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CESifo Working Paper No. 10991 

Systemic Risk in Banking, Fire Sales, and 
Macroeconomic Disasters 

Abstract 

We develop a dynamic computational network model of the banking system where fire sales 
provide the amplification mechanism of financial shocks. Each period a finite number of banks 
offers a large, but finite, number of loans to households. Banks with excess liquidity also offer 
loans to other banks with insufficient liquidity. Thus, each period an interbank loan market is 
endogenously formed. Bank assets are hit by idiosyncratic shocks drawn from a thin tailed 
distribution. The uneven distribution of shocks across banks implies that each period there are 
banks that become insolvent. If insolvent banks happen also to be heavily indebted to other banks, 
their liquidation can trigger other bank failures. We find that the distribution across time of the 
growth rate of banking assets has a ‘fat left tail’ that corresponds to rare economic disasters. We 
also find that the distribution of initial shocks is not a perfect predictor of economic activity; that 
is some of the uncertainty is endogenous and related to the structure of the interbank network. 
JEL-Codes: E440, G010, G210. 
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“Because of fire sales, risk becomes systemic.” (Shleifer and Vishny, 2011)

1 Introduction

A common feature of the Great Depression of the 1930s and the more recent Great
Recession has been the great number of bank insolvencies. Since its establishment in
1933, the Federal Deposit Insurance Corporation has been keeping a record of all bank
failures in the U.S. banking system. Figure 1 shows that both macroeconomic disasters
were associated with deep banking crises.1,2

Figure 1. US bank failures, annual 1934-2019 [Source: Board of Governors of the
Federal Reserve System]

The recent empirical study by Schularick and Taylor (2012) suggests that there is a
causal link that accounts for this association. They find that the level of aggregate credit
in the economy is, in general, a good predictor of macroeconomic performance and, in
particular, of rare macroeconomic disasters.3 Figure 2 shows the time series of total
business loans offered by US commercial banks, along with the NBER recession dates. It
is clear that economic downturns are associated with a decline in the provision of business
loans.

1Figure 1 does not account for the large number of bank failures that took place since the onset of
the Great Depression but prior to the establishment of the Federal Reserve System in 1933.

2Figure 1 also accounts for the large number of failures during the 1980s Savings and Loans Crisis.
Given that those institutions were exclusively specialized in mortgages the crisis did not have a strong
impact on the macroeconomy.

3See, also, Giglio et al. (2016) for empirical evidence on the impact of systemic risk in financial
markets on macroeconomic variables.
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Figure 2. Total US commercial and industrial bank loans, and NBER recession dates
(shaded), monthly 1973M1-2022M12 [Source: Board of Governors of the Federal

Reserve System]

Under the supposition that the portfolio of assets of the banking system is well diver-
sified, the challenge is to identify how shocks on those assets are amplified to eventually
have such a detrimental effect on aggregate economic activity.

There are good reasons to believe that the amplification of shocks takes place within
the banking system. There is a fast growing literature that applies network theory to
the study of systemic risk in financial systems.4 Banks are interlinked through a complex
web of financial contracts such that during periods of distress the inability of one bank to
meet its obligations to other banks can cause a cascade of failures. But, as Cifuentes et al.
(2005) have demonstrated, the cascades on their own cannot amplify the original shocks.
Cascades affect the distribution of aggregate losses but not their size. However, when
liquidations also force failed banks to sell their assets at ‘fire sales’ prices then the original
shocks can be amplified. There is a lot of evidence that fire sales played a prominent
role during both the Great Depression and the Great Recession. For example, Mitchener
and Richardson (2019) provide evidence that demonstrates how fire sales amplified shocks
within the interbank network during the Great Depression. The impact of fire sales during
the Great Recession have been documented by Adrian and Shin (2010), Brunnermeier
(2009), Gorton and Metrick (2012) and Shleifer and Vishny (2011).

In this paper, we develop a dynamic model of the banking system where fire sales
provide the amplification mechanism of financial shocks. Each period a finite number
of banks offers a large, but finite, number of business loans. Firms approach banks
sequentially and choose banks randomly. Banks with excess liquidity also offer loans to
other banks with insufficient liquidity. Thus, each period an interbank loan market is

4See, for example, the reviews by Acemoglu et al. (2017b), Allen and Babus (2009), Bougheas and
Kirman (2015), Jackson and Pernoud (2021), and Glasserman and Young (2016).
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endogenously formed. Each period bank assets are hit by idiosyncratic shocks and given
the large number of assets and periods these aggregate shocks are normally distributed
across time. The uneven distribution of shocks across banks implies that each period
there are banks that suffer losses. When losses exceed their equity banks are liquidated.
If insolvent banks happen also to be heavily indebted to other banks, their liquidation
can trigger other bank failures. The assets of the banking system are proportional to the
level of aggregate credit in the economy which, in turn, is a proxy for aggregate economic
activity.

We begin by analyzing a simple version of the model without fire sales. We show that
this benchmark case behaves like a frictionless Real Business Cycle model where devia-
tions of the growth rate of aggregate economic activity from its trend are asymptotically
normally distributed. Thus, this final distribution replicates the distribution of initial
aggregate shocks. In this simple version, each period the structure of the interbank net-
work determines only the number of bank failures but shocks are not amplified. Then, we
introduce fire sales that amplify shocks and as a result the new distribution has a fat left
tail. The amplification is caused by the interaction of fire sales with network effects. As
the number of bank insolvencies increase, asset values drop leading to more insolvencies
and forcing further liquidations.

Thus, our model predicts an asymmetry between booms and busts that was first
studied and empirically verified by Acemoglu and Scott (1997). The tail behaviour of
post-war US real GDP per capita growth can be seen in Figure 3, which provides a
quantile-quantile (Q-Q) plot of the growth quantiles against those from a standard normal
distribution. On comparison with the reference line in Figure 3, which plots the quantiles
of a normal distribution with mean and variance calibrated to that of the growth data,
non-normality in the growth rates is apparent, with clear evidence of a fat left tail.

Figure 3. Q-Q plots: · · · US real GDP per capita growth, quarterly 1947Q2-2022Q4 [Source:
Board of Governors of the Federal Reserve System]; Normal distribution with mean and variance

calibrated to growth data
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There is a long line of research that exploits variants of the New Keynesian DSGE
framework to demonstrate how financial frictions can account for both the persistence
of economic shocks and their amplification.5 However, there is a fundamental difference
between the DSGE approach and ours. In the traditional DSGE models there is a one-
to-one relationship between the magnitude of the initial shocks and the final impact
of aggregate economic activity. Put differently, any information related to some early
economic disturbance can be useful in predicting the future state of the economy. In
contrast, such information would be a much weaker predictor in network models like the
present one where shocks are amplified as they are transmitted along complex network
paths. Some of the uncertainty in these network models is endogenous and directly related
to the complexity of the structure of the network.

