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1 Introduction

Hypothesis testing is widely used in econometrics. Inter alia, it is an important tool to justify modelling

choices and, therefore, the results of empirical research. In many situations, one wishes to test a joint null

hypothesis consisting of multiple subsidiary null hypotheses. In particular, specification tests typically

involve using multiple statistics that are motivated by the need to test a number of assumptions underlying

a model and/or estimation procedure. A joint test is generally preferable over multiple individual tests

to control the overall probability of type I errors. This paper re-examines existing tests—including tests

not widely used in the econometrics literature—and investigates their performance in the context of

specification testing.

While it is straightforward to perform hypothesis testing based on a single statistic, it is less clear

how to evaluate multiple statistics. In general, a vector that collects multiple statistics can form the

basis for hypothesis tests. Each statistic may refer to different aspects of the data generating process

(DGP). Consider a d × 1 vector of statistics, S = (S1, S2, . . . , Sd)
′, where the d elements of the vector

are the individual test statistics that correspond to the considered subsidiary hypotheses. Using critical

values for each test individually without adjustment when making a test decision is problematic due to

the resulting high overall probability of a type I error. One remedy is to determine adjusted decision

rules based on the Bonferroni inequality. However, these approaches tend to be too conservative. A more

fruitful approach is to aggregate the individual statistics into a single one.

Most of the approaches that we consider below follow this aggregation approach. At least since Dufour

et al. (2015), the most commonly used tests in econometrics are a test that relies on the subsidiary statistic

with the lowest P -value (dating back to Tippett et al., 1931) and a test that relies on the product of the

P -values of all subsidiary statistics (dating back to Fisher, 1932). Not widely known in econometrics are

tests that look at sums of subsidiary P -values, after transforming the latter by the distribution functions

of the χ2 distribution (dating back to Lancaster, 1961), the normal distribution (dating back to Stouffer

et al., 1949), or the Gamma distribution (recently proposed by Chen, 2021). Under independence of

the subsidiary test statistics, it is often possible to derive a null distribution of the overall test statistic

analytically.

In economics, the assumption of independent subsidiary statistics is often not realistic. However,

even if the subsidiary tests are not independent, simulations can usually be used to determine the test

distribution under the null hypothesis (Godfrey, 2005, 2009; Dufour et al., 2015) and, thus, to derive a

properly sized test. We will rely on such simulation techniques when applying the different testing ap-

proaches below. We consider one non-parametric approach recently proposed by King et al. (2020). This

approach handles dependent subsidiary test statistics, too. The main idea of it is to non-parametrically

estimate the joint density of all subsidiary test statistics under the null hypothesis and to estimate the

P -value of the smallest acceptance region test.
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A natural application of multiple hypothesis testing lies in specification testing. In this context, one

wishes to detect different forms of model misspecification or testing assumptions underlying a specific

estimation or inference procedure. The overall null hypothesis is that the chosen model specification is

adequate. Usually, there are multiple potential deviations from that overall null hypothesis, not known a

priori. Linear regression models, for instance, frequently assume no residual autocorrelation, homoskedas-

tic error terms and no unmodelled non-linearities. The real DGP might deviate from any of those as-

sumptions. Well-known tests are available that allow assessing these inadequacies separately; they need

to be suitably combined to obtain a valid test of the overall null hypothesis. Godfrey (2009) notes that

such vector of separate diagnostic checks constitutes a situation where the individual tests are potentially

dependent.

We analyze the performance of the tests using Monte Carlo simulations in the context of specification

testing for linear regressions. The application setup follows Godfrey (2005) who investigates a similar

research question, yet considers only the minimum P -value statistic. We find that combined tests out-

perform individual tests tailored to one particular deviation from the null hypothesis as soon as there

are two types of deviation from the overall null hypothesis. Those approaches that combine information

from all subsidiary tests (especially via a simple product of the subsidiary P -values or a sum of the

subsidiary P -values transformed by the chi squared distribution function) perform substantially better

than the minimum P -value test in most settings and equally well if only exactly one deviation from the

null hypothesis is present. The non-parametric approach by King et al. (2020) performs well but has

smaller power than the best parametric tests.

The remainder of the paper is structured as follows. In Section 2, we describe the general testing

framework and revisit existing tests. Section 3 introduces specification tests for regression models that

we will focus on in our application. Section 4 presents the Monte Carlo study; it includes information

about the simulation setup (Section 4.1), the results regarding the size of the tests (Section 4.2) and their

power (Section 4.3). Section 5 concludes.

2 The Testing Framework

Consider a testing problem with a joint null hypothesis that consists of d subsidiary null hypotheses

H01, H02, . . . ,H0d. For each null hypothesis, a statistic Si is available that has a cumulative distribution

function (CDF) Fi if H0i is true.
1 The individual statistics are chosen to have correct size and good power

to detect deviations from the respective null hypothesis. Individually, one would reject a subsidiary null

hypothesis if the observed value of Si is very unlikely under H0i. The P -value can be used to design a

natural decision rule for such a situation. It is defined as the probability to observe a value of Si that is as

1A related situation occurs if the same null hypothesis is tested multiple times using different tests that might have
different power against different alternatives, so-called induced tests.
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extreme or more extreme than the realized value si under the condition that the null hypothesis is true.

