quality

that did not have any neighboring clouds.22 Column 3 retains negative NO2 entries. None

of these estimates are statistically different from the preferred estimate in column 1 of Table

2.

Columns 4 to 6 address concerns of our model specification and estimation methods.

Column 4 uses wind direction bins, with bins set at 45◦ interval, instead of cosine of wind

direction and its polynomials. Column 5 takes an alternative definition of smoke day, where

the SMOKEDAY variable is set at 1 (and angle differences taken) only if there is a smoke

polygon within 100km radius of each ZIP code. Column 6 relaxes the homoskedasticity

assumption and use ZIP code-average rooftop solar generation as weights. The confidence

intervals for all these alternative specifications overlap with those of the preferred specifica-

tion, column 1 of Table 2.

Appendix Section D presents additional robustness checks of our results. We find that

our Table 2 results are robust to alternative fixed effects and different structural equation

specifications. We also find that Table 4 results are also robust to dropping EPA monitors

placed in high- and low-pollution areas within each county.

22The AOD retrieval mechanism tends to be more noisy under neighboring clouds. It should be noted,
however, that the “non-best” AODs that we keep in our data set (for the purposes of statistical power) have
also passed quality-control tests for water glint and anomalously low or high retrievals.
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6 Policy Implications

6.1 Reduction in solar generation from air pollution

We now assess the policy implications of our empirical findings. We first ask: How much

rooftop solar productivity loss in California is incurred by PM2.5 pollution? To answer this

question, we refer to the estimates from column 1 of Table 2 and columns 1 to 4 of Table

4. We calculate the average loss of solar generation attributable to PM2.5 at each ZIP code

from daily PM2.5 data. We also estimate the loss attributable to AOD writ large.

The results show that on average, AOD accounted for a 14.5% loss in three-day rooftop

solar generation (Appendix Figure F14), while some ZIP codes lose close to 30% of pro-

ductivity from AOD.23 On the contrary, PM2.5 levels account for 3.91% reduction in solar

generation on average, with up to 6% loss in certain high-pollution areas (Appendix Figure

F15).

We then combine these ZIP-code level reduction estimates with the CSI application data

set (California Public Utilities Comission, 2022) to estimate the potential energy generated

from rooftop solar panels using a capacity factor of 18%.24 Multiplying this installed capacity

to the PM2.5-lost productivity, we find that the PM2.5-attributed loss in rooftop solar

capacity has steadily increased with the expansion of distributed generation (Figure 2). As of

December 2021, PM2.5 pollution has reduced annual residential rooftop solar generation by

459 GWh. AOD writ large has led to a loss of 1,616 GWh in solar generation. As residential

CSI installations only take up a small share of the entire solar capacity, this figure is very

likely a lower bound of air quality-attributed rooftop solar generation loss in California. As

of 2021, CSI residential rooftop solar capacity stood at 6,983 MW, compared to California’s

utility-scale solar capacity of 15,115 MW.

We can also use our empirical findings to assess the externality of PM2.5 emissions

caused by loss in solar generation. This previously unaccounted-for externality of PM2.5

23The ZIP code with worst compromises in solar generation is placed in Treasure Island, in the San
Francisco Bay Area.

24We refer to National Renewable Energy Laboratory (NREL)’s annual technology baseline (ATB) es-
timates for capacity factor values in California (National Renewable Energy Laboratory, 2021). The 18%
capacity factor is applicable to regions with GHI in the range [5.25, 5.5]; most of California is above this
range.
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abatement originates from the fact that solar generation loss from PM2.5 conditions will

lead to increased generation of electricity. If the electric utility generation is from fossil

fuels, this will increase emissions further.

We find that a PM2.5 concentration increase of 1µg/m3 will reduce CSI solar generation

by 8,071 MWh, 7647 MWh, 17,388 MWh, and 11,463 MWh in winter, spring, summer,

and fall. Using recent estimates of the social marginal cost (SMC) of electricity gener-

ation in California of 7¢/kWh (Borenstein and Bushnell, 2022), this amounts to a nega-

tive externality of $3.12 million due to lost rooftop solar generation ($1,768 per ZIP code).

Previous atmospheric modeling studies in California have linked this marginal increase in

PM2.5 concentration to approximately 10 ton/year emission of surface-level primary PM2.5

(Kelly et al., 2015).25 This results in the marginal externality of primary PM2.5 emission of

$177/ton/year, which is smaller than the $3,220/ton/year (in 2000 USD, $5,073/ton/year in

2021 USD) estimate of mortality damages from from PM2.5 pollution (Muller and Mendel-

sohn, 2009), but it is still an economically significant externality.

6.2 Disproportionate exposure to solar generation loss

Another policy question relevant to our empirical finding is whether the loss of rooftop

solar generation from air opacity, whose distribution is shown in Appendix Figure F14, is

correlated with the socioeconomic characteristics of each ZIP code.

Out of the three socioeconomic characteristics included in this study, we find “% less

than high school education” to be most strongly correlated with the AOD impact on solar

generation. Over the ZIP codes included in our analysis, a 10% increase in the variable is

associated with a 1% increase in AOD-attributable generation loss (Appendix Table F3).

Similar trends are found for other two variables, % people of color and % low-income house-

holds, a trend which is also graphically ascertained (Figure 3, Appendix Figures F16 to

F18).

25Appendix Figure S22 of Kelly et al. (2015) demonstrates the effect of 100 ton/year of primary PM2.5
emission from a single-source chemical transport model in California in July 2007. We take the very con-
servative assumption that the impact of PM2.5 emission is limited to the original ZIP code. We do not
estimate the value of SO2 emission (which can also increase PM2.5 concentration), as the impact of SO2

emission reaches far beyond the ZIP code level (Baker et al., 2016); accurate estimation of SO2 emission
impact will require the use of integrated assessment models with chemical transport models, à la Muller and
Mendelsohn (2009).
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One possible driver of such correlation is the robust relationship between socioeconomic

characteristics and air pollution exposure in United States, established by previous empirical

studies. (e.g., Currie et al., 2023) Nevertheless, the socioeconomic characteristics still retain

their significance even after controlling for the average PM2.5 level at each ZIP code (Ap-

pendix Table F3). This suggests that there is another factor correlated with socioeconomic

characteristics that also affect the optical properties of the atmosphere, even after controlling

for the PM2.5 conditions.

Appendix Table F4 identifies some possible drivers of this heterogeneity. The coefficients

suggest that increased population density could lead to increased AOD-attributed solar gen-

eration loss keeping PM2.5 levels constant. This may be due to other urbanization-driven

changes in air quality conditions not measured by PM2.5. Relatedly, lower wind speed and

smaller day-to-day wind variability are correlated with higher losses from AOD, while average

NO2 concentration is not significant. It should be noted that these trends are associational,

and the identification of its casual drivers is saved for future work.

7 Conclusion

This paper studies the impact of air pollution on residential rooftop solar generation in

California. To this end, we take a two-part approach, where we first establish the causal

relationship between satellite-measured air opacity and rooftop solar generation, and then

link this air opacity with PM2.5 air pollution. The two-part approach is important for

developing a causal estimate. We exploit day-to-day variations in wind and wildfire smoke

to instrument for air opacity variations in order to mitigate concerns from omitted variables,

measurement error, and reverse causality.