In the penultimate section of the paper we investigate the relationship between this
inherent unpredictability implied by our model and the fat left tail in the growth rate
distribution. The driving force of our amplification mechanism is directly related to the
relationship between the distribution of idiosyncratic shocks across the banking system
and the structure of the interbank network. We begin by showing that the fat left
tail in the growth rate distribution is matched by a fat right tail in the distribution
of total bankruptcies. Then, we show that even without fire sales the number of total
bankruptcies is higher than the number of initial bankruptcies caused by the initial shocks.
The additional bankruptcies are caused by the interconnectedness of the banking system
through the interbank market. When we add fire sales in the model there is a significant
increase in additional bankruptcies caused by the above mentioned interaction between
fire sales and network effects.

Having shown that when boosted by fire sales the distribution of bank insolvencies
has characteristics that match those of the distribution of the growth rate of economic
activity, our next step is to understand the exact mechanism by which shocks are amplified
and generate the fat left tail. Thus, we concentrate on those periods where the growth
rate falls within the 10% left tail of the growth distribution. We have identified two
dominant patterns. In a large number of cases, the majority of the bankruptcies were
purely caused by a large number of negative initial shocks across banks. In the other
cases there were a large number of additional bankruptcies due to contagion caused by
network effects. Taking a closer look at those cases we find that almost all these banks
that became insolvent due to network effects had offered loans to the two banks hit by
the most severe shocks.

The above results are very intuitive. Macroeconomic disasters happen either when a
large number of banks are hit by negative shocks or when the banks that fail are heavily
indebted to other banks, thus causing a cascade of bank failures. The total number of
bank failures is further exaggerated by the trigger of fire sales that depress the value of
banking assets leading to new rounds of bank failures. The decline in the value of bank
assets will limit the ability of the banking system to offer new loans in later periods.
Therefore, it is possible that the overall economy is in a relatively good state but a few
banks suffer losses and these are also banks with large financial obligations to the rest of
the banking system (‘too big to fail’). In this scenario it would be impossible to predict
the ensuing macroeconomic downturn from the initial state of the economy.

5See Brunnrmeier et al. (2013) for a comprehensive review of the relevant literature.
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1.1 Related Literature

A fast growing number of studies investigate the microeconomic foundations of macroeco-
nomic fluctuations.6 Their objective is to identify the mechanism by which idiosyncratic
shocks in large economies get amplified producing the observed booms and busts at the
aggregate level. A large branch of this literature considers the cause of the amplification
mechanism to be feedback effects arising from shocks that travel along network links.

One group of papers focuses on production networks with the majority of papers
analyzing the distribution of shocks across input-output connections. Theoretical contri-
butions include Acemoglu et al. (2012, 2017a), Anthonisen (2016), Baqaee (2018), Baqaee
and Farhi (2019), Bigio and La’O (2020), Nirei (2006) and Taschereau-Dumouchel (2020)
while empirical evidence is provided by Acemoglu et al. (2016) and Carvalho et al.
(2021).7 A small group of papers study the impact of financial frictions on production
networks. In Bigio and La’O (2016) firms face a pledgeability constraint that limits their
ability to finance inputs. In Altinoglu (2021) and Battiston et al. (2007) firms are linked
through trade credit finance.

Our work belongs to an alternative research program that views financial networks
as the place where shocks get amplified. In our model fat tails are caused by fire sales
that amplify shocks in the interbank market, thus boosting the number of bank failures
which, in turn, lead to the collapse of aggregate credit. The literature on systemic risk
in financial networks is vast and above we referred the reader to some comprehensive
reviews. Here, we focus on these works that go beyond the study of contagion, that is the
transmission of shocks from one bank to another, to also look at the mechanism by which
the shocks are amplified causing the fat tails in the distribution of macro aggregates.

More closely related to our work is a group of papers that explore how the structure
of the financial network determines the degree by which fire sales amplify initial shocks.
Cifuentes et al. (2005) use simulations to show that the total systemic losses depend, in
addition to the structure of the interbank network, on the size of the initial shock, the
elasticity of the demand for liquidity and the liquidity of the banking system as a whole.8

The overall liquidity of the banking system also plays a crucial role in the theoretical work
of Caballero and Simsek (2013). They study the equilibrium determination of liquidation
prices in a network of banks located on a circle with each bank being uncertain about
its exact position on the network. In Gai et al. (2011), the degree of concentration
and the overall complexity of the financial system are important indicators for predicting
systemic risk. Gai and Kapadia (2010) derive analytical solutions from an interbank
network model where they allow for both idiosyncratic and aggregate shocks. They reach
a similar conclusion to our work, namely, that various indistinguishable initial shocks can
have drastically different aggregate consequences. Where we diverge from these studies
is that our banking network is endogenously formed and shocks in our model inflict
individual assets rather than having an aggregate impact on a bank’s balance sheet.9

Our paper also contributes to the branch of the macroeconomic literature that views

6Gabaix (2011) is an early and inluential paper and Acemoglu et al. (2017a) offers an extensive review
of the literature.

7For an early survey of related work, see Carvalho (2014).
8Cecchetti et al. (2016) extend Cifuentes et al. (2005) by considering the resilience of altrenative

network topologies and by allowing for multiple illiquid assets.
9See, also, Gurgone et al. (2018) and Van der Hoog and Dawid (2019) who develop full scale agent-

based macro models where shocks are amplified through the interactions between banks, embedded in
an interbank network, and their clients.
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financial market frictions as the main engine behind the amplification of shocks.10 The
majority of work in this area is carried out within the DSGE framework. Initially, the
literature focused on the persistence of shocks but the financial accelerator in Bernanke et
al. (1999) provided the original amplification mechanism. There have been some doubts
about whether financial frictions in these models can generate sufficiently strong effects at
the aggregate level (Ascari et al., 2015; Cordoba and Ripoli, 2004; Kocherlacota, 2000),
however, such concerns have been put to rest by a number of studies (Brunnermeier
and Sannikov, 2014; Cúrdia et al., 2014, He and Krishnamurthy, 2012; Mendoza, 2010;
Quadrini, 2011). Nevertheless, there are some fundamental differences between the DSGE
and the network approaches to the study of macroeconomic fluctuations. In DSGE models
shocks are amplified by frictions affecting either firm or household balance sheets, while
in networks the amplification is generated within the financial system. We have argued
that at least for the Great Depression and the Great Recession the latter approach is
more plausible. But the two lines of research also reach drastically different conclusions
about the predictability of initial shocks for subsequent macroeconomic performance.
One objective of the present study is to clarify why this is the case.

