
   

11068 
2024 

April 2024 
 

Monetary Policy and Radical 
Uncertainty 
Paul De Grauwe, Yuemei Ji 



Impressum: 
 

CESifo Working Papers 
ISSN 2364-1428 (electronic version) 
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo 
GmbH 
The international platform of Ludwigs-Maximilians University’s Center for Economic Studies 
and the ifo Institute 
Poschingerstr. 5, 81679 Munich, Germany 
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de 
Editor: Clemens Fuest 
https://www.cesifo.org/en/wp 
An electronic version of the paper may be downloaded 
· from the SSRN website: www.SSRN.com 
· from the RePEc website: www.RePEc.org 
· from the CESifo website: https://www.cesifo.org/en/wp 

mailto:office@cesifo.de
https://www.cesifo.org/en/wp
http://www.ssrn.com/
http://www.repec.org/
https://www.cesifo.org/en/wp


CESifo Working Paper No. 11068 
 
 
 

Monetary Policy and Radical Uncertainty 
 
 

Abstract 
 
In a world of radical uncertainty the frequency distributions of economic variables deviate from 
the normal distribution and typically exhibit fat tails. We show that this feature is obtained in 
simple models where agents have cognitive limitations and fail to understand the underlying 
model. Although the model is simple, we obtain great complexity. We analyse the implications 
for monetary policy. We show that in such models the central bank bears a much greater 
responsibility to stabilize an otherwise unstable system than in mainstream models that assume 
Rational Expectations. We also question the use of impulse responses to exogenous shocks when 
the distribution of these impulse responses is not normal. 
JEL-Codes: E520, E580, E700. 
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1. Introduc5on 

The nature of uncertainty maUers a great deal for the conduct of macroeconomic policies in 

general and monetary policies in parEcular. This has always been the case. It will probably be 

even more so in the future when climate change is likely to create existenEal crises and thus 

new dimensions of uncertainty for everybody, including policymakers. In this connecEon the 

noEon of “radical uncertainty” has become popular (see Kay and King(2020)); a kind of 

uncertainty that will radically affect the nature of policymaking.  

In order to understand how radical uncertainty may affect policies it is necessary to make clear 

what is meant by “radical uncertainty”. Radical uncertainty can be defined in different ways. 

Here we will consider two definiEons. We disEnguish between a strong and a so\ definiEon.  

The strong definiEon interprets radical uncertainty in the sense of Frank Knight (Knight(1921)). 

Uncertainty is radical when we cannot quanEfy it. In parEcular, it is impossible to know the 

frequency distribuEon of macroeconomic shocks and macroeconomic variables in general. We 

are in the realm of the “unknown unknowns”.  Anything can happen. Large shocks can occur, 

but there is no way of knowing the nature and the Eming of these shocks.  

There is a so\er definiEon of radical uncertainty. This is a situaEon where the frequency 

distribuEons deviate from Gaussian (normal) distribuEon. In parEcular, they have fat tails 

(“Black swans”, Talib(2007)) and they may not be one-modal. We will mostly discuss radical 

uncertainty in this second sense. 

Purists may counter that the second definiEon is not really radical, and this may be true. The 

advantage of using this so\ definiEon of radical uncertainty, however, is that we can model it, 

and we can come to some conclusions that deviate from mainstream macroeconomics. But, 

we will occasionally refer to radical uncertainty in the first sense to find out how it interacts 

with the second one. 

How can one model radical uncertainty (in its so\ definiEon)? We will show that radical 

uncertainty arises because agents fail to understand the underlying model. Thus, one can have 

an underlying model that is relaEvely simple, but when we assume that agents do not 

understand its structure we obtain complexity and radical uncertainty. There is no need to 

model complexity to obtain this result. 
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As will be shown, the intriguing thing is that in a world where agents do not understand the 

model one creates complexity that is very difficult to understand, thereby validaEng why 

agents do not understand the model.  

This contrasts with mainstream macroeconomic models that assume RaEonal ExpectaEons 

(RE), i.e. that assume that agents understand the underlying model. Such a RE-model does 

not generate radical uncertainty (as defined here in its so\ sense). Radical uncertainty can 

only come from outside the model. Mainstream macroeconomics only recognizes the 

exogenous shocks as sources of radical uncertainty. There is no place for endogenous sources 

of radical uncertainty because agents with raEonal expectaEons understand the workings of 

the underlying model of capitalism. Once the shock has occurred they can compute with great 

confidence how it will be transmiUed to the economy (for a profound analysis of how modern 

macroeconomics went wrong, see SEglitz(2018)).  

