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Abstract 
 
Governments monitor air quality for regulatory purposes and, more recently, to provide 
information so individuals can act to lower their exposure to air pollution. Recent developments 
in low-cost technologies have also led to private adoption of air-quality monitors that produce 
publicly accessible air-quality readings. We study the adoption of these private air-quality 
monitors. We find that shocks to air pollution from wildfire result in substantial adoption. We also 
find that additional private monitors are concentrated in white, wealthy, and politically liberal 
neighborhoods. In contrast, there is no evidence that pollution shocks lead to higher adoption in 
neighborhoods with lower pre-existing access to monitors, higher long-run pollution, or those 
with more vulnerable populations. The resulting stark differences in the availability of localized 
air-quality information suggest that private provision may worsen not ameliorate inequalities in 
the impacts of poor air quality. 
JEL-Codes: Q530, Q520. 
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1 Introduction

Air pollution is responsible for 4.2 million premature deaths a year worldwide (World Health

Organization, 2021). The global distribution of pollution is profoundly unequal with large

populations in low and middle-income countries exposed to extremely low levels of air quality

(Murray et al. 2020). In the United States, exposure to air pollution is disproportionately

higher in African-American communities (Currie et al. 2023). Public access to pollution

information can have substantial benefits by facilitating behavior change that lowers the

impacts of pollution, and can also lead to lower pollution (Barwick et al. 2019, Jha and

La Nauze 2022); however, access to air-quality monitoring is uneven and gaps in air-quality

monitoring networks are exploited by polluters and local governments (Grainger et al. 2019,

Zou 2021, Axbard and Deng 2023, Ito and Zhang 2020).

Public information on air quality has traditionally been provided by governments via

a public monitoring network. However, dramatic reductions in the cost of home monitors

have led to the development of a substantial non-government monitoring network that now

exceeds the size of the public network. Because information from these private monitors is

readily and publicly available, this network of monitors is a public good, and its distribution

is important for governments determining their own investments in air-quality information.1

Despite the growing body of evidence for the benefits of air-quality monitoring, little is

known about the demand, provision, and use of it by households.

In this paper, we explore how shocks to air quality a�ect the demand for privately owned

air-quality monitors and how this demand a�ects the distribution of information. Specifically,

we leverage plausibly exogenous variation in air quality arising from the component of PM2.5

that is caused by wildfire smoke in California. Using a di�erence-in-di�erences approach,

we show that wildfire smoke events increase adoption of self-installed, low-cost outdoor air-

quality monitors manufactured by Purple Air. We find that exposure to wildfire smoke results

1. Privately owned air-quality monitors that provide public information can be classified as impure public

goods in the sense of Cornes & Sandler (1984).
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in a sharp temporary spike in air-quality monitor adoption. We find the size of the monitor

adoption response is not correlated with yearly average PM2.5 exposure or the percentage

of the population that is elderly or very young, who from a health perspective are most at

risk from negative air-quality shocks; if anything, neighborhoods with high concentrations

of young children are less likely to install monitors. We also show the adoption response is

uncorrelated with distance from an existing government monitor but more likely to occur

in neighborhoods with existing private monitors. The increase in adoption is strongest in

neighborhoods with high shares of white, highly educated, wealthy, and Democratic-leaning

residents.

The results speak directly to an ongoing policy debate on the public provision of air-

quality monitoring. For example, in 2021, the United States provided $50 million in com-

munity air monitoring grants administered through the Environmental Protection Agency

(EPA) to enhance air-quality monitoring in communities across the United States with envi-

ronmental and health outcome disparities stemming from pollution and the COVID-19 pan-

demic. Similarly, the state of California designated $35 million in Community Air Grants

which includes money to improve air-quality monitoring in areas of California most severely

impacted by air pollution.2 An explicit goal of both of these programs is to advance environ-

mental justice by improving air-quality monitoring in areas with historically high pollution

burdens. Our findings show that the goal of improving air-quality monitoring in disadvan-

taged neighborhoods is unlikely to be reached through low-cost private monitoring alone,

as private adoption is strongly concentrated in neighborhoods with relatively wealthy and

educated residents and is uncorrelated with neighborhood pollution levels.

Our findings on the evolution of the private monitoring network complement previous

work exploring the origins and e�ects of the public monitoring network. Pollution reduc-

tions in Clean Air Act nonattainment counties are steepest in neighborhoods close to public

monitors (Bento et al. 2015, Au�hammer et al. 2009). However, the locations of public

2. See: California AB 617, ww2.arb.ca.gov/capp; American Rescue Plan Enhanced Community Air Mon-

itoring, www.epa.gov/arp/enhanced-air-quality-monitoring-funding-under-arp.