Lastly, our work is also related to the financial economics literature that examines the
macroeconomic impact of fire sales resulting from a drastic drop in aggregate liquidity.11

Shleifer and Vishny (2011) provide a broad overview of the literature on fire sales but
here we concentrate on those works related to the macroeconomy. The majority of this
literature focuses on collapses in the values of corporate assets. For example, Kiyotaki and
Moore (1997), in a dynamic general equilibrium model, show how feedback effects from
changes in the prices of asset values (and, thus, collateral values) affect the ability of firms
to raise new capital, which can in turn give rise to endogenous cycles. Brunnermeier and
Sannikov (2014) analyze a quantitative DSGE model with financial frictions and show
that fire sales of assets can produce the wide fluctuations associated with fat tails in the
distribution of macroeconomic aggregates. Gale and Gottardi (2015) study, in a general
equilibrium model, the trade-off between the tax advantages of debt and the costs of
bankruptcy when firms sell their assets at fire sales prices. Lastly, Lorenzoni (2008)
demonstrates that the aggregate level of borrowing in the economy can be inefficient
when firms ignore the effect of fire sales on other firms. There is also a branch of this
literature that studies the collapse in the values of banking assets. For example, Diamond
and Rajan (2005) show how liquidity shortages and solvency problems interact leading to
contagion across the banking system. In Diamond and Rajan (2011) feedback effects are
bi-directional. As in the rest of the literature on fire sales, the asset liquidation of those
borrowers unable to meet their obligations to the lenders lead to fire sales. However, as
prices drop the market for those assets freezes as lenders are unwilling to accept them
as collateral, which in turn curtails the provision of new credit putting further pressure
on distressed borrowers. In Acharya et al. (2011) banks during downturns are hoarding
liquidity so that they can purchase assets of other failing banks at fire sales prices. This
choice of liquidity policy is countercyclical leading to low levels of liquidity during booms
and too much liquidity during recessions.

10For a comprehensive review, see Brunnermeier et al. (2013).
11For some influential earlier work on the relationship beween market liquidity and fire sales, see

Shleifer and Vishny (1992) and Allen and Gale (1994).
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2 Fire Sales and Systemic Risk: Preliminary Results

Before we present the more general computational model, we begin by demonstrating
the link between fire sales and the distribution of aggregate shocks in a simple version
of the Caballero and Simsek (2013) model. The aim of this exercise is to show, firstly,
that without fire sales there is no amplification mechanism, and, secondly, that when
the liquidation value of assets is inversely related to the number of banks that fail, the
distribution of aggregate shocks exhibit a fat left tail.12 There are M banks located on
a circle. A typical bank bj (j = 1, ...,M) has an obligation of B units of the only good
in the economy to bank bj+1 and, thus, bank bj−1 owes the same amount to bank bj.

13

On the asset side of the balance sheet of each bank there are loans to firms L, while
on the liability side there are household deposits D and equity E. Thus, all banks are
symmetric. The balance sheet identity implies that L = B + E. In what follows, we
assume that when a bank is liquidated the claims of depositors have priority over those
of other banks. Clearly, the claims of equityholders are residual. In all three cases below
we assume that one of the banks, say bj, has to write off a proportion z of its assets due
to the inability of some of the bank’s debtors to meet their obligations. Throughout, we
make the following two simplifying assumptions: (a) zL > E, that is the bank hit by the
initial shock becomes insolvent, and (b) that the losses can always be absorbed by the
creditor bank without any effect on depositors. It will become clear below that relaxing
the second assumption would only mean that depositors will also suffer some losses but
will not affect our results concerning the distribution of aggregate losses.

2.1 Case (a): No Fire Sales

The liquidation of bank bj at book value prices implies that bank bj+1 will have to write
off zL−E of its assets (the losses that bank bj is unable to absorb). If zL−E < E then
bank bj+1 remains solvent and there are no more liquidations. In contrast, if zL−E > E
then bank bj+1 also becomes insolvent and bank bj+2 will have to write off zL − 2E.
Induction implies that the number of banks that fail is equal to the smallest integer k
such that (k + 1)E > zL. Thus, banks bj, bj+1, ... , bj+k−1 fail, while bank bj+k suffers
losses but is still solvent.14 The total losses of the banking system are equal to zL. Thus,
as Shleifer and Vishny (2011) suggest, without fire sales there are no systemic losses.

2.2 Case (b): Liquidation Values are Independent of the Num-
ber of Failed Banks

Now we introduce fire sales, that is, the liquidation value of assets is below their book
value. For the moment, we assume that these liquidation values do not depend on the
number of banks that are liquidated. Let the liquidation value of assets be equal to a
fraction γ (< 1) of their book value. Then, the liquidation of bank bj means that the
market value of its assets is equal to γ(1−z)L, its losses are equal to (1− γ(1− z))L and,

12In this simple model all banks have the same initial balance sheet, and therefore it does not matter
whether liquidation values depend on the number of banks that fail or on the total value of assets offered
for sale. In our more general computational model we assume that liquidation values depend on the total
supply of such assets.

13Notice that bM+1 = b1.
14For simplicity, we have ignored the case where a bank’s equity after write-offs is exactly equal to 0.
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thus, bank bj+1 will have to write off (1− γ(1− z))L−E of its assets; that is, the losses
not absorbed by the equity of bank bj. If (1− γ(1− z))L−E < E then bank bj+1 remains
solvent and there are no more liquidations. In contrast, if (1− γ(1− z))L−E > E then
bank bj+1 also becomes insolvent. In that case, the liquidation value of its assets is
equal to γL and bank bj+2 will have to write off (1− γ(1− z))L − 2E + (1 − γ)L =
(2(1− γ) + γz)L− 2E. The last term on the left-hand side of the inequality is equal to
the losses due to the effect of fire sales on the liquidation value of the assets of bj+1. By
repeating the process we find that the number of banks that fail is equal to the smallest

integer k̂ such that
((

k̂ + 1
)
(1− γ) + γz

)
L <

(
k̂ + 1

)
E. To keep the exposition simple

we ignore the integer problem. This implies that the equity of bank bj+k̂ is just sufficient to

absorb the losses and therefore k̂ is found by solving the equality
(
k̂(1− γ) + γz

)
L = k̂E

and obtaining:15

k̂ =
γzL

E − (1− γ)L
.