 
2. A simple behavioural macroeconomic model 

We use a simple behavioural macroeconomic. It consists of a standard aggregate demand 

equaEon, a New-Keynesian supply equaEon and a Taylor rule equaEon. Aggregate demand is 

a funcEon of expected future demand and the real interest rate. The New-Keynesian supply 

curve explains the rate of inflaEon by the expected inflaEon and the output gap. The Taylor 

rule describes the behaviour of the central bank that manipulates the nominal interest rate 

so as to keep inflaEon close to its target and so as to stabilize the output gap.  

It is assumed that agents do not know the structure of the model in which they operate. The 

model is too complex to be understood by humans. Therefore, they use simple rules 

(heurisEcs) to guide their behaviour. These agents are raEonal, however, in that they are 

willing to learn from their mistakes. Thus when they find out that the rule they are using 

performs less well than alternaEve rules, they are willing to switch rules. This switching rule is 

a way for agents to learn about the economy.  We show this model in the appendix (see also 

De Grauwe (2012) and De Grauwe and Ji(2019)). 

We will illustrate how in this model radical uncertainty emerges in different forms in secEons 

2.1 and 2.2, respecEvely: 

• movements in macroeconomic variables that are not normally distributed and that exhibit 

fat tails even if the exogenous shocks are normally distributed. 
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• impulse responses to shocks that are not normally distributed leading to the problem that 

condiEonal forecasEng (“what if’”) cannot be answered properly; it also leads to the 

problem that policy analyses based on represenEng the effect of policy acEons (e.g. 

interest rate hikes) by impulse responses cannot be analyzed properly either. 

 

2.1 Devia5ons from normal distribu5ons 
 

We start by presenEng basic results of the model. Given the non-linear nature of the model 

we have recourse to numerical methods. We simulated the model using numerical values of 

the coefficients obtained from the literature and imposing i.i.d. shocks in the demand and 

supply equaEons and the Taylor rule equaEon, with zero mean and standard deviaEons of 0.5.  

Figure 1 presents the movements of the output gap in the Eme domain (le\ panel) and in the 

frequency domain (right panel). Figure 2 shows the movements of “animal spirits” which 

express market senEments of opEmism and pessimism generated endogenously in the model 

(see appendix). It is an index varying between -1 (extreme pessimism) and + 1 (extreme 

opEmism). We observe that the model produces waves of opEmism and pessimism (animal 

spirits) that can lead to a situaEon where everybody becomes opEmist (St = 1) or pessimist (St 

= -1).  

As can be seen from the le\ hand side panels, the correlaEon of these animal spirits and the 

output gap is high. In the simulaEons reported in Figure 1 this correlaEon reaches 0.94. 

Underlying this correlaEon is the self-fulfilling nature of expectaEons. When a wave of 

opEmism is set in moEon, this leads to an increase in aggregate demand. This increase in 

aggregate demand leads to a situaEon in which those who have made opEmisEc forecasts are 

vindicated. This aUracts more agents using opEmisEc forecasts. This leads to a self-fulfilling 

dynamics in which most agents become opEmists. It is a dynamics that leads to a correlaEon 

of the same beliefs. The reverse is also true. A wave of pessimisEc forecasts can set in moEon 

a self-fulfilling dynamics leading to a downturn in economic acEvity (output gap).  At some 

point, most of the agents have become pessimists.  

The right hand side panels show the frequency distribuEon of output gap and animal spirits. 

We find that the output gap is not normally distributed, with excess kurtosis and fat tails. A 

Jarque-Bera test rejects normality of the distribuEon of the output gap. The origin of the non-
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normality of the distribuEon of the output gap can be found in the distribuEon of the animal 

spirits. We find that there is a concentraEon of observaEons of animal spirits around 0. This 

means that much of the Eme there is no clear-cut opEmism or pessimism. We can call these 

periods of “Great ModeraEon”. The excess kurtosis tells us that there is a high concentraEon 

of such periods. There is also, however, a concentraEon of extreme values at either -1 

(extreme pessimism) or +1 (extreme opEmism). These extreme values of animal spirits explain 

the fat tails observed in the distribuEon of the output gap. The interpretaEon of this result is 

as follows. When the market is gripped by a self-fulfilling movement of opEmism (or 

pessimism) this can lead to a situaEon where everybody becomes opEmist (pessimist). This 

then also leads to an intense boom (bust) in economic acEvity. 

 
Figure 1: Output gap 

  
 
Figure 2: Animal Spirits 

 
Source: De Grauwe and Ji(2019) 
Note: the model was simulated over 10,000 periods. The representaEons in the Eme domain 
show a representaEve sample of 100 periods. The frequency domain shows all periods. 
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defined earlier as deviaEons from Gaussian distribuEons. (Note that the exogenous shocks are 

normally distributed). Two factors explain this complexity. First, there is the ignorance of 

agents about the underlying model, and second, their aUempt to understand by a “trial and 

error” learning mechanism. The complexity that is created in this way jusEfies the assumpEon 

that agents have insufficient cogniEve abiliEes to understand the underlying model. 