2

ww2.arb.ca.gov/capp
www.epa.gov/arp/enhanced-air-quality-monitoring-funding-under-arp


monitors are themselves endogenously determined, as local regulators seek to avoid placing

monitors in highly polluted areas where the monitor may risk incurring regulatory action

(Grainger et al. 2019), and are also likelier to place monitors in areas with high income and

white residents (Grainger and Shreiber 2019).

That both public and private monitors are less likely to be placed in low-income areas is

concerning, as Hausman and Stolper (2021) theoretically show that low-income households

su�er greater deadweight loss from lack of air-quality information even when limited infor-

mation is uniformly distributed across households. This finding arises from unmonitored

pollution a�ecting low-income areas in the well-established context of residential sorting on

environmental quality (Banzhaf and Walsh 2008, Gamper-Rabindran and Timmins, 2011).

We find that shocks to air quality increase private monitoring in wealthy, white, politically

liberal neighborhoods. Although the descriptive correlation between private monitoring and

these demographic variables has been shown before (deSouza and Kinney 2021), we causally

identify the e�ect of air-quality shocks on private adoption. We show that such shocks

exacerbate, rather than reduce, inequality in information.

2 Background and Data

We measure private provision of air-quality monitoring using the count of new installations

of Purple Air’s home air-quality monitors. Customers purchase a Purple Air monitor which

can be placed indoors or outdoors. Upon registering a new device as a public monitor, the

monitor is added to an online interactive map that reports real-time air-quality data from

all users with public Purple Air monitors. We gather data on monitors from Purple Air’s

API. Data contains the installation date, geographic coordinates, and whether the monitor

is indoor or outdoor. We gather all 2,825 monitor installations providing public data on

the Purple Air Map in California from 2016 (when the first installation appears) through

April 2019.3 82% of these monitors are installed outdoors, measuring ambient air quality.
3. Monitors that are installed but set to private are not observed.
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Purple Air monitors are high quality, with a root mean squared error of 8 µg/m3 under

typical PM2.5 conditions (Barkjohn et al. 2021), although Purple Air monitors tend to

overpredict PM2.5 concentrations during extreme smoke events (Barkjohn et al. 2022). The

EPA provides a correction equation that is integrated into the publicly available real-time

map on Purple Air’s website.4

Although questions remain about the measurement error from low-cost monitors, in ag-

gregate, the private contribution of air-quality information from Purple Air monitors has the

potential to be more economically meaningful than the contribution of information from gov-

ernment monitors. California’s EPA system consists of 700 monitors at 250 sites; although

the government monitor network is One of the most extensive in the world (California Air Re-

sources Board Annual Network Plan 2017), the number of private monitors installed during

our study period greatly exceeds the number of government monitors.

To isolate an exogenous source of variation in air quality, we use smoke from wildfires

in California. Data comes from Stanford University’s Environmental Change and Human

Outcomes (ECHO) Lab (Childs et al. 2022). The Echo Lab uses ground and satellite data

and a machine learning method to estimate the component of PM2.5 concentration that is the

result of wildfire smoke. Echo Lab provides this estimate at the census tract level daily from

2006 to 2020. We define a major smoke event as one in which the wildfire smoke component

of PM2.5 exceeds 100 µg/m3. PM2.5 concentrations of 100 µg/m3 are quite severe; this

measure is in the "Unhealthy" range of 151-200 on the Air Quality Index (AQI) scale. Note

however, that because the ECHO Lab measure includes only the smoke component, overall

air-quality levels are at least 100 µg/m3.5 We combine smoke data with information on

the locations of the EPA’s existing monitors, demographics from the American Community

4. see: www.epa.gov/sciencematters/epa-research-improves-air-quality-information-public-airnow-fire-and-smoke-map

and www.map.purpleair.com.

5. We show robustness in Appendix Figures A3-A6 to use of alternative thresholds for defining a smoke

event. Treatment e�ects are detectable to around 35 µg/m
3

(Figure A3). We run event studies that 1)

define treatment equal to 1 if smoke exceeds 35 µg/m
3

in a tract-month (Figures A4 and A5) and 2) define

treatment equal to 1 if smoke exceeds 100 µg/m
3

while controlling for a set of indicators for smaller 35 µg/m
3

events (Figure A6). Defining a major smoke event at this lower threshold produces smaller but statistically

significant and economically meaningful results.

4

www.epa.gov/sciencematters/epa-research-improves-air-quality-information-public-airnow-fire-and-smoke-map
www.map.purpleair.com


Survey (ACS), and voting returns from California’s Statewide Database.