Without loss of generality we assume a right-sided test such that P (Si ≥ si|H0) = 1−Fi(si) = Pi. Given

significance level α, H0i is rejected when Pi ≤ α. Under the assumption that the Fi are continuous, each

Pi is described by a uniform distribution between 0 and 1 when the associated subsidiary null hypothesis

is true, i.e., Pi|H0i ∼ U(0, 1).

The null hypothesis of the joint testing problem is given as the intersection where all individual null

hypotheses are true:

H0 : H01, H02, . . . ,H0d are all true (1)

This overall null hypothesis is tested against the alternative hypothesis that at least one of the subsidiary

null hypotheses is not true:

H1 : at least one of H01, H02, . . . ,H0d is not true (2)

We now turn to the issue of aggregating the components of S = (S1, S2, . . . , Sd)
′ or the corresponding

P -values, P = (P1, P2, . . . , Pd)
′, into one test statistic.

2.1 Parametric Tests

Combining information about several statistics/P -values associated with multiple subsidiary null hy-

potheses and generating an overall statistic for testing a joint hypothesis is not a novel idea. Early

proposals date back to Tippett et al. (1931), Fisher (1932), and Good (1955). In general terms, the idea

is to form a test statistic for the joint hypothesis as a function of either the subsidiary test statistics

directly, i.e., S∗ = f(S), or the corresponding P -values, i.e., S∗ = f(P). Many approaches assume a test

statistic of the form

S∗ = f (w1g(P1), w2g(P2), . . . , wdg(Pd)) , (3)

where the wi are weights attached to the individual subsidiary P -values and g() is some function used to

transform the P -values before aggregation.

Any feasible approach requires that the distribution of S∗ under the null hypothesis is either known

or can be approximated by simulation. We can distinguish three cases. First, the null distribution is

analytically available for some approaches of the form given by equation (3) under the condition that the

subsidiary tests are independent of each other. We mention these null distributions—if available—for the

particular combined test discussed below.

Second, if no analytical distribution is available even though the subsidiary tests are independent,

estimation of the distribution function of S∗ by simulation is straightforward. In particular, the P -values

in equation (3) follow independent U(0, 1) distributions under the joint null hypothesis in that case.

Hence, one can simulate m draws of S∗ under H0 by simulating m independent draws from uniform
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distributions for P1, . . . , Pd (potentially determining P -value-dependent weights based on these draws,

too). This is not computationally expensive and for given d, critical values could even be tabulated based

on such simulation.

Finally, whenever the subsidiary test statistics are not independent of each other, the results from

Dufour et al. (2015) show how one can use bootstrap simulations to estimate the null distributions—and,

thus, critical regions—of combined tests. An important requirement is that the joint null distribution of

the subsidiary tests does not depend on nuisance parameters, and neither do the weights in equation (3).

Essentially, the approach implies bootstrapping data under the assumption that H0 is true to obtain m

sets of subsidiary statistics and their P -values (with the same joint distribution as S under H0), which,

in turn, can be used to determine an empirical P -value by calculating the rank of the combined test

statistics obtained for the observed sample in the sequence of bootstrapped combined statistics. The test

is exact when m is chosen such that α(m+ 1) is an integer. In the remainder of this section, we review

available testing approaches that implement the general idea of combining subsidiary statistics into one

overall statistic.

Minimum P -value test

In the econometrics literature, the minimum P -value test is probably the most commonly used approach.

It dates back to Tippett et al. (1931). The decision rule of the minimum P -value test is based on the

smallest of the subsidiary P -values. In terms of the general framework in equation (3) that implies that

the weights are given by the indicator function wi = 1(Pi < Pj ,∀j ̸= i). The statistic is then given by

S∗ = Smin = 1− Pmin = 1− min
i=1,...,d

{Pi}. (4)

H0 is rejected whenever Smin is large. Smin follows a Beta distribution with parameters 1 and d under

the null hypothesis when the subsidiary P -values are independent. When independence is violated, the

bootstrap suggested in Dufour et al. (2015) can be used to estimate the null distribution.

Product of P -values test / Fisher test

One alternative is a test based on the product of all subsidiary P -values or, equivalently, the sum of the

logarithms of these P -values. Dating back to Fisher (1932), it is also known as the Fisher test. The test

statistic is given by

S∗ = SF = −2

d∑
i=1

lnPi. (5)

H0 is rejected whenever SF is large. Under independence of the subsidiary P -values the null distribution

of SF is χ2
2d. When independence is violated, one can again bootstrap critical values and the P -value.

Weighted product of P -value tests

Instead of weighting all P -values equally (wi = 1, for all i = 1, . . . , d), one can also construct a test
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statistic based on a weighted product of the subsidiary P -values or a weighted sum of their logarithms:

S∗ = SwF = −2

d∑
i=1

wi lnPi. (6)

Again, H0 is rejected whenever SwF is very large. The weights could reflect prior information (Good,

1955), could be based on the P -values themselves (Wilkinson, 1951), or on the standard error of estimated

effect sizes (Whitlock, 2005) when, for instance, t-tests from multiple studies are to be combined. Dufour

et al. (2015) consider one variant of this idea that we implement below. In particular, subsidiary P -values

below a significance level α∗ (we will choose α∗ = α) receive a weight of 1 while insignificant P -values

receive a zero weight. We label the corresponding test statistic SwF (∗).
2 Since the weights depend on

the subsidiary P -values, no analytic null distribution is available. The distribution has to be simulated if

the subsidiary tests are independent and can be bootstrapped following Dufour et al. (2015) if they are

dependent.