It is straightforward to show that k̂ is decreasing in γ. The total losses of the banking

system are equal to
(
k̂(1− γ) + γz

)
L which is equal to accumulated losses due to the

effect of fire sales on the assets of liquidated banks plus the losses due to the initial shock.
Given that k̂ is linearly increasing in zL the total losses are also linearly increasing in the
size of the initial shock.

2.3 Case (c): Liquidation Values are Decreasing in the Number
of Failed Banks

In this third case, we allow the fire sales factor γ∗ to depend on the number of failed banks,
k∗. Let γ∗ = f (k∗), where f(0) = 1 and f ′ < 0. By repeating the same steps as in the
case above we find that the number of banks that fail is equal to the smallest integer k∗

such that ((k∗ + 1) (1− f (k∗)) + f (k∗) z)L < (k∗ + 1)E. As long as the rate of decrease
of f (k∗) is not too high (so that some banks survive) then by ignoring once more the
integer problem we can find k∗ as the solution of (k∗(1− f (k∗)) + f (k∗) z)L = k∗E. By
totally differentiating we get:

dk

dz
=

f (k∗)L

E − (1− f (k∗) + (k − z)f ′ (k∗))L
.

A necessary condition for the survival of some banks is that the denominator is positive.
If this is not the case then the level of equity is not sufficient to cover the liquidation cost
alone. Notice that d2k

dz2
< 0; this means that losses due to the initial shock are eventually

dominated by the losses due to liquidation costs.
Aggregate losses are given by (k∗(1− f (k∗)) + f (k∗) z)L and their derivative with

respect to the initial shock per unit of assets, z, is given by(
(1− f (k∗)− (k − z)f ′ (k∗))

dk

dz
+ f (k∗)

)
L > 0.

Differentiating once more with respect to z, we find that, as long as the direct effect
dominates the indirect effect on dk

dz
, aggregate losses are now increasing at an increasing

15It must tbe the case that E > (1− γ)L, otherwise the whole banking system would be insolvent.
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rate with the initial shock, in contrast to linearly increasing losses under Case (b).16

In the following two sections we develop a more general dynamic model where each
period the network of interbank loans is endogenously formed. In order to understand
the exact role that fire sales play in the propagation and amplification of costs we begin
by analysing the model for the case where there are no fire sales and then we proceed in
the following section with the analysis of the model with fire sales.

3 The Computational Model without Fire sales

Time is discrete (t = 1, ..., N). In each period there are M banks. At the beginning of
each period, banks hold reserves on the asset side of their balance sheets. Let V j

t denote
the level of reserves of bank j ∈ {1, ...,M} in period t. On their liability side of their
balance sheets banks hold equity Ej

t and household deposits HDj
t . At the beginning of

period t, the balance sheet identity is given by V j
t ≡ HDj

t + Ej
t . Let Vt =

∑M

j=1
V j
t

denote the total amount of reserves in the banking system. Let Rd denote the gross
interest rate banks pay on their household deposits.

At the beginning of period t = 1, we set the initial conditions as follows. We fix
the aggregate level of reserves, V1, and then we randomly distributed them among the
M banks. On the liability side of each bank’s balance sheet we set Ej

1 = eV j
1 for all

j = 1, ...,M , and thus HDj
1 = (1− e)V j

1 , where 0 < e < 1.

3.1 The Interbank Network and Systemic Risk

It is convenient to divide each period into four stages. During the first stage banks offer
loans to firms and the interbank market network is formed. In the second stage project
returns are realized and balance sheets are readjusted. The bankruptcy resolution process
takes place in stage 3 and in the final stage all accounts are cleared before the banking
system progresses into the next period.

3.1.1 Stage I: Formation of Interbank Network

Banks offer loans of unit size to firms. The loan repayment is RL with probability p and
with probability 1− p the loan fails and yields nothing. Loan returns are independently
distributed. Given that the number of loans are finite there is aggregate uncertainty at
the levels of both the economy and each bank. However, the central limit theorem still
applies and given the large number of loans and periods, the distribution of shocks across
time is approximately normal.

Loans are financed sequentially. A firm chooses randomly one of the banks, say j, and
asks for a loan. If bank j’s reserves are larger than or equal to one it offers a loan. On the
asset side of bank j’s balance sheet ‘loans to firms’, FLj

t , increase by one while reserves
decrease by one. If bank j’s reserves are less than one then bank j chooses randomly one
of the other banks, say k, and asks it for a loan. If bank k’s reserves are larger than or
equal to one then it offers the loan to bank j. Then, the loan will be recorded on the
liability side of the balance sheet of bank j as a deposit by bank k, BDjk

t , and on the
asset side of the balance sheet of bank k as a loan to bank j, BLkj

t . If bank k’s reserves

16It also depends on f ′′ (k∗). If the derivative is positive, that is the liquidation costs decrease at a
decreasing rate with the number of banks that fail, then its value cannot be too high.
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are less than one then bank j will randomly choose another bank. When no other bank
can make a loan then the process is completed and no other projects will be financed. Let

BDj
t =

∑M

k=1
BDjk

t denote the total amount borrowed by bank j from other banks and

BLj
t =

∑M

k=1
BLjk

t denote the total amount of loans offered by bank j to other banks.

Clearly, BDjj
t = BLjj

t = 0. Moreover, if BDjk
t = BLkj

t > 0 then BDkj
t = BLjk

t = 0, given
that if bank j has already been offered a loan by bank k, if then later bank k runs out
of reserves it will not be able to borrow from bank j. Lastly, within the banking system,

total lending must always be equal to total borrowing, that is
∑M

j=1
BDj

t =
∑M

j=1
BLj

t .

The network formation process described above generates structures dominated by
large banks (in terms of initial assets) that, on average, act as creditors to smaller banks.
This is because the distribution of banking assets is widely dispersed across the banking
system while loans are randomly allocated to banks. Thus, our networks are dissasortative
as big banks are more likely to be connected to smaller banks. As Bargili et al. (2015)
observe dissasortativeness is also related to the core-periphery structures identified in
many financial networks.

In what follows, we are mainly interested in the behavior over time of the aggregate
level of lending to firms which is very closely approximated by the aggregate level of
reserves, Vt.