Note also that the switching from Great ModeraEon to booms-and-bust regimes gives the 

impression of changes in the structure of the model, although no such structural changes 

occur. This also adds to the complexity of the dynamics of the model. 

 
2.2 Impulse responses 

In contrast to linear raEonal expectaEons models the impulse responses depend on the Eming 

of the shock. Put differently, an impulse response computed with one realizaEon of the 

stochasEc shocks in the equaEons of the model will be different from an impulse response to 

exactly the same shock but performed using another realizaEon of these stochasEc shocks. 

This is the case even when all parameters of the model are idenEcal.  

In order to illustrate this we simulated 1000 impulse responses of the output gap to the same 

(one standard deviaEon) negaEve supply shock occurring at a parEcular point in Eme, 

assuming each Eme a different realizaEon of stochasEc shocks of the model. We show these 

impulse responses in Figure 3, in the Eme domain and the frequency domain.  We obtain a 

collecEon of 1000 impulse responses. Note that the responses in the frequency domain are 

obtained by collecEng these responses 12 periods (3 years) a\er the supply shock. So, the 

frequency domain figure is just the intersecEon of the observaEons of the Eme series 12 

periods a\er the supply shock. Several features of these impulse responses stand out. 

First, there is sensiEvity to iniEal condiEons. We obtain very different impulse responses to 

the same shock, depending on the iniEal condiEons. The representaEon in the frequency 

domain shows that the distribuEon is not at all Gaussian. It is difficult to infer any structure in 

this distribuEon. As a result, it is very difficult to make condiEonal forecasts about how a 

negaEve supply shock will affect the output gap, except that the effect is negaEve, and that 

a\er a sufficiently long period this negaEve effect will tend to disappear.  
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Figure 3: Impulse response output gap to a (1 standard devia5on) nega5ve supply shock 

(a)                                              (b)                                               

 
 Source: De Grauwe and Ji(2024) 
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low) we end up in a good trajectory. When in contrast the iniEal condiEons are unfavourable 

(high iniEal inflaEon and inflaEon expectaEons) we end up in the bad trajectory characterized 

by a deep recession that lasts much longer than in the good trajectory. Note also that within 

these two trajectories there is a lot of variaEon of the parEcular path the impulse responses 

will take. (For more detail on the role of the iniEal condiEons and for an interpretaEon of these 

results, see De Grauwe and Ji(2024)). 

   
Figure 4: Impulse responses to nega5ve supply shocks of varying sizes 

 
Supply shock = 3std 

 
Supply shock = 5std 

 
Supply shock = 10std 

 
  Source: De Grauwe and Ji(2024) 
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the standard deviaEons of these responses are not informaEve about the true underlying 

distribuEon. We illustrate this problem as follows. We use the impulse responses of output to 

a 10 std deviaEon negaEve supply shock from Figure 4 and compute the mean and the two 

standard deviaEons below and above the mean. We show the results in Figure 5. Comparing 

these with Figure 4 it is clear that the mean and the standard deviaEons are not only 

uninformaEve, but even misleading about the true underlying distribuEon because Figure 5 

gives the impression of the existence of a central tendency, the mean, that is representaEve 

of the impulse responses. In fact, there are almost no observaEons close to the mean as the 

impulse responses are clustered away from the mean.  In addiEon, the representaEon in 

Figure 5 gives the wrong impression that, as one moves away from the mean, observaEons 

become less likely. In fact, the opposite is true. 

 
Figure 5: Mean impulse responses output aNer large supply shock 
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precise forecasts if we know the iniEal condiEons when the shock occurred (See De Grauwe 

and Ji (2024)). 

In this connecEon, it is useful to introduce the noEon of ambiguity. There is strong ambiguity 

about the effects of shocks because the same shock can lead us into different universes of 

adjustment. In other words, without the knowledge of iniEal condiEons, the distribuEon of 

the impulse responses is ambiguous.  

 
3. Forecas5ng and radical uncertainty 

 

Modern macroeconomics has given central stage to forward looking agents. This means that 

agents are assumed to make decisions based on forecasts of the variables that maUer. 

Consumers, for example, are supposed to base their decision to consume on what they expect 

their future income to be. Similarly, policymakers in a raEonal expectaEons sepng are 

assumed to make decisions based on forecasts of the variables they wish to influence. In this 

logic central bankers should set the interest rate based on their expectaEons (forecasts) of 

future inflaEon and output gap (or growth rate). See Clarida, Gali, Gertler(2000), BaEni, and 

Haldane (1999), Svensson(1997). 