χ2-transform test

We now turn to alternative tests that are not commonly known in the econometrics literature in the

context of testing combined hypotheses based on multiple subsidiary statistics. One of those tests applies

a different transformation to the subsidiary P -values before aggregating them. The χ2-transform test

(Lancaster, 1961) is given by

S∗ = Sχ2 =

d∑
i=1

F−1
χ2 (1− Pi) ,

where F−1
χ2 denotes the quantile function of the χ2 distribution with 1 degree of freedom. Obviously, the

null distribution of Sχ2 is χ2
d if the subsidiary P -values are independent. In case they are not, critical

values and the P -value can be bootstrapped.

In addition, one can consider a weighted version of Sχ2 , analogously to the weighted version of the

Fisher test SwF described before. We also consider this option in our simulations below and denote it by

Sχ2(∗).

Z-transform test

Originally proposed in Stouffer et al. (1949), this test addresses an asymmetry inherent to the Fisher

test (Whitlock, 2005) by using the quantile function of a standard normal distribution, Φ−1, before

aggregating the subsidiary P -values. The test statistic is given by

S∗ = SZ =

d∑
i=1

Φ−1 (1− Pi) /
√
d. (7)

2Dufour et al. (2015) consider an alternative variant that includes the d̃ smallest P -values with a weight of 1 while
discarding all other P -values. Since d is small in our application, we do not consider this variant.
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H0 is rejected whenever SZ is large. If the subsidiary P -values are independent and H0 is true, SZ follows

a standard normal distribution. Otherwise its distribution and, thus, critical values and the P -value need

to be bootstrapped.

Gamma-transform test

Finally, a recent proposal is to use the Gamma distribution for transforming the subsidiary P -values prior

to their aggregation. In particular, Chen (2021) mentions an implementation that uses the subsidiary

P -values to determine the shape parameters of the used Gamma distributions.The statistic is given by

S∗ = SG =

d∑
i=1

F−1
G(1/Pi;1)

(1− Pi) , (8)

where F−1
G(1/Pi;1)

is the quantile function of a Gamma distribution with shape parameter 1/Pi and rate

parameter 1.3 H0 is rejected whenever SG is large. The null distribution of SG is unknown and has to

be simulated if the subsidiary tests are independent or otherwise bootstrapped.

2.2 A Non-Parametric Test

King et al. (2020, KZA) suggest a testing framework that abstracts from combining the subsidiary P -

values into one statistic. Their approach is based on a non-parametric estimation of the joint density

f(S) of the individual statistics. The region with the highest density determines the acceptance region

of the test with probability 1 − α. Since the joint density is unknown in most situations, the authors

recommend to estimate f(S) using a kernel density estimator.4 Inference is based on densities estimated

with bootstrapped samples of S, obtained under the overall null hypothesis. In a procedure called double

simulation method (DSM), two independent samples ofm values of S are drawn, one to obtain an estimate

of the joint density, f̂m(S), and the other to evaluate the estimated density at values generated when

H0 is true. Alternatively, the single simulation method (SSM) is based on one sample of size m of S

under the null that is combined with a leave-one-out kernel density estimation of f(S). Both methods

produce m values of the estimated joint density evaluated at draws of the vector of statistics under the

null hypothesis. To calculate the P -value of the test, these values are compared to the estimated density

evaluated at the observed value of S. In particular, the P -value is the fraction of density evaluations

under the null hypothesis that are smaller than the density evaluated at the vector of statistics based on

the data sample used for testing, i.e., the fraction of those values from the simulation under H0 with a

3Chen (2021) discusses that the test is equivalent for any value of the rate parameter and proposes a value of 1 for
convenience.

4The kernel density estimator depends on choice of the bandwidth matrix H. We follow King et al. (2020) and use a
diagonal bandwidth matrix, where the ith diagonal element is based on the estimated standard deviation of Si.
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lower density than the one actually observed:

P̂King
n =

∑m
j=1 1

(
f̂m(S

(j)
H0

) ≤ f̂m(s)
)

n
, (9)

where f̂m() is evaluated at draws of S
(j)
H0

under the null hypothesis and at the observed vector of statistics

s = (s1, . . . , sd)
′, respectively. The test is exact when for a given significance level α the value α(m+ 1)

is an integer. We consider the double simulation version of this test.

3 Application: Specification Tests

An obvious situation in which multiple test statistics have to be combined are diagnostic checks for

regression specification. Such specification tests are commonly used to evaluate whether the assumptions,

which are made to derive certain properties of estimators, hold true. There are several established

individual tests available in many software packages to detect different forms of misspecification.

Our study considers four common deviations from the overall null hypothesis of a linear regression

model with independent, homoskedastic, and standard normally distributed error terms: residual auto-

correlation, heteroskedasticity, non-normality, and/or non-linearity. To test against each of these four

alternatives, we use well-established test statistics by Ljung and Box (1978), Breusch and Pagan (1979),

Neyman (1937), and Ramsey (1969), respectively. In our case, the vector of subsidiary statistics is, thus,

of dimension 4× 1.

Without loss of generality, we consider the simple linear regression model

yt = βxt + εt, (10)

where we draw xt randomly from the U(0, 1) distribution, β = 1 and the random errors are Gaussian and

independent of each other across time, εt
iid∼ N(0, 1). We assume throughout that the model’s parameters

are estimated by the OLS estimator.