Our study period notably encompasses the severe California wildfire seasons of 2017 and

2018. The 2018 season, a record at the time (although since surpassed by the 2020 and 2021

fire seasons) saw nearly 2 million acres of land burned, over 24,000 structures destroyed, and

100 lives lost.6 The major smoke-producing event of our study period is November 2018’s

Camp Fire, which delivered 100 µg/m3 of smoke to 1,829 census tracts. While areas that

ever directly experience a wildfire are more likely to be small, sparsely populated, and at the

edge of the wildland-urban interface, plausibly exogenous variation in air-quality arises from

the timing of fire occurrence and atmospheric conditions which a�ect how wildfire smoke is

transported to downwind locations.

Table 1 presents summary statistics on the demographics and pollution characteristics of

census tracts that ever have a Purple Air monitor installed. Tracts with Purple Air monitor

installations are more likely to be wealthy, white, and urban, although slightly further from

existing EPA monitors.

3 Empirical Strategy

To estimate the e�ect of air-quality shocks on the private provision of air-quality monitoring,

we use a di�erence-in-di�erences approach conducted on a panel of 8,057 census tracts in

California. Because monitor installations are relatively infrequent events, we aggregate our

daily installation and smoke data to the monthly level. Each observation in our panel

represents a tract-month. To explore the dynamic response to smoke events, we conduct an

event study specified as:

Yst = – + ”s + “t +
ÿ

iœP RE

—i1{t ≠ tú
s

= i} +
ÿ

iœP OST

fii1{t ≠ tú
s

= i} + ‘st (1)

Where Yst is the count of new Purple Air monitor installations in census tract s in month

6. source: CAL FIRE at www.fire.ca.gov/incidents/2018
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t, ”s is a tract fixed e�ect, and “t is a month-by-year fixed e�ect. The coe�cients —i capture

the pre-period trend in monitor installation in tract s in advance of an event occurring at

time tú
s
. An event is defined as a month in which the wildfire smoke contribution to PM2.5

exceeded 100 µg/m3 in tract s. The post-period coe�cients fii capture the e�ect of smoke

events on monitor installations over time. Our baseline specification uses a six month window

on either side of a smoke event, so i œ PRE ranges from -6 to -1 and i œ POST ranging

from 0 to 6.

For the heterogeneity analysis, we estimate the following equation:

Yst = – + —1Smoke_Eventst + ”s + “t + ‘st (2)

Smoke_Eventst is an indicator equal to 1 if at month t the tract has experienced a day

in which the wildfire smoke contribution to PM2.5 exceeded 100 µg/m3, and 0 otherwise.

The coe�cient of interest is —1 measuring information demand response to smoke events.

The other variables are the same as Equation 1. Robust standard errors are clustered at the

tract level.

The use of a two-way fixed e�ects model with variation in treatment timing introduces

concerns about the weighting of treatment e�ects arising from an implicit assumption of

treatment homogeneity as highlighted by a number of recent papers.7 This concern is ap-

plicable in our setting, as the existence of multiple treated units with variations in timing

creates the potential for erroneous comparisons between treated and not-yet-treated units.

In the appendix, we therefore show event study results using the e�cient D-i-D-imputation

method of Borusyak et al. (2021). Note this estimator assumes that treatment is an absorb-

ing state; that is, Smoke_Eventst = 1 in the period the event occurs and for all periods

thereafter. This is a di�erent treatment definition than our baseline estimates in which

Smoke_Eventst = 1 in the tract-month of the event’s occurrence and zero otherwise, which

7. de Chaisemartin and D’Haultfœuille 2020b, Borusyak and Jaravel 2021, Goodman-Bacon 2021, Sun

and Abraham 2020, Callaway and Sant’Anna 2021
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we believe better captures the short-lived nature of smoke events. Results from the D-i-D-

imputation are nearly identical to those of the classic event study.

4 Results

Figure 1 depicts the event study showing the response of monitor installations within 6

months of a major smoke event. We observe a large and significant increase in monitor

adoptions following a smoke event. This adoption response quickly decays, so that monitor

adoptions four months after the event are indistinguishable from zero. The e�ect size is

economically important- an increase of 0.074 monitor installs in the month following a smoke

event represents an increase of 21% relative to the overall mean of 0.35 monitors per tract.

The corresponding event study using the imputation method of Borusyak et al. (2021)

is shown in Figure A1. While there is no pretrend in monitor installations until two months

before a smoke event, there is a small and significant increase in monitor adoptions in the

two months preceding a smoke event. We investigate the origins of this pretrend in the

Appendix, where we show the small increase in adoptions observed during the pre-period is

likely a true adoption response to smoke events below the 100 µg/m3 threshold.