The results show that a single standard deviation increase in AOD is causally linked

with an 9.4% reduction in solar generation. A 1µg/m3 increase in PM2.5 concentration has

a different impact on the air opacity depending on the season. Expanding the analysis to

the entire state of California, PM2.5 pollution causes a 459 GWh loss in residential rooftop

solar generation, which amounts to 4% of total potential generation. The losses from PM2.5

appear to be disproportionately focused on disadvantaged communities.
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This study has assessed the impact of air pollution at the producing unit level. Although

this approach significantly simplifies the identification strategy, an analysis at the electric

grid level could also provide important insights into the implications of air pollution impact

on solar generation. For example, future studies could assess how large-scale events of

air quality perturbation affect utility-scale outcomes, such as the fuel mix and wholesale

electricity price.

In a similar vein, the impact of air pollution on generation of distributed solar generation

across the broader electric grid is likely larger than our study results. Previous studies

on residential electricity consumption have pointed to an elevated use of electricity under

high air pollution conditions (He et al., 2020). The marginal effect of air pollution on the

net generation of solar energy from distributed sources will thus be a sum of the effect of

reduced solar generation from increased opacity (as identified in our study) and the increased

electricity consumption effect.

Another avenue of future research could be to examine the long-run implications of air

quality on solar generation. This study has shown that decarbonization policies can engender

a positive feedback, where improved air quality from reduced fossil fuel use leads to an even

larger share of solar energy in the fuel mix. Further research involving energy system models

could analyze the long-run implications of this feedback loop, perhaps showing an example

of an important path dependency that could affect social welfare.
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(a) Changes in surface-level radiation

(b) Measure of downwind status

Figure 1. Wildfire smoke near Los Angeles on October 19, 2016

Notes: Figure shows the impact of wind conditions on wildfire smoke impact. Blue arrows show the wind

direction, while wildfire-impacted ZIP codes are demarked in red. (a) shows reductions in surface level

irradiance (GHI, Global Horizontal Irradiance) anomaly, calculated as the deviation of log-transformed GHI

from ZIP-code average. (b) illustrates our cosine measure of downwind status (see text for definition).

Positive value (blue) means downwind, negative value (red) means upwind from the smoke source. Wind

data are from a gridded daily weather data set (Abatzoglou, 2013), and solar generation data from simulated

surface-level irradiance data set (Sengupta et al., 2018). Wildfire data from Hazard Mapping System (Brey

et al., 2018).
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Figure 2. Loss of residential rooftop solar generation from AOD and PM2.5

Notes: Figure shows the trend of installed rooftop solar generation capacity in California residential units,

and the loss of this capacity from AOD and PM2.5. Note that our analysis is confined to the 2010-2016

period.
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Figure 3. Unequal distribution of AOD-induced solar productivity loss

Notes: Figure places the % loss of solar generation from AOD on the y-axis, and the % of people of color in

the ZIP code population in the x-axis. The blue line traces linear regression line. Similar figures for % low

income household and % less than high school education included in the Appendix.
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Table 1. Summary statistics

Variable (Unit) N Mean St. Dev. Min Max

A. Solar generation & irradiance

Three-day solar generation (kWh) 481,872 54.904 36.458 0.006 475.303

Three-day surface-level radiation (GHI, kW/m2) 946,485 19,965.960 6,060.386 791.000 28,956.000

Three-day direct radiation (DNI, kW/m2) 946,485 26,756.310 5,730.912 0.000 39,657.000

Three-day diffused radiation (DHI, kW/m2) 946,485 3,430.767 1,176.502 786.000 11,750.000

B. Air opacity & air pollution

PM2.5, downscaled (µg/m3) 4,499,967 9.650 5.450 −21.140 322.450

PM2.5, measured (µg/m3) 252,693 9.711 7.732 −6.000 270.100

PM10, measured (µg/m3) 174,461 25.541 55.719 −53.000 8,187.000

AOD† 3,065,221 0.105 0.070 0.009 2.960

C. Wind & wildfire

Wind direction† 4,608,759 3.228 1.580 0.292 19.854

Wind speed (m/s) 4,608,759 −0.126 0.684 −1.000 1.000

Smoke day† 4,608,759 0.612 0.487 0 1

D. Covariates

NO2 (mol/km2) 3,698,997 2.603 4.257 −63.719 67.254

Precipitation (mm/day) 4,608,759 1.377 6.105 0.000 348.938

Maximum relative humidity (%) 4,608,759 78.336 19.759 6.348 100.000

Minimum relative humidity (%) 4,608,759 34.654 18.027 1.000 100.000

Minimum temperature (◦C) 4,608,759 9.696 6.173 −23.775 36.547

Maximum temperature (◦C) 4,608,759 22.935 8.014 −9.753 51.429

E. Socioeconomic characteristics

% Low-income households 1,808 29.991 13.635 0.000 78.973

% People of color 1,808 49.319 24.631 2.580 99.444

% Less than high school education 1,808 9.868 6.854 0.000 40.458

Notes: †: Unitless variables. Table summarizes the data used for analysis. For wind direction, we take the cosine of degree
measure to assure continuity.
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Table 2. Effect of air opacity on solar generation

Dependent variable:

Rooftop solar generation Surface irradiance Placebo

AOD PM2.5 Limited Expanded Solar Irradiance

(1) (2) (3) (4) (5) (6)

A. OLS estimates

AOD −0.256∗∗∗ −0.192∗∗∗ −0.129∗∗ 0.140 0.090

(0.040) (0.027) (0.035) (0.112) (0.053)

PM2.5 −0.008∗∗∗

(0.001)

Adj. R2 0.864 0.837 0.978 0.980 0.828 0.916

B. IV estimates

AOD −1.559∗∗∗ −0.961∗∗∗ −0.950∗∗∗ −0.969 0.449

(0.324) (0.202) (0.135) (0.558) (0.273)

PM2.5 −0.016∗∗∗

(0.003)

F -statistic 89.059 359.018 32.629 167.404 86.924 20.204

Adj. R2 0.855 0.854 0.958 0.957 0.681 0.932

Dep. var. mean 3.897 3.795 9.849 9.883 2.712 8.706

AOD/PM2.5 mean 0.105 10.042 0.097 0.096 0.105 0.108

AOD/PM2.5 SD 0.063 4.448 0.055 0.060 0.063 0.064

N 202, 079 282, 278 61, 589 535, 078 195, 566 51, 722

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
Notes: Table reports OLS and IV estimation results of equation (2). All columns use three-day measures
of the dependent variable to account for lagged effects. Column 1 estimates the equation (2). Column 2
substitutes AOD by PM2.5 as the endogenous variable of interest. Placebo tests use dependent variables
30 days into the past. Columns 3 and 4 share the same dependent variable, but column 3 is limited to ZIP
codes included in the rooftop solar data; column 4 covers the entire state of California (Appendix Figure
F2). Columns 5 and 6 perform placebo tests: we use rooftop solar generation and surface irradiance
thirty days into the past. All results include ZIP code-year and week fixed effects. Three-day diurnal
temperature, precipitation, relative humidity, NO2 concentration, and their polynomials, are used as
covariates. Standard errors two-way clustered by year-week and ZIP code. For panel B, Kleibergen-Paap
cluster-robust F -statistics for the first-stage regression are presented.
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Table 3. Effect of air opacity on surface radiation subcomponents