We test the subsidiary hypothesis of no residual autocorrelation based on the test by Ljung and Box

(1978), thus

S1 = T (T + 2)

L∑
k=1

ρ(k)2

(T − k)
, (11)

where ρ(k) is the kth order autocorrelation coefficient for k = 1, 2, . . . , L. The null hypothesis of no

autocorrelation is rejected for large values of S1. Under the null hypothesis, S1 asymptotically follows a

χ2 distribution with L degrees of freedom.

The second statistic in S is Breusch and Pagan’s (1979) test statistic that allows testing the null

hypothesis of no heteroskedasticity. It is based on the auxiliary regression ε̂2t = γ0 + γ1xt + ut, where the
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ε̂t are the residuals from the regression model in (10). The test statistic is given by

S2 = T R2, (12)

where R2 is the coefficient of determination (R-squared) of the auxiliary regression. Under the null

hypothesis, S2 is χ2 distributed with degrees of freedom equal to the number of predictors in the linear

model (in our case 1).

The smooth test by Neyman (1937) is commonly used to detect deviations from the null hypothesis

of normally distributed errors. Since the test actually tests for uniformity on [0, 1], the residuals from

the regression model in (10) need to be transformed first. Specifically, we calculate Zt = Φ(ε̂t) where Φ

is the cumulative distribution function of the standard normal distribution. Hence, Zt
iid∼ U [0, 1] under

H0. Neyman’s test statistic is then

S3 =

4∑
j=1

(
T−1/2

T∑
t=1

bj(Zt)

)2

, (13)

where b1, b2, b3, and b4 are the normalized Legendre polynomials on [0, 1]. When the hypothesis of

normally distributed error terms is true, the test statistic is χ2 distributed with four degrees of freedom

(the number of Legendre polynomials included). The null hypothesis is rejected for large values of S3.

Finally, we use Ramsey’s (1969) Regression Equation Specification Error Test (RESET) to identify

a potential nonlinear relationship between yt and xt in (10). The test compares the explanatory power

of the original model with the explanatory power of a model that includes non-linear terms. These

additional regressors are added in the form of a polynomial of the fitted values from the original model.

The auxiliary regression model with one squared fitted value is given by: yt = xtα+ ŷ2t γ + ζ, where the

ŷt denotes the fitted value. We use a Wald test to evaluate the null hypothesis that the coefficient γ is

equal to zero. Thus, the test statistic is

S4 = γ̂′
([

0 1
]
Σγ̂

[
0 1

]′)−1

γ̂, (14)

where Σγ̂ is the covariance estimate of the auxiliary regression model. Under the null hypothesis, S4

follows a χ2 distribution with one degree of freedom.

The distribution of the four test statistics in S are available in closed form under the respective

subsidiary null hypotheses. Still, we use a bootstrap building on Dufour et al. (2015) to approximate the

null distribution of the combined parametric tests because we want to account for potential dependence

between the four subsidiary tests. To do so, we simulate 100, 000 data sets according to the DGP assumed

under H0 and described by equation (3). For each of these data sets, we then estimate the null model

and compute the four tests and their corresponding P -values. In a last step, this allows us to compute

8



100, 000 draws of the combined test statistics from Section 2. We can use the empirical distribution

function of those draws obtained under the overall null hypothesis to make test decisions in the Monte

Carlo simulations described in the next section.

4 Monte Carlo Simulations

4.1 The Setup

In accordance with the four test statistics in vector S, we examine four departures from the null hypothesis

of i.i.d. errors. These departures are autocorrelated errors, heteroskedasticity, non-normal errors, and non-

linear associations between the dependent and independent variables in the regression (10). We explore

each departure individually as well as combinations of the four deviations. Additionally, we include a

randomized simulation design where each departure occurs with some predetermined probability.

To assess the empirical sizes of the testing approaches, we simulate errors from the standard normal

distribution, i.e. εt ∼ N(0, 1). To analyze their power, we use the following four DGPs for εt:

1. We model serial correlation as a stationary AR(1) process. The error term is defined as εt =

ρεt−1 + ut, where ut ∼ N(0, 1) and ρ is the autocorrelation coefficient. We set ρ = 0.15. When

simulating the autocorrelated errors, a burn-in sample of 100 observations is used throughout.

2. We model heteroskedasticity such that εt has a time-varying variance V ar(εt|xt) = σ2ht. We define

ht such that V ar(εt|xt) increases with t. In particular, we assume εt = (e1,i(t) + e2,t)/
√
3, where

e1,t ∼ N(0, 1) and e2,t ∼ N(0, 2) and i(t) is defined according to i(t) = rank (z · ϕ(e1,t)) with

z ∼ U [0, 1] and ϕ being the probability density function of the standard normal distribution. The

index i(t) ensures that larger absolute values of e1,t tend to occur more frequently for higher t.

Finally, we sort the x values by size such that the variance of εt increases with xt.

3. To generate non-normal errors, we draw values from Student’s t-distribution, i.e., εt ∼ tk where

k are the degrees of freedom. We set k = 7.

4. To induce a nonlinear relationship between yt and xt in deviation from the regression model (10),

we specify the errors as εt = x2
t δ + ut, where δ = 1.5 and ut ∼ N(0, 1).

In a first step, we simulate four different DGPs, each exhibiting one of the deviations from the null.

