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Abstract 
 
This paper considers a random search model where some locations provide sellers with better 
chances of meeting many buyers than other locations (for example popular shopping streets or the 
first page of a search engine). When sellers are heterogeneous in terms of the quality of their 
product and/or the probability that a given buyer likes their product, it is desirable that sellers of 
high-quality niche products sort into the best locations. We show that this does not always happen 
in a decentralized market. Finally, we allow for endogenous location distributions and show that 
more trades are realized when locations are similar (in which case the aggregate matching function 
is urn-ball) but that quality weighted trade can be higher when locations are heterogeneous. 
JEL-Codes: C780, D440, D830. 
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1 Introduction

Good locations for sellers are locations where it is easy to meet buyers. They are often

located in densely populated areas (Fifth Avenue in New York, Bond Street London) or they

are easily reachable (good parking facilities or near a metro station). For online products,

we can think of good locations as being on a top position of a search engine. In this paper,

we consider a random search model that takes into account that some locations are better

than others. The model offers a framework to study what type of sellers benefit from good

locations and how this shapes spatial sorting, how the price of locations is determined and

from an urban planning perspective, when is it desirable to make locations similar (in terms

of meetings) and when it is better to have heterogeneity in location quality.

In our model, sellers are characterized by the quality of their product, denoted by z, and

the probability that a buyer likes their product, which is assumed to be weakly decreasing in

z and is denoted by x(z). Furthermore, we assume for simplicity that sellers have one good

for sale, but what matters is only that there is some capacity constraint.1 Locations differ in

how many buyers there are per seller, taking into account a buyer-resource constraint. This

implies that if we improve the meeting rate for sellers in one location (for example by adding

a railway station), the sellers in other locations will meet fewer buyers. In each location,

we have a constant-returns-to-scale Poisson meeting technology, but the queue length varies

across locations. Formally, we model seller locations as points on a unit circle where uniformly

distributed buyers move clockwise to the nearest location. A good location for sellers is then

one which is far away from their nearest competitor in a counterclockwise direction.

We start with a simple environment where the location of sellers is exogenous, and let

sellers sort into their optimal location, given a competitive rental market. We show that

whenever the expected consumer value zx(z) is increasing in z, the planner would always

prefer to match good locations with high-quality sellers, i.e., positive assortative matching

(PAM) between sellers and locations is desirable. Next, we consider the decentralized market

equilibrium. We show that the requirement for PAM is more stringent and a sufficient

condition is that zx2(z) is increasing in z, since sellers enjoy a high payoff when there are two

or more buyers who want to buy their product. Good locations are particularly valuable for

high-quality goods that few buyers like but those who like it, like it a lot. This is consistent

with the designer shops that are located on Fifth Avenue and the fact that most of the

Michelin three-star restaurants are located in or near big cities.2

1A second-hand car seller with five cars of a particular type would like to meet at least six buyers to be
able to be on the short-side of the market. Here a seller with one unit would like to meet at least two buyers
and for both cases this is more likely to happen in a good location than in a bad location.

2Another example comes from the following Financial Times article that points out that most manufac-
turing has moved out of cities, except high-quality niche products that are produced in small quantities like
micro-breweries, furniture makers, roboticists and 3D-printing specialists.
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We then take an urban planning or regional policy perspective and consider the optimal

distribution of locations given the distribution of seller types. We find that although the

total number of meetings is maximized when sellers are located at equidistance, this is not

always the welfare-maximizing topography. For example, if buyers are located randomly

and uniformly on the circle and a small fraction of them has a strong desire for top quality

food, then there is no area where it is profitable for top restaurants to enter and even if we

would force them to enter, they would create little surplus because they meet relatively few

buyers. In contrast, when there is heterogeneity in locations, sellers of high-quality and/or

niche products are able to create a lot of value by locating in good spots. So heterogeneous

locations can generate more welfare than equidistant locations by allowing for sorting of seller

types. This results in fewer trades overall but more high-quality trades.

Interestingly, even though we have random search, heterogeneity in locations can still

create heterogeneity in expected numbers of buyers per seller as in directed search models.

Random search is relevant for settings where full ex-ante commitment is not possible. For

example, a seller may announce a positive reserve price ex ante but ex post after one or more

buyers visit, the seller has no incentive to reject values below the reserve price but above

the seller’s valuation. When search is directed, a seller can increase the expected number of

buyers by offering a good deal to the buyers whereas here they can select a good location.

The difference is that here, with random search, the price for this good location does not go

to the buyers.

When we make the location distribution endogenous, we can think of regional policy in

our framework as choosing the optimal topography which must strike a balance between

maximizing trade and allowing high-quality sellers to sort into good locations. We show

that the optimal topography mimics the directed search equilibrium, which equalizes buyers’

marginal contribution to surplus in different submarkets. In contrast, in the random search

equilibrium with an endogenous location distribution, high-quality sellers typically overinvest

in good locations for rent seeking reasons (they are willing to pay higher rents to receive two

or more buyers rather than one). This is socially wasteful because a seller who meets two

effective buyers creates the same surplus as a seller who meets one effective buyer. Moreover,

a seller who invests in a good location and meets many buyers does not internalize that in

other areas more sellers will meet no buyers at all.

Our model is consistent with the finding in Neiman and Vavra (2023) that niche consump-

tion is largest in areas with many buyers per seller like Chicago, Washington DC, Tampa, Los

Angeles and Boston and lowest in non-dense, isolated places like Des Moines, Little Rock,

Las Vegas, and “West Texas”. In the context of the labor market, Gautier and Teulings

(2003) create an index that captures per CMSA how many workers are available per job in

an area. When many workers are available per job, wages and the cost of living are higher.
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Similarly, our model also predicts that rents are higher in good locations with many buyers

per seller.

In most of this paper, the quality distribution is exogenous.3 Menzio (2023) endogenizes

the quality distribution by letting ex-ante homogeneous sellers choose their quality in a

dynamic Burdett-Judd (1983) framework. He allows search frictions to decline over time.

In response, firms offer more specialized products with a higher consumer value. In this

environment, it is possible that, despite the decline in search frictions, the economy exhibits

a balanced growth path where price dispersion and the extent of competition remain constant.

This paper shares the observation that specialized sellers need traffic more than generic ones

but it is complementary to Menzio (2023) in the sense that we study what happens when

there is cross-sectional rather than time variation in search frictions. This adds a location

choice and sorting dimension to the firm’s problem. Albrecht et al. (2023) assume that firms’

key design choice is vertical rather than horizontal (as it was in Menzio, 2023). In their

model, high-quality sellers have higher trading probabilities because buyers visit multiple

sellers and high-quality sellers can offer more surplus to buyers than low-quality sellers. In

our model, buyers can only visit one seller but sellers can choose a good location to increase

their trading probability at the cost of a higher rental price.

There exists a small literature that relates spatial sorting to search frictions. In Helsley

and Strange (1990), match quality is higher in large urban areas because workers are more

likely to find a job that matches their skills when there are many firms available. They also

look at the optimal number of workers and firms to locate in a city subject to a population

constraint and find that it is optimal to have cities of equal size. We find the same when

products have the same quality. However, when (vertical) quality differs across sellers and

when we allow for niche products, the optimal topography involve heterogeneous areas.

Gautier and Teulings (2009) assume a meeting function with increasing returns to scale,

which makes large urban areas more efficient search markets. They find that workers with

rare skills and firms that need to hire a wide variety of skills benefit most from dense labor

markets. Combes et al. (2008) and Dauth et al. (2022) show that high-skilled workers sort

into dense areas in respectively France and Germany. Kim (1989) does not have search

frictions but in his model, workers do specialize more (rather than invest in general skills) in

large markets because the fewer firm types there are, the less likely it is that one of them will

demand a particular skill. In the context of the marriage market, Gautier et al. (2010) find

that highly-educated singles (more so than couples or singles with less education) locate in

big cities to find a partner because the opportunity cost of remaining unmatched are largest

for them. Here, we have constant-returns-to-scale and many-on-one meetings. Sellers of

3We do discuss how a fixed production cost interacts with the distribution of locations. That is, certain
niche products will only be offered when location quality is sufficiently dispersed.
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high-quality and niche products create a lot of surplus conditional on matching with a buyer

and they locate in areas where the probability that they meet multiple buyers is large. In

marriage market terms, our model implies that niche types (types that belong to a niche

subculture) sort into large cities.

Pissarides (2000) allows firms and workers to invest in search and recruitment intensity.

This is modeled in a reduced form way as a scalar that increases the individual matching

rate. At the aggregate level, if firms and workers double their search intensity, their meeting

rates are also doubled. In our model, a seller can increase its meeting rate by moving to a

good location where there are many buyers per seller but if some locations are better than

average, it implies that other locations are worse than average (due to the buyer resource

constraint). Since the price of a location is endogenous in our model, so is the price for a

higher meeting rate whereas in reduced form models, the cost of increasing search intensity

is exogenous.

In the urban economics literature, location choice is driven by the trade-off between

positive agglomeration effects which give rise to increasing returns and mobility cost. The

first is needed to explain why large cities exist and the second why not all jobs are in one

large city.4 This literature is mostly complementary to this paper. We have not much to say

about the size distribution of cities. Our aim is to understand what types of sellers locate in

attractive areas characterized by high buyer-seller ratios, why buyer-seller ratios differ across

space, how this shapes the quality distribution of products that are offered and whether

heterogeneity in location quality is desirable or not.

The paper is organized as follows. In section 2, we introduce the model and define

equilibrium. In section 3, we characterize the model for a given location distribution. We

first consider homogeneous and then heterogeneous sellers. For the latter case, we analytically

solve the model for two examples and then use a first-order approximation to study the effects

of making goods more niche. Then, in section 4, we endogenize the distribution of locations

and ask from an urban-planning point of view what the optimal distribution of locations is for

a given quality distribution and what the market outcome would be if sellers form a coalition

which chooses the seller-optimal distribution of locations, as in a real estate investment trust

(REIT). Finally, section 5 concludes.

2 The Model

Agents and Preferences. Consider a static environment with a measure 1 of sellers and

an endogenous measure λ of buyers, determined by free entry at cost K > 0. Both buyers

4See for example Ellison and Glaeser (1997), Fujita and Thisse (2002), Rosenthal and Strange (2004)
Ellison et al. (2010), Moretti (2012).
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Figure 1: Finite number of sellers

and sellers are risk neutral. Each seller possess a single unit of an indivisible good and each

buyer has (inelastic) demand for one unit. Sellers are heterogeneous with respect to the good

that they offer. Goods are characterized by their quality z and the corresponding probability

x(z) that a buyer likes the good. The distribution of z among sellers is given by a cumulative

distribution F (z). We assume that x(z) is weakly decreasing in z, while zx(z), the expected

value of good z to a buyer, is weakly increasing in z. We can think of goods with a low value

of x (or equivalently, a high value of z) as niche products. Buyers and sellers who do not

trade obtain a zero payoff.