Previous studies have documented behavioral responses to wildfire exposure that are

typically short-lived, such as a temporary decline in house prices (McCoy and Walsh 2018)

and increases in pro-environment voting (Hazlett and Mildenberger 2020, Coury 2023). We

find a similar pattern: a spike in private monitor adoptions following a major smoke event

that quickly returns to baseline, as in the insurance uptake response to floods (Gallagher

2014) and earthquakes (Lin 2020). Following Gallagher (2014), in the Appendix we provide

evidence that monitor adoptions are driven by direct smoke exposure rather than news

coverage via TV media markets.

Having documented a large increase in monitor adoption following air-quality shocks, we

next look to see where new monitors are being installed. To begin with, we assess whether

7



the same pollution shock leads to greater private monitor adoption in locations that are

further from the existing air-quality monitoring stations. To do so, we run the specification

Equation 2 on quintile bins of census tracts defined by distance to existing EPA monitors.

The first regression limits the sample to the 20% of tracts nearest to a government monitor.

Subsequent regressions limit the sample to all tracts in ensuing quintiles. Panel (a) of Figure

2 plots the coe�cients on smoke events from these regressions. The e�ect of air-quality

shocks is positive, but there is no relationship between distance to existing monitors and

adoption. This finding suggests that private monitors are not substitutes for government

monitors.

We next investigate whether the pollution shock has a greater impact on monitor adop-

tion in areas with worse long-run pollution exposure, and that contain more vulnerable

populations. Following a similar procedure to that outlined above, Panel (b) of Figure 2

shows that there is no relationship between pre-existing levels of PM2.5 (measured by public

monitors) and monitor adoption in response to smoke events.8 Panels (c) and (d) show

that these new installations are also not disproportionately benefiting communities with a

higher share of children under 10 (panel c), or a higher share of adults over 80 (panel d). If

anything, there is a negative relationship between the share of children in a community and

monitor installation following a smoke event.

We next investigate whether there is significant clustering in monitor adoption; i.e.,

whether new private monitors are more likely to be installed near existing private monitors.

This type of clustering may exist because of a correlation in preferences of residents, or

due to spillovers between residents. Table 2 shows the e�ect of smoke events on adoption

where we split the sample by the presence of existing Purple Air monitors. The e�ect of air-

quality shocks on monitor adoptions is especially strong in tracts that already have Purple

Air monitors; each smoke event produces an increase of 0.4 monitors per month in tracts

8. The point estimate for the upper quantile of Figure 2 panel (b) is large and poorly estimated. In

the Appendix, we discuss this finding at length and test the interaction between Smoke_Event and initial

PM2.5 levels. There is no statistically significant trend in the adoption response by initial pollution levels.

8



with more than two monitors. Recall also that Purple Air adoptions are more likely to be

urban and in tracts that have a small geographic area. This means that new adoptions are

measuring air pollution in areas where coverage is already dense, and the new monitors may

consequently provide little additional information.

We next investigate the socio-economic characteristics of the neighborhoods that benefit

from the new monitors. Figure 3 shows that neighborhoods with the highest share of white,

highly educated9, Democratic voting and highest-income residents receive a disproportionate

share of monitors induced by smoke exposure. For neighborhoods in the lowest quintile share

of white, highly educated, and income, we cannot reject that the smoke event had no impact

on monitor installation. Smoke events in neighborhoods with the lowest quintile share of

registered Democrats produce a significantly positive e�ect on monitor adoption, though the

response is much smaller than in the neighborhoods with the highest Democratic share.

To formalize these results, in Appendix Table A2, we test interaction terms to show

that the monitor adoption response is increasing in the share of white, highly educated,

Democratic voting and high-income residents but is invariant to the share of elderly residents

(over 80), distance to public monitor, and yearly average pollution, and decreasing in the

share of the population under 10. Private monitor adoptions are therefore likely to worsen,

rather than reduce, inequalities in the impacts of poor air quality.

5 Conclusion

Air-quality monitoring can reduce the impacts of poor air quality by facilitating mitigation

and avoidance behavior. This monitoring has traditionally been provided by governments but

new low-cost sensors are resulting in substantial private provision of air-quality information.

We use plausibly exogenous variation in wildfire smoke to show that air-quality shocks cause

substantial spikes in private air-quality monitor installations.
9. We define highly educated as the share of residents holding a PhD or a professional degree. We use the

definition of professional degree from the American Community Survey, which includes MD, DDS, DVM,

LLB, and JD, among others. It does not include bachelor’s or master’s degrees

9



We also study the distribution of private low-cost air monitors that results from these

shocks. The provision of air-quality information as a way to empower local communities

is a key component of many environmental justice initiatives aimed at pollution mitiga-

tion. These initiatives highlight the fact that not all communities have granular air-quality

information from the existing network of government monitors.