Dependent variable:

Direct irradiance Diffused irradiance Placebo

Limited Expanded Limited Expanded Direct Diffused

(1) (2) (3) (4) (5) (6)

A. OLS estimates

AOD −0.371∗∗∗ −0.265∗∗∗ 0.600∗∗∗ 0.486∗∗∗ 0.063 −0.001

(0.037) (0.051) (0.032) (0.058) (0.048) (0.084)

Adj. R2 0.858 0.870 0.929 0.903 0.579 0.775

B. IV estimates

AOD −1.872∗∗∗ −1.934∗∗∗ 2.011∗∗∗ 2.281∗∗∗ 1.050 −0.212

(0.122) (0.126) (0.454) (0.433) (0.542) (0.336)

F -statistic 32.629 167.404 32.629 167.404 41.875 41.884

Adj. R2 0.684 0.652 0.873 0.818 0.534 0.793

Dep. var. mean 10.177 10.209 8.068 8.071 8.994 7.004

AOD mean 0.097 0.096 0.097 0.096 0.107 0.107

AOD SD 0.055 0.060 0.055 0.060 0.064 0.064

N 61, 589 535, 078 61, 589 535, 078 97, 186 97, 203

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
Notes: Table reports OLS and IV estimation results of equation (2), with diffused and direct
solar radiation as dependent variable. All columns use three-day measures of the dependent
variables to account for lagged effects. “Limited” and “Expanded” refer to rooftop solar data-
included ZIP codes and California-wide ZIP codes (Appendix Figure F2). Placebo tests use
dependent variables 30 days into the future. All results include ZIP code, year, and week fixed
effects. Three-day diurnal temperature, precipitation, relative humidity, and their polynomials,
are used as covariates. Standard errors two-way clustered by year-month and ZIP code. For
panel B, Kleibergen-Paap cluster-robust F -statistics for the first-stage regression are presented.
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Table 4. Effect of PM2.5 pollution on atmospheric opacity

(1) (2) (3) (4) (5) (6)

A. OLS estimates

PM2.5 0.0019∗∗∗ 0.0018∗∗∗ 0.0041∗∗∗ 0.0027∗∗∗ 0.0021∗∗∗ 0.0021∗∗∗

(0.0002) (0.0004) (0.0009) (0.0003) (0.0002) (0.0002)

Adj. R2 0.3731 0.3589 0.2921 0.3211 0.3103 0.3165

B. IV estimates

PM2.5 0.0027∗∗∗ 0.0023∗ 0.0061∗ 0.0028∗∗∗ 0.0025∗∗∗ 0.0025∗∗∗

(0.0002) (0.0011) (0.0029) (0.0005) (0.0005) (0.0006)

F -statistic 416.8860 224.5905 45.6672 396.8212 1364.1863 558.9419

Adj. R2 0.3599 0.3580 0.2778 0.3209 0.3090 0.1998

C. Lagged & leaded OLS estimates

PM2.5 0.0019∗∗∗ 0.0019∗∗∗ 0.0038 0.0025∗∗∗ 0.0023∗∗∗ 0.0022∗∗∗

(0.0003) (0.0005) (0.0020) (0.0004) (0.0003) (0.0003)

(0.0000)

PM2.5, t-1 −0.0000 −0.0001 0.0003 −0.0002 −0.0002 −0.0001

(0.0001) (0.0005) (0.0009) (0.0004) (0.0001) (0.0001)

PM2.5, t+1 −0.0000 −0.0002 0.0002 0.0005 −0.0001 −0.0001

(0.0001) (0.0004) (0.0007) (0.0005) (0.0002) (0.0003)

Adj. R2 0.3801 0.3712 0.3036 0.3351 0.3200 0.3271

Sample subsets Winter Spring Summer Fall All All

PM10 included No No No No No Yes

AOD mean 0.0823 0.1235 0.1284 0.1022 0.1113 0.1178

PM2.5 mean 12.5131 8.8217 9.9011 10.4735 10.3114 10.8499

PM2.5 SD 10.9397 5.3244 5.9181 7.3374 7.5113 8.0218

N 28, 998 34, 665 46, 388 40, 233 150, 920 58, 312

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
Notes: Table reports OLS and IV estimation results of equation (4). All results include ZIP
code, year, and week fixed effects. Panel B uses wind conditions to instrument for PM2.5. Panel
C includes leaded and lagged PM2.5. Diurnal temperature, precipitation, relative humidity, and
their polynomials, are used as covariates. Columns 1 to 4 use seasonal subsamples, while columns
5 and 6 the entire sample. Column 6 includes PM10 levels as covariate. Standard errors two-way
clustered by year-month and ZIP code. For panel B, Kleibergen-Paap cluster-robust F -statistics
for the first-stage regression are presented.
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Table 5. Lagged effects of air opacity

(1) (2) (3) (4) (5)

AOD −1.961∗∗∗ −1.520∗∗∗ −1.559∗∗∗ −0.777∗∗ −0.694∗

(0.255) (0.237) (0.324) (0.271) (0.340)

F -statistic 335.659 106.345 89.059 37.560 27.463

Adj. R2 0.742 0.840 0.840 0.873 0.887

Solar generation Same-day 2-day 3-day 4-day 5-day

Dep.var. mean 2.832 3.502 3.897 4.172 4.385

AOD mean 0.104 0.103 0.105 0.102 0.101

AOD SD 0.063 0.063 0.063 0.063 0.064

N 264, 408 198, 940 202, 079 126, 376 99, 968

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
Notes: Table reports IV estimation results of equation (4) over different summa-
tion horizons. All results include ZIP code, year, and week fixed effects. Standard
errors two-way clustered by year-month and ZIP code. Kleibergen-Paap cluster-
robust F -statistics for the first-stage regression are presented.

Table 6. Robustness check: Key results

Alternative data set First-stage Weighted

(1) (2) (3) (4) (5) (6)

AOD −1.55∗∗∗ −2.11∗∗∗ −1.42∗∗∗ −1.57∗∗∗ −1.55∗∗∗ −1.51∗∗∗

(0.32) (0.40) (0.29) (0.29) (0.31) (0.32)

F -statistic 91.05 59.16 104.06 3.49 95.23 62.14

Adj. R2 0.84 0.84 0.84 0.84 0.84 0.86

Dep. var. mean 3.91 3.92 3.89 3.90 3.90 3.90

AOD mean 0.10 0.09 0.10 0.10 0.10 0.10

AOD SD 0.06 0.05 0.06 0.06 0.06 0.06

N 206, 002 158, 197 263, 090 202, 079 202, 095 202, 079

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
Notes: Column 1 expands the number of solar panels included. Column 2 limits the data
to “best” AOD retrievals. Column 3 removes negative NO2 retrievals. Column 4 uses wind
direction bins, rather than polynomials, in the first-stage regression (3). Column 5 defines
“smoke day” for ZIP codes within 100km radius of each polygon. Column 6 uses average
generation at each ZIP code as weights. See Appendix for additional robustness checks.
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Appendix

A Physical theories of air opacity, PM2.5, and solar generation

This section introduces the fundamental theories of (atmospheric) physics that underlie the

analysis introduced in our main text. We first show a simple derivation of equation (1)

from Beer-Lambert Law. We then briefly summarize the physical theories of AOD-PM2.5

relationship, with a specific focus on the origins of specification.