Search. Search is random and occurs in space where we allow for heterogeneity in locations.

Sellers in good locations meet relatively many buyers. We can think of the good locations as

places that are easily reachable, for example because they are close to a station or a highway.

Alternatively, they could be in a popular shopping street or mall in the city center. We model

locations as points on a circle with circumference 1.

To better explain the search process, we first consider the case where the number of sellers

(Ns) and buyers (Nb) are finite, which we illustrate in Figure 1. All sellers randomly arrive

on the circle according to a probability distribution that we describe below. After that,

buyers arrive on the circle and go clockwise to the nearest seller. We assume that buyers are

placed uniformly on the circle, which, as we will see later, is a normalization rather than an

assumption.

From the perspective of seller i, the quality of their location depends on the arc distance

to their counterclockwise neighbor, denoted by di. In Figure 1, di takes one of two values:

half of all sellers have good spots and the other half have bad spots, where the arc length of

a good spot is two times that of a bad spot. Hence, d1 = 2d6 = 2/9. Since each buyer visits
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seller i with probability di, the probability that seller i meets n buyers is given by(
Nb

n

)
dni (1− di)Nb−n . (1)

Below, we will allow for a continuum of buyers and sellers with Nb →∞ and Nb/Ns → λ.

We can write the expected buyer-seller ratio at location i as Nbdi → λsi where si = diNs.

Equation (1) then converges to e−λsi(λsi)
n/n!, that is, a Poisson distribution with mean λsi.

So in a large market, seller i’s spot is characterized by si and we can think of good locations

as locations where λsi is large. The advantage of using si as a measure of location quality (for

a given Ns) rather than di is that
∑Ns

i=1 si/Ns = 1, i.e., the mean of si is 1 by construction,

while the mean of di → 0 when we let the market get large. In Figure 1, the distribution of

si is P(si = 4/3) = 1/2 and P(si = 2/3) = 1/2.

More generally, the distribution of locations can be described by a cdf L(s). The prob-

ability distribution for the event that a buyer meets a seller at a location s is s dL(s).5 A

few special cases are worth mentioning (see Section 3.1 for more details). When sellers are

located at equidistance from each other, L(s) is degenerate at s = 1, and the number of buy-

ers that sellers meet follows a Poisson distribution with mean λ. In Appendix A.1, we show

that if sellers are placed uniformly on the circle (just like the buyers), then the distribution

of locations converges to an exponential distribution with L(s) = 1− e−s where s ≥ 0. There

we also show how, when the market gets large, the distribution of locations can converge to

an arbitrary distribution L(s) which has a mean equal to 1.

We assume that search is random, that is, buyers’ arrival on the circle is random, which

implies that good locations for sllers are ones that have a long arc-length to their counter-

clockwise neighbour. If we allowed buyers to choose locations (search is directed), then the

arc length between locations in our model would become irrelevant.

We can relax the assumption that buyers arrive uniformly on the circle and assume that

their arrival obeys some other probability distribution. However, this does not make the

model more general, since it is L(s), instead of the individual distributions of sellers and

buyers, that matters for the market equilibrium.6

Market for Locations. After the realization of their locations and before meeting buyers,

sellers can trade their locations in a competitive, frictionless market. The price of location s

is denoted by r(s).

5In the example of Figure 1, the probability that a buyer meets a seller in location s = 4/3 is thus
4/3 · 1/2 = 2/3 and the corresponding probability for s = 2/3 is 2/3 · 1/2 = 1/3.

6Note that here we treat the distribution of locations, L(s), as exogenous. In Section 4, we consider the
case where the distribution of locations is endogenous.
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Trade and Payoffs. After sellers select their preferred location and sell their old location,

buyers and sellers meet. Sellers select the buyer they trade with by means of a second-price

auction (with a reserve price equal to the seller’s valuation of zero).7 Suppose that a seller

offers quality z and has queue length λs (because its location is s). The expected surplus for

this seller is given by

S(s, z) = z
∞∑
n=1

e−λs
(λs)n

n!
[1− (1− x(z))n] = z

(
1− e−λsx(z)

)
, (2)

where the summand on the left-hand side denotes the scenario where the seller meets n

buyers and at least one likes the product. Alternatively, since the effective queue length (the

expected number of buyers who value the product) is λsx(z), the probability that the seller

meets at least one buyer who likes the product is given by the term in parenthesis on the

right-hand side.

The seller’s expected payoff from the auction is then

π(s, z) = z
∞∑
n=2

e−λs
(λs)n

n!

[
1− (1− x)n − nx (1− x)n−1] = z

(
1− e−λsx − λsxe−λsx

)
, (3)

where we have suppressed the argument z from the function x(z) to save space. The summand

on the left-hand side denotes the probability that the seller meets n buyers and at least two

of the n buyers value the good, in which case the transaction price equals z (if only one buyer

arrives who likes the good, this buyer will just bid the reserve price). As in (2), since the

effective queue length is is λsx, the probability that the seller meets two or more buyers who

value the product is given by the term in the parenthesis on the right-hand side.

To simplify exposition later, we define

P(λ) = 1− e−λ − λe−λ (4)

which is the probability of meeting two or more buyers when the expected queue length is λ.

Sellers’ payoff in equation (3) can then be rewritten as π(s, z) = zP(λxs).

The expected payoff of a buyer who meets this seller is

zx

∞∑
n=0

e−λs
(λs)n

n!
(1− x)n = zxe−λsx, (5)

where, as before, we have suppressed the argument z from the function x(z). The summation

7This trading mechanism is payoff equivalent to the case where buyers submit a price to bid for the goods
(first-price auction); see Burdett and Judd (1983) for this case.
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on the left-hand side denotes the probability that the seller meets no other buyers who value

the product, which, as argued above, is simply e−λsx. If the seller meets multiple buyers who

like the product, the winning bid is z and the entire surplus goes to the sellers.

Sellers’ Location Choice. Before meeting the buyers, the problem of seller z is to maxi-

mize the expected payoff from choosing location type s, which is given by

max
s

π(s, z)− r(s), (6)

where π(s, z) is given by equation (3). Equation (6) abstracts from the earnings associated

with sellers selling their location endowment as that is irrelevant for the location choice

problem.

Suppose that the support of L(s) is an interval and that, in equilibrium, location s is

chosen by sellers of type z∗(s). The first-order condition then implies that the gradient of

the location prices equals

r′(s) = λzxP ′(λxs) = λ2szx2e−λsx, (7)

where z = z∗(s) and x = x(z∗(s)).

Buyer Entry. Free entry of buyers requires that their expected payoff after entering the

market is exactly K. That is

K =

∫
s

z∗(s)x∗(s)e−λsx
∗(s)s dL(s) (8)

where z∗(s)x∗(s)e−λsx
∗(s) is the expected payoff from meeting a seller at location s, as given

by equation (5), and s dL(s) is the corresponding probability density.

Sellers’ Ex-ante Expected Payoff. The expected payoff of sellers before entering the

market is then given by

Π(z) = π(s∗(z), z)− r(s∗(z)) +R, (9)

where s∗(z) is the sellers’ optimal location choice, and R =
∫
s
r(s) dL(s) is the average

location price, which is also the seller’s expected payoff from selling their location since they

are randomly endowed with a location according to the distribution L(s). Note that the

above equation depends on the equilibrium value of λ.

Equilibrium Definition. We can now define an equilibrium as follows.
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Definition 1. An equilibrium is an assignment of sellers to locations, a price schedule for

locations r(s) and a measure of buyers λ such that

1. Seller optimality: Given r(s), sellers’ choices of locations maximize their expected profit.

That is, each seller solves the problem given by (6).

2. The market for locations clears: The price schedule for locations is such that for each

s, the demand for type-s locations equals their supply.

3. Free entry of buyers: The expected payoff of buyers equals their entry cost K, i.e.,

equation (8) holds.

3 Exogenous Distribution of Locations

3.1 Homogeneous Sellers

Before considering heterogeneous sellers in Section 3.2, we start in this section by assuming

that all sellers have the same quality z. We first analyze the planner’s problem and then the

decentralized equilibrium. Finally, we show that the matching function is quite general and

is equivalent to the class of invariant meeting technologies, as defined in Lester et al. (2015)

and Cai et al. (2017).

Meeting Probabilities. Before locations are realized, the probability that a seller meets

n buyers equals

Pn(λ) ≡
∫
s

e−λs
(λs)n

n!
dL(s), (10)

where n ≥ 0. The probability for the seller to meet at least one buyer is then given by

m(λ) ≡ 1− P0(λ) =

∫
s

(
1− e−λs

)
dL(s). (11)

Each buyer values the seller’s product only with probability x = x(z). Hence, a seller only

trades if this seller meets at least one such buyer, which happens with probability

1−
∞∑
n=0

Pn(λ)(1− x)n = m(λx), (12)

where the summand on the left-hand side represents the scenario where the seller meets

n buyers who all do not value the product.8 The resulting meeting probability is m(λx),

8A detailed derivation of equation (12) can be found in Appendix A.2.
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which depends only on the effective queue length λx that the seller faces before the location

realization. The above equation shows that the meeting process between the seller and buyers

who like the seller’s product is not affected by how many buyers there are who do not like the

product. That is, the latter group does not impose search externalities on the former group.

Consider for example a vegan restaurant in a particular location and suppose that there are

on average 2 buyers per seat who have a desire for vegan food for whom this restaurant

is nearest, then the meeting rate does not depend on how many people there are near this

location who do not like vegan food.

Examples. Below we give some examples of L(s) where we can explicitly calculate m(λ).

Recall that the mean of s is always 1. The examples illustrate that many meeting distributions

like the geometric and the gamma distribution can be thought of as spatial mixtures of Poisson

distributions.

Example 1. If the distribution of s is degenerate at 1, then m(λ) = 1− e−λ which is the

standard urn-ball matching function.

Example 2. If L(s) is a discrete distribution with support {s1, . . . , sI} and P(s = si) = `i,

then

m(λ) =
I∑
i=1

`i
(
1− e−λsi

)
.

Example 3. If L(s) is an exponential distribution with L(s) = 1− e−s where s ≥ 0, then

m(λ) =

∫ ∞
0

(
1− e−λs

)
dL(s) = 1− 1

1 + λ
, (13)

which is the geometric matching function (see e.g. Lester et al., 2015; Cai et al., 2017). More

generally, let L(s) be an exponential distribution with support [s0,∞) where s0 ∈ [0, 1). That

is, L(s) = 1− e−ρ(s−s0), where ρ = (1− s0)−1 such that the mean of s is 1. Then

m(λ) = 1− e−λs0

1 + λ(1− s0)
. (14)

This matching function is strictly increasing in s0 (for fixed λ). When s0 → 1, s gets more

and more concentrated around 1 and m(λ)→ 1− e−λ.
Example 4. If L(s) is a Gamma distribution with density L′(s) = ρρsρ−1e−ρs/Γ(ρ) where

s ≥ 0 and Γ(·) is the standard Gamma function, then

m(λ) = 1−
(

ρ

ρ+ λ

)ρ
.
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When ρ = 1, we have the geometric meeting technology, and when ρ =∞, we have the urn-

ball meeting technology. For ρ ∈ (1,∞), the corresponding Pn(λ), defined in equation (10),

follows a negative binomial distribution. This distribution is of interest since Davis and de la

Parra (2017) provide empirical evidence that the number of job applications that vacancies

receive can be well approximated by a negative binomial distribution, adjusted so that zero

has a larger weight.