The standard tests hold a power advantage in these scenarios, as they are specifically designed to detect

a single deviation from the null hypothesis in the data. In the second step, we generate data where

two of the aforementioned deviations are present, resulting in a total of six distinct DGPs. The data

are generated according to the above description except when simulating the DGP with heteroskedastic

and non-normal errors. In this case, we set e1 ∼ t7 and e2 ∼ t3 in order to regulate the strength

9



of the deviation from the null. We keep this specification for all combined alternatives that include

heteroskedasticity and non-normality. Next, we consider situations in which three of the four specified

deviations coincide. This results in a total of four different DGPs. The final data is generated such that

all four deviations from the null are present simultaneously.

To create an alternative where it is unknown which and how many of the deviations from the overall

null hypothesis are behind the DGP, we use a randomized simulation design. The number and type

of deviations from the null are chosen at random from the four deviations above. Each one is selected

according to a Bernoulli process with some probability. We set this probability to either 0.5, 0.7, or

0.9. We exclude cases where none of the deviations are chosen, i.e., we avoid that the errors are in full

accordance with the overall null hypothesis.

All simulations are executed with n = 20,000 Monte Carlo iterations. We consider sample sizes

T = {50, 100, 200} and choose a nominal significance level of α = 0.05 throughout.

4.2 Results: Size

Tables 1 and 2 show the empirical size for each test obtained for different sample sizes. The first table

presents sizes for the individual tests (Ljung-Box test, Breusch-Pagan test, Neyman-Smooth test, and

the RESET test); the second table presents sizes for the alternative ways of aggregating these four tests

into one (as described in Section 2).

Overall and despite minor differences, all tests achieve empirical sizes very close to the nominal value

of 0.05. This is true for all sample sizes that we consider. Hence, all test approaches are able to correctly

control the probability of type I errors.5

Table 1: Sizes of standard tests

T Ljung- Breusch- Neymann- RESET
Box Pagan Smooth

50 0.055 0.057 0.050 0.056
100 0.047 0.054 0.049 0.053
200 0.050 0.048 0.048 0.051

Notes: Table shows empirical rejection frequencies under the null hypoth-
esis as described in Section 2 for a nominal size of α = 0.05. The number
of Monte-Carlo iterations is n = 20, 000. For each sample size, the high-
est power across all tests is highlighted in bold.

4.3 Results: Power

Turning to the power results, we start with the simulations that include only one single type of deviation

from the overall null hypothesis. Comparing the rejection frequencies from Table 3 with those in Table 4

5The sizes (and power results below) are very similar when we rely on analytical null distributions whenever available.
This is due to the fact that the correlations between any of the individual test statistics are small in absolute values under
H0 in our setup.
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Table 2: Sizes of standard tests

T Smin SF SwF (∗) Sχ2 Sχ2(∗) SZ SG KZA

50 0.050 0.052 0.050 0.052 0.050 0.051 0.050 0.052
100 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.052
200 0.051 0.049 0.049 0.049 0.049 0.050 0.050 0.049

Notes: Table shows empirical rejection frequencies under the null hypothesis as described in Section 2 for a nom-
inal size of α = 0.05. The number of Monte-Carlo iterations is n = 20, 000. For each sample size, the highest
power across all tests is highlighted in bold.

it is evident—and not surprising—that the specialized individual tests outperform the combined tests.

Thus, if one knows that, say, residual autocorrelation is the only potential deviation from H0, then relying

on the Ljung-Box test is, of course, preferable to using any of the tests that combine test statistics related

to all four potential deviations from H0. Among the combined tests, the test by King et al. (2020) has

the highest power for all deviations but non-normally distributed error terms. In the latter case, the test

from Chen (2021) that transforms the subsidiary P -values using the Gamma distribution function before

aggregation and the weighted versions of the product of P-values and the χ2-transform tests, SwF (∗) and

Sχ2(∗), perform best among the combined tests. Hence, even with only one deviation relying on Smin

does not seem to be optimal.

Table 3: Powers of standard tests - single deviation

T Ljung- Breusch- Neyman RESET
Box Pagan Smooth

Panel A: Autocorrelation
50 0.134 0.051 0.050 0.062
100 0.276 0.051 0.055 0.058
200 0.528 0.051 0.054 0.060

Panel B: Heteroskedasticity
50 0.056 0.197 0.047 0.072
100 0.056 0.380 0.050 0.071
200 0.057 0.679 0.050 0.067

Panel C: Non-normality
50 0.047 0.048 0.203 0.054
100 0.049 0.049 0.322 0.053
200 0.051 0.049 0.553 0.052

Panel D: Non-linearity
50 0.048 0.050 0.050 0.224
100 0.052 0.047 0.051 0.385
200 0.052 0.047 0.054 0.654

Notes: This table presents the powers of standard tests when α =
0.05. The number of Monte-Carlo iterations is n = 20, 000. For each
sample size, the highest power across all tests is highlighted in bold.