17

Let Rb denote the interbank net lending rate that we treat as an exogenous parame-
ter.18 The following table shows the balance sheet of a typical bank after the financing
of projects is completed:

Assets Liabilities

V j
t ≃ 0 RdHDj

t

RLFLj
t RbBDj

t

RbBLj
t Ej

t

Table 1: Interim Bank Balance Sheet

Equity is derived as:

Ej
t = V j

t +RLFLj
t +RbBLj

t −RdHDj
t −RbBDj

t . (1)

The interbank market network is represented by the adjacency matrix with a typical
element RbBDjk

t .

3.1.2 Stage II: Realization of Loan Returns

When a loan is repaid the bank that offered it receives a repayment RL which is added
to its reserves. In contrast, when the loan is not repaid it is written off. After all loans
are either repaid or written off each bank’s equity is reevaluated. At this stage RLFLj

t is
set equal to 0 while reserves have been augmented by the realized loan repayments. We
denote this interim level of reserves by V̂ j

t . If the realized loan repayments are less than

17The approximation is because of rounding given that the size of each loan is equal to 1 while reserves
take values in the non-negative reals.

18Shin (2008) derives equilibrium prices of financial claims when the assets of borrowers include loans
offered to third parties. For our computations we have used various values that are compatible with the
outside options of each bank.
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pRLFLj
t the bank has made losses on its loans. If these losses exceed its equity, that

is pRLFLj
t − V̂ j

t > Ej
t , then the bank is insolvent. If after the reevaluation of balance

sheets all banks still have non-negative equity, that is they are solvent, we move directly
to stage IV. If there exists at least one insolvent bank we move to stage III.

3.1.3 Stage III: Bankruptcy Resolution

The bankruptcy resolution process below follows very closely the one in Eisenberg and
Noe (2001). The only differences between the two papers are due to minor changes in
the balance sheet entries.19 All insolvent banks, that is those with negative equity, are
liquidated. When a bank is liquidated the proceeds will be distributed pro rata to all the
bank’s creditors. In this benchmark case of our model, we assume that the market value
of liquidated assets is equal to their book value. Thus, the benchmark case does not allow
for fire sales. The bankruptcy resolution process is independent of the order that insolvent
banks are liquidated. This is because both the settlement of all accounts, including the
contracts in the interbank loan market, and the distribution of liquidation proceeds only
take place after the bankruptcy resolution process is completed.20 Completion of the
process implies either that all remaining banks are solvent or that all banks have become
insolvent. Eisenberg and Noe (2001) and Acemoglu et al. (2015) have proved that a
clearing equilibrium exists and it is generically unique. Below we describe the algorithm
of the bankruptcy resolution process.

Choose randomly any of the banks with negative equity, say j. Let λj ≡ RdHDj
t

RdHDj
t+RbBDj

t

denote the ratio of household deposits to total deposits. The assets of bank j will be
distributed to its creditors pro rata as follows. The depositors of bank j will receive a
fraction λj of reserves, V j

t , and will be allocated a fraction λj of the loans that bank j

offered to other banks, BLjk
t for all k ∈ {1, ...,M}, that is the depositors of bank j will

now hold deposit accounts at these other banks. Each of the creditor banks to bank j, that

is for all k ∈ {1, ...,M} such that BDjk
t > 0, will receive a fraction µjk ≡ RbBDjk

t

RdHDj
t+RbBDj

t

of reserves, V j
t , and will be allocated a fraction µjk of the loans that bank j offered to

other banks, BLjk
t for all k (1, ...,M); where

∑M

k=1
µjk = 1− λ.

This will end the bankruptcy procedure for bank j. Given that the creditors of bank
j were not fully repaid, it is possible that some other banks that before the liquidation
of bank j were solvent now become insolvent; this will be the case if their equity is not
sufficiently high to absorb the losses. As long as there are other insolvent banks, one of
the them will be chosen randomly and the whole process will repeat itself. Otherwise,
the bankruptcy resolution process is terminated.

19In this work we have followed Eisenberg and Noe (2001) and have assumed that all creditors are
treated equally. As Acemoglu et al. (2015) have shown, the clearing process can easily be modified to
allow a class of creditholders (e.g. depositors) to have a priority claim over the bank’s assets. There is an
ongoing debate over the design of optimal priority rules for banks (for a review of the relevant literature
see Bougheas and Kirman, 2016).

20Thus, for rounds before the resolution process is terminated creditor banks are allocated a proportion
of a failed bank’s assets without specifying the exact final values of the liquidation proceeds whch are
only determined at the termination of the resolution process. This is because if other banks fail in later
rounds that have borrowed funds from the bank that is currently liquidated then the assets of the latter
bank might be further reduced. Of course, as Jackson and Pernoud (2020) recognize this can only happen
if the network has directed cycles.
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3.1.4 Stage IV: Clearing

All remaining banks are solvent. The interbank loan market is settled by the transfer of
reserves from debtor to creditor banks. At the end of this process all interbank accounts
are set equal to zero. The reserves distributed to households as liquidation proceeds are
redeposited in the banking system.

Because of insolvencies, the number of banks will keep declining over time. In or-
der to avoid this from happening each period we recapitalize the system by randomly
redistributing aggregate reserves at the end of each period among the M banks. This
ensures that our results are independent of the initial numerical choices we made about
the number of banks and the initial aggregate reserves. Moreover, in order to be able
to compare the results of the benchmark model with those results derived when we in-
troduce fire sales we also increase aggregate reserves, before we redistribute them, by a
rate g that is constant over time. The reason for doing so is because fire sales have a
negative effect on the growth rate of the economy and without rebalancing reserves the
economy will eventually collapse. The growth rate that we have chosen is such that it
over-compensates for the losses due to fire sales.

Lastly, we set each bank’s equity to a fraction e of its new reserves. Then the banking
system enters the following period and it once more goes through the four stages.