The Planner’s Problem. The planner’s problem is to select the measure of buyers λ that

maximizes total net surplus Y (λ)− λK, where Y (λ) equals

Y (λ) =

∫
s

z
(
1− e−λsx(z)

)
dL(s) = zm(λx(z)), (15)

and where we used (12) for the second equality. Since 1−e−λsx(z) and hence Y (λ) are strictly

concave in λ, the following first-order condition is both necessary and sufficient:

K = Y ′(λ) =

∫
s

zsx(z)e−λsx(z) dL(s). (16)

The Decentralized Equilibrium. In the decentralized equilibrium, when a buyer meets

a seller at location s, the buyer receives a strictly positive payoff if and only if the buyer

likes the product, which happens with probability x(z), and the seller meets no other buyers

who like the seller’s product. Recall that the buyer’s expected payoff in this case is given by

equation (5). Given that meetings between buyers and sellers are random, free entry then

requires that

K =

∫
s

zx(z)e−λsx(z)s dL(s),

where the integration represents the uncertainty with respect to locations. The above equa-

tion coincides exactly with the planner’s first-order condition (16). Thus we have the following

result.

Proposition 1. Suppose that all sellers have the same quality z. Buyer entry in the decen-

tralized equilibrium is then constrained efficient.

The above result is quite intuitive and is well known in the literature. Suppose that a

seller meets multiple buyers. If a buyer is the only one who likes the product and is willing to

make a bid, then without this buyer the surplus would be zero. If there are multiple buyers

who like the product, then the marginal contribution to surplus by any individual buyer is

zero. Furthermore, a buyer does not influence the meeting process between sellers and other
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buyers (no search externalities). Therefore, a second-price auction guarantees that buyers

always receive their marginal contribution to surplus.

Comparative Static. A simple consequence of the above framework is that making the

goods simultaneously better and more niche such that the expected buyer value remains the

same, increases total surplus for each λ and also increases buyer entry. The intuition is that

since there are no meeting externalities among buyers, making the goods more niche takes

advantage of the fact that sellers can meet multiple buyers simultaneously and they only

need one buyer who likes their product (recall that with niche products, those who like it,

like it a lot).

More precisely, the effect on total surplus of a percentage increase of z combined with

a corresponding decrease in x such that the expected value of zx(z) remains constant is

equivalent to a percentage increase in the measure of sellers. To see this formally, let the

measure of sellers be Ns and the measure of buyers be Nb with λ = Nb/Ns. Expected total

surplus is then given by Nszm
(
Nbzx(z)
Nsz

)
. Thus keeping Nb (the measure of buyers) and the

expected value of zx(z) fixed, only the product Nsz matters for the expected surplus, which

implies that the effect of a percentage increase of z is equivalent to a percentage increase in the

measure of sellers. Note that the same observation applies to buyers’ marginal contribution

to surplus, which is given by zx(z)m′
(
Nbzx(z)
Nsz

)
.

Finally, we can calculate the price of locations. Since all sellers are homogeneous, equa-

tion (7) becomes

r′(s) = λ2zx(z)2se−λx(z)s.

The above equation implies that r′′(s) = zλ2x(z)2e−λsx(1 − λx(z)s). Thus r′′(s) > 0 when

s < λx(z) and r′′(s) < 0 when s > λx(z). That is, r(s) has an S-shape. Starting from

the worst location, increasing the expected number of buyers that a seller meets initially

generates little value for the seller because although the probability that a seller receives no

buyers declines, the probability to receive more than one buyer remains close to zero (with

only one buyer, the seller’s payoff is zero). Then, if we further increase s, better locations

help to substantially increase the likelihood to get two or more buyers. Finally, when the

likelihood of getting multiple buyers is already close to one, better locations add little value

and consequently, the price for better locations increases only weakly.

Suppose that the lower support of the distribution L(s) is zero. Solving the differential
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equation (7) explicitly yields9

r(s) = zP(λx(z)s). (17)

Note that P(λx(z)s) is the probability that a seller at location s meets two or more buyers

which is independent of the distribution of locations. Since all sellers are homogeneous, in

equilibrium there is no arbitrage possible in terms of location choice. This implies that the

price difference between locations exactly offsets the corresponding difference in the payoffs

from meeting more buyers. That is, given that all sellers are homogeneous, the location

prices are such that sellers obtain no gains from trading locations.

Surplus-Maximizing Meeting Technology. For a general distribution of locations L(s),

m(λ) in equation (11) can be thought of as a mixture of urn-ball processes. It then follows

from Jensen’s inequality that aggregate matching efficiency can be improved by making

locations more equal.

Theorem 1. Suppose that all sellers have the same quality z. For any given λ, total surplus

Y (λ) is highest with the urn-ball meeting technology where m(λ) = 1− e−λ, which is obtained

when L(s) is degenerate at 1 (all locations are the same).

Proof. See Appendix A.3.

The above result is quite intuitive for our benchmark. However, when combined with

Theorem 2 below, it also shows that the urn-ball meeting technology has the highest matching

efficiency among all invariant meeting technologies (to be specified below). This latter result

is much less obvious. Note that Theorem 1 also carries over to the case where the market for

locations does not exist and the matching between sellers and locations is purely random.

Relation with Invariance. In our model, the probability that a seller meets n buyers

is given explicitly by equation (10). In earlier literature (see, e.g., Eeckhout and Kircher,

2010), it has been common to start with Pn(λ) unspecified. An invariant meeting technology

is then defined as one for which equation (12) holds for any λ and x, with (set x = 1)

m(λ) = 1 − P0(λ) (Lester et al., 2015; Cai et al., 2017). Furthermore, the nth derivative of

equation (12) with respect to x, evaluated at x = 1, equals Pn(λ) = (−1)n+1 λn

n!
m(n)(λ).10

Therefore, for any invariant meeting technology, its associated function m(λ) has the fol-

lowing properties: i) It is non-negative, and ii) it is infinitely differentiable and (−1)n+1 dn

dλn
m(λ) ≥

9Note that r(0) must be zero because a location with s = 0 generates no surplus. When the lower support
of distribution L(s) is given by s0 > 0, then as is well known from the literature (see Chiappori (2017) for
a textbook treatment), r(s0) is indeterminate, since the measure of locations equals exactly the measure of
sellers. However, since a seller of a product is both a buyer and a seller of locations, this indeterminacy does
not affect the payoff of sellers.

10Cai et al. (2023) show that P0(λ) is a probability generating function.
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0 for n ≥ 1. That is, m(λ) is a Bernstein function. In addition, m(λ) is bounded between 0

and 1, m(0) = 0, and m′(0) ≤ 1. By Bernstein’s theorem, m(λ) has the following represen-

tation.11

Theorem 2. A function m(λ) generates an invariant meeting technology if and only if there

exists a probability measure L̃(s) on [0,∞) (the positive real half-line) with
∫

[0,∞)
s dL̃(s) ≤ 1

such that

m(λ) =

∫
[0,∞)

(
1− e−λs

)
dL̃(s). (18)

Proof. See Appendix A.4

If
∫

[0,∞)
s dL̃(s) = 1, then the class of invariant technologies corresponds exactly to the

above search process on the circle with L̃(s) = L(s).12 We can also use our model to

understand the general case. If
∫

[0,∞)
s dL̃(s) < 1, then with probability 1 −

∫
[0,∞)

s dL̃(s)

buyers do not arrive on the circle and are passive. This probability is independent of λ. Given

the set of buyers who arrive on the circle, the matching process specified by an invariant

technology is again equivalent to our search process on the circle. Thus it is without loss of

generality to assume that
∫

[0,∞)
s dL̃(s) = 1. Given the correspondence in Theorem 2, Pn(λ)

can also be calculated by equation (10) (a mixture of the corresponding Poisson probabilities).

This representation of meeting technologies has proved to be useful in other settings as well.

For example, Becker and Mangin (2023) use our Bernstein representation to study extreme

outcomes in markets with search frictions.

3.2 Heterogeneous Sellers

We now consider the general case where sellers are heterogeneous in quality z, i.e., F (z) is not

degenerate. Suppose for example that that there are many chefs but only few of them have

the talent to cook at the three-star level. At what locations would they open restaurants?

What locations would less-talented chefs choose? And how would the planner assign chefs

to locations?

The Planner’s Problem. The planner’s problem is to first match sellers with locations

and to then select the measure of buyers per seller in order to maximize total net surplus.

Recall that S(s, z), the expected surplus between a seller z and a location s, is given by

equation (2).

11See page 21 of Schilling et al. (2012) for the definition of Bernstein functions and Bernstein’s Theorem.
12We use the notation

∫
[0,∞)

to emphasize that there can be a mass point at 0.
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Lemma 1. S(s, z), which is defined by equation (2), is strictly increasing in z. Furthermore,

it is strictly supermodular in (s, z) for any λ > 0.

Proof. See Appendix A.5.

Since surplus S(s, z) is supermodular in (s, z), the planner’s solution is characterized

by PAM: better-quality sellers are assigned to better locations. Suppose that both F and

L are continuous distributions. The optimal assignment is then captured by the following

correspondence,

1− F (z) = 1− L(s∗(z)), (19)

where s∗(z) is the optimal location s for seller type z.

Given the optimal matching between sellers and locations, expected total surplus is given

by Y (λ)− λK, where

Y (λ) =

∫
s

z∗(s)
(
1− e−λsx∗(s)

)
dL(s), (20)

x∗(s) ≡ x(z∗(s)) and z∗(s) is the inverse of s∗(z). The above equation is strictly concave in

λ. As before, the optimal measure of buyers in the market is then given by the FOC:

K = Y ′(λ) =

∫
s

z∗(s)sx∗(s)e−λsx
∗(s) dL(s). (21)

The Decentralized Equilibrium. We now analyze the decentralized equilibrium. Con-

sider first the matching between sellers and locations. Recall that the expected profit for a

seller z from selling the good after choosing location s is π(s, z), as given by equation (3).

As is well known since Becker (1973), strict supermodularity of π(s, z) in (s, z) implies that

the market outcome must be PAM: better-quality sellers choose better locations. However,

the following lemma shows that unlike the surplus function S(s, z), sellers’ expected profit

π(s, z) is not necessarily supermodular, unless the elasticity of x(z) is greater than −1/2.

Lemma 2. Consider π(s, z) defined by equation (3). Given z, if εx(z) ≡ zx′(z)/x(z) ≥ −1/2,

then the derivatives πz(s, z) > 0 and πsz(s, z) > 0 for any λ > 0.