Next, we consider the situation when the DGP has deviations along two dimensions from the null

hypothesis. Table 5 shows the power of the individual specialized tests for any combinations of two

deviations from H0. In each of the scenarios, the power of tests that are designed to detect one of the

two deviations is high. Interestingly, however, the power is smaller (with few exceptions) than in the
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Table 4: Powers of combined tests - single deviation

T Smin SF SwF (∗) Sχ2 Sχ2(∗) SZ SG KZA

Panel A: Autocorrelation
50 0.086 0.089 0.087 0.091 0.087 0.083 0.087 0.093
100 0.163 0.165 0.167 0.167 0.167 0.137 0.165 0.177
200 0.347 0.315 0.349 0.331 0.349 0.231 0.349 0.365

Panel B: Heteroskedasticity
50 0.112 0.122 0.117 0.123 0.117 0.113 0.115 0.128
100 0.226 0.215 0.234 0.225 0.234 0.173 0.231 0.252
200 0.488 0.436 0.490 0.461 0.490 0.300 0.493 0.515

Panel C: Non-normality
50 0.137 0.129 0.137 0.134 0.137 0.107 0.138 0.120
100 0.219 0.209 0.221 0.216 0.221 0.156 0.221 0.192
200 0.409 0.373 0.411 0.391 0.411 0.262 0.412 0.360

Panel D: Non-linearity
50 0.131 0.129 0.132 0.133 0.132 0.107 0.133 0.132
100 0.234 0.218 0.236 0.226 0.236 0.164 0.237 0.243
200 0.464 0.413 0.467 0.439 0.467 0.274 0.469 0.477

Notes: This table presents the powers of combined tests when α = 0.05. The number of Monte-Carlo iterations is
n = 20, 000. For each sample size, the highest power across all tests is highlighted in bold.

previous cases with only one deviation from H0. Thus, the probability of type II errors associated with

these specialized tests increases in most cases once another deviation is added.

In contrast, the power of all combined tests increases without exception when a second deviation is

added (Table 6). Overall, when T > 50, the power of these combined tests is now higher than that of

the specialized tests in Table 5. In particular, the highest power is obtained by a combined test and

most combined tests have higher power than the best specialized test, Neyman’s smooth test being the

only individual test that is competitive in most scenarios and for small samples. While this is not too

surprising, it is interesting to analyze which of the combined testing approaches perform best. Across all

combinations of deviations from H0, SF and Sχ2 exhibit the highest power, the differences in rejection

frequencies between the two being only marginal. The next best tests are their weighted versions, SwF (∗)

and Sχ2(∗), and the non-parametric test by King et al. (2020). SG also performance at par with those tests

except for the setup with residual autocorrelation in combination with heteroskedasticity. SZ and Smin

have the lowest power on average. Interestingly, there are no major differences in the relative ranking

(according to power) of the combined tests between different sample sizes.

In the next step, we consider alternative DGPs that deviate along three dimensions from the overall

null hypothesis. We display the results regarding the power of the combined tests in Panels A to D in

Table 7. Note that we put further results for the individual subsidiary test statistics into the appendix

since their relative performance only deteriorates further when more deviations from H0 are added;

Neyman’s Smooth test is the only one that reaches power almost at par with some of the combined

tests in some setups. The ranking of the combined tests remains largely unchanged: again, SF and Fχ2

have the largest power. Naturally, Smin falls back because it uses only information from one subsidiary

12



Table 5: Powers of standard tests - two deviations

T Ljung- Breusch- Neyman RESET
Box Pagan Smooth

Panel A: Autocorrelation and Heteroskedasticity
50 0.127 0.118 0.206 0.110
100 0.261 0.255 0.201 0.108
200 0.512 0.532 0.176 0.112

Panel B: Autocorrelation and Non-normality
50 0.135 0.049 0.219 0.059
100 0.271 0.048 0.355 0.057
200 0.532 0.047 0.604 0.054

Panel C: Autocorrelation and Non-linearity
50 0.127 0.070 0.185 0.292
100 0.252 0.076 0.324 0.495
200 0.487 0.099 0.575 0.785

Panel D: Heteroskedasticity and Non-normality
50 0.058 0.266 0.146 0.089
100 0.061 0.394 0.221 0.083
200 0.062 0.526 0.376 0.084

Panel E: Heteroskedasticity and Non-linearity
50 0.056 0.190 0.053 0.243
100 0.061 0.385 0.052 0.396
200 0.071 0.670 0.051 0.650

Panel F: Non-normality and Non-linearity
50 0.048 0.044 0.215 0.178
100 0.051 0.046 0.354 0.294
200 0.047 0.046 0.604 0.513

Notes: This table presents the powers of standard tests when α = 0.05.
The number of Monte-Carlo iterations is n = 20, 000. For each sample
size, the highest power across all tests is highlighted in bold.

P -value, failing to incorporate information provided by the other subsidiary statistics.

Finally, we consider the situation in which all four deviations from H0 become relevant. The results

in Panel E in Table 7 show the same overall picture. When T = 200, the power of SF and Sχ2 is highest

(around 0.93) and roughly 7 percentage points above the power of Smin.

In addition to the alternatives discussed so far, we consider the (to some extent more realistic) situation

where the dimensions along which the DGP deviates from H0 are randomly chosen, i.e., unknown. We

assume that each deviation occurs with a probability of 0.5, 0.7, or 0.9 and discard cases where no

deviation is chosen. The overall conclusion remains unchanged. Power increases in the probability by

which deviations occur (Table 8). SF and Sχ2 perform best. The non-parametric approach by King et al.

(2020) follows at par with SwF (∗), Swχ2(∗), and SG. SZ has similar power in the case of large samples

and a high probability of deviations. The power of Smin remains much lower. The differences between

the best and worst performance increase slightly in the probability by which deviations occur. Again,

the individual subsidiary tests are not competitive and results are in the appendix.

