cesifo Working PAPERS

Who Should Get Money? Estimating Welfare Weights in the U.S.
Francesco Capozza, Krishna Srinivasan

Impressum:

CESifo Working Papers
ISSN 2364-1428 (electronic version)
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo GmbH
The international platform of Ludwigs-Maximilians University's Center for Economic Studies and the ifo Institute
Poschingerstr. 5, 81679 Munich, Germany
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de Editor: Clemens Fuest
https://www.cesifo.org/en/wp
An electronic version of the paper may be downloaded

- from the SSRN website: www.SSRN.com
- from the RePEc website: www.RePEc.org
- from the CESifo website: https://www.cesifo.org/en/wp

Who Should Get Money? Estimating Welfare Weights in the U.S.

Abstract

Evaluating the desirability of a reform typically involves weighing the gains of the winners against the losses of the losers using welfare weights. Welfare weights measure the value that citizens assigns to a $\$ 1$ gain in consumption to individuals. They can capture various normative ideals like utilitarianism and equality of opportunity. What are the welfare weights that citizens assign to individuals in society? We develop a portable method to elicit welfare weights from general population samples and validate it using two experiments. We find that the general population weights are more progressive than the weights implied by tax and transfer policies in the U.S., indicating that the general population desires additional redistribution. The general population weights are less progressive than those frequently used in the literature. We explore the implications of these weights for optimal income taxes.

JEL-Codes: C930, D310, H230, I310.
Keywords: welfare weights, policy views, income taxation.

Francesco Capozza
WZB \& Berlin School of Economics Berlin / Germany
francesco.capozza@wzb.eu

Krishna Srinivasan
University of Zurich
Zurich / Switzerland
krishna.srinivasan@econ.uzh.ch

April 22, 2024
This work was supported by Grant 2104-31756 from the Russell Sage Foundation and by the University Research Priority Program "URPP Equality of Opportunity" of the University of Zurich. Any opinions expressed are those of the principal investigators alone and should not be construed as representing the opinions of the Russell Sage Foundation. We thank Sandro Ambuhl, Aurelien Baillon, Bjorn Bartling, Alexander Cappelen, Ernst Fehr, Nathaniel Hendren, Luca Henkel, Michel Marechal, Morten Stostad, Nina Serdarevic, Itai Sher, Stefanie Stantcheva, Dmitry Taubinsky, Bertil Tungodden, and Roberto Weber for their helpful comments. We also thank seminar participants at Erasmus University Rotterdam, University of Zurich, U.C. Berkeley, National University of Singapore, and Norwegian School of Economics for their helpful comments. This study was pre-registered: https://doi.org/10.1257/rct.8372-3.2

1 Introduction

Most policy reforms result in winners and losers. Evaluating the desirability of such reforms commonly involves weighing the gains of the winners against the losses of the losers using welfare weights. Welfare weights measure the value that society assigns to a $\$ 1$ gain in consumption to individuals. An open question in the literature is: Which welfare weights should society use to evaluate reforms? ${ }^{1}$

While previous studies in the literature typically assume welfare weights, our paper adopts an empirical approach: We elicit the welfare weights assigned by the general population of the U.S. to individuals in society. This tells us how the general population thinks about the tradeoffs involved in implementing reforms. It is also useful for democratic governments seeking to implement socially acceptable reforms.

We develop a portable method to elicit welfare weights from general population samples. We validate this method using two online experiments with large samples of the U.S. general population ($N \approx 4000$). In the experiments, participants in the role of "Social Architects" face participants in the role of "Recipients." The Recipients' disposable incomes span the income distribution of the U.S. A Social Architect makes a number of real-stakes redistributive decisions, which are used to identify the welfare weights they assign to the Recipients, given the current tax and transfer system. Our controlled experimental approach allows us to elicit Social Architects' welfare weights unconfounded by their concerns about the implementation of policies and concerns about factors for which governments have objective estimates, such as behavioral responses to taxation.

In our framework, a reform is conditioned only on Recipients' incomes. In the experiment, a Social Architect assigns welfare weights based on Recipients' incomes. Thus, knowing a Social Architect's welfare weights in the experiment is sufficient to learn their assessment of the welfare implications of a reform and, by extension, its desirability. A Social Architect's welfare weights can be guided by various underlying normative ideals, such as equality of opportunity or poverty alleviation (Saez \& Stantcheva 2016). However, our approach allows for policy evaluation without the need to specify and uncover the underlying ideals. This "sufficient statistics" approach is powerful because uncovering underlying ideals can be challenging when Social Architects are guided by a wide array of normative ideals.

We find that the welfare weights across all Social Architects are "progressive" on average, meaning that they are decreasing with Recipients' incomes. We find similar results

[^0]when we estimate the median progressivity of the welfare weights. Since the welfare weights were elicited given the Recipients' disposable incomes resulting from the current tax and transfer system, our finding indicates that the general population wants additional redistribution beyond that achieved by the current system.

To estimate the progressivity of the welfare weights, we estimate the elasticity of Social Architects' welfare weights with respect to Recipients' incomes. Our elasticity estimate implies that if a Social Architect assigns a weight of 1 to a Recipient, they will assign a weight of 66 cents to a Recipient earning twice as much. This means that for every dollar that a Social Architect gives to a Recipient, they are willing to take $\$ 1.5$ from a Recipient earning twice as much. We compare our elasticity estimate to the benchmark categories proposed in the literature (e.g., Saez 2002, Allcott et al. 2019). This comparison indicates that the general population weights are characterized by "weak" to "strong" redistributive tastes.