Alternatively, suppose that εx(z) ∈ [−1,−1/2). Then 1) πsz(s, z) > 0 if and only if the

effective queue length λx(z)s > 2 + 1/εx(z), and 2) there exist a threshold Λ(ε) such that

πz(s, z) > 0 if and only if the effective queue length λx(z)s > Λ(εx(z)), where Λ(εx(z)) is the

solution of λ to the following equation

1− e−λ − λe−λ

λ
= −λe−λεx(z). (22)
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Λ(εx(z)) is strictly decreasing for εx(z) ∈ [−1,−1/2) with Λ(−1/2) = 0.

Proof. See Appendix A.6.

Supermodularity concerns how the marginal value of s varies with z. Thus when zx(z) is

increasing in z, then surplus S(s, z) is supermodular. However, profit π(s, z) is supermodular

when zx(z)2 (the probability that two buyers are valuable is x(z)2, ignoring higher order

terms) is increasing in z, which is equivalent to zx′(z)/x(z) ≥ −1/2. When the latter

condition holds, the quality of sellers who choose location s in equilibrium is also given by

equation (19), as in the planner’s solution. This condition on the elasticity says that if the

chance that a buyer likes the product does not decrease too fast with the quality of the

product, high-quality sellers benefit more from good locations than low-quality sellers. If the

market for high-quality products becomes thin very fast (the elasticity zx′(z)/x(z) ≤ −1/2)

then even at good locations the probability to get two or more effective buyers is too small

for the high-quality sellers to be willing to pay the higher rents there.

Given the equilibrium matching between sellers and locations, buyer entry is such that the

expected payoff of buyers equals the entry cost K, i.e., equation (8) must hold. Comparing

(8) with the planner’s solution shows that buyer entry is constrained efficient.

Proposition 2. Suppose that zx′(z)/x(z) ≥ −1/2 for any z. The decentralized equilibrium

is then constrained efficient.

When zx′(z)/x(z) < −1/2, it is possible that the equilibrium matching between sellers

and locations does not exhibit PAM and hence the decentralized equilibrium is not efficient.

To see this, note that a necessary condition for PAM to hold is that along the equilibrium

path, for each s the cross-partial derivative πsz(s, z
∗(s)) ≥ 0, where z∗(s) is given by equa-

tion (19) and is independent of λ. If the lower support of L(s) is zero, then for small s

the effective queue length λx(z)s is close to zero, and by Lemma 2, πsz(s, z
∗(s)) is strictly

negative. Hence, the necessary condition does not hold.

The reason that the planner’s solution can differ from the market outcome is that in the

planner’s solution, a higher s increases surplus S(s, z) because it increases the probability

that a seller meets at least one effective buyer, whereas in the competitive market of locations,

it increases π(s, z) (the gross payoff of buyers of locations) because it increases the probability

that a seller meets at least two effective buyers who then bid the price up. The investment

of a seller in a good location is therefore partly a rent-seeking activity because the returns of

receiving more than one buyer are zero from a social welfare point of view but positive from

an individual firm’s point of view.

Specifically, recall that given z, π(s, z) as a function of s has an S-shape: P(λx(z)s) is

first convex and then concave in s. Consider two sellers za < zb who match with locations
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sa < sb, respectively. If the effective queue lengths for the two sellers are low, then assigning

location sb to seller za and location sa to seller zb will increase the total profits of the two

sellers by exploiting the initial convexity of P(·) but this will decrease social surplus. The

increase in seller a’s probability that two or more buyers visit at the good location exceeds

the decrease in seller b’s probability that two or more buyers visit at the bad location:

P(λx(za)sb)−P(λx(za)sa) > P(λx(zb)sb)−P(λx(zb)sa), or equivalently
∫ sb
sa
P ′(λx(za)s)ds >∫ sb

sa
P ′(λx(zb)s)ds, where we used the fact that x(za) > x(zb) and P(λ̃) is convex when λ̃ is

small. Furthermore, the increase in seller a’s probability that two or more buyers visit can

be sufficiently large such that it outweights zb/za times the corresponding decrease of seller

b’s probability. To sum up, in the convex range of P(·) where the buyer-seller ratio is low,

sellers of general products benefit more from good locations then sellers of high quality, niche

products because the latter group rarely meets two or more buyers who like their product.

3.3 Three Examples

Below, we analytically characterize the the planner’s solution for some parametric examples

of seller-type and location-quality distributions.

3.3.1 Vertical Quality (x(z) = 1 for any z)

In our first example, buyers like each product with certainty, x(z) = 1 for all z. As a result,

all buyers agree on the ranking of products, such that quality differences between sellers can

be viewed as being vertical. We assume that the quality distribution follows a power law and

that the location distribution is exponential. Specifically, let F (z) = 1 −
(
z0
z

)α
with α > 1

and z ≥ z0 > 0 and let L(s) = 1− e−ρ(s−s0) where s ≥ s0, s0 ∈ [0, 1) and ρ = (1− s0)−1.

Expected Total Surplus. Since x(z) = 1 for all z, the equilibrium in the market for

locations exhibits PAM and thus coincides with the planner’s solution (see Lemma 1 and 2).

By equation (19), the correspondence between sellers and locations is

e−(s−s0)/(1−s0) =
(z0

z

)α
,

which implies that

z∗(s) = z0e
(s−s0)/(α(1−s0)). (23)

Substituting the above equation into equation (20) implies that total surplus equals

Y (λ, α, s0) =

∫
s

z∗(s)
(
1− e−λsx∗(s)

)
dL(s) = z

(
1− (α− 1)e−λs0

(α− 1) + αλ(1− s0)

)
, (24)
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where z = z0α/(α − 1) denotes the mean of z and we have added (α, s0) as arguments of

Y (λ) to show that total surplus depends on quality and location dispersion. The following

lemma characterizes this dependence.

Lemma 3. Let λ be fixed. If we increase both α and z0 so that the average quality z =

z0α/(α− 1) is constant, then Y (λ, α, s0) decreases.

If αλ ≤ 1, Y (λ, α, s0) is strictly decreasing in s0 ∈ [0, 1]. If αλ > 1, then Y (λ, α, s0) is

first increasing and then decreasing in s0, reaching a maximum at s0 = 1− 1/(αλ).

Proof. See Appendix A.7.

Increasing α, while adjusting z0 to keep the mean z fixed, reduces quality dispersion. In

the limit α→∞, all sellers have the same quality z. In this case, the term in parentheses at

the right-hand side of (24) reduces to m(λ) in equation (14) and surplus is smallest. Hence,

the fact that locations are heterogeneous makes quality dispersion desirable because of the

complementarity between quality and location.

The effect of location dispersion on total surplus is more complicated. All locations are

the same when s0 = 1, while location dispersion is maximized when s0 = 0. By equation (14),

a smaller s0 (more location dispersion) always reduces the total number of trades. When λ

is small (≤ 1/α), the increase in the matching probability of high-quality sellers dominates

the overall decrease in matches so location dispersion is desirable. When λ is large, too

much location dispersion leads to a minor increase in the matching probability of high-

quality sellers while it reduces the matching probability of low-quality sellers substantially

and loation dispersion is not desirable.

Equilibrium. In the above analysis, we have treated λ as exogenous. To determine the

equilibrium value of λ and the equilibrium seller payoffs, we consider two extreme cases s0 = 0

and 1. We will use subscripts 0 and 1 to compare variables between the two cases.

When s0 = 1, all locations are the same and the expected output is Y (λ, α, 1) = z(1−e−λ).
The equilibrium (or equivalently, the socially optimal) λ is given by K = ∂Y (λ, α, 1)/∂λ,

which implies that λ1 = log(z/K), where the subscript 1 indicates the case s0 = 1. Since all

locations are the same, sellers will not trade locations and their expected profit is Π1(z) =

z(1−e−λ1−λ1e
−λ1). Note that in this special case, varying α (the quality distribution) while

holding z constant (average value) has no effect on the equilibrium measure of buyers and

expected total surplus.

Next, consider the case s0 = 0. The equilibrium (or equivalently, the socially optimal)

λ is given by K = ∂Y (λ, α, 0)/∂λ, where Y (λ, α, 0) is given by equation (24) with s0 = 0.
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Hence,

λ0 =

√
z

K

α− 1

α
− α− 1

α
, (25)

which implies that positive entry of buyers happens if and only ifK < zα/(α−1).13 Combined

with equation (24), this implies that net social surplus equals

Y (λ0(α), α, 0)−Kλ0(α) =

(
√
z −

√
K
α− 1

α

)2

,

which is strictly decreasing in α.

Finally, in the proposition below, we derive sellers’ expected profits for the two special

cases s0 = {0, 1}. To simplify exposition, we focus on the case in which K = z0 since this

yields a particular simple expression for s0 = 0.

Proposition 3. Consider two location distributions: L0(s) = 1−e−s and L1(s) is degenerate

at s = 1. Suppose that x(z) = 1 for all z, and F (z) = 1− (z0/z)α with α > 1. Furthermore,

assume K = z0 = 1.

Let Πi(z) be the ex-ante seller payoff under location distribution Li(s) with i = 0, 1, which

is defined by equation (9). Then for z ≥ z0 = 1, we have

Π0(z) =
1

α2
+ z − 1− 1

2
log(z) (2 + log(z)) , (26)

and

Π1(z) = z

(
1

α
+

(
1− 1

α

)
log

(
1− 1

α

))
, (27)

where Π0(z) is strictly convex with limz→∞Π′0(z) = 1, and Π1(z) is linear with a slope strictly

smaller than 1. When z is close to 1 or sufficiently large, Π0(z) > Π1(z). Furthermore, there

exists a unique α∗ (approximately 1.9) such that Π0(z) > Π1(z) for all z if and only if α > α∗.

Proof. See Appendix A.8.

Two things stand out when comparing sellers’ expected payoffs under the two location

distributions (heterogeneous locations with s0 = 0 and identical locations with s0 = s = 1).

First, when s0 = 0, the sellers with the worst type z0 have s = 0 in equilibrium (they meet

no buyers so this is equivalent to being inactive). When s0 = s = 1, each seller expects an

13Note that the equilibrium measure of buyers is not necessarily monotonic in α. When z/K ≥ 4, then
λ0(α) is always strictly increasing in α. When z/K < 4, λ0(α) is strictly increasing in α for α < 4/(4−z/K),
and strictly decreasing in α for α > 4/(4− z/K).
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effective queue length λ. One may expect that sellers with low z are worse off under s0 = 0

than under s0 = 1. However, the above proposition shows that it can be the case that when

s0 = 0, the expected payoff from selling one’s location endowment is so high that all sellers

are better off. When the location distribution is dispersed, sellers with high z are willing to

pay a high price for good locations. This not only benefits high-quality sellers but can also

benefit low-quality sellers, since those sellers are also location owners.