We find that the adoption of new monitors is mostly uncorrelated with measures of pol-

lution exposure or vulnerability to air pollution. Rather, new private monitor adoptions

cluster in areas that are primarily wealthy, white, highly educated, and that already have

private monitors nearby. The large expansion of the private monitoring network therefore

is unlikely to substitute for public policies aiming to decrease inequality in air-quality infor-

mation coverage and the impacts of air pollution.
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Figures

Figure 1: Event Study for the E�ect of Smoke Events on Monitor Adoptions
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This figure plots the event study indicators for 100 µg/m3. smoke events. The outcome is
the monthly count of monitors installed in a tract. Event window spans 6 months on either
side of a negative air-quality shock in which the wildfire component of PM2.5 exceeds 100
µg/m3. 95% confidence intervals are shown using robust standard errors clustered at the
tract level.
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Figure 2: E�ect of Smoke Event on Monitor Adoption by Vulnerability
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Each panel of Figure 2 plots the coe�cients —1 on the treatment indicator Smoke_Eventst

from five iterations of the fixed e�ects specification of Equation 2, where the sample is re-
stricted to tracts within each quintile of the variable denoted on the horizontal axis. Top
Row: Panel A defines quintiles by the tract centroid’s distance from the nearest government
monitor; Panel B defines quintiles by the average yearly PM2.5 reading at the nearest gov-
ernment monitor. Bottom Row: Panel C defines quintiles by the share of residents under 10
years of age; Panel D defines quintiles by the share of residents over 80 years of age. 95%
confidence intervals are shown using robust standard errors clustered at the tract level.
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Figure 3: E�ect of Smoke Event on Monitor Adoption by Demographic Characteristics

���
�

�
��
�

��
��
�

��
��
�

(I
IH
FW
�R
I�6

P
RN
H�
(Y
HQ
W

� � � � �
4XDQWLOHV�RI�6KDUH�RI�:KLWH�5HVLGHQWV

(IIHFW�RI�6PRNH�(YHQW�E\�4XDQWLOHV�RI�6KDUH�RI�:KLWH�5HVLGHQWV

���
�

�
��
�

��
��
�

��
��
�

(I
IH
FW
�R
I�6

P
RN
H�
(Y
HQ
W

� � � � �
4XDQWLOHV�RI�5HVLGHQW�6KDUH�ZLWK�3K'�RU�3URIHVVLRQDO�'HJUHH

(IIHFW�RI�6PRNH�(YHQW�E\�4XDQWLOHV�RI�5HVLGHQW�6KDUH�ZLWK�3K'�RU�3URIHVVLRQDO�'HJUHH

���
�

�
��
�

��
��
�

��
��
�

(I
IH
FW
�R
I�6

P
RN
H�
(Y
HQ
W

� � � � �
4XDQWLOHV�RI�6KDUH�RI�5HJLVWHUHG�'HPRFUDWV

(IIHFW�RI�6PRNH�(YHQW�E\�4XDQWLOHV�RI�6KDUH�RI�5HJLVWHUHG�'HPRFUDWV

���
�

�
��
�

��
��
�

��
��
�

(I
IH
FW
�R
I�6

P
RN
H�
(Y
HQ
W

� � � � �
4XDQWLOHV�RI�3HU�&DSLWD�,QFRPH

(IIHFW�RI�6PRNH�(YHQW�E\�4XDQWLOHV�RI�3HU�&DSLWD�,QFRPH

Each panel of Figure 3 plots the coe�cients —1 on the treatment indicator Smoke_Eventst

from five iterations of the fixed e�ects specification of Equation 2, where the sample is
restricted to tracts within each quintile of the variable denoted on the horizontal axis. Top
Row: Panel A defines quintiles by the share of white residents in the tract; Panel B defines
quintiles by the share of residents with PhD or professional degrees. Bottom Row: Panel
C defines quintiles by the share of registered Democrats; Panel D defines quintiles by per
capita income. 95% confidence intervals are shown using robust standard errors clustered at
the tract level.
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Tables

Table 1: Summary Statistics for Tracts with and without Purple Air Monitors

Ever Installed=0 Ever Installed =1 T-test
Share under 10 years old 12.39 10.74 13.34