A.1 Atmospheric optical density and solar generation

We here show how the fundamental principles of optical extinction can be translated into

the theoretical results shown in equation (1) in main text, and how the optical depth τ is

measured by satellites. According to the Beer-Lambert Law, the rate of optical extinction

of a radiation traversing the atmosphere is a linear function of the irradiance itself:

dF (x, λ)

dx
= −b(x, λ)F (x, λ) (A1)

where dx is the length of atmosphere traversed, F (x, λ) is the spectral radiant flux density

(irradiance) of the radiation at wavelength λ, with unit W/m2, and b(x, λ) is the spectral

extinction coefficient of the atmosphere. The “optical depth” of the atmosphere, denoted

as τ , is obtained by integrating the extinction coefficient from the top of the atmosphere

(TOA) to the surface:

τ0,λ =

∫ zTOA

0

b(z′, λ)dz′ (A2)

where b(z′, λ) is the extinction coefficient at altitude z′, and zTOA the altitude of the TOA.

Using this definition of optical depth, we reach the following relationship shown in equation

(1), which links spectral irradiance at the surface to that at the TOA:

F0,λ = FTOA,λ exp(−τ0,λ) (A3)

where F0,λ and FTOA,λ are the spectral radiant flux density (irradiance) at the ground surface

and at the TOA, respectively. The τ0,λ is hence a measurement of the atmospheric opacity

in general. Atmospheric physics measures the impact of aerosol on τ by separating the value

into aerosol optical depth (AOD) and gaseous molecules. The AOD hence refers to the value

of τ0,λ attributable to the aerosol molecules in the atmosphere.

Traditionally, AOD was measured from in situ observatories involving spectral radiome-
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ters (Holben et al., 2001), which was severely limited in its geographical coverage. The

advent of spaceborne multispectral sensors, such as the MODIS sensor on board the Terra

and Aqua satellites, significantly relaxed this problem by providing a daily measurement

of AOD across the entire globe at a 1km spatial resolution. Validation of MODIS AOD

measurements from ground in situ measurements have consistently confirmed its strong per-

formance over different geographies (Wei et al., 2019).

MODIS algorithm of AOD measurement largely mimics that used in in situ observatories;

the process involves combining retrievals from different spectral bands, and using this data

to remove the share of non-aerosol molecules in the columnar τ0,λ (Remer et al., 2008). To be

more specific, MODIS takes an approach called “look-up table inversion,” where observations

from different spectrum bands (in land AOD, retrievals from the 0.47µm, 0.66µm, and 2.1µm)

are combined. Using such measurements, the MODIS sensor backtracks the composition of

atmospheric aerosol. In this backtracking, a priori knowledge into the optical characteristics

of aerosols in each region and season is used to calibrate the retrievals (e.g., aerosols in

California are mostly assumed to be “non-absorbing” in the fall and winter.).

Lastly, a brief discussion on the empirical implications of this theoretical conclusion is in

order. The rather simple theoretical result, shown in equation (A3), may suggest that given

a log-transformed irradiance measure as the outcome variable, the coefficient for τ must be 1.

However, whether this theoretical notion must be true in our setting is a matter of empirical

verification, for two reasons. First, our outcome of interest is rooftop solar generation, not

surface irradiance. Although between-region difference in surface-level irradiance is a good

proxy of solar panel productivity, the performance of an individual rooftop solar panel under

adverse air quality is also a function of the material and technology of panel production. We

are also interested in the lagged effects of air opacity. Such differences may lead to deviations

of the true coefficient from 1.

Second, note that atmospheric physics theory presented here only presents the relation-

ship between spectral optical depth and spectal irradiance. While such a relationship is

arguably sufficient to justify a log-linear specification, it remains to be empirically tested

whether this spectrum-specific relationship can be extended to the general relationship be-

tween AOD and solar generation.

A.2 PM2.5 and atmospheric optical density

We now summarize the physical theories of the relationship between AOD and PM2.5. The

relationship was first empirically proposed by Liu et al. (2005) and was subsequently but-

tressed by such theoretical breakthroughs as Koelemeijer et al. (2006).

Equation (A2) suggests that the AOD can be obtained from the vertical integration of the
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extinction coefficient b(z, λ). Theoretical and empirical analyses of vertical profiles of b(z, λ)

have confirmed that the extinction coefficient in general shows a negatively exponential

distribution. This suggests that:

τ0,λ =

∫ zTOA

0

b(0, λ) exp(−z/H)dz ≈ Hb(0, λ) (A4)

whereH is the e-fold scale height. There is thus an approximately linear relationship between

the AOD and the extinction coefficient at the surface. In the following discussions, we focus

on AOD and extinction coefficient at wavelength 0.55µm; we hence drop the λ notation for

conciseness.

Under almost all conditions, ambient particulate matter concentration shows a bimodal

distribution with regards to size. The two modes are placed around diameters of 2.5µm

and 10µm, respectively called “fine” and “coarse” modes. PM2.5 is a measurement of the

mass density (µg/m3) of particulate matters in the former mode. Holding all other factors

(e.g., humidity, temperature) constant, the relationship between b(0) and PM2.5 can be

represented as

b(0) = αcPM2.5PM2.5 (A5)

where cPM2.5 refers to the share of coarse and fine PM molecules in a given mass of air and

α is the “mass extinction efficiency” (MEE) that converts the units to match the extinction

coefficient.1. Using (A4), we get

τ0 = HαcPM2.5PM2.5 (A6)

This equation forms the basis of the linear specification we use in the main text.

1It is also possible to further convert the expression (A5) by multiplying the “hygroscopic growth factor”(
1−RH
1−RH0

)−γ

to the right hand side of the equation, where RH= relative humidity. We choose to model the

impact of relative humidity as a polynomial transformation instead.
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B Reverse causality in OLS estimates

Appendix Table B1. Reverse causality in OLS estimates

OLS IV

2010-2016 2010-2012 2013-2016 Gas Non-Gas

(1) (2) (3) (4) (5)

AOD −0.294∗∗∗ −0.369∗∗∗ −0.262∗∗ −1.445∗∗∗ −1.542∗∗∗

(0.048) (0.031) (0.050) (0.170) (0.162)

AOD*Gas −0.088∗∗ −0.063 −0.087∗∗

(0.024) (0.028) (0.027)

F -statistic 174.479 1806.721

Dep. var. mean 8.719 8.758 8.70 8.71 8.72

N 1361487 464056 897431 113219 1248268

Adj. R2 0.963 0.955 0.967 0.940 0.924

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
Notes: Columns 1 to 3 use OLS estimates of the equation (B1), while columns 4 and 5
present 2SLS estimates of β for equation (2) after dividing the samples into ZIPs with
gas plants and those without.