Second, so far we have assumed that sellers incur no costs of participating in this market.

Suppose now that sellers need to pay a production cost c(z) to enter the market, which

is assumed to be weakly increasing and convex. Since Π1(z) is linear, it is not profitable

for high-quality sellers to enter the market when all locations are the same (s0 = 1) and

c′(z) > Π′1(z) = 1
α

+
(
1− 1

α

)
log
(
1− 1

α

)
. At the same time, it can still be the case that

c(z) < Π0(z) for all z so that all sellers, including the high-quality ones, find it profitable

to enter the market when locations are hetergeneous (s0 = 0). In the latter case, the good

locations allow the high-quality sellers to meet many buyers (and thus trade and create

surplus with high probability), whereas offering a high-quality product is too risky when all

locations are identical, because there is a substantial chance that too few buyers arrive.

3.3.2 Power Law for Both Distributions (F (z) and L(s))

In our second example, we allow for heterogeneity in x(z). Neiman and Vavra (2023) doc-

ument that products that are more niche are offered in large dense cities. That is, niche

sellers with a smaller x and larger z will choose a larger s. However, it is not clear whether

the effective queue length λxs (or equivalently sellers’ trading probability) is increasing or

decreasing in seller types. To show that both options are feasible, we construct a knife-edge

example where the effective queue length (or sellers’ trading probability) remains constant.

By perturbating this example, a seller’s trading probability can either increase or decreases

with z (see our third example below for a first-order approximation approach).

We assume that both the quality distribution and location distribution follow power laws.

Specifically, let F (z) = 1−
(
z0
z

)α
with α > 1 and z ≥ z0 and let L(s) = 1−

(
s0
s

)β
where s ≥ s0

and β > 1. Since the mean of s must be 1, we have s0 = (β− 1)/β ∈ (0, 1). Furthermore, let

x(z) =
(
z0
z

)γ
where 0 < γ ≤ 1. A smaller γ implies that the probability that a buyer likes

the good declines less quickly in z, bringing us closer to the case of vertical quality. Note

that Ez = z = z0α/(α− 1) and Ezx(z) = z0α/(α− 1 + γ). We then consider the knife-edge

case where α = βγ or equivalently α(1− s0) = γ, since it yields analytical tractability.

Given that the assignment between sellers and locations is PAM at the planner’s solution,
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the correspondence between sellers and locations is(z0

z

)α
=
(s0

s

)β
which implies that

z∗(s) = z0

(
s

s0

)β/α
. (28)

The matching probability for a seller of type z is given by 1 − e−λx(z)s∗(z) = 1 − e−λs0 ,
which is constant across different sellers. Total expected surplus is then given by

Y (λ, α, s0) =
(
1− e−λs0

)
z. (29)

Since all sellers have the same trading probability, the expected total surplus is simply the

matching probability times the average quality.

3.3.3 Making Goods More Niche: A First-Order Approximation Approach

When all sellers are homogeneous, we show in Section 3.1 that making the goods more niche

(increase z and decrease x simultaneously so that zx(z) is constant) increases total surplus.

When sellers are heterogenous, making the goods more niche while fixing the distribution of

q = zx(z) again increases total surplus. If we increase z(q) by the same percentage for all q

and decrease the corresponding x by the same percentage, then, as we argued in the case of

homogeneous sellers, this has the same effect on total surplus as a corresponding percentage

change in the measure of sellers.

Recall that x(z) =
(
z0
z

)γ
. A more interesting exercise is to see how an increase of γ,

the elasticity of x(z), while holding the distribution of q constant increases total surplus.

In this case, the percentage increase in z (due to an increase in γ) is higher for a higher

fixed expected value q = zx(z). To see this, (with a slight abuse of notation) let z(q, γ) and

x(q, γ) be the value and trading probability associated with q and γ. Since zx(z) = q and

x(z) =
(
z0
z

)γ
, we have z(q, γ) = z0(q/z0)1/(1−γ) and x(q, γ) = (q/z0)−γ/(1−γ). The effect of a

higher γ on the percentage change of z(q, γ) is

∂ log z(q, γ)

∂γ
=

log(q/z0)

(1− γ)2
,

which is strictly increasing in q. Thus, the percentage increase in z(q, γ) (due to an increase

in γ) is higher for a higher fixed expected value q.

In the above two examples, γ equals 0 or α(1 − s0), respectively; an analytic expression
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for total surplus for general γ is difficult to obtain. We thus adopt a first-order approxi-

mation approach for the examples above to study the effects of increasing γ on surplus.14

Furthermore, we analyze how this effect depends on α, which measures the dispersion of

seller quality. Recall that in the two examples above, we assumed that the distribution of

z follows a power law, i.e. F (z) = 1 −
(
z0
z

)α
with α > 1 and z ≥ z0. In Appendix A.9 we

show that in both examples above, the effect is smaller when α is larger, that is when quality

dispersion is smaller.

4 Endogenous Distribution of Locations

We now consider the case where the distribution of locations is endogenous. To simplify

exposition, we focus on the matching between sellers and locations by assuming that the

measure of buyers is exogenously given. After all, conditional on the matching between sellers

and locations, buyer entry is always constrained efficient because second-price auctions are

used as trading mechanism.

4.1 The Planner’s Problem

The planner’s objective is to choose a distribution of locations L(s) to maximize total net

surplus, given the measure of buyers. Equivalently, we can assume that the planner allocates

a location space s(z) for each seller type, subject to the constraint that the total space is 1,

i.e., the circumference of the circle.15

The planner’s problem is thus given by

max
s(z)

Y =

∫ ∞
z0

z
(
1− e−λs(z)x(z)

)
dF (z), (30)

s.t.

∫ ∞
z0

s(z) dF (z) = 1. (31)

As in equation (2), the integrand in the first line is the surplus generated by a seller of type

z. Total expected surplus Y then follows by integrating across different seller types. The

constraint in the second line specifies that the total space (on the circle) allocated to the

sellers should add up to 1.

14We let γ be slightly above 0 and α(1− s0), respectively, for these examples, while holding other factors
fixed.

15As with homogeneous sellers, the planner will choose the same s for the same type of sellers (urn-ball is
optimal when sellers are homogeneous).
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The Lagrangian of this problem is

L =

∫ ∞
z0

z
(
1− e−λs(z)x(z)

)
dF (z) + ξλ

(
1−

∫ ∞
z0

s(z) dF (z)

)
,

where ξ is the modified multiplier (multiplied by λ). Let the planner’s solution be sp(z). For

each z, it must satisfy the first-order condition

zx(z)e−λx(z)sp(z) = ξ if ξ < zx(z), (32)

with complementary slackness (if zx(z) ≤ ξ, then sp(z) = 0). Since the objective function is

strictly concave in s(z) and the constraint is linear in s(z), the FOC is both necessary and

sufficient for the planner’s solution. Solving the FOC yields that for zx(z) ≥ ξ,

sp(z) =
1

λx(z)
(log zx(z)− log ξ) . (33)

Since zx(z) is increasing and x(z) is decreasing, it follows that sp(z) is increasing. In other

words, PAM between sellers and locations continues to hold.

Interestingly, the planner’s solution is equivalent to the outcome in a directed search

equilibrium (buyers observe the sellers’ locations and the terms of trade ex ante), where the

Lagrangian multiplier ξ corresponds to the market utility of buyers.

Special Cases. We consider two special cases where the planner’s solution can be solved

explicitly. First, we keep expected quality zx(z) is constant. By equation (32), when s(z) =

0, the marginal benefit of increasing s(z) is zx(z). Therefore, all sellers should be active

(s(z) > 0). Furthermore, the first-order condition (32) implies that x(z)sp(z) should be

constant across different seller types, which implies that sp(z) must be proportional to z.

Since the mean of s is 1, sp(z) is simply z divided by the mean of z. Even though all sellers

offer the same expected value, niche goods should be offered in a location with a higher s.

For future use, the following lemma summarizes the above results.

Lemma 4. Suppose that zx(z) is constant, i.e., zx(z) = z0x(z0) for all z ≥ z0. Then sp(z) =

z/z, where z =
∫∞
z0
zdF (z) and the optimal location distribution is given by L(s) = F (sz)

with s ≥ z0/z.

The second special case is x(z) = 1 for all z (pure vertical quality). In this case, the

first-order condition (33) becomes

λsp(z) = log z − log ξ. (34)
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The optimal si is linear in the log of zi. Below, we solve the planner’s problem explicitly by

assuming that F (z) is a power distribution with F (z) = 1 − (z0/z)α, where α > 1. In this

case, the planner may exclude low-type sellers from participation (i.e., set s(z) = 0). Let z1 be

the minimum type among all active sellers. If z1 > z0, then s(z) = 0 for z ≤ z1 and s(z) > 0

for z > z1. The type distribution of active sellers is then F1(z) = 1− (z1/z)α where z ≥ z1.

Let L1(s) be the location distribution among active sellers. The optimal distribution L1(s)

is then given by 1 − L1(s) = P(log z − log ξ ≥ λs) = P(z ≥ ξeλs) = ( z1
ξ

)αe−αλs = e−αλ(s−s0),

where s0 = sp(z1) = (log z1 − log ξ)/λ.

We now separately consider the two cases z1 = z0 and z1 > z0. First, when z1 = z0, all

sellers are active. Since the mean of s must be one, we have αλ = (1− s0)−1, i.e., set ρ = αλ

in the example in Section 3.3.1. Therefore, z1 = z0 if and only if αλ ≥ 1. Furthermore, the

buyers’ marginal contribution to surplus ξ is then determined by the condition: 1/(αλ) =

1− s0 = 1− (log z0 − log ξ)/λ, which implies that ξ = z0e
−(λ−1/α).

Second, when αλ < 1 or equivalently z1 > z0, we have z1 = ξ, and 1 − L1(s) = e−αλs.

Since now only a fraction (z0/z1)α of sellers are active, the unconditional distribution of

locations is 1− L(s) = 1− (z0/z1)α(1− L1(s)). Since the mean of L(s) must be 1, we have

(z0/z1)α = αλ and z1 = ξ = z0(αλ)−1/α.

4.2 The Decentralized Equilibrium

To make the equilibrium distribution of locations endogenous, we assume that sellers form a

coalition, as in a real estate investment trust (REIT). The coalition first chooses the seller-

optimal distribution of locations, i.e., the one that maximizes the expected total seller profit.

Then it charges competitive market rents which are redistributed back to the sellers in a

lump-sum way. The constraint remains that the total supply of arc length is fixed and equals

1. After the purchase of locations, sellers randomly meet with buyers and each product is

sold by a second-price auction.16

The competitive nature of the market for locations has two implications. First, it is

without loss of generality (by the first welfare theorem) to assume that—instead of the two-

stage process described above—the coalition chooses an arc length for each seller directly to

maximize the expected total seller profit, which will be the approach that we follow below.