(4.51) (4.10)
Share over 80 years old 3.61 4.29 -7.92

(3.04) (3.32)
Share Doctorate and Professional 2.42 5.06 -27.32

(3.16) (4.46)
Distance Centroid to Monitor 10.92 13.49 -8.86

(9.32) (13.90)
Share Democrats 0.62 0.63 -2.32

(0.17) (0.18)
Mean Yearly PM2.5 11.26 10.24 13.34

(2.75) (2.69)
Share Non-Hispanic White 35.21 52.55 -24.81

(25.10) (24.68)
Per Capita Income 34371.18 51947.95 -29.59

(19022.) (28504)
Housing Units 1690.98 2035.41 -15.11

(780.20) (949.84)
Number of Installs 0 1.77

(0) (1.56)
Number of Tracts 6455 1602

Summary statistics for tracts that ever installed Purple Air during the study period and
those without Purple Air monitors. Tracts with monitor adoptions are on average slightly
farther from a government monitor, have a higher Democratic vote share, are wealthier,
whiter, and more urbanized than tracts without Purple Air.
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Table 2: E�ect of Smoke Events on Monitor Adoptions by Existing Monitors

(1) (2) (3)
VARIABLES Existing Installs = 0 Existing Installs >0 Existing Installs >2

100 ug Smoke Event = 1 0.0642*** 0.131*** 0.402***
(0.00255) (0.0170) (0.127)

Observations 289,719 24,471 2,409
R-squared 0.062 0.142 0.218
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

E�ect of smoke events on monthly monitor adoptions. Column 1 includes tracts with no
existing Purple Air monitors. Column 2 includes tracts with at least one existing monitor.
Column 3 includes tracts with more than two monitors. Specification includes tract and
month-by-year fixed e�ects. Robust standard errors are clustered at the tract level.
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Appendix

In this Appendix, we expand on the event study results of Figure 1 in the main paper, and

also on the heterogeneity results presented in Figures 2 and 3. We first present the event

study of Figure 1 using the imputation estimator of Borusyak et al. (2021), which relaxes

the assumption of homogeneous treatment e�ects. The results are shown in Figure A1:

Figure A1: Event Study for the E�ect of Smoke Events on Monitor Adoptions
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Event Study using the D-i-D imputation estimator of Borusyak et al. 2021. The outcome
is the monthly count of monitors installed in a tract. The event window spans 6 months on
either side of a negative air-quality shock in which the wildfire component of PM2.5 exceeds
100 µg/m3.

A smoke event in the month of occurrence increases monitor installations by 0.0736.

This result is nearly identical to the e�ect measured in the classic event study of Figure 1

(0.0745 installations). Figure A1, however, shows a small pre-trend in monitor adoptions in

the two months before a smoke event. We are interested in explaining this pre-trend and

we provide evidence this pre-trend is driven by monitor takeup responding to sub-100 µg

threshold events.
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First, we note that at the (arbitrary) 100 µg threshold for defining a smoke event, our

identification primarily comes from the Camp Fire of November 2018, as shown in Figure

A2:

Figure A2: Counts of Purple Air Installations and Smoke Events per Month
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Count of new Purple Air installations and counts of 100 µg smoke events by month during
study period. The large spike corresponds to the Camp Fire of November 2018.
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Appendix Figure A2 shows that at the 100 µg threshold for defining a smoke event,

our identification primarily comes from the Camp Fire of November 2018. However, major

fires such as the Mendocino Complex Fire in August-September 2018 produced widespread

smoke below 100 µg/m3. Most of these fires occurred prior to November 2018. To test the

threshold at which smoke events begin to produce increases in monitor adoption, we regress

the monthly count of Purple Air installations on a set of indicators for bins of smoke event

sizes. Bins are 20 µg for concentrations between 0 and 100 µg, with a single bin for smoke

events greater than 100 µg. The excluded group is 0-20 µg. The results, plotted in Appendix

Figure A3, show that smoke events begin to have a small but statistically significant e�ect on

monitor adoptions around 35 µg/m3. Using this information, we define 35µg as the threshold

for a smoke event. Figures A4 and A5 show the classic event study and the Borusyak et al.

(2021) event study using this threshold: the pre-trend largely disappears, and the e�ect size

diminishes in magnitude to about 30% of the result using 100 µg threshold.
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Figure A3: E�ect on Monitor Adoptions by Smoke Event Size
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We regress the count of monthly Purple Air installations on a set of treatment indicators for
20 µg bins of smoke events. Excluded: 0-20µg. 95% confidence intervals are shown using
robust standard errors clustered at the tract level.
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Figure A4: Event Study for the E�ect of 35ug Smoke Events on Monitor Adoptions
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This figure plots the event study indicators for 35 µg/m3. smoke events. The outcome is
the monthly count of monitors installed in a tract. Event window spans 6 months on either
side of a negative air-quality shock in which the wildfire component of PM2.5 exceeds 100
µg/m3. 95% confidence intervals are shown using robust standard errors clustered at the
tract level.