In this section, we present suggestive evidence of reverse causality in the OLS estimates

of the solar generation-air opacity model (2). As mentioned in the main text, our primary

source of concern is that solar generation is representative of the solar yield in that ZIP

code per se, and that an increased share of solar in the fuel mix may in turn affect AOD

conditions. Such air pollution effect will be particularly strong in ZIP codes with gas plants,

which was the primary source of thermal electricity generation in California throughout our

study period.2

To test this possibility, we first obtain data on the location of gas-powered plants in

California (California Energy Commission, 2022). We then define the indicator variable

Gasi = 1 if ZIP code i houses a gas power plant. The OLS estimation is:

log(yiswt) = βAODiswt + θAODiswtGasi +X ′
iswtλ+ αis + γw + εiswt (B1)

where the notations are identical to (2). A negative θ would suggest that in ZIP codes with

gas plants, the OLS estimates a weaker relationship between AOD and solar conditions; this

2Other important sources of fuel include hydroelectric power, nuclear energy, wind, and geothermal.
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will be the case when solar generation reduces gas-powered electricity generation in these

ZIP codes and reduce atmospheric opacity. To maximize statistical power, we use GHI, not

solar generation, as the dependent variable here. We also use same-day GHI, as we expect

the grid-level impacts of solar conditions to be limited to that given day.

Appendix Table B1 presents the results of this estimation. The results show that indeed,

anomalies in AOD form a stronger negative association with the solar yield conditions in ZIP

codes with gas power plants. Further, this estimate seems to be driven by the samples in

years 2013-2016, when the share of solar in the fuel mix increased, along with its capacity to

change fossil fuel combustion. This suggests that the θ estimates indeed are driven by reverse

causality, and serves as an indirect proof that OLS estimations of (2) are vulnerable to biases

from reverse causality. The IV estimates in columns 4 and 5 do not show heterogeneity.
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C Violation of strict exogeneity

In this section, we present the consequences of strict exogeneity violation, coupled with

serial correlation in the variable of interest. This is of particular concern in the context of

our AOD-PM2.5 analysis, as daily PM2.5 may have lagged or leaded effects on daily AOD,

and day-to-day variations in PM2.5 may show serial correlation.

We first show that under serial correlation and leaded/lagged effects, misspecification

of the true DGP will lead to estimates that differ from the true coefficient. This implies

that if we do not observe significant changes in the coefficients as we move from the simple

model (4) to the augmented model (6), then (1) the true DGP does not have leaded or

lagged effects, or (2) there is no serial correlation in PM2.5 data. In C.2, we find strong

evidence suggesting that the PM2.5 in our dataset does indeed show serial correlation. The

comparison of coefficients thus provide an indirect way of testing leaded/lagged effects in

PM2.5 impact on AOD.

C.1 Motivation

C.1.1 Model set-up

We first assess the implications of strict exogeneity violation in the panel fixed effects frame-

work. Throughout this exercise, we will assume the following lagged-and-leaded Data Gen-

eration Processes (DGP):

yit = ζ0Xi,t−1 + ζ1Xit + ζ2Xi,t+1 + αi + uit (C1)

where αi is the site-fixed effect, Xit the regressor of interest in site i time t, and eit, uit the

error term. Note that β1 and ζ1 are our coefficients of interest for both DGPs. We assume

that strict exogeneity of uit stands under each DGP:

E(uit|Xi,t−1, Xit, Xi,t+1, αi) = 0, t = 2, . . . , T − 1 (C2)

Now, assume that the Xit themselves are serially correlated. We assume the AR(1) model

throughout for simplicity:

Xit = ϕXi,t−1 + δi + εit (C3)

where εit is white noise with mean 0 and variance σ2
i , and δi is the site-fixed intercept of the

AR(1) process that assures E(Xit) =
δi

1−ϕ
under |ϕ| < 1. We assume weak stationarity.

Lemma. Under DGP (C1) and AR(1) Xit with white noise (C3), E(Xitεi,s′) = 0,∀t ∈
{1, . . . , T}, s′ > t.
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Proof. Note that Xit − δi
1−ϕ

can be expressed as a linear combination of Xis, s ≤ t:

Xit −
δi

1− ϕ
=

∞∑
a=0

ϕaεi,t−a (C4)

From the independence of εit,

E

([
Xit −

δi
1− ϕ

]
εi,s′

)
= 0

C.1.2 Asymptotic bias under misspecification

We show that under lagged-and-leaded true DGP (C1), misspecification with no leads and

lags results in biased estimates:

Theorem (Asymptotic bias under misspecification: True DGP (C1)). Let the true DGP

(C1) involve lags and leads of Xit . Assume strict exogeneity (C2). Then a misspecified

model with only Xit on the RHS

yit = β1Xit + α̃i + ẽit (C5)

leads to asymptotic bias:

β̂1,FE − ζ1 →p
ζ0
ϕ

+ ζ2ϕ− ζ0
σ2
i

ϕ
as NT → ∞

where σ2
i is the variance of the error term in the AR(1) process (C3).

Proof. First see that lagged and leaded effects (C1), coupled with AR(1) process (C4), yield:

yit =

(
ζ0
ϕ

+ ζ1 + ζ2ϕ

)
Xit +

(
ζ2 −

ζ0
ϕ

)
δi + αi + ζ2εi,t+1 −

ζ0
ϕ
εit + uit (C6)

Now, see that a “within” transformation using demeaning of both sides of (C6) would result

in

ÿit =

(
ζ0
ϕ

+ ζ1 + ζ2ϕ

)
Ẍit + ζ2ε̈i,t+1 −

ζ0
ϕ
ε̈it + üit (C7)

where ÿit = yit − ȳi, Ẍit = Xit − X̄i. X̄i and ȳi are the time-averaged value of Xit and yit,
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respectively. The FE estimate of β1 is obtained from the following estimator:

β̂1,FE =

∑N
i=1

∑T
t=1 Ẍ

′
itÿit∑N

i=1

∑T
t=1 Ẍ

′
itẌit

= β̃1 +

∑N
i=1

∑T
t=1 β2Ẍ

′
itε̈i,t+1 − β0

ϕ
Ẍ ′

itε̈i,t+1 + Ẍ ′
itüit∑N

i=1

∑T
t=1 Ẍ

′
itẌit

(C8)

where β̃1 =
ζ0
ϕ
+ ζ1+ ζ2ϕ. By Weak Law of Large Numbers, the error term in (C8) converges

in probability to a summation of three different expectations:

β̂1,FE − β̃1 →p ζ2E(Ẍitε̈i,t+1)−
ζ0
ϕ
E(Ẍitε̈it) + E(Ẍitüit) as NT → ∞ (C9)

where we have simplified the matrix notation by noting Ẍit ∈ R. See that the last term

of (C9) is obviously zero by strict exogeneity under correct DGP (C2) and Law of Iterated

Expectations:

E(Ẍitüit) = E(E(Ẍitüit|Ẍit)) = 0

We then see that the remaining two terms can be expressed in terms of (a) σ2
i , the variance

of the error term in AR(1) expression εit, and (b) ϕ, the first-order correlation between Xit

and Xi,t−1. For the derivation of this relationship, see first that the LHS of (C4) is equivalent

to Ẍit from X̄i =
δi

1−ϕ
. Thus,

Ẍit = εit + ϕεi,t−1 + ϕ2εi,t−2 + · · · (C10)