3.2 Analysis of the Model without Fire Sales

We are interested in the evolution of aggregate reserves, which in our model is a very
close proxy of aggregate lending. Given that in any period loan repayments are identically
and independently distributed across the banking system, the total number of successful
loan repayments is binomially distributed with parameter p. As the number of loans
offered each period is large, the central limit theorem implies that the distribution is
approximately normal. In order to determine the end-of-period aggregate reserves we
first need to determine the propagation of shocks through the banking system. However,
as Cifuentes et al. (2005) have demonstrated, in the absence of fire sales the interbank
network does not amplify losses. The structure of the network will affect the number of
banks that will fail but not the level of aggregate losses.21

Let Zt denote the total number of loans that were successfully repaid in period t. The
level of aggregate reserves at the beginning of period t+ 1 is given by

Vt+1 = (1 + g)RLZt

which we can write as
Vt+1 = (1 + g) (pRLVt + St)

where St = RLZt−pRLVt denotes the period t shock (deviation from expected revenues).
Then, the growth rate of aggregate reserves, and hence aggregate bank lending, is

given by:

Vt+1 −Vt

Vt

= pRL (1 + g)−1+(1+g)pRL
Zt − pVt

pVt

= pRL (1 + g)−1+(1+g)pRLst, (2)

21When a bank writes off loans the losses will be absorbed firstly by its equityholders, and if their
equity is not sufficiently high losses will be absorbed by its depositors and its bank creditors. Eventually,
all initial losses will be absorbed by bank equityholders and depositors. However, there is nothing in the
network that can amplify the initial shock.
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where st is the shock normalized by the size of the banking system that would have been
obtained in the absence of shocks. Thus, the growth rate of reserves can be decomposed
into two parts: pRL (1 + g)−1 is the trend that is comprised of the exogenous growth rate
times the return on loans. The second term is equal to the aggregate shock (deviations
from trend). Given that project returns are drawn from a binomial distribution and given
the large number of projects, the central limit theorem implies that the growth rate of
reserves is normally distributed. Without fire sales the aggregate shock can fully account
for the growth rate of reserves.22

This result is not surprising. In the absence of any external effects, like fire sales, any
change in the distribution of shocks across the network of banks will affect the number
of bankruptcies (see below) but not aggregate outcomes.23 Similar results have also been
obtained in production networks. In those models, aggregate outcomes depend on the
size of sectors hit by shocks and not on the specific network structure of the economy, a
result known as ‘Hulten’s Theorem’.24

3.3 Numerical Analysis

The results of the benchmark model are straightforward. However, they will help us to
understand the impact of fire sales on the growth rate of this simple economy compared
to that caused by network effects. The model is too stylistic to attempt a structural
estimation. Nevertheless, the numerical examples highlight the mechanism responsible
for the ‘fat tails’ in the growth distribution of aggregate activity when fire sales are
present. Given that one of our aims is to show that shocks on their own cannot explain
what happens during rare macroeconomic disasters, we set up the parameters to ensure
that there are always some banks failing.

For our numerical analysis we used the following parameters for the benchmark case:
M = 20, V0 = 1000, p = 0.75, RL = 1.37, Rd = 1, e = 0.08, Rb = 1.01, g = 0.01. For
each set of parameters we performed 500 Monte Carlo replications with 50 periods each,
thus generating 24, 500 growth rates for aggregate reserves. Replications only differ in
the initial distribution of deposits among banks. At the beginning of each replication
we allocated randomly the initial reserves, V0, among the M banks. Figure 4 shows a
histogram of the growth rates of aggregate reserves for the benchmark case.

22We also considered introducing an externality in the economy, whereby loans in a given period are
more likely to be repaid the higher the proportion of loan repayments the period before (success breeds
success). The externality introduces persistence in the growth rate. However, in order to maintain our
focus purely on the impact of fire sales on the growth rate of economic activity, we do not include the
externality in our main analysis.

23See also Proposition 2 in Cifuentes et al. (2005) for a derivation of this result in a model very similar
to ours.

24See Hulten (1978). For a review of similar results within production networks, see Carvalho and
Tahbaz-Salehi (2019).
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Figure 4. Output growth without fire sales

Notice, that the distribution is approximately normal and the average growth rate
is equal to 0.03776 which is equal to the trend growth rate derived above. Thus, as
we mentioned above, the aggregate shock is a perfect predictor of the deviations of the
growth rate of economic activity from its trend.25

4 The Computational Model with Endogenous Fire

Sales

In this section, we introduce fire sales into the benchmark model. As Shleifer and Vishny
(2011) state in the quote at the beginning of the paper, and as we have also argued
in the last section, without fire sales shocks on the interbank network are not sufficient
to generate shock amplification. Moreover, fire sales naturally generate an asymmetry
between busts and booms that is a typical feature of the behavior of GDP (Acemoglu
and Scott, 1997). Typically, fire sales result from the sales of bank assets at prices below
book values. In our simple model with single-period loan duration the only assets left on
a bank’s balance sheet at the time when liquidation takes place are reserves and loans
made to other banks. We introduce fire sales on reserves, the idea being that banks hold
as reserves liquid assets, such as short-term and long-term government bonds whose value
will drop during a crisis. To simplify matters we assume that reserves are comprised of
a single asset and we denote its price by P . Thus, in the absence of any insolvent banks
P = 1. We also denote by Pmin < 1 the price that will be attained if all banks become

25The correlation coefficient is 0.99999. Its deviation from unity is due to the ‘lumpiness’ of projects.
A bank can loan out only integer values of funds.
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insolvent. Then, the inverse demand function for this asset at t is specified as:

Pt = 1−

(
1− Pmin

)∑
j∈{INS}

V j
t

Vt

,

where {INS} denotes the set of insolvent banks. According to this function, the drop in
price is proportional to the ratio of the initial value of assets offered for sale to the total

value of all assets. Thus, if all banks are solvent,
∑

j∈{INS}
V j
t = 0 and P = 1 and if all

banks become insolvent,
∑

j∈{INS}
V j
t = Vt and P = Pmin.26

Jackson and Pernoud (2020) show that with endogenous fire sales there might be
multiple clearing equilibria in which case they can be ranked according to the final value
of bank assets. We will focus on the ‘best’ equilibrium, that is, the one with the smallest
number of insolvent banks.27

The algorithm that we used before for the case without fire sales now has to be
adjusted to allow for the effect of insolvencies on equilibrium asset prices. After the
initial shocks we clear the system as in Stage IV above. If there are any insolvent banks
we use the inverse demand function specified above to calculate a new temporary price for
assets. Using the new asset valuations we clear the system once more from the beginning.
If there are any further insolvencies we recalculate the price to take into account the sale
of assets by the new insolvent banks. We repeat the process until all remaining banks
are solvent.

As we remarked in the previous section, because fire sales introduce an asymmetry in
the impact of shocks, unless we introduce a compensating growth factor banking system
will eventually be reduced to a single bank with a very low volume of reserves. As we
noted earlier, to avoid this from happening we allow for reserves to grow exogenously at
the rate of growth g.

4.1 Results of the Model with Fire Sales

We again run 500 replications with 50 periods each, with exactly the same parameters as
those of the benchmark model, but now we also introduce fire sales with the minimum
asset price, Pmin = 0.85.28 Figure 5 shows a histogram of the growth rate of aggregate
reserves for the model with fire sales.