Second, at the coalition’s optimal solution, the price of locations r(s) must be linear. To

see this, note that coalition optimality requires that the marginal values of arc length are

constant across different sellers. Since the marginal value of arc length should be equal to

the gradient of location price (see equation (7)), the competitive price of locations must be

16As in the benchmark model, we allow sellers to be initially endowed with some location. As before, this
will not affect the equilibrium outcome.
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linear in s (see the discussion around equation (38) below). Therefore, an equivalent way

of endogenizing the equilibrium location distribution is to allow sellers to buy and sell arc

lengths at a unit price in a competitive market, so the total price is linear. The equilibrium

unit price is such that the total demand of arc lengths equals the total supply.

Homogeneous Sellers. To understand the coalition’s problem, we first consider the special

case where all sellers are homogeneous. As we illustrate below, since the maximization

problem is not concave, we allow for the possibility that identical sellers have different s.

Suppose that the coalition assigns si to a fraction of `i sellers where i = 1, . . . , I, then the

coalition’s problem is

max
(si,`i)

I∑
i=1

`i · zP(λx(z)si)

s.t.
I∑
i=1

`isi = 1.

Recall that P(λ) denotes the probability that seller z meets two or more effective buyers,

as defined in equation (4). Since P(λ) is non-concave, the above problem is to maximize a

convex combination of a non-concave function under a linear constraint, which implies that

we need to find the concave hull of P(λ) (i.e., the least concave function that is greater than

it).

Since P(λ) has an S-shape, its derivative is first increasing and then decreasing. So, its

concave hull is given by

P̂(λ) =

 λ
Λ1
P(Λ1) if λ ≤ Λ1

P(λ) if λ ≥ Λ1.
(35)

That is, when λ ≤ Λ1, P̂(λ) is the line segment between point (0, 0) and (Λ1,P(Λ1)), and

when λ ≥ Λ1, P̂(λ) coincides with P(λ). The threshold Λ1 is determined by the condition

that at λ = Λ1, the slope of P(λ) equals the slope of the line segment, which implies that P̂(λ)

has a continuous, decreasing derivative. Formally, Λ1 solves P(Λ1)/Λ1 = P ′(Λ1) = Λ1e
−Λ1 ,

which is exactly Λ(−1) defined in Lemma 2 (see equation (22)) and its value is close to 1.8.

The coalition’s solution for the case of homogeneous sellers is then straightforward. If

λx(z) ≥ Λ1, then all sellers will have the same s. In contrast, if λx(z) < Λ1, then the

coalition will allocate a fraction of ` sellers to s1 = 0 (equivalent to excluding those sellers

from participation) and a fraction 1 − ` sellers to s2 = Λ1/(λx(z)) where ` is such that

(1 − `)s2 = 1. Therefore, the coalition’s solution coincides with the planner’s solution from
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the last subsection if and only if λx(z) ≥ Λ1.

Heterogeneous Sellers. We now consider the general case where sellers are heterogeneous.

To simplify exposition, we assume that F (z) is continuous. Suppose that the coalition op-

timally assigns arc length sc(z) to a seller of type z. The above result shows that for any

active seller, the coalition will set the effective queue length λx(z)sc(z) ≥ Λ1. Furthermore,

by Lemma 2, π(s, z) is strictly increasing in z since the effective queue length is always at

least Λ1 = Λ(−1), which implies that the coalition chooses a threshold ẑ below which s(z)

equals to zero. Of course, the coalition can set ẑ = z0, the lowest seller type, so that all

sellers are active in this case.

Furthermore, since sellers with z > ẑ have an effective queue length of at least Λ1, by

Lemma 2 we have πsz(s
c(z), z) > 0.17 Thus at the coalition’s solution, PAM between sellers

and locations always holds. That is, sc(z) is increasing in z.18

Formally, the coalition chooses s(z) for each seller type z to maximize total surplus:

max
s(z)

∫
z

zP̂(λx(z)s(z))dF (z) (36)

subject to the constraint (31), where P̂(·) is given by equation (35). The Lagrangian of this

problem is,

L =

∫
z

zP̂(λx(z)s(z))dF (z) + ζλ

(
1−

∫
z

s(z)dF (z)

)
where ζ is the modified multiplier (multiplied by λ). For each z, the optimal solution sc(z)

must satisfy the following first-order condition,

zx(z)P̂ ′(λx(z)sc(z)) = ζ if ζ ≤ zx(z)P ′(Λ1) (37)

with complementary slackness (if zx(z)P ′(Λ1) < ζ, then sc(z) = 0). Note that the above

first-order condition is both necessary and sufficient for the coalition’s solution.

Since P̂(λ) is first linear and then strictly concave, and zx(z) is (weakly increasing),

the coalition’s solution is characterized by a threshold ẑ below which sc(z) = 0. If ζ ≤
z0x(z0)P ′(Λ1), then ẑ = z0; if ζ > z0x(z0)P ′(Λ1), then ẑ is determined by the condition

ζ = ẑx(ẑ)P ′(Λ1) (in this case λx(ẑ)sc(ẑ) = Λ1). When z > ẑ, the above first-order condition

17Since the effective queue length is greater than 1, πsz(sc(z), z) > 0 irrespective of whether εx(z) ≥ −1/2.
18This is different from the case of exogenous location distribution, where PAM between locations and

sellers fails when the effective queue length for some sellers is small.
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becomes

ζ = zx(z)P̂ ′(λx(z)sc(z)) = zx(z)P ′(λx(z)sc(z)) = zx(z) · λx(z)sc(z)e−λx(z)sc(z). (38)

Comparing the above equation with (7) implies that the derivative of rental price r′(s) = ζ.

The rental price in the coalition’s solution is thus linear.

We now analyze under what condition the planner’s solution coincides with the coali-

tion’s solution. Since the planner’s problem is strictly concave, its solution sp(z) is always

continuous. As we showed above, the coalition’s problem is not concave, so that its solution

sc(z) can have a jump. To see this, recall that z0 is the lowest seller type. If z0 = 0 (or

sufficiently small), then at the planner’s solution there exists a threshold z′ such that the

optimal sp(z
′) = 0 and x(z)sp(z) then increase strictly and continuously for z > z′. At the

coalition’s solution, there exists a threshold z′′ such that λx(z′′)sc(z
′′) = Λ1 and x(z)sc(z)

increases strictly and continuously for z > z′′. In this case, the two solutions must differ.

Therefore, a necessary condition for the planner’s solution to coincide with the coalition’s

solution is that z0 is sufficiently large so that λx(z0)sp(z0) ≥ Λ1. Conditional on this, the two

solutions coincide if and only if the planner’ solution also satisfies the coalition’s first-order

condition (38). Comparing (38) with the planner’s first-order condition implies that the two

solutions coincide if and only if zx(z) is constant for all z ≥ z0. The following proposition

summarizes the above result.

Proposition 4. The planner’s solution coincides with the coalition’s solution (the decentral-

ized equilibrium outcome) if and only if zx(z) = z0x(z0) for all z ≥ z0 and λx(z0)z0/z ≥ Λ1,

where z is the mean of z ( z =
∫∞
z0
zdF (z)). Furthermore, in this case s(z) = z/z.

Proof. See Appendix A.10.

Suppose that the planner considers assigning additional ∆s to a certain seller z. This

increases surplus if and only if the seller meets no valuable buyers, in which case an additional

buyer creates an expected surplus zx(z). Since zx(z) is constant, at the planner’s optimum

the probability that sellers meet no valuable buyers must be the same across different sellers.

That is, the effective queue length λx(z)sp(z) is constant across sellers. The coalition faces

a different trade-off when considering to assign additional ∆s to a certain seller z. It creates

value for the seller if and only if the seller already meets with exactly one valuable buyer. In

that case, an additional buyer creates an expected surplus zx(z). In the special case that the

effective queue length is constant across sellers, the probability that the sellers meet exactly

one valuable buyer is also constant. Hence the marginal tradeoffs in terms of allocating arc

length to sellers (intensive margin) for the planner and the coalition are exactly the same.

However, the coalition would like to exclude some sellers from participation to take advantage
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of increasing returns to scale when the effective queue length is too small (we can think of

determining who is active or not as adjustments along the extensive margin). If the measure

of buyers is large enough, the coalition does not exclude sellers from the market. Then the

two solutions coincide.

Next, we compare the planner’s solution with the coalition’s solution for the case where

zx(z) is strictly increasing.

Proposition 5. Suppose that zx(z) is strictly increasing. Then there exists some z1 ≥ ẑ

such that sc(z) > sp(z) for z > z1, and sc(z) ≤ sp(z) for z < z1 (the latter “≤” holds as “=”

only when sp(z) = 0), where ẑ is the minimal type of active sellers in the coalition’s solution.

Proof. See Appendix A.11.

When zx(z) is strictly increasing, the planner will assign a longer effective queue length

to sellers with a higher z such that the marginal contribution to surplus of arc lengths is the

same across sellers. Consider two sellers a and b with za < zb. At the planner’s solution,

the marginal value of arc-lengths must be the same across the two values: zax(za)e
−λ̃p,a =

zbx(zb)e
−λ̃p,b , with effective queue lengths λ̃p,a = λx(za)sp(za) and λ̃p,b = λx(zb)sp(zb), which

implies that λ̃p,a < λ̃p,b. From the coalition’s point of view, the marginal value of arc length is

higher at seller b in the planner’s solution since zax(za)λ̃ae
−λ̃a < zbx(zb)λ̃be

−λ̃b , since λ̃b > λ̃a.

As a result, compared with the planner’s solution, the coalition assigns a longer arc length to

high-z sellers (more buyers has a relatively large effect on moving from one to two effective

buyers) and a shorter arc length to low-z sellers, while the total arc length is fixed.

Comparison with Directed Search. In our model, sellers can increase their trading

probability by investing in their queue length. This feature of our model is reminiscent of

directed search models. However, the equilibrium in our model is in general not efficient,

while directed search models of competing auctions are (see e.g. Albrecht et al., 2014). What

explains this difference? An important difference is that under spatial sorting, high-quality

sellers can attract more buyers by paying more for a good location but this extra payment

does not go to the buyers. In a directed search equilibrium, high-quality sellers can attract

more buyers by offering them a better deal. That is, they can transfer value directly to the

buyers. In the terminology of Cai et al. (2023), directed search allows sellers to buy queues in

a competitive market. The inefficiency in the spatial sorting equilibrium is driven by the fact

that sellers want to meet two or more buyers (if they meet only one buyer, all the surplus

goes to the buyer). If λ and or x are very small, most sellers either meet one or zero buyers

who like their product. Moving to a better spot increases the probability that a seller meets

with one rather than no buyer which creates social surplus but sellers are not willing to pay

for the better location because all the surplus goes to the buyers in this case. In contrast,
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when λx(z) is large, individual sellers are willing to pay for a better location to increase

the likelihood of meeting two or more buyers rather than one but from a social point this is

just rent-seeking and in the decentralized equilibrium there will be too much dispersion in

locations which generates too few matches.