So for the first term of (C9),

E(Ẍitε̈i,t+1) = − 1

N
{E(εitεit) + E(ϕεi,t−1εi,t−1) + · · · }

= − 1

N

σ2
i

1− ϕ

under |ϕ| < 1, which is true under weak stationarity. This bias will asymptotically converge

to zero as N → ∞. However, for the second term of (C9),

E(Ẍitε̈it) = E(εitεit)−
1

N

{
ϕE(εi,t−1εi,t−1) + ϕ2E(εi,t−2εi,t−2) + · · ·

}
= σ2

i −
ϕσ2

i

N(1− ϕ)

The expectation does not converge to zero even under N → ∞, T → ∞. Combining these
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three results together, we see that under N → ∞:

β̂1,FE − β̃1 →p −ζ0
σ2
i

ϕ
as NT → ∞ (C11)

The above theorem has three interesting implications. First, the results are counter-

intuitive in that under misspecification, OLS estimates is not a simple “weighted mean”

of the true parameters ζ0, ζ1, and ζ2. That is, β̂1,FE does not converge in probability to

β̃1 = ζ0
ϕ
+ ζ1 + ζ2ϕ. There still is asymptotic bias of β̂1,FE from β̃1. This bias is entirely

driven by the β0 and σ2
i , while β2 is unimportant asymptotically.

Second, the sign of this bias is decided by that of ϕ. With positive autocorrelation of

Xit, β1,FE will be smaller than the true β̃1. With negative autocorrelation, β1,FE > β̃1

asymptotically. In the context of our study, if today’s PM2.5 concentration is positively

correlated with that of the preceding day, then OLS estimates of the marginal effect will

underestimate the true value.

Lastly, the size of this bias is driven by both ϕ and σ2
i . Larger σ

2
i and smaller |ϕ| lead to

larger biases. This is intuitive, as larger σ2
i means that more noise is introduced via εit, and

smaller |ϕ| means that it no longer makes sense to represent the effect of present-day PM2.5

as a linear combination of that of previous days.

C.2 Evidence of serial correlation

We assess the autocorrelation of PM2.5 using Autocorrelation Function (ACF) and Partial

Autocorrelation Function (PACF) plots. To this end, we calculate the ACF at each ZIP

code, à la Appendix Figure C1, obtaining the ACF and PACF estimates for lags up to 15.

These estimates are obtained for all 1,764 ZIP codes included in the data. We present the

boxplot of such estimates at each lag in Appendix Figures C2 and C3.

The results show that indeed, the PM2.5 concentrations used in our data show significant

serial correlation. For certain ZIP codes, the ACF is still at a significantly high level even

after 15 lags, attesting to the strength of the serial correlation.
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Appendix Figure C1. Example of ACF graph, for ZIP code 89439

Notes: Figure plots the Autocorrelation Function (ACF) for PM2.5 concentration in ZIP code 89439.

Appendix Figure C2. Boxplot of ACF estimates for 1,468 ZIP codes

Notes: Figure plots the ACF estimates for lags up to 15, calculated at each ZIP code.
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Appendix Figure C3. Boxplot of PACF estimates for 1,468 ZIP codes

Notes: Figure plots the PACF estimates for lags up to 15, calculated at each ZIP code.
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D Additional robustness checks

Appendix Table D1. Additional robustness checks for Table 2 results

Main Reduced-form Fixed effects

(1) (2) (3) (4) (5)

AOD −1.41∗∗∗ −1.46∗∗∗ −1.28∗∗∗ −1.27∗∗∗ −1.42∗∗∗

(0.26) (0.31) (0.25) (0.26) (0.25)

F -statistic 56.20 56.63 54.68 54.93 56.07

Adj. R2 0.85 0.85 0.86 0.77 0.85

Dep. var. mean 3.89 3.89 3.89 3.89 3.89

AOD mean 0.10 0.10 0.10 0.10 0.10

AOD SD 0.06 0.06 0.06 0.06 0.06

N 157, 747 157, 747 157, 747 157, 747 157, 747

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
Notes: Column 1 replicates the main result in Table 2, panel B. Column 2
includes fourth power of the covariates in the reduced-form equation. Column 3
removes cubic transformation of the covariates. Column 5 substitutes ZIP code-
by-year fixed effect with ZIP code and year fixed effect, separated. Column 6
includes a monthly fixed effect.

We present additional robustness checks of the solar generation-air opacity model (2) with

2SLS estimation. Column 1 of Appendix Table D1 replicates the main result. Columns 2 and

3 introduce changes in the specification of the reduced-form equation, the former including

a fourth power of the covariates and the latter excluding the third power of covariates. Both

changes do not lead to substantially different estimates.

Columns 4 and 5 assess the sensitivity of our results to fixed effects. Column 4 substitutes

ZIP code-by-year fixed effect by ZIP code and year fixed effects, separately. This is to address

the concern that the β may be biased if an AOD shock in a given ZIP code leads to a change

in behavior common to that ZIP code’s year, which may be particularly important if we

are assessing grid-wise outcome. (e.g., a high-pollution event changing energy consumption

behaviors for that ZIP code throughout the year). This does not change the results. Lastly,

column 5 introduces monthly fixed effects, as weekly fixed effect may not be sufficient to

capture the changes in solar generation conditions within the year. This also does not

change the results in an important manner.

Appendix Table D2 provides additional robustness checks for the second part of our
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Appendix Table D2. Additional robustness checks for Table 4 results

(1) (2) (3) (4) (5)

PM2.5 0.0021∗∗∗ 0.0022∗∗∗ 0.0021∗∗∗ 0.0021∗∗∗ 0.0021∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

Sample subsets All All All All All

Dropped monitors None >90%, < 10% < 10% >90% None

Negative PM2.5 No No No No Yes

AOD mean 0.1114 0.1111 0.1118 0.1106 0.1113

PM2.5 mean 10.3439 10.3485 10.7722 9.9195 10.3114

PM2.5 SD 7.4980 7.3608 7.6975 7.1468 7.5113

N 151, 119 113, 844 132, 669 132, 736 151, 561

Adj. R2 0.3103 0.3112 0.3119 0.3098 0.3105

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
Notes: Column 1 replicates the main result in Table 4, panel A. Columns 2 to 4 drop
EPA monitors that were either in high- or low-pollution regions within their county.
Column 5 includes negative PM2.5 measurements.

analysis, linking PM2.5 to AOD. All regressions are on “full” data set with all four seasons.