The quesEon that arises here is whether this is a sensible decision rule when the future is 

radically uncertain. When central banks rely on forecasts to make their decisions, they are 

likely to o\en make significant policy mistakes in a world of radical uncertainty. The quesEon 

then is whether they can improve the quality of their policy decisions by not relying on 

forecasts of inflaEon and of the output gap, but rather by relying on currently observed values 

of these variables.  

We analyzed this quesEon in the context of our behavioral macroeconomic model (De Grauwe 

and Ji (2019)). We used two versions of the Taylor rule equaEons. The first one uses currently 

observed values of inflaEon and output gap. We called this the “current Taylor rule”. The 

second one uses the market forecasts of inflaEon and output gap. We called this the “forward 

Taylor rule”.  

We then simulated the model using i.i.d. shocks in the demand and supply equaEons and 

calculated the forecast errors made by agents and by central bank under the current and 

forward Taylor rules. We plot the squared forecast errors of output gap (Figure 6) and inflaEon 
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(Figure 7) against the animal spirits. We find that when animal spirits are close to zero (tranquil 

Emes) the forecast errors tend to be the same in the two Taylor rule regimes. As animal spirits 

increase (in absolute values) the forecast errors increase and more so under the forward-

looking Taylor rule.   

This leads to the following insight. When extreme opEmism or pessimism prevails (animal 

spirits are then close to +1 or -1) the economy is in a boom-bust regime with extreme volaElity 

of output and inflaEon. Given the extreme volaElity of these variables when animal spirits are 

intense, the central bank that uses market expectaEons will make many policy errors that have 

to be corrected a\erwards. It is then beUer for the central bank to use currently observed 

output and inflaEon to set the interest rate. This leads to lower forecasEng errors so that the 

central bank is likely to make fewer policy errors.  

Figure 6: Squared forecast errors output gap and animal spirits 

 
Figure 7: Squared forecast errors infla5on and animal spirits 

 
  Source: De Grauwe and Ji(2019) 
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4. Boom-bust and stabiliza5on 

The previous discussion leads to the quesEon of stabilizaEon. We have found out that a world 

in which agents have cogniEve limitaEons prevenEng them from having RE is one 

characterized by frequent boom-bust scenarios that destabilize the economy and that also 

have the potenEal of undermining the fabric of society. Can monetary policy do something 

about this and “stabilize an otherwise unstable” economy? The answer is posiEve. We 

simulated our behavioural model assuming normally distributed (and small) shocks. We have 

seen earlier that under those condiEons the model produces regimes of relaEve tranquillity 

alternaEng with occasional bursts of boom and busts. We asked the quesEon of whether the 

central bank can reduce the occurrence of booms and busts by aUaching an increasing weight 

to output stabilizaEon in the Taylor rule equaEon. We find that in general this reduces the 

deviaEon of the distribuEon of the variables from normality.  

Figure 8 shows how an increase in the stabilizaEon effort reduces the intensity of booms and 

busts. We show the frequency distribuEon of animal spirits and the corresponding 

distribuEon of the output gap for increasing values of the output parameter (c2) in the Taylor 

rule equaEon. We observe several features. First, when c2=0 we have a qualitaEvely very 

different result compared with the results obtained when c2>0. This has to do with the fact 

that when c2=0 we have a chaoEc dynamics (see De Grauwe and Ji(2019)). There are then 

only extreme values of animal spirits and extreme fluctuaEons of the output. ChaoEc 

dynamics disappears when c2>0. 

Second, as c2 increases the frequency with which extreme values of opEmism and pessimism 

occur declines and the concentraEon around the mean increases. Third, the variability of the 

output gap declines significantly. This can be seen on the horizontal axis of the distribuEon of 

the output gap. With low c2 the output gaps varies between much larger values than when 

c2 is high. Thus, the intensity of output stabilizaEon has a double effect: it reduces the 

variability of the output and it reduces the frequency with which extreme booms and busts 

occur as a result of extreme variaEon of animal spirits.  

The result of this stabilizaEon effort by the central bank is that fat tails become less fat leading 

to less intense booms and busts. Thus, there is a role for the central banks to stabilize the 

business cycle. Just keeping inflaEon low will not be sufficient. Central banks that pursue strict 

inflaEon targeEng, without concern for output stabilizaEon, maximize the probability of 
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boom-bust scenarios and the occurrence of fat tails. Paradoxically, as in boom-bust scenarios 

output becomes very volaEle, inflaEon will also be volaEle. It is therefore in the interest of a 

central bank concerned about price stability to acEvely stabilize output. 