5 Conclusion

In this paper, we developed a tractable random search model that takes into account that

some locations are better than others. We then use our framework to study what type

of sellers benefit from good locations and how this translates into spatial sorting. Having

heterogeneous regions leads to less trade but possibly to more quality-weighted trade. The

resulting equilibrium can be inefficient because of a rent seeking externality. When there are

few buyers per seller, sellers of general products benefit most from the good locations because

when two or more buyers arrive, they receive the full surplus while for a social planner, one

buyer who likes the product is enough and any additional buyer visit adds nothing to surplus.

For sellers of niche products, the good spots in this case, mainly increase the probability of

one buyer who likes their product but the probability of two effective buyer arrivals remains

close to zero.

We defined x to be the probability that a buyer likes the product but alternatively, we

can think of x as the probability that a credit-constrained buyer can afford the product.

Within cities, sellers of expensive high-quality products would still have incentives to move

to good locations. At those good locations, expensive niche products will be offered that the

poor cannot afford. In the other areas, more standard goods will be offered. The buyers and

sellers in other areas (with fewer buyers per seller) will trade more standard products (H&M,

McDonalds) but they can also benefit because those areas will be cheaper. The welfare effects

also depend on who receives the rents from the good locations, but we leave a more detailed

analysis of that for future research.

Another novel implication of our model is that both the aggregate meeting and matching

function, which maps the measures of buyers and sellers into respectively meetings and trades,

is ultimately driven by the distribution of product quality. Finally, we showed that when

the location distribution is endogeneous, the market outcome need not be efficient because

sometimes sellers invest too much in good locations in order to increase the likelihood of

multiple buyers which increases the price.
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Appendix A Additional Results and Omitted Proofs

A.1 Finite foundations for continuous L(s)

A.1.1 L(s) is an exponential distribution.

In this case, sellers are independently and uniformly allocated on the circle. Consider a

particular seller i. The arc distance between seller i and any other seller is then a uniform

distribution on [0, 1]. Therefore, di is the minimum of Ns − 1 independent random variables

which all follow U [0, 1], which implies that P(di ≤ d) = 1 − (1 − d)Ns−1 and thus P(diNs ≤
s) = 1 − (1 − s/Ns)

Ns−1. Since limNs→∞ 1 − (1 − s/Ns)
Ns−1 = 1 − e−s, as the market gets

large, L(s) = 1− e−s.

A.1.2 L(s) is an arbitrary distribution.

Given any distribution L(s) with mean 1, we now construct a model which determines di

for each seller as follows. Sellers first independently draw a random variable D from the

distribution L(·). Set di = Di/
∑Ns

j=1Dj. Next, let the market get large and derive the limit

distribution of Nsdi:

Nsdi = Ns ·
Di∑Ns
j=1 Dj

=
Di

1
Ns

(
∑Ns

j=1Dj)
→ Di

By the law of large numbers, the denominator approaches 1, the mean of L. Hence Nsdi

approaches the distribution of Di, which is L(·).

A.2 Proof of Equation 12

Since Pn(λ) is given by equation (10), we have

1−
∞∑
n=0

Pn(λ)(1− x)n = 1−
∞∑
n=0

(∫
s

e−λs
(λs)n

n!
dL(s)

)
(1− x)n

= 1−
∫
s

(
∞∑
n=0

e−λs
(λs)n(1− x)n

n!

)
dL(s) = 1−

∫
s

e−λxs dL(s) =

∫
s

1− e−λxs dL(s)

where for the first equality in the second row, we interchanged summation and integration,

and the second equality follows from the fact that the Poisson probabilities sum up to 1. The

last term on the right-hand side is exactly m(λx) by definition.
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A.3 Proof of Theorem 1

By equation (15), we have

Y (λ) =

∫
s

z
(
1− e−λsx(z)

)
dL(s) ≤ z

(
1− e−λx(z)

∫
s sdL(s)

)
= z

(
1− e−λx(z)

)
where for the inequality we used Jensen’s inequality, and the second equality follows from

the fact that the mean of s is always 1. The inequality holds with equality if and only if L(s)

is degenerate. The last term on the right-hand side is exactly the total surplus generated by

the urn-ball meeting technology.

A.4 Proof of Theorem 2

Invariance implies (18). For the first part of the proof, consider an invariant meeting

technology defined by the condition that {P0(λ), P0(λ), . . . } satisfies equation (12). As we

argued before Theorem 2, m(λ) is a Bernstein function. By Bernstein’s theorem, the function

m(λ) has the following Lévy-Khintchine representation:

m(λ) = a1 + a2λ+

∫
(0,∞)

(
1− e−λs

)
dL(s),

where a1, a2 ≥ 0 and L is a measure on (0,∞) satisfying
∫

(0,∞)
min{1, t} dL(s) < ∞ (see

Theorem 3.2 of Schilling et al., 2012).

Since m(0) = 0, it follows that a1 = 0. Moreover, since m(λ) is bounded from above by 1,

a2 must equal 0 as well. Further, if λ→∞, we have 1−e−λs ↗ 1 for any t > 0, and therefore

m (λ) →
∫

(0,∞)
1 dL(s) by the monotone convergence theorem. Since m(λ) cannot exceed 1,

the total measure of L(·) must be less or equal to 1:
∫

(0,∞)
1 dL(s) ≤ 1. If the total measure

is strictly less than 1, without loss of generality we can assign measure 1−
∫

(0,∞)
1 dL(s) on

point s = 0. Therefore, it is without loss of generality to assume that L(·) is a probability

measure on [0,∞).

Next, the probability that a worker meets a firm is m(λ)/λ =
∫∞

0

(
1− e−λs

)
/λ dL(s),

which cannot exceed 1 for any λ ≥ 0. One can easily verify that when λ ↘ 0, we have(
1− e−λs

)
/λ ↗ s. Therefore, limλ→0m(λ)/λ =

∫∞
0
s dL(s) by the monotone convergence

theorem. Hence, L(·) must satisfy
∫∞

0
s dL(s) ≤ 1.

(18) implies invariance. For the second part of the proof, assume that m(λ) is given

by equation (18) where L is a probability measure on [0,∞) satisfying
∫

[0,∞)
sdL(s) ≤ 1.

Since this corresponds to our meeting process on the circle, the resulting meeting technology

is invariant (see equation (12)) and Pn(λ) is given by equation (10).
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A.5 Proof of Lemma 1

Since S(s, z) is given by equation (2), we have

∂S(s, z)

∂s
= zx(z)λe−λsx(z) > 0

Similarly,

∂S(s, z)

∂z
= e−λsx(z)

(
λszx′(z)− 1 + eλsx(z)

)
> e−λsx(z) (λszx′(z)− 1 + 1 + λsx(z))

= e−λsx(z)λsx(z)

(
zx′(z)

x(z)
+ 1

)
≥ 0

where for the last inequality we used the fact that zx(z) is weakly increasing. Furthermore,

∂2S(s, z)

∂s∂z
= λeλ(−s)x(z)

(
1 +

zx′(z)

x(z)
− zx′(z)

x(z)
λsx(z)

)
≥ λeλ(−s)x(z)

(
−zx

′(z)

x(z)
λsx(z)

)
≥ 0

where for the first inequality we used the fact that zx(z) is weakly increasing and for the

second inequality that x(z) is weakly decreasing. Apparently, the two weak inequalities can

not hold with equality at the same time, which implies that S(s, z) is strictly supermodular.

A.6 Proof of Lemma 2

Note that π(s, z) is given by equation (3). We have

∂π(s, z)

∂s
= λ2szx(z)2e−λsx(z) > 0

Similarly,

∂π(s, z)

∂z
= eλ(−s)x(z)

(
eλsx(z) − 1− λsx(z) + (λsx(z))2 εx(z)

)
where εx(z) = zx′(z)/x(z) ∈ [−1, 0]. The above equation is positive if and only if

eλsx(z) − 1− λsx(z)

(λsx(z))2 > −εx(z)

Define λ̃ = λsx(z) (the effective queue length). Then the derivative of the left-hand side

with respect to λ̃ is given by (2 + λ̃ + eλ̃(λ̃ − 2))/λ̃3. Note that 2 + λ̃ + eλ̃(λ̃ − 2) is a

convex function whose second-order derivative is eλ̃λ̃ and its derivative at λ̃ = 0 equals zero.
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Therefore, 2 + λ̃+ eλ̃(λ̃− 2) > 0 and the left-hand side is strictly increasing in λ̃. Therefore,

for each given εx(z), there exists a threshold Λ(εx(z)) such that πz(s, z) > 0 if and only

if λx(z)s > Λ(εx(z)). The threshold Λ(εx(z)) is such that the above inequality holds with

equality, i.e., it is the solution to (22).

Next, we have

∂2π(s, z)

∂s∂z
= λ2sx(z)2eλ(−s)x(z) (1 + (2− λx(z)s) εx(z)) (39)

Since εx(z) ≤ 0, the above is strictly positive if εx(z) ≥ −1/2. If εx(z) ∈ [−1,−1/2), then

the above is strictly positive if and only if λx(z)s > 2 + 1/εx(z).

A.7 Proof of Lemma 3

Since Y (λ, α, s0) is given by equation (24),

∂Y (λ, α, s0)

∂α
= z

−(1− s0)λe−λs0

((α− 1) + αλ(1− s0))2 < 0,

where s0 < 1. Note that in the above analysis, we change the quality distribution while

holding fixed the mean quality z and the measure of buyers.

Similarly, we have

∂Y (λ, α, s0)

∂s0

= z
(α− 1)λe−λs0

((α− 1) + αλ(1− s0))2 ((1− s0)αλ− 1) .

The sign of ∂Y (λ, α, s0)/∂s0 is thus completely determined by the term (1−s0)αλ−1. When

αλ ≤ 1, total surplus is maximal at s0 = 0. When αλ > 1, then total output is maximal at

s0 = 1− 1/(αλ).

A.8 Proof of Proposition 3

When s0 = 1, as we argued before Proposition 3, Π1(z) = z(1 − e−λ1 − λ1e
−λ1) where λ1 =

log(z/K). Plugging z = z0α/(α − 1) and z0 = K = 1 into Π1(z) then yields equation (27).

Since α > 1, the slope of Π1(z) is strictly smaller than 1.

Next, consider the case s0 = 0. First, we calculate the price of locations explicitly.19

19When s0 ∈ (0, 1), r(s) can also be calculated explicitly with a more complicated expression.
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Plugging z∗(s) from equation (23) into equation (7) yields,

r′0(s) = z0λ
2
0se
−s(λ0−1/α).

where the subscript 0 denotes the case s0 = 0. Solving the above differential equation yields:

r0(s) = z0

(
1 +

1

α(λ0 − 1
α

)

)2(
1− e−s(λ0−

1
α

) − s(λ0 −
1

α
)e−s(λ0−

1
α

)

)
where λ0 − 1

α
=
√

z0
K
− 1. The average location price is given by

R0 =

∫ ∞
0

r0(s) d(1− e−s) = z0

(
αλ0

αλ+ α− 1

)2

= K

(√
z0

K
− α− 1

α

)2

,

Since we assume that K = z0 = 1, the above two equations imply r(s) = s2/(2α2) and

R0 = 1/α2. By equation (23), we have s∗(z) = α log(z). Plugging s∗(z), r0(s∗(z)) and R0

into equation (9) then yields Π0(z) in equation (26).