Column 1 replicates the main result (column 5, panel A of Table 4). Column 2 drops EPA

monitors that were placed in census tracts with top and below 10% percentile of PM2.5 level

within each county. Column 3 drops those in below 10% percentile, and column 4 drops top

10% percentile monitors. Column 5 includes negative PM2.5 data. These all do not change

the OLS results.
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E Comparison with He et al. (2020) methods

Appendix Table E1. Comparison with He et al. methods

(1) (2) (3) (4) (5) (6)

AOD −1.556∗∗∗ −1.309 −89.838∗∗∗ −45.972

(0.322) (1.871) (14.063) (96.877)

PM2.5 −0.016∗∗∗ 2.423

(0.003) (3.492)

Endog. var. AOD PM2.5 AOD AOD AOD PM2.5

First-stage TS TS He TS He He

Log-transformed Yes Yes Yes No No No

F -statistic 89.108 361.000 11.397 89.108 11.397 6.902

Dep. var. mean 3.897 3.795 3.897 59.986 59.986 55.452

AOD/PM2.5 mean 0.105 10.041 0.105 0.105 0.105 10.041

AOD/PM2.5 SD 0.063 4.446 0.063 0.063 0.063 4.446

N 202807 283064 202807 202807 202807 283064

Adj. R2 0.840 0.836 0.835 0.880 0.884 0.862

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
Notes: Column 1 replicates the main result in Table 2, column 1 panel B. Column 2 changes the
endogenous variable of interest to PM2.5 instead of AOD. Column 3 uses the first-stage regression
suggested by He et al. (2020). Column 4 uses this study’s first-stage regression, but uses a linear
specification. Column 5 uses He et al. (2020) first-stage regression and linear specification. Col-
umn 6 uses He et al. (2020) first-stage regression, linear specification, and chooses PM2.5 as the
endogenous variable of interest. “TS” = This study.

As previously mentioned, our empirical strategy differs from He et al. (2020) in three

important ways: (1) Usage of AOD, not PM2.5, as the endogenous variable of interest, (2)

use of wildfire interacted with wind conditions, not just wind direction, in the first-stage

regression, and (3) use of log-linear specification instead of linear specification. Here, we

replicate to the He et al. (2020) approach to the greatest extent possible and compare the

results to ours.

Column 1 in Appendix Table E1 replicates our column 1, Table 2 estimate. Column

2 relaxes the first difference in that it uses PM2.5, not AOD, as the endogenous variable.

The marginal effect of PM2.5 on solar generation implied by column 2 is −1.58%, from

exp(−0.016) − 1. The question is whether this estimate is similar in size to that from

combining column 1 with Table 4 estimates. Table 4, column 5 panel B implies that the

marginal effect of PM2.5 on solar generation is on average 0.0025 across the four seasons.
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This translates to a marginal loss in solar generation of 0.39% from PM2.5 (from exp(0.0025×
1.559)− 1).

The considerable difference in the marginal estimates is consistent with fluctuations of

PM2.5 being positively correlated with other factors that also affect solar generation. This

will inflate the role that PM2.5 per se plays in increasing atmospheric opacity (and hence

reducing solar generation). Our Table 4 estimates allows us to identify the share of AOD

variation that is attributable to PM2.5.

Column 3 of Appendix Table E1 explores the implications of the second difference between

this study and He et al. (2020). We drop our original first-stage specification, but rather

use only the cosine of wind direction3. The results show that the He et al. (2020) first-stage

specification simply fails to identify the impact of AOD on solar generation.

One possible explanation for this difference is that in California, contrary to Arizona,

wind direction could violate the exclusion restriction. That is, wind direction-driven pol-

lution could be dominated by a stationary source of pollution. The predictability of such

pollution could lead to residential sorting in neighboring population. Interacting wind di-

rection with wildfire smoke, which originates from transient and plausibly unanticipatable

sources, defends us against this possible mechanism of exclusion restriction violation.

Column 4 explores the consequences of using a linear, not log-linear, specification, while

keeping intact all remaining aspects of our empirical strategy. The results suggest that the

effect of one SD change in AOD on three-day solar generation is around 5.66kWh (89.838 ×
0.063). This is around 9.4% of the average three-day solar generation (59.986kWh), which

is remarkably close to the 9.4% estimate from the log-linear specification.

The linear specification has very different interpretations compared to our preferred log-

linear model. The linear approach argues that one SD increase in AOD reduces solar gener-

ation by 5.66kWh, regardless of the PV system capacity. On average, the PV systems in our

data set show a three-day solar generation of anywhere between 11.84kWh and 320.34kWh.

5.66kWh is 48% and 2% of these quantities. Such remarkable difference in the impact of

AOD has little theoretical ground in atmospheric physics. A policy analysis using the linear

approach will simply consist of counting the number of PV systems and multiplying it by

5.66kWh. On the contrary, the log-linear approach will involve summing up the total number

of solar energy generated, and attributing a certain share of this amount to AOD.

Columns 5 and 6 now test different combinations of He et al. (2020) empirical strategy,

with column 5 using linear specification and wind direction-only first-stage regression. Col-

3To be precise, we follow He et al. (2020) in using the difference between local wind and “prevailing
winds,” the latter being defined as the county. Note that there may be minute differences in the actual wind
direction variable, as He et al. (2020) uses a different weather data set with hourly wind observations.
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umn 6 uses linear specification, wind direction-only first-stage regression, and PM2.5 as the

endogenous variable. Column 6 thus fully replicates the He et al. (2020) empirical strategy.

Both columns fail to identify the impact of PM2.5.
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F Additional Tables and Figures

Appendix Table F1. Definition of used variables

Variable Definition Source

Daily solar generation Average solar energy generated for rooftop
PV systems in each ZIP code. Con-
fined to residential rooftop systems. Unit:
kWh/ZIP code.

CSI

GHI Global horizontal irradiance. Total sum of
solar energy incident on a horizontal sur-
face at a given location. Unit: W/m2.

NSRDB

DNI Direct normal irradiance. Sum of solar en-
ergy coming from the direction of the sun,
measured at the surface. Unit: W/m2.

NSRDB

DHI Diffused horizontal irradiance. Sum of so-
lar energy that has been diffused in the
atmosphere and enters the surface from a
non-normal angle. Unit: W/m2.

NSRDB

PM2.5 Concentration of fine particulate matter
with diameter smaller than 2.5µm in the
atmosphere. Unit: µg/m3.

Reid et al., 2021

AOD† Aerosol Optical Depth. Natural log of the
solar radiation fraction that is attributable
to the aerosols in the atmosphere. Multi-
plied by 1,000 for legibility. Dimension-
less.

MODIS

Windspeed† Wind velocity in the ZIP code. gridMET

Wind direction† Cosine of wind direction in the ZIP code. gridMET

NO2 Surface-level Nitrogen Dioxide concentra-
tion Unit: mol/km2.

OMI

Precipitation† Snowfall and rainfall per day. Unit:
mm/day.

gridMET

Diurnal temperature† Daily temperature minimum & maximum.
Unit: ◦C.

gridMET

Diurnal relative humidity† Daily relative humidity & maximum.
Unit: %.

gridMET

Socioeconomic variables % people of color, % low income, % less
than high school education.