	
Figure	8:	Frequency	distribution	animal	spirits	and	output	gap	(c1=1.5)	
	 																																																													c2=0	

	 	 																																										
																																																																						c2=0.5	

	

	 																																																										c2=1	

 
 
Mainstream DSGE macroeconomics has taken the view that apart from maintaining price 

stability, the task of the central bank is to reduce the inefficiencies arising from wage and 

price rigidiEes. Stabilizing output is moEvated by the need to reduce inefficiencies. The idea 

that the central bank may be called upon to stabilize an otherwise unstable system is 

completely absent (Woodford(2003), Smets and Wouters(2003), Gali(2008)).  
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Here we have shown that there is a need to stabilize a system that is regularly gripped by 

waves of opEmism and pessimism. These waves can lead to violent movements of output and 

employment. As a result, the need to stabilize runs much deeper and creates greater 

responsibiliEes of the monetary authoriEes than one obtains from mainstream 

macroeconomics.  

Clearly, that does not eliminate trade-offs. In De Grauwe and Ji(2019) we derive the trade-

offs between inflaEon and output stabilizaEon. In contrast to RE models where these trade-

offs are negaEve, (i.e. the pursuit of more output stability always leads to less inflaEon 

stability), we find in our behavioural model that this trade-off is non-linear. We show an 

example in Figure 9. This shows the standard deviaEon of inflaEon on the verEcal axis and the 

standard deviaEon of output on the horizontal axis.  

Figure 9: Trade-off vola5lity of infla5on and of output 

 Std infla5on 

 

 

	 

        A 
 
 
 
 
 
 
 
 
        Std output 
 
To understand this trade-off start from point A. This is the point where the central bank only 

pursues price stability, with no effort to stabilize output. When the central bank increases its 

intensity to stabilize output (by increasing the output coefficient in the Taylor rule) we move 

downwards on the trade-off curve. This means that by doing more output stabilizaEon, the 

central bank reduces both output and inflaEon volaElity. At some point, however, one hits 
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the minimum point on the trade-off curve. Further aUempts to stabilize output will then lead 

to more inflaEon volaElity. We then reach the standard negaEve segment on the trade-off. 

This leads to the conclusion that there is some opEmal degree of output stabilizaEon. It also 

leads to the conclusion that a no-output stabilizaEon strategy is sub-opEmal. 

 
5. Conclusion 

 
In this paper we have analyzed how radical uncertainty in its various appearances affects the 

movements of macroeconomic variables. We have argued that in a world of radical 

uncertainty there will be deviaEons from normality in the frequency distribuEons of 

macroeconomic variables. This then becomes a world of frequency distribuEons with fat tails. 

It is also a world in which the transmission of large shocks cannot be forecasted.  

Climate scienEsts have made it clear that climate change will have dramaEc effects on living 

condiEons on our planet. Yet, there is considerable uncertainty about how and when these 

effects will hit us. There is, in other words, radical uncertainty about how and when the planet 

will be affected.  

In a recent arEcle Annicchiarico, et al. (2024) analyze the macroeconomic implicaEons of 

climate change using a behavioural macroeconomic model similar to the one used here, i.e. it 

is a model where agents face cogniEve limitaEons to understand the complexity of the world, 

and as a result use simple heurisEcs to make forecasts. This model produces similar business 

cycle behaviour, and departures from Gaussian distribuEons as those discussed earlier. These 

authors find that in such a model it will be more difficult to stabilize the economy and to keep 

inflaEon low when climate change occurs, compared to a model where agents are assumed 

to have RaEonal ExpectaEons (RE). This is not really surprising. Agents with RE understand 

the nature of the climate change hipng them and take the necessary precauEons in terms of 

saving and consumpEon, helping to keep the economy on a steadier path. When agents have 

cogniEve limitaEons this becomes more difficult to achieve as boom-bust scenarios (fat tails) 

will undermine the stability of the economy.  
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Appendix: A simple behavioural macroeconomic model 
 
1 Basic equa5ons 

We decided to use the simplest possible behavioural model, (for more complex models see 

e.g. Delli Gap, et al. (2005)). The basic model consists of an aggregate demand equaEon, an 

aggregate supply equaEon and a Taylor rule as described by De Grauwe (2012, 2019 and 

2020).  The aggregate demand and supply equaEons can be derived from expected uElity 

maximizaEon of consumers and expected profit maximizaEon of firms (Hommes and 

Lustenhouwer(2019) and De Grauwe and Ji(2019)). In De Grauwe and Ji(2019) we provide a 

microfoundaEon. 

The aggregate demand equaEon obtained from this microfoundaEon can be expressed in the 

following way: 

𝑦! = 𝑎"E%#𝑦!$" + (1 − 𝑎")𝑦!%" + 𝑎&+𝑟! − E%#𝜋!$". + 𝑣!                         (1) 

where yt is the output gap in period t, rt is the nominal interest rate, pt is the rate of inflaEon 

and two forward looking components , E%#𝜋!$" and  E%#𝑦!$".  The Elde above E refers to the 

fact that expectaEons are not formed raEonally. How exactly these expectaEons are formed 

will be specified in secEon 2.2.  