26Cifuentes et al. (2005) use an exponential inverse demand function function while Cecchetti et al.
(2016) use a quadratic function. The exponential yields a very large effect on the price even when sales
are low while with the quadratic prices keep dropping very fast even as the minimum price is approached.
It seems a more realsitic function would be the logistic that allows for smoother adjustments at the ends.
We have run simulations using all forms and found that the qualitative results are not affected. With
that in mind we are presenting the results for the simpler linear form.

27See also Cecchetti et al. (2016) who demonstrate the existence of such an equilibrium for an interbank
network where the balance sheets of banks are more complex than in this paper. In particular, they
allow for priority claims and multiple assets offered for liquidation. Although for their applications
they consider simple network structures their existence proof is valid for any type of network structure
including the network structures formed in our paper.

28We choose the minimum price so that the fat left tail approximately matches what we observe in
the data (see below). We can get similar results by changing the functional form of the inverse demand
function and at the same time adjusting the value of the minimum price.
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Figure 5. Output growth with fire sales

Comparing Figure 5 with Figure 4 we make two observations. First, the average
growth rate has dropped to 0.0242. The drop in the average growth rate relative to the
version of the model without fire sales captures the asymmetric impact that fire sales have
on the growth of economic activity. The correlation coefficient between the aggregate
shock and the growth rate of economic activity is equal to 0.922. In the benchmark
case the aggregate shock is a perfect predictor for the deviations of the growth rate of
economic activity from its trend but this is not the case anymore. This has important
implications for how we understand the causes of macroeconomic disasters. In traditional
DSGE models there is a strong correlation between initial shocks and final outcomes.
Amplification mechanisms, like the financial accelerator (Bernanke et al., 1999), boost
the effects of the shock but do not alter its sign. This is not the case anymore for
network economies. What matters is not only the size of the initial shock but also its
distribution across the network. Network models seem to suggest that to a great extent
macroeconomic unpredictability might be due to endogenous uncertainty due to complex
interactions within the financial system.

To get a clearer picture of the effect of fire sales, in Table 2 we show the number of
periods where the growth rate of the economy was above or below its trend growth rate
of 0.03776 (corresponding to the case without fire sales) conditional on the sign of the
aggregate shock.29

29Given that our computations included 500 runs with 50 periods each we have 24500 growth rates.
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Growth Rate + Shock − Shock 0 Shock
Without Fire Sales

Above Trend 12299 0 0
Below Trend 1 12095 105

With Fire Sales
Above Trend 7815 0 0
Below Trend 4335 12180 150

Table 2: Aggregate Shocks and Aggregate Growth Rates

Notice that for the case without fire sales the results reflect the (almost) perfect
correlation between the shock and the growth rate predicted by the model. The reason
that we have one case where the growth rate is negative when the shock is positive and
also a few cases with negative growth when the shock was zero is because we have unit
size loans but reserves are positive real numbers. This rounding effect is insignificant as
in all such cases the growth rate was very close to 0. When we introduce fire sales we
find that even when the aggregate shock is positive more than a third of the aggregate
growth rates are negative. In our model the initial shock depends on the number of loans
fully repaid by firms. There were periods when the proportion of loan repayments were
sufficiently high that the aggregate shock was positive, however, there were also a small
number of banks hit by negative shocks that were liquidated. The ensuing fire sales and
network effects dominated the impact of the initial aggregate shock on the growth rate
of economic activity.

Our second observation from comparing Figures 4 and 5 is that the growth rate
distribution with fire sales is not symmetric; it has a fat left tail. This is further seen in
Figure 6, which gives a Q-Q plot of the growth quantiles against those from a standard
normal distribution, along with a reference line corresponding to quantiles of a normal
distribution with mean and variance calibrated to that of the growth rates. The fat left
tail is a clear feature of Figure 6, and a comparison with the Q-Q plot for US growth
data in Figure 3 shows that the left tail behaviour of the actual data is mimicked well by
the growth outcomes from the model.

At this point it is not clear whether fire sales are wholly responsible for this observa-
tion, or if there is also an additional amplification effect due to the interaction of network
effects with fire sales. We explore this issue below.

4.1.1 Network Effects versus Fire Sales

In each period after the interbank network is formed the realization of shocks will deter-
mine how many banks will be initially liquidated. Then, after clearing and the settlements
of all accounts there might be additional liquidations and their number might be further
boosted when we introduce fire sales. Figure 7 shows histograms for the number of bank
liquidations before and after the realization of shocks, with and without fire sales.
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Figure 6. Q-Q plots: · · · Output growth; Normal distribution with mean and
variance calibrated to output growth

(a) Without network effects and without fire sales (b) Without network effects and with fire sales

(c) With network effects and without fire sales (d) With network effects and with fire sales

Figure 7. Distribution of number of bankruptcies
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The top left panel shows the distribution of initial liquidations without fire sales
while the top right panel show the same distribution when we introduce fire sales.30

The average number of initial liquidations without fire sales is equal to 3.9064 and when
we introduce fire sales is equal to 4.7098. The difference is due to a scale effect. As
the average bank grows in successive periods they become slightly safer.31 Therefore, the
difference between the two numbers is due to the lower growth rate when we introduce fire
sales. The bottom left panel shows the final distribution of liquidations (after clearing)
in the absence of fire sales and the average is 4.1502. The increase in liquidations by
approximately 6.2% is due to network effects. That is, the inability of some borrowers
to meet their obligations forced their creditors into liquidation. The bottom right panel
shows the same distribution with fire sales. The average number of liquidations is now
equal to 5.4569. This is an increase of approximately 16% and is due to the interaction
of network effects with fire sales.

Comparing the shape of the four distributions we find that the one at the bottom
right, that corresponds to total bankruptcies in the presence of fire sales, has a more
exaggerated right tail. We demonstrate below that this fat right tail is closely related to
the fat left tail of the distribution of the growth rate of economic activity.

What we have demonstrated up to this point is that the interaction between the
structure of the interbank network and fire sales can provide a potential explanation for
the fat left tail in the distribution of the growth rate of economic activity, thus accounting
both for the asymmetry in cycles but also for rare but extreme disasters. However, we
have not yet fully unravelled the mechanism by which the above interaction works.

4.1.2 Explaining the Fat Left Tail

Figure 8 shows the box plots of aggregate output growth by the number of additional
bankruptcies brought about through network effects, above and beyond those directly
caused by the initial shocks. The values above each box plot provide a count of the
periods for which the number of additional bankruptcies was obtained.