EJScreen

† denotes data accessed through Google Earth Engine (Gorelick et al., 2017).
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Appendix Table F2. Heterogeneous effect of air opacity

% people of color % low income % less than high school

Low High Low High Low High

(1) (2) (3) (4) (5) (6)

AOD −1.668∗∗∗ −1.372∗∗∗ −1.604∗∗∗ −1.449∗∗ −1.535∗∗∗ −1.513∗∗∗

(0.367) (0.357) (0.291) (0.454) (0.350) (0.360)

F -statistic 45.497 46.006 62.259 32.327 55.905 36.049

Adj. R2 0.860 0.821 0.873 0.808 0.843 0.838

Dep. var. mean 3.920 3.875 3.893 3.902 3.920 3.871

Treat. var. mean 0.101 0.109 0.104 0.106 0.103 0.107

Treat. var. sd. 0.063 0.062 0.062 0.064 0.063 0.063

N 99, 108 102, 971 106, 598 95, 481 106, 108 95, 971

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
Notes: Table reports IV estimations of equation (2). ZIP codes are divided into two groups depending
on their socioeconomic characteristics. All columns use three-day measures of the dependent variables
to account for lagged effects. All results include ZIP code-year and week fixed effects. Three-day
diurnal temperature, precipitation, relative humidity, NO2 concentration, and their polynomials, are
used as covariates. Standard errors two-way clustered by year-week and ZIP code.
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Appendix Table F3. Equity implications of AOD impact

(1) (2) (3) (4) (5) (6)

% people of color 0.055∗∗∗ 0.035∗∗∗

(0.002) (0.002)

% low-income household 0.025∗∗∗ 0.019∗∗∗

(0.004) (0.004)

% less than high school education 0.106∗∗∗ 0.067∗∗∗

(0.009) (0.007)

Average PM2.5 0.350∗∗∗ 0.505∗∗∗ 0.477∗∗∗

(0.020) (0.018) (0.018)

PM2.5 included No No No Yes Yes Yes

Adj. R2 0.285 0.018 0.080 0.394 0.319 0.340

Num. obs. 1757 1757 1757 1752 1752 1752

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
Notes: Table assesses the correlation between % of solar generation lost from AOD, averaged at the ZIP
code level, versus socioeconomic characteristics. Columns 1 to 3 simply regress the average lost solar
generation against socioeconomic characteristics, while columns 4 to 6 include average PM2.5 levels at
each ZIP code to the right-hand side.
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Appendix Table F4. Potential drivers of AOD impact heterogeneity

(1) (2) (3) (4)

Average PM2.5 0.494∗∗∗ 0.508∗∗∗ 0.481∗∗∗ 0.470∗∗∗

(0.018) (0.019) (0.022) (0.023)

Population density 0.006∗∗∗

(0.001)

Average NO2 −0.250

(0.325)

Average wind speed −0.222∗∗∗

(0.078)

Wind speed variability −0.475∗∗∗

(0.146)

R2 0.319 0.311 0.316 0.317

Adj. R2 0.318 0.310 0.315 0.316

Num. obs. 1753 1761 1759 1759

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
Notes: Table explores the potential drivers of AOD-attributed solar gen-
eration loss. The units of population density, NO2 density, and wind speed
are 1,000 people per square mile, mol per km2, and m/s. “Variability” is
defined as the standard deviation of wind speed.
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Appendix Figure F1. Number of ZIP codes affected per wildfire smoke event

Notes: Dashed lines show the median for each group (17 and 100 ZIP codes for non-wildfire season and

wildfire season, respectively.).
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Appendix Figure F2. Expansion of geographical coverage from NSRDB

Notes: CSI-included ZIP codes shown in red, NSRDB-augmented ZIP codes shown in green.
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Appendix Figure F3. Monthly occurrence of smoke days

Notes: Figure shows the number of smoke days in each month observed over the analysis period (2010-2016).
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Appendix Figure F4. PM2.5 level of census tracts with EPA monitors

Notes: Figure compares PM2.5 levels in census tracts with EPA monitors with their ZIP code-wide average.

Data from downscaled PM2.5.
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Appendix Figure F5. Measured PM2.5 levels versus ZIP code-wide average

Notes: Figure compares PM2.5 levels measured by EPA monitors with their ZIP code-wide average, the

latter from downscaled PM2.5 data.
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Appendix Figure F6. PM2.5 level of tracts with EPA monitors, versus county average

Notes: Figure compares, for tracts with and without EPA monitors, PM2.5 levels in census tracts to county-

wide average. “Deviation” is defined as “(PM2.5 in census tract - PM2.5 in county)/PM2.5 in county.” Data

from downscaled PM2.5.

A-24



0

5

10

0 25 50 75 100

PM2.5 percentile within county

C
o

u
n

t

Appendix Figure F7. Within-county percentile of PM2.5 levels for tracts with EPA monitors

Notes: Figure plots, for census tracts with EPA monitors, the percentile of their PM2.5 levels within their

county. Higher percentile means higher pollution in the monitor-installed tract compared to its county

average. Data from downscaled PM2.5.
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Appendix Figure F8. Distribution of “% people of color”, from 2016 to 2021

Notes: Figure shows the distribution of “% people of color” for each ZIP code in the EJScreen data set from

years 2016 to 2021. The dotted lines represent the average of the distributions in each year.
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Appendix Figure F9. Distribution of “% less than high school educated”, from 2016 to 2021

Notes: Figure shows the distribution of “% less than high school educated” for each ZIP code in the EJScreen

data set from years 2016 to 2021. The dotted lines represent the average of the distributions in each year.
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Appendix Figure F10. Distribution of “% low income”, from 2016 to 2021

Notes: Figure shows the distribution of “% low income” for each ZIP code in the EJScreen data set from

years 2016 to 2021. The dotted lines represent the average of the distributions in each year.
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Appendix Figure F11. “% people of color”, 2016 versus 2021

Notes: Figure compares, at each ZIP code, the “% people of color” variable in 2016 versus 2021. Dotted

line represents y = x line.
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Appendix Figure F12. “% less than high school educated”, 2016 versus 2021

Notes: Figure compares, at each ZIP code, the “% people of color” variable in 2016 versus 2021. Dotted

line represents y = x line.
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Appendix Figure F13. “% low income”, 2016 versus 2021

Notes: Figure compares, at each ZIP code, the “% people of color” variable in 2016 versus 2021. Dotted

line represents y = x line.
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Appendix Figure F14. Histogram of AOD-attributed solar loss

Notes: Figure shows the ZIP code-average of loss of rooftop solar productivity from AOD levels, in each ZIP

code. The red dotted line denotes the statewide average (−14.54%).
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Appendix Figure F15. Histogram of PM2.5-attributed solar loss

Notes: Figure shows the ZIP code-average of loss of rooftop solar productivity from PM2.5 conditions, in

each ZIP code. The red dotted line denotes the statewide average (−3.91%).
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Appendix Figure F16. AOD-attributed solar loss versus % people of color

Notes: Figure places AOD-attributed solar loss on the y axis, and the % people of color on the x axis. Blue

line and grey fill represent linear regression line and 95% confidence interval, respectively.
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Appendix Figure F17. AOD-attributed solar loss versus % less than high school educated

Notes: Figure places AOD-attributed solar loss on the y axis, and the % less than high school educated on

the x axis. Blue line and grey fill represent linear regression line and 95% confidence interval, respectively.
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Appendix Figure F18. AOD-attributed solar loss versus % low income

Notes: Figure places AOD-attributed solar loss on the y axis, and the % low income household on the x

axis. Blue line and grey fill represent linear regression line and 95% confidence interval, respectively.
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