The aggregate supply equaEon is represented in (2). This New Keynesian Philips curve includes 

a forward looking component, E%#𝜋!$" , and a lagged inflaEon variable. InflaEon πt is sensiEve 

to the output gap yt. The parameter b2 measures the extent to which inflaEon adjusts to 

changes in the output gap.  

𝜋! = 𝑏"E%#𝜋!$" + (1 − 𝑏")𝜋!%" + 𝑏&𝑦! + 𝜂!                                                  (2) 

The Taylor rule describes the central bank’s behaviour in sepng the interest rate. This 

behaviour can be described as follows:  

𝑟! = (1 − 𝑐')[𝑐"(𝜋! − 𝜋∗) + 𝑐&𝑦!] + 𝑐'𝑟!%" + 𝑢!                                                   (3) 

where  𝑟!  is the interest rate in period t,  𝜋! is the inflaEon rate,  𝜋∗  is the target rate of 

inflaEon and  𝑦! is the output gap.  

This Taylor rule tells us that the central bank increases (reduces) the interest rate when 

currently observed inflaEon exceeds (falls short of) the target and when the currently 
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observed output gap is posiEve (negaEve). We assume that the central bank wants to 

smoothen interest rate changes (see Woodford (2003)).   

There are error terms in each of the equations (1) to (3) which describe the nature of the 

different shocks that can hit the economy. They include demand shocks, vt, supply shocks, ht 

and interest rate shocks, ut. These shocks are assumed to be normally distributed with mean 

zero and a constant standard deviation.  

 

2 Expectations formation  

We analyze how the forecast of output gap E%#𝑦!$" and inflaEon E%#𝜋!$" are formed in the 

model.  The raEonal expectaEons hypothesis requires agents to understand the complexiEes 

of the underlying model and to know the frequency distribuEons of the shocks that will hit 

the economy. We take it that agents have cogniEve limitaEons that prevent them from 

understanding and processing this kind of informaEon. These cogniEve limitaEons have been 

confirmed by laboratory experiments and survey data (see Branch, 2004; Hommes (2011, 

2021)).   

Forecas(ng the output gap 

We assume two types of rules agents follow to forecast the output gap. A first rule is called a 

“fundamentalist” one. Agents use the steady state value of the output gap (which is 

normalized at 0) to forecast the future output gap. A second forecasEng rule is a “naïve” 

extrapolaEve one. Following this rule, agents extrapolate the previous observed output gap 

into forecasEng the future. The fundamentalist and extrapolator rules for output gap are 

specified as follows:  

E%#)𝑦!$" = 0                                           (4) 

E%#*𝑦#$" = 𝑦!%"                                   (5) 

This kind of simple heurisEc has o\en been used in the behavioral macroeconomics and 

finance literature where agents are assumed to use fundamentalist and charEst rules (see 

Brock and Hommes(1997), Branch and Evans(2006), Brazier et al. (2008)).  

The market forecast can be obtained as a weighted average of these two forecasts, i.e.  

        E%#𝑦!$" = 𝛼+,!E%#)y#$" + 𝛼-,!E%#*y#$"                        (6) 
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                                         𝛼+,! + 𝛼-,! = 1                                                   (7) 

where  and are the probabiliEes that agents use the fundamentalist and the naïve rule 

respecEvely.  

We specify a switching mechanism of how agents adopt specific rule. Using discrete choice 

theory (see Anderson, de Palma, and Thisse, (1992) and Brock & Hommes (1997)) to work out 

the probability of choosing a parEcular rule (see De Grauwe and Ji(2019) for more detail.  We 

obtain: 

																						𝛼+,! =
𝑒𝑥𝑝.𝛾𝑈𝑓,𝑡/

𝑒𝑥𝑝.𝛾𝑈𝑓,𝑡/+𝑒𝑥𝑝0𝛾𝑈𝑒,𝑡1
																								       (8)  

																				𝛼-,! =
𝑒𝑥𝑝0𝛾𝑈𝑒,𝑡1

𝑒𝑥𝑝.𝛾𝑈𝑓,𝑡/+𝑒𝑥𝑝0𝛾𝑈𝑒,𝑡1
																									     (9) 

where 𝑈+,! and 𝑈-,!1 are the past forecast performance (uElity) of using the fundamentalist 

and the naïve rules. The parameter γ measures the “intensity of choice”. It can also be 

interpreted as expressing a willingness to learn from past performance. When γ = 0 this 

willingness is zero; it increases with the size of γ. 

Forecas(ng infla(on 

Agents also forecast inflaEon using a similar heurisEc, with one rule that could be called a 

fundamentalist rule and the other a naïve extrapolaEve rule (see Brazier et al.(2008) for a 

similar setup). In an insEtuEonal set-up, the central bank announces an explicit inflaEon 

target. The fundamentalist rule will be called an “inflaEon targeEng” rule described in (10), 

i.e. agents who have confidence in the credibility of the central bank use the announced 

inflaEon target to forecast inflaEon.  