Since Π0(z) is given by equation (26), we have Π′0(z) = z−log z−1
z

. When z →∞, Π′0(z)→
1. Furthermore, Π′′0(z) = log z/z2 > 0 since z > z0 = 1; hence Π0(z) is strictly convex.

Define ∆Π(z) = Π0(z)−Π1(z). Since Π0(z) is strictly convex and Π1(z) is linear, ∆Π(z)

is strictly convex. When z = 1, Π0(1) = 1/α2 and Π1(1) = 1
α

+
(
1− 1

α

)
log
(
1− 1

α

)
, which

implies that ∆Π(1) =
(
1− 1

α

) [
− log

(
1− 1

α

)
− 1

α

]
> 0 since − log(1− x) > x for x ∈ (0, 1).

When z is sufficiently large, ∆Π(z)→∞ since limz→∞Π′0(z) = 1, and Π1(z) is linear with a

slope strictly smaller than 1, .

Next, consider the derivative of ∆Π(z):

∆Π′(z) =
z − log z − 1

z
−
(

1

α
+

(
1− 1

α

)
log

(
1− 1

α

))
, (40)

where the second term on the right-hand side is Π′1(z). When z = 1, ∆Π′(1) = −Π′1(z) < 0.

Hence there exists some zm > 1 such that ∆Π′(zm) = 0 or equivalently ∆Π(zm) reaches its

minimum at zm. ∆Π(z) > 0 for all z if and only if ∆Π(zm) > 0. Since ∆Π′(zm) = 0,

∆Π(zm) = Π0(zm)− zm
zm − log zm − 1

zm
=

1

α2
− (log zm)2

2

which implies that ∆Π(zm) > 0 if and only if zm < e
√

2/α, which is the case if and only if
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∆Π′(e
√

2/α) > 0. By equation (40),

∆Π′(e
√

2/α) = T (α) ≡ 1−

(√
2

α
+ 1

)
e−
√

2/α −
(

1

α
+

(
1− 1

α

)
log

(
1− 1

α

))
,

When α = 1, the value of T (α) defined in the above equation is strictly negative, and when

α→∞, T (α)→ 0. Note that the derivative of T (α) is given by

T ′(α) =
−2e−

√
2
α − α log

(
1− 1

α

)
α3

.

The numerator above is strictly convex since its second-order derivative is given by
4(
√

2α−1)e−
√

2
α

α4 +
1

(α−1)2α
, which is strictly positive since α > 1. When α = 1, the numerator is strictly positive;

when α→∞, the numerator is strictly negative (the limit equals −1). Since the numerator

is strictly convex, T ′(α) is first positive and then negative, which implies that T (α) is first

increasing and then decreasing. Since its limit is zero, its maximum is strictly positive. Since

at z = 1 its value is strictly negative, thus there exists a unique α∗ such that T (α∗) = 0; when

α > α∗, T (α) first increases and then decreases (with a limit equal zero). Thus T (α) > 0 if

and only if α > α∗. Numerical results suggest that α∗ is approximately 1.9.

A.9 Derivations for Section 3.3.3

As in the case of homogeneous sellers, we can analyze the effect of making goods more niche.

To do so, we again increase z and simultaneously reduce x(z), keeping the distribution G(q) of

expected buyer value q = zx(z) fixed. Because we fix the distribution of q, the correspondence

between sellers and locations does not depend on γ and can thus be denoted by q∗(s), which

is given by a variant of equation (19), i.e., 1−G(q∗(s)) = 1− L(s).

Let γ∗ = 0 for the first example, and γ∗ = α/β for the second example; then the first-order

approximation of equation (20) is

Y (λ, γ∗ + ∆γ) ≈ Y (λ, γ∗) +

∫
s

q∗(s)
1− e−λsx∗(s) − λsx∗(s)e−λsx∗(s)

(x∗(s))2
∆x∗(s) dL(s), (41)

where ∆x∗(s) = x(q∗(s), γ∗ + ∆γ)− x(q∗(s), γ∗). Given x(q, γ) = (q/z0)−γ/(1−γ), we have

∆x∗(s) = − 1

(1− γ∗)2

(
z0

q

) γ∗
1−γ∗

log

(
q

z0

)
∆γ. (42)

First-order approximation for Example 1. We now consider a first-order approxi-

mation around γ = 0 for Example 1 above. To simplify the analysis we set s0 = 0, so
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L(s) = 1 − e−s. Furthermore, we fix the distribution of expected buyer value (q = zx(z)):

G(q) = 1−
(
z0
q

)α
with α > 1 and q ≥ z0. By equation (23), the assignment between sellers

and locations is then q∗(s) = z0e
s/α, which, by equation (42), implies that ∆x∗(s) ≈ s/α ·∆γ.

The first-order approximation in (41) then becomes

Y (λ,∆γ) = z
αλ

αλ+ α− 1
+ z

α2λ2(αλ+ 3(α− 1))

(α− 1)(αλ+ α− 1)3
∆γ,

where z = z0α/(α − 1), and the first term on the right-hand side corresponds to Y in

equation (24) with s0 = 0. Note that we have included ∆γ as an argument of Y to emphasize

its dependence on γ. By the above equation, the percentage increase in Y is then given by

∂ log Y (λ, γ)

∂γ

∣∣
γ=0

=
αλ(αλ+ 3(α− 1))

(α− 1)(αλ+ α− 1)2
, (43)

which is strictly positive since α > 1. Note that the above equation is strictly decreasing

in α.20 Recall that a higher γ leads to a higher percentage change of z(q) for a higher q.

Therefore, the effect of γ on total surplus is stronger when α is smaller (when the quality

distribution G(q) is more dispersed). When the quality distribution is concentrated at z0

(α→∞), equation (43) converges to zero, since x(z0) is always 1 for any γ.

First-order approximation for Example 2. At γ∗ = α/β, the distribution of the ex-

pected buyer value q = zx(z) is given by 1−G(q) = P(zx(z) ≥ q) = P(z/z0 ≥ (q/z0)1/(1−γ∗),

which implies that G(q) = 1 − (z0/q)
α/(1−γ∗). Furthermore, by equation (28), we have

q∗(s) = z0( s
s0

)
1−γ
γ and x∗(s) = (q∗(s)/z0)−γ/(1−γ) = s0/s.

We now fix G(q) and increase γ from γ∗ to γ∗ + ∆γ. Since q∗(s) = z0( s
s0

)
1−γ
γ , by equa-

tion (42) we have

∆x∗(s) = −
s0 log( s

s0
)

sγ∗(1− γ∗)
∆γ

which implies that the percentage reduction ∆x∗(s)/x∗(s) = −∆γ · log( s
s0

)/γ∗(1−γ∗), which

is higher for sellers with higher quality.

20To see this, note that the derivative of (43) with respect to α is given by

− ∆γλ3

(α− 1)2(αλ+ α− 1)3
−

∆γλ
(
(α− 1)2(λ+ 1)(λ+ 3) + (α− 1)(3λ2 + 7λ+ 6) + 3λ(λ+ 1)

)
(α− 1)(αλ+ α− 1)3

which is strictly negative since α > 1.
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Plugging the above expression of ∆x∗(s) into (41) yields

Y (λ, γ∗ + ∆γ) ≈
(
1− e−λs0

)
z +

z
(
1− e−λs0 − λs0e

−λs0
)

(1− γ∗)(α− 1)
∆γ

Again, increasing γ while holding the distribution of q constant increases the expected total

surplus. The effect is smaller when α is higher.

A.10 Proof of Proposition 4

As we argued before Proposition 4, a necessary condition for the planner’s solution to coincide

with the coalition’s solution is that λx(z0)sp(z0) > Λ1. Furthermore, since sp(z) needs to also

satisfy equation (38), comparing (38) with the planner’s FOC (32) shows that zx(z) needs

to be constant for z ≥ z0. If the above two necessary conditions are satisfied, they are also

sufficient since the first-order conditions are not only necessary but also sufficient. Finally,

by Lemma 4 we have sp(z) = z/z, which is also the coalition’s solution sc(z).

A.11 Proof of Proposition 5

The planner’s solution sp(z) is a continuously increasing function which is determined by

the first-order condition (32): Fp(s, z) = ξ, where Fp(s, z) = zx(z)e−λx(z)s. The coalition’s

solution sc(z) has one possible jump point ẑ below which sc(z) is zero and above which sc(z)

is continuously increasing with λx(z)sc(z) ≥ Λ1 and it is given by the coalition’s first-order

condition (38): F c(s, z) = ζ, where F c(s, z) = zx(z)λx(z)se−λx(z)s. Of course, it may be the

case that ẑ does not exist in which case we set ẑ to be z0.

Next, we show that the level curves of Fp(s, z) and F c(s, z) satisfy the single-crossing

property.

−∂F
c(s, z)/∂z

∂F c(s, z)/∂s
−
(
−∂F

p(s, z)/∂z

∂Fp(s, z)/∂s

)
=

1 + εx(z)

λzx(z) (λx(z)s− 1)

where εx(z) = zx′(z)/x(z) > −1 (we assume that zx(z) is strictly increasing). Since at the

coalition’s interior solution, λx(z)s ≥ Λ1 > 1, the above equation is always strictly positive.

If ẑ = z0, then sc(z) is continuous for z ≥ z0. Since 1 =
∫
z
sp(z)dF (z) =

∫
z
sc(z)dF (z),

by continuity there exists some z1 > z0 such that sp(z1) = sc(z1), denote which by s1. As

we showed above, the level curve Fp(s, z) = Fp(s1, z1) crosses the level curve F c(s, z) =

F c(s1, z1) once and from below. Thus sc(z) > sp(z) for z > z1 and sc(z) < sp(z) for z < z1.

Next, suppose that ẑ > z0. If sc(ẑ) ≥ sp(ẑ), then sc(z) > sp(z) for all z > ẑ, otherwise

the level curve F c(s, z) = ζ must cross the level curve Fp(s, z) = ξ from above at some

point. If sc(ẑ) < sp(ẑ), by continuity there exists some z1 > ẑ such that sp(z1) = sc(z1) since
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1 =
∫
z≥ẑ sc(z)dF (z) ≥

∫
z≥ẑ sp(z)dF (z). Again by the single-crossing property, sc(z) > sp(z)

for z > z1 and sc(z) < sp(z) for ẑ ≤ z < z1. When z < ẑ, sc(z) = 0 so that sc(z) ≤ sp(z)

continuous to hold, and in this case sc(z) = sp(z) if and only if sp(z) = 0.
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