Figure A5: Event Study for the E�ect of 35ug Smoke Events on Monitor Adoptions
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Event Study using the D-i-D imputation estimator of Borusyak et al. 2021. The outcome is
the monthly count of monitors installed in a tract. Event window spans 6 months on either
side of a negative air-quality shock in which the wildfire component of PM2.5 exceeds 35
µg/m3.
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We also run an event study in which we define the smoke threshold as 100µg, but control

for a full set of event study indicators corresponding to events of size 35µg or larger. The

coe�cients on the 100 µg event study indicators are shown in Figure A6. Again, the pretrend

disappears, and the e�ect size diminishes only slightly from the 100 µg event study without

controls for sub-threshold events. On this basis we conclude the pretrend in Figure A1 is

most likely a true monitor adoption response to events below the 100µg threshold.

Figure A6: Event Study for the E�ect of 100ug Smoke Events on Monitor Adoptions, Con-
trolling for 35ug Events
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This figure plots the event study indicators for 100 µg/m3 smoke events, controlling for a
second set of indicators for 35 µg/m3. smoke events. The outcome is the monthly count of
monitors installed in a tract. Event window spans 6 months on either side of a negative air-
quality shock in which the wildfire component of PM2.5 exceeds 100 µg/m3. 95% confidence
intervals are shown using robust standard errors clustered at the tract level.
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Finally, we conduct an event study in which we define the smoke threshold as 100µg, but

we define the outcome variable as a dummy equal to 1 if there is any installation in tract s

in month t, and zero otherwise. We do this to explore the e�ect of potential outliers, since

the count of installations in a given tract-month ranges from zero to 14. The classic event

study and the Borusyak et al. (2021) event study using this outcome definition are shown

in Figures A7 and A8; results are slightly smaller in magnitude as expected but are quite

similar to the event study of Figure 1. The e�ect in the first period after a smoke event is

0.074 using the count of installations as the outcome variable and 0.063 using the dummy.
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Figure A7: Event Study, Outcome Variable is Any Installations
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This figure plots the event study indicators for 100 µg/m3. smoke events. The outcome is a
dummy variable equal to 1 if any installations occur in a tract-month. Event window spans
6 months on either side of a negative air-quality shock in which the wildfire component of
PM2.5 exceeds 100 µg/m3. 95% confidence intervals are shown using robust standard errors
clustered at the tract level.

Figure A8: Event Study, Outcome Variable is Any Installations
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Event Study using the D-i-D imputation estimator of Borusyak et al. 2021. The outcome
is a dummy variable equal to 1 if any Purple Air monitors are installed in a tract-month.
Event window spans 6 months on either side of a negative air-quality shock in which the
wildfire component of PM2.5 exceeds 100 µg/m3.
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We expand on Figures 2 and 3 of the main paper to further investigate the private monitor

adoption response by neighborhood characteristics. In Figure 2, we show that the size of the

adoption response is uncorrelated with distance to the nearest government monitor, average

PM2.5 reading, or share of residents over 80 years old, and is negatively correlated with the

share of residents under the age of 10.

One notable feature of Figure 2 is in Panel B, where we regress the number of new Purple

Air installations on smoke events with the sample restricted by quintiles of average annual

PM2.5 reading. The estimate of the e�ect of smoke events in the highest quintile of pollution

is both large and poorly estimated. Seeking to understand this result, in Appendix Figure

A9 we first plot the share of ever-treated tracts across each quintile for each of the variables

of interest in Figures 2 and 3. We find that for each set of quintiles, the share of ever-

treated tracts ranges between 10% and 40% of total tracts. It is also relatively consistent

across quintiles. The exception is the highest quintile for PM2.5 pollution, which has an

ever-treated share below 5%, leading to the imprecise estimate in Figure 2 Panel B.

In Appendix Table A1 we continue to explore di�erent definitions of high-pollution lo-

cations by splitting the sample by above and below median pollution levels at the nearest

government monitor, and by Clean Air Act attainment vs. non-attainment counties. There

is no di�erence in e�ect size when splitting the sample by above vs. below median air pol-

lution. The e�ect is concentrated in non-attainment counties; however, nearly all California

counties are in nonattainment status for some measure of air pollution, so this sample con-

tains the vast majority of observations. We then estimate the interaction terms following

equation:

Yst = – + —1Smoke_Eventst + —2Smoke_Eventst ú Heterogenity + ”s + “t + ‘st (3)