                     E%!
+𝜋!$" = 𝜋∗                                                                    (10) 

where the inflaEon target is 𝜋∗. Agents who do not trust the announced inflaEon target use 

the naïve rule, which consists in extrapolaEng inflaEon from the past into the future. The 

“naive” rule is defined by   

 
                      E%!-𝜋!$" = 𝜋!%"                                                                    (11) 

 
1Note 𝑈!,# = −∑ ω$+y%&$&' − E.(,%&$&)y%&$&'/

)*
$+,  and 𝑈-,# = −∑ ω$+y%&$&' − E..,%&$&)y%&$&'/

)*
$+,  

tf ,a te,a
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The market forecast is a weighted average of these two forecasts, i.e.  

                                  E%!𝜋!$" = 𝛽+,!E%!
+𝜋!$" + 𝛽-,!E%!-𝜋!$"                                                     (12) 

                          𝛽+,! + 𝛽-,! = 1                                                                                       (13) 

Where 𝛽+,! and 𝛽-,! are the probabiliEes that agents use the fundamentalist and the 

extrapolaEve rules respecEvely. The same selecEon mechanism is used as in the case of 

output forecasEng to determine the probabiliEes of agents trusEng the inflaEon target and 

those who do not trust it and revert to extrapolaEon of past inflaEon. This inflaEon forecasEng 

heurisEcs can be interpreted as a procedure of agents to find out how credible the central 

bank’s inflaEon targeEng is. If this is credible, using the announced inflaEon target will produce 

good forecasts and as a result, the probability, 𝛽+,!, that agents will rely on the inflaEon target 

will be high. If on the other hand the inflaEon target does not produce good forecasts 

(compared to a simple extrapolaEon rule) the probability that agents will use it will be small. 

Using the switching mechanism similar to the one specified in equaEons (8) and (9), we can 

compute the probability of choosing a parEcular rule.   

																			𝛽+,! =
𝑒𝑥𝑝.𝛾𝑈𝑓,𝑡

′ /

𝑒𝑥𝑝.𝛾𝑈𝑓,𝑡
′ /+𝑒𝑥𝑝.𝛾𝑈𝑒,𝑡′ /

																								       (14)2  

				𝛽-,! =
𝑒𝑥𝑝.𝛾𝑈𝑒,𝑡′ /

𝑒𝑥𝑝.𝛾𝑈𝑓,𝑡
′ /+𝑒𝑥𝑝.𝛾𝑈𝑒,𝑡′ /

																									      (15) 

The probability, 𝛽+,!, that agents will rely on the inflaEon target to make inflaEon forecasts can 

also be interpreted as the fracEon of agents who trust the central bank’s inflaEon target.  

 

The forecasts made by extrapolators and fundamentalists play an important role in the model. 

In order to highlight this role we define an index of market senEments, which we call “animal 

spirits”, and which reflects how opEmisEc or pessimisEc these forecasts are (see also Franke 

and Westerhoff(2017)).  

The definiEon of animal spirits is as follows: 

𝑆! = =
			𝛼-,! − 𝛼+,!									𝑖𝑓	𝑦!%" > 0			
−𝛼-,! + 𝛼+,!				𝑖𝑓	𝑦!%" < 0                  (23) 

 
2 Note 𝑈!,#/ = −∑ ω$+π%&$&' − E.(,%&$&)π%&$&'/

)*
$+,   and  	𝑈-,#/ = −∑ ω$+π%&$&' − E..,%&$&)π%&$&'/

)*
$+,           
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where 𝑆!	is the index of animal spirits. This can change between -1 and +1. There are two 

possibiliEes: 

• When 𝑦!%" > 0, extrapolators forecast a posiEve output gap. The fracEon of agents who 

make such a posiEve forecasts is 𝛼-,!. Fundamentalists, however, then make a pessimisEc 

forecast since they expect the posiEve output gap to decline towards the equilibrium value 

of 0. The fracEon of agents who make such a forecast is 𝛼+,! . We subtract this fracEon of 

pessimisEc forecasts from the fracEon 𝛼-,! who make a posiEve forecast. When these two 

fracEons are equal to each other (both are then 0.5) market senEments (animal spirits) 

are neutral, i.e. opEmists and pessimists cancel out and St = 0. When the fracEon of 

opEmists 𝛼-,! exceeds the fracEon of pessimists 𝛼+,!,  St becomes posiEve. As we will see, 

the model allows for the possibility that 𝛼-,!	moves to 1. In that case there are only 

opEmists and S! = 1.  