In summary, we draw the following general conclusions from our simulation exercise. First, the
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Table 6: Powers of combined tests - two deviations

T Smin SF SwF (∗) Sχ2 Sχ2(∗) SZ SG KZA

Panel A: Autocorrelation and Heteroskedasticity
50 0.198 0.250 0.214 0.245 0.214 0.239 0.212 0.206
100 0.302 0.395 0.339 0.391 0.339 0.378 0.329 0.344
200 0.563 0.667 0.612 0.666 0.612 0.621 0.605 0.624

Panel B: Autocorrelation and Non-normality
50 0.176 0.193 0.184 0.194 0.184 0.167 0.183 0.172
100 0.321 0.360 0.341 0.363 0.341 0.312 0.335 0.321
200 0.608 0.659 0.639 0.667 0.639 0.576 0.631 0.613

Panel C: Autocorrelation and Non-linearity
50 0.261 0.312 0.282 0.309 0.282 0.286 0.276 0.272
100 0.486 0.591 0.530 0.587 0.530 0.553 0.521 0.524
200 0.813 0.899 0.853 0.897 0.853 0.871 0.849 0.852

Panel D: Heteroskedasticity and Non-normality
50 0.208 0.234 0.223 0.237 0.223 0.202 0.220 0.227
100 0.345 0.369 0.363 0.376 0.363 0.309 0.359 0.363
200 0.529 0.559 0.552 0.570 0.552 0.463 0.550 0.540

Panel E: Heteroskedasticity and Non-linearity
50 0.197 0.222 0.210 0.223 0.210 0.195 0.208 0.216
100 0.386 0.431 0.414 0.437 0.414 0.364 0.406 0.429
200 0.710 0.757 0.740 0.765 0.740 0.656 0.736 0.755

Panel F: Non-normality and Non-linearity
50 0.198 0.207 0.204 0.210 0.204 0.174 0.203 0.185
100 0.335 0.367 0.353 0.372 0.353 0.312 0.347 0.329
200 0.615 0.657 0.640 0.663 0.640 0.563 0.638 0.614

Notes: This table presents the powers of combined tests when α = 0.05. The number of Monte-Carlo iterations is
n = 20, 000. For each sample size, the highest power across all tests is highlighted in bold.

minimum P -value test, Smin, that is widely used is not an optimal choice in the context of specification

testing. Second, instead, the Fisher test, SF , that uses the product of all subsidiary P -values and the

χ2-transform test, Sχ2 seem to perform best—independently of the sample size and the exact number of

deviations from the overall null. Third, the recently proposed Gamma-transform test, SG, that has not

yet been used much in the econometrics literature performs decently, too. Fourth, the best parametric

combination tests outperform the non-parametric approach by King et al. (2020). This is fortunate

since even though simulation is required to approximate the distribution of the overall test statistic the

computational burden is smaller than in case of the non-parametric approach.

5 Conclusion

This paper reviews various approaches for testing an overall null hypothesis that consists of multiple

subsidiary hypotheses and uses a Monte Carlo simulation to study the tests’ performance in the context

of specification testing for linear regressions. The review includes tests that are not commonly used in the

econometrics literature but might be valuable for future research since they perform well in our simulation.

Most approaches that we review imply combining the individual test statistics or corresponding P -values
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Table 7: Powers of combined tests - three and four deviations

T Smin SF SwF (∗) Sχ2 Sχ2(∗) SZ SG KZA

Panel A: Autocorrelation, Non-normality and Heteroskedasticity
50 0.516 0.571 0.541 0.573 0.541 0.505 0.539 0.521
100 0.625 0.705 0.661 0.702 0.661 0.650 0.655 0.648
200 0.779 0.859 0.814 0.855 0.814 0.817 0.812 0.808

Panel B: Autocorrelation, Non-normality and Non-linearity
50 0.239 0.276 0.256 0.275 0.256 0.247 0.252 0.240
100 0.431 0.517 0.465 0.514 0.465 0.480 0.456 0.449
200 0.745 0.841 0.788 0.838 0.788 0.804 0.783 0.777

Panel C: Autocorrelation, Heteroskedasticity and Non-linearity
50 0.270 0.340 0.293 0.337 0.293 0.327 0.290 0.287
100 0.444 0.570 0.492 0.562 0.492 0.556 0.484 0.497
200 0.748 0.862 0.803 0.857 0.803 0.844 0.796 0.810

Panel D: Heteroskedasticity, Non-normality and Non-linearity
50 0.268 0.312 0.289 0.314 0.289 0.277 0.285 0.291
100 0.449 0.517 0.485 0.518 0.485 0.458 0.476 0.484
200 0.678 0.748 0.711 0.748 0.711 0.695 0.710 0.708

Panel E: Autocorrelation, Heteroskedasticity, Non-normality and Non-linearity
50 0.553 0.619 0.582 0.619 0.582 0.557 0.578 0.559
100 0.698 0.784 0.738 0.781 0.738 0.742 0.731 0.727
200 0.856 0.928 0.892 0.925 0.892 0.913 0.887 0.886

Notes: This table presents the powers of combined tests when α = 0.05. The number of Monte-Carlo iterations is
n = 20, 000. For each sample size, the highest power across all tests is highlighted in bold.