Where heterogeneity is one of the eight variables in Figures 2 and 3. The results are shown

in Table A2. There is a positive and significant relationship between share of highly educated
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residents, share of registered Democrats, share of white residents, and per capita income in

a tract and the size of the adoption response. There is no significant relationship between

the adoption response and distance to monitor, average PM2.5, or share of residents over 80

years old. The interaction term on share of residents under 10 is negative. On this basis,

we conclude that private monitor adoptions are unlikely to reduce inequalities in pollution

exposure.
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Figure A9: Share of Ever-Treated Tracts by Quintiles of Pollution Exposure
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Each panel plots the share of ever-treated tracts within each quintile of the variable of
interest. Clockwise from top left: quintiles of distance to monitor, PM2.5, Share of residents
under 10 years old, Share of residents over 80 years old.
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Figure A10: Share of Ever-Treated Tracts by Quintiles of Demographic Characteristics
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Each panel plots the share of ever-treated tracts within each quintile of the variable of
interest. Clockwise from top left: Quintiles of share of white residents, share of residents
with a PhD or professional educated, share of registered Democrats, per capita income.
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Table A1: E�ect of Smoke Events on Monitor Adoptions by Pollution Status

(1) (2) (3) (4)
Above Median PM2.5 Below Median PM2.5 Non-Attainment Counties Attainment Counties

VARIABLES Count Installs Count Installs Count Installs Count Installs

Smoke Event = 1 0.0655*** 0.0648*** 0.100*** -0.0152
(0.0123) (0.0110) (0.0105) (0.0119)

Observations 157,521 156,702 285,090 29,133
R-squared 0.046 0.066 0.060 0.051
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

E�ect of smoke events on monthly monitor adoptions with the sample split by long term
air pollution status. Columns 1 and 2 split the sample into tracts with above and below
median yearly average PM2.5 readings. Columns 3 and 4 split the sample by Clean Air Act
non-attainment status. Robust standard errors are clustered at the tract level.
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Table A2: E�ect of Smoke Events on Monitor Adoptions with Interactions

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Count Installs

Smoke Event = 1 0.199*** 0.0744*** -0.0229** 0.0796*** -0.0937*** 0.118*** -0.0194 -0.0903***
(0.0268) (0.0110) (0.0109) (0.0121) (0.0261) (0.0377) (0.0138) (0.0200)

Smoke Event = 1 ◊
Share under 10 years old -0.0108***

(0.00190)
Share over 80 years old -6.95e-05

(0.00184)
Share Doctorate and Professional 0.0272***

(0.00367)
Distance Centroid to Monitor -0.000562

(0.000775)
Share Democrats 0.266***

(0.0460)
Mean Yearly PM2.5 -0.00435

(0.00365)
Share Non-Hispanic White 0.00191***

(0.000316)
Per Capita Income 0.00377***

-5.39E-04

Observations 312,468 312,468 312,468 314,223 312,663 314,223 312,468 312,234
R-squared 0.059 0.058 0.063 0.058 0.059 0.058 0.059 0.062
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Each column reports the coe�cients from a regression of the number of new monthly Purple
Air installations on an indicator for 100 µg smoke event, an interaction term between the
smoke event indicator and the heterogeneity variable of interest from Figures 2 and 3, and
the fixed e�ects. There is no statistically significant e�ect on the interaction term for average
yearly PM2.5, proximity to government monitor, or share of residents above 80 years old;
monitor adoptions are increasing in per capita income, share of highly educated residents,
share white, and share Democrat. Robust standard errors are clustered at the tract level.
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In Table A3, we follow Gallagher (2014) and investigate the role of TV media coverage

in mediating the adoption response. In column 1, we show that the existence of smoke

anywhere in the media market is associated with an increase in monitor adoptions. The

e�ect size is less than 10% of the magnitude of our main estimate of the direct e�ect of

smoke in a tract at 0.07 installations per smoke event. In column 2, we include separate

indicators for a tract that directly experiences a smoke event, and an indicator for a tract in

a media market with smoke but did not itself experience a smoke event ("media neighbors"

in the parlance of Gallagher). It is clear that the direct e�ect of smoke is what is driving the

results- TV media coverage does not seem to play a role in increasing monitor adoptions.
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Table A3: E�ect of Media Market Smoke Events on Monitor Adoptions

(1) (2)
VARIABLES Count Installs Count Installs

Smoke in Media Market =1 0.00430***
(0.00163)

Smoke in Tract = 1 0.0725***
(0.00815)

Smoke in Media Market =1, Smoke in Tract = 0 -0.00197
(0.00163)

Observations 314,223 314,223
R-squared 0.056 0.058
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Following Gallagher (2014), we define a media market neighbor as a census tract that is
within the same media market as a tract experiencing a 100 µg smoke event but did not
itself experience a smoke event. Column 1 regresses the number of Purple Air installations
on an indicator for the presence of 100 µg smoke event anywhere in the TV media market;
Column 2 includes separate indicators for a tract experiencing a 100 µg smoke event and
media neighbors. The e�ect of smoke on adoptions is a direct e�ect; media neighbors do not
show increases in adoptions. Robust standard errors are clustered at the tract level.
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