There is a clear negative correlation between the number of additional bankruptcies
that arise through network effects and the resulting growth rate of aggregate output
(measured on the vertical axis). These additional bankruptcies are due to the intercon-
nectedness of the banking system and, as we have observed above, they have been further
boosted by fire sales. In our model the banking network is formed randomly and, hence,
banks are more likely to have borrowed from multiple lenders. The presence of multiple
creditors offers some degree of protection to them as the risks of default by the borrowing
bank are spread out. However, as Acemoglu et al. (2015) have shown, when the initial
shocks are too large diversification has the opposite effect as such shocks affect a larger
number of banks.32

30Keep in mind that only in period 1 of each computation the level and the distribution of reserves
will be the same for the benchmark model and for the model with fire sales. In subsequent periods they
will differ.

31Consider the following example. In our model the equity to total assets of all banks is approximately
the same. This implies that for banks to be solvent a minimum percentage of loans needs to be repaid.
Suppose that this percentage is equal to 92.3. A bank that has made 10 loans needs all of them to be
repaid, a bank that has made 20 loans needs 19 loans to be repaid (95%) while a bank that made 100
loans needs 93 loans to be repaid (93%). Thus, bigger banks can survive slightly bigger shocks.

32See also Battiston et al. (2012) for some related discussion on the effects of diversification.
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Figure 8. Box plots of output growth by number of additional bankruptcies due to
network effects (values above box plots give counts of periods for which number of

additional bankruptcies obtained)

One possible explanation is that what happens in the left tail of the growth distri-
bution is that these realizations refer to periods when the banks hit by large negative
shocks where heavily indebted to other banks. With this in mind, for each of the 24500
periods we calculated, for each bank, the in-degree and the directed version of eigenvec-
tor centrality (Bonacich centrality measure). The in-degree is equal to the number of a
bank’s creditors while the eigenvector centrality also takes into account indirect expo-
sures (loans made by other banks to creditors). We then multiplied each measure with
the corresponding bank shock and averaged the products. High negative values of this
index would indicate a period where, on average, heavily indebted banks were hit by
negative shocks, while positive values would indicate that, on average, heavily indebted
banks were hit by a positive shock. Lastly, we calculated the correlation coefficients
between the growth rate and each of the two indices. We would anticipate a positive
estimate, that is, negative growth rates are correlated with negative values of the index,
but instead we found that the correlations were not significant. These results indicate
that network measures might not be the appropriate statistics to use.

In order to understand the above results, and also what generates the left fat tail in the
distribution of the growth rate of economic activity, we then focused on all those periods
where the growth rate is less than −6%. As there were 245 such periods (exactly 10%
of the total), this corresponds to the 10% left tail of the distribution. In many periods
there was a relatively large number of banks that went into liquidation at the initial
stage, that is these banks were hit by large number of negative initial shocks. However,
when we concentrate on those 54 periods (about 2%) of the total where the additional
bankruptcies were greater than or equal to 6 the picture changes. In Table 3, we show in
how many of those periods the two banks hit by the two worst shocks received loans from
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all, all but one and all but two of those banks that were liquidated because of network
effects (additional bankruptcies).

Worst hit bank 2nd worst hit bank Both banks
Loans from all
liquidated banks

13 13 7

Loans from all but
one liquidated banks

13 7 1

Loans from all but
two liquidated banks

6 11 0

Table 3: Contagion at the Tail

In 33 out of those 54 periods at least one of the two banks was indebted to all banks
that were liquidated due to network effects. The worst hit bank received loans from
more than two thirds and the second worst hit bank received loans from more than
half of those banks that were liquidated because of network effects. Thus, the network
effects are present, however, there were also many periods were these network effects were
dominated simply by a large number of negative initial shocks.

Lastly, we also checked if some of these results can be simply explained by looking
at simple network measures. More specifically, we ask if these strong network effects can
be explained by changes in the overall structure of the network. We find that this is not
the case. For example, the average in-degree for all 25000 networks is 7.21 while for the
54 networks that correspond to the sample examined above the in-degree is surprisingly
a bit lower, 7.11. What this implies is that what matters for understanding the left tail
of the growth distribution is primarily the distribution of shocks. Moreover, to explain
contagion (cascades) what matters is not the network structure alone but the interaction
between the distribution of shocks and the connectivity of each bank.

5 Concluding Comments

Both the Great Depression of the 1930s and the more recent Global Financial Crisis
of 2008 have provided great challenges to traditional macroeconomic explanations of
recessions. According to traditional macroeconomic models final outcomes are directly
related to the magnitude of initial shocks. These models only provide an amplification
mechanism of these initial shocks. However, there are good reasons to believe that some
of the macroeconomic uncertainty is endogenous and directly related to the structure of
the economy. For example, in the growing literature on production networks shocks are
transmitted through the readjustment of prices of intermediate inputs. In Acemoglu et
al. (2017a) shocks are transmitted between industries and when relatively large shocks
hit well-connnected industries their effects on aggregate outcomes can account for the fat
tails in the distribution of the growth rate of economic activity. More recently, Acemoglu
and Tahbaz-Salehi (2020) examine the transmission of shocks along supply chains at the
firm level. That model can also account for the asymmetric impact of shocks given that
firms that are hit by negative shocks fail when they are unable to cover their fixed costs.

In this paper, we have offered an alternative explanation for the fat left tail in the
distribution of the growth of economic activity. The amplification mechanism also relies
on network effects but here the connections represent debt obligations between banks.
We have argued that there is sufficient evidence that fire sales played an important role
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in both crises mentioned above. In our model, tail events take place when banks that
have borrowed heavily from other banks are hit by severe shocks. Their inability to
meet their obligations means that their creditors have to write off a fraction of their
assets. The exact fraction depends on the number of banks that are liquidated, with the
corresponding fire sales amplifying and network effects.

In contrast to production network models where all decisions are taken after the
realization of shocks, financial decisions in our model are taken before the realization of
shocks. This considerably increases the complexity of the environment. Given the above
considerations we opted for a computational model and rely on averaging the results
of multiple Monte Carlo replications. For checking the robustness of our results, we
have also performed a variety of runs with different parameters. However, the greatest
disadvantage of the computational approach is that it is subject to the Lucas critique.
The model cannot account for any change in the behavior of market participants (banks
and firms) to any exogenous policy change. Nevertheless, we can still learn valuable
lessons by taking seriously the complex structure of the economy and, thus, account for
its inherent unpredictability.
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