• When 𝑦!%" < 0, extrapolators forecast a negaEve output gap. The fracEon of agents who 

make such a negaEve forecasts is 𝛼-,!. We give this fracEon a negaEve sign. 

Fundamentalists, however, then make an opEmisEc forecast since they expect the 

negaEve output gap to increase towards the equilibrium value of 0. The fracEon of agents 

who make such a forecast is 𝛼+,! . We give this fracEon of opEmisEc forecasts a posiEve 

sign. When these two fracEons are equal to each other (both are then 0.5) market 

senEments (animal spirits) are neutral, i.e. opEmists and pessimists cancel out and St = 0. 

When the fracEon of pessimists	𝛼-,! exceeds the fracEon of opEmists 𝛼+,!  St becomes 

negaEve. The fracEon of pessimists, 	𝛼-,! ,  can move to 1. In that case there are only 

pessimists and St = -1.  

We can rewrite (23) as follows:  

𝑆! = =
			𝛼-,! − (1 − 𝛼-,!	) = 	2	𝛼-,! − 1											𝑖𝑓	𝑦!%" > 0			
−𝛼-,! + (1 − 𝛼-,!) = −2	𝛼-,! + 1				𝑖𝑓	𝑦!%" < 0             (24) 

 

3. Solving the model 

The soluEon of the model is found by first subsEtuEng (3a) into (1a) and rewriEng in matrix 

notaEon. This yields:  
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F 1 −𝑏&
−𝑎&𝑐" 1 − 𝑎&𝑐&

G F𝜋!
2

𝑦!
G

= F 𝑏" 0
−𝑎& 𝑎"

G HE
%#𝜋!$"2

E%#𝑦!$"
I + F1 − 𝑏" 0

0 1 − 𝑎"
G F𝜋!%"

2

𝑦!%"
G + F 0

𝑎&𝑐'
G 𝑟!%"2

+ J
𝜂!

𝑎&𝑢! + 𝜀!L 

 
i.e. 

𝑨𝒁𝒕 = 𝑩𝑬𝒕	Q𝒁𝒕$𝟏 + 𝑪𝒁𝒕%𝟏 + 𝒃𝑟!%"2 + 𝒗𝒕                               (25) 
    

where bold characters refer to matrices and vectors. The soluEon for Zt  is given by  
 

𝒁𝒕 = 𝑨%𝟏U𝑩𝑬𝒕	Q𝒁𝒕$𝟏 + 𝑪𝒁𝒕%𝟏 + 𝒃𝑟!%"2 + 𝒗𝒕V                    (26) 
     

The soluEon exists if the matrix A is non-singular, i.e. (1-a2c2)-a2b2c1 ≠ 0. The system (26) 

describes the soluEons for yt and 𝜋!2 given the forecasts of yt and 𝜋!2. The laUer have been 

specified in equaEons (7) and (17) and therefore can be subsEtuted into (26). Finally, the 

soluEon for 𝑟!%"2  is found by subsEtuEng yt and pt obtained from (26) into (3a).   

The model has non-linear features making it difficult to arrive at analyEcal soluEons. That is 

why we will use numerical methods to analyze its dynamics. In order to do so, we have to 

calibrate the model, i.e. to select numerical values for the parameters of the model. In Table 

1 the parameters used in the calibraEon exercise are presented. The values of the parameters 

are based on what we found in the literature (see Gali(2008) and BlaUner and 

Margaritov(2010) ). The model was calibrated in such a way that the Eme units can be 

considered to be quarters. The three shocks (demand shocks, supply shocks and interest rate 

shocks) are independently and idenEcally distributed (i.i.d.) with standard deviaEons of 0.5%. 

These shocks produce first moments of the output gap and inflaEon that mimic the first 

moments found in the empirical data (see Reifschneider and Williams(1999) and Chung, et al. 

(2012)). 

 

 

 

 



 22 

Table 1: Parameter values of the calibrated model 
 

a1 = 0.5      coefficient of expected output in output equaEon 
a2 = -0.2    interest elasEcity of output demand 
b1 = 0.5     coefficient of expected inflaEon in inflaEon equaEon 
b2 = 0.05   coefficient of output in inflaEon equaEon 
c1 = 1.5  coefficient of inflaEon in Taylor equaEon 
c2 = 0.5    coefficient of output in Taylor equaEon 
c3 = 0.8    interest smoothing parameter in Taylor equaEon 
𝛾 = 2      intensity of choice parameter 
𝜎5  = 0.5       standard deviaEon shocks output 
𝜎6  = 0.5       standard deviaEon shocks inflaEon 
𝜎7 = 0.5       standard deviaEon shocks Taylor 
𝜌	= 0.5              measures the speed of declining weights in mean squares errors (memory 

parameter) 
 
Note: the parameter values used here are similar to the ones obtained in Kukacka and Sacht 
(2022). 
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