Table 8: Powers of combined tests - random Alternative

T p Smin SF SwF (∗) Sχ2 Sχ2(∗) SZ SG KZA

50 0.5 0.261 0.285 0.274 0.288 0.274 0.254 0.271 0.263
100 0.5 0.410 0.456 0.431 0.457 0.431 0.408 0.429 0.426
200 0.5 0.652 0.693 0.678 0.697 0.678 0.619 0.676 0.676

50 0.7 0.345 0.385 0.363 0.386 0.363 0.344 0.360 0.347
100 0.7 0.503 0.580 0.535 0.578 0.535 0.534 0.531 0.529
200 0.7 0.733 0.799 0.766 0.798 0.766 0.748 0.764 0.764

50 0.9 0.477 0.530 0.502 0.531 0.502 0.480 0.497 0.482
100 0.9 0.616 0.704 0.652 0.700 0.652 0.664 0.648 0.642
200 0.9 0.811 0.894 0.850 0.891 0.850 0.866 0.844 0.848

Notes: This table presents the powers of combined tests when α = 0.05. The number of Monte-Carlo iterations is n =
20, 000. For each sample size, the highest power across all tests is highlighted in bold.

related to the subsidiary null hypotheses into one aggregate test statistic.

In contrast to many other fields (e.g., bio statistic), where most applications can rely on the assumption

of independence of the subsidiary test statistics (e.g., because results from independent experiments are

to be aggregated), we take dependencies into account and rely on simulations to calculate overall P -values

following Godfrey (2005) and Dufour et al. (2015).

We find that the combined tests outperform the individual tests tailored to one particular deviation

from the null hypothesis (e.g., the Ljung-Box test for residual autocorrelation) as soon as there are two

types of deviation from the overall null hypothesis. Those approaches that combine information from
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all subsidiary tests (especially SF and Sχ2) perform substantially better than the minimum P -value

test, Smin, in most cases and equally well if only exactly one deviation is present. This suggest that

these alternatives are preferable to the widely used minimum P -value test because it is likely that they

outperform also in other applications where d is reasonably large and multiple deviations from the overall

null hypothesis are likely.

In particular, the version of the Gamma-transform test (Chen, 2021) that we consider performs rea-

sonably well. This approach is particularly promising for other applications with overall null hypotheses

formed by a large number of subsidiary hypotheses, i.e., with d >> 1. Chen (2021) shows that a modi-

fied version of this approach, in which the parameters of the Gamma distribution used to transform the

subsidiary P -values are optimally chosen using a maximum-likelihood estimation based on the sample of

subsidiary P -values is universally most powerful under certain assumptions about the distribution of sub-

sidiary P -values under the alternative. Note that we cannot implement this test due to the small number

of subsidiary P -values (d = 4), but other applications in econometrics—like multivariate goodness-of-fit

tests in the context of, for instance, evaluation of multivariate density forecasts (Diebold et al., 1999;

Dovern and Manner, 2020)—potentially imply a much larger d.

Another message from our simulations is that a number of parametric tests performs equally well

or even better than the non-parametric approach by King et al. (2020) that is computationally more

demanding. While this may not be true in all contexts—after all King et al. (2020) demonstrate the

merits of their approach, i.a., when testing for residual autocorrelation or heteroskedasticity—it is a

potentially very valuable advantage for applications with a large number of subsidiary null hypotheses.
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Appendix - Additional Simulation Results

Table A.1: Powers of standard tests - three and four deviations

T Ljung- Breusch- Neyman RESET
Box Pagan Smooth

Panel A: Autocorrelation, Non-normality and Heteroskedasticity
50 0.118 0.255 0.573 0.133
100 0.253 0.398 0.604 0.132
200 0.502 0.541 0.661 0.131

Panel B: Autocorrelation, Non-normality and Non-linearity
50 0.128 0.047 0.241 0.185
100 0.262 0.047 0.395 0.296
200 0.510 0.046 0.659 0.507

Panel C: Autocorrelation, Heteroskedasticity and Non-linearity
50 0.149 0.120 0.227 0.233
100 0.318 0.257 0.239 0.365
200 0.606 0.539 0.228 0.585

Panel D: Heteroskedasticity, Non-normality and Non-linearity
50 0.059 0.266 0.154 0.215
100 0.062 0.396 0.239 0.329
200 0.067 0.534 0.395 0.520

Panel E: Autocorrelation, Heteroskedasticity, Non-normality and Non-linearity
50 0.132 0.251 0.594 0.213
100 0.304 0.398 0.645 0.309
200 0.570 0.541 0.710 0.474

Notes: This table presents the powers of standard tests when α = 0.05. The number of Monte-
Carlo iterations is n = 20, 000. For each sample size, the highest power across all tests is high-
lighted in bold.

Table A.2: Powers of standard tests - random alternative

T Prob. Ljung- Breusch- Neyman RESET
Box Pagan Smooth

50 0.5 0.099 0.138 0.241 0.157
100 0.5 0.171 0.210 0.313 0.235
200 0.5 0.312 0.334 0.423 0.349

50 0.7 0.108 0.173 0.339 0.184
100 0.7 0.217 0.276 0.411 0.267
200 0.7 0.397 0.402 0.516 0.413

50 0.9 0.125 0.225 0.489 0.210
100 0.9 0.268 0.354 0.546 0.295
200 0.9 0.513 0.496 0.632 0.460

Notes: This table presents the powers of individual tests when α = 0.05. The
number of Monte-Carlo iterations is n = 20, 000. For each sample size, the
highest power across all tests is highlighted in bold.
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