While the aggregate general population weights are progressive, there is considerable heterogeneity. This heterogeneity is predicted by Social Architects' background characteristics. Republicans assign less progressive welfare weights relative to Democrats and Independents. Social Architects with above median incomes assign less progressive weights. These results suggest that welfare weights can explain a part of the partisan gap in support for government redistribution (e.g., Stantcheva 2021) and the income gap in support for government redistribution (e.g., Singhal 2008, Cohn et al. 2019).

How do the general population weights compare to the weights implied by the income tax schedule and transfer policies in the U.S.? The weights implied by the tax schedule and transfer policies can be represented as politicians' aggregation of societal welfare weights, potentially influenced by political economy considerations. We obtain the weights implied by the tax schedule from Hendren (2020) and transfer policies from Hendren \& Sprung-Keyser (2020). Our elasticity estimates imply that the general population weights are 3 to 6 times more progressive than those implied by the tax schedule and 1.1 to 2.2 times more progressive than those implied by transfer policies.

We explore one reason why the general population weights are more progressive than the weights implied by the tax schedule: the latter places a higher "aggregation weight" on high-income individuals when aggregating societal welfare weights. We find that the aggregation weight that can rationalize the gap between the two sets of welfare weights is indeed higher for high-income individuals. These aggregation weights account for 44% to 58% of the overall gap between the two sets of weights. This explanation is consistent with the evidence in the literature suggesting that implemented policies are often more likely to reflect the interests of high-income individuals (e.g., Gilens \& Page 2014,

Karabarbounis 2011).
To explore the implications of the estimated welfare weights, we calibrate the optimal non-linear labor income taxes in the U.S. The optimal marginal tax rates depend on (i) the shape of the ability distribution, (ii) the elasticity of taxable income, and (iii) welfare weights. We find that the optimal marginal tax rates calibrated with the general population weights are 13-25 percentage points higher, on average, than the current tax rates in the U.S.

How do the general population weights compare to the weights used in the optimal policy literature? One frequently used estimate of welfare weights is inversely proportional to Recipients' disposable incomes or consumption (e.g., Saez 2001), which we refer to as "inverse-consumption" weights. These weights can be derived by assuming log utilities or constant relative risk aversion (CRRA) utilities in consumption with a coefficient of relative risk aversion of 1 . We find that inverse-consumption weights are 1.7 to 3.3 times more progressive than the general population weights. To better align policy recommendations with the general population's views, the optimal policy literature could use the estimates of welfare weights provided in our paper. Optimal policy formulas based on Recipients' incomes can use the function c^{v} with $v \in[-0.6,-0.3]$ to characterize welfare weights. Optimal policy formulas based on Recipients' utilities can characterize welfare weights using constant relative risk aversion (CRRA) utilities with a coefficient of relative risk aversion given by $\gamma=[0.3,0.6]$.

To understand whether the general population weights can be used to identify socially acceptable government policies, we explore the empirical link between these weights and support for government redistribution, measured using a survey question. We find that welfare weights predict support for government redistribution. A benchmarking exercise shows that Social Architects' welfare weights predict their support for government redistribution as accurately as their stated political affiliation.

We also explore whether the share of Social Architects with progressive welfare weights is similar to the share supporting additional government redistribution in the survey measure. We find that 65% of the Social Architects have progressive welfare weights. Since these welfare weights were elicited given the current tax and transfer system, Social Architects with progressive welfare weights will, all else equal, desire additional redistribution. In the survey measure of support for government redistribution, 67% of the Social Architects support additional redistribution. These results provide further evidence that calibrating optimal policy formulas with the general population weights would likely lead to socially acceptable policies.

In our sufficient statistics approach, Social Architects assign welfare weights based on
their perceptions about the tax system and society. If these perceptions are inaccurate, then their welfare weights may not be normatively appealing. However, many normative ideals rely on a limited set of perceptions. For example, a Social Architect guided by equality of opportunity would only need to know the share of individuals from disadvantaged backgrounds across incomes. We find that Social Architects' welfare weights do not capture misperceptions about income mobility, the share of low-income individuals, and the level of taxes paid by individuals, which are the misperceptions that affect people's concerns over redistribution in Stantcheva (2021). Even if Social Architects have misperceptions, the aggregate welfare weights, which we use for policy evaluation, may be unaffected by misperceptions if Social Architects' misperceptions cancel out in the aggregate.

Our paper is related to three strands of literature. The first is the experimental literature that aims to identify the ideals that guide people's welfare weights and, consequently, their support for redistribution (e.g., Drenik \& Perez-Truglia 2018, Almås et al. 2020). These papers do not directly elicit welfare weights. ${ }^{2}$ In our paper, we elicit the welfare weights of the general population of the U.S., which can be guided by various underlying ideals. These welfare weights can be directly used to evaluate policies.

The second strand of literature identifies the welfare weights implied by the tax schedule (e.g., Hendren 2020, Lockwood \& Weinzierl 2016, Zoutman et al. 2013, Bourguignon \& Spadaro 2012) or by transfer policies (Hendren \& Sprung-Keyser 2020). These "inverseoptimum weights" represent politicians' aggregation of societal welfare weights, potentially influenced by their political economy considerations. There are several limitations to using these weights to evaluate other policies (see Lockwood \& Weinzierl (2016), Stantcheva (2016)). First, they may not reflect societal preferences if the policies do not adapt to changing societal preferences (Freitas-Groff 2023) or if politicians are influenced by political economy considerations, such as lobbying. Second, they can sometimes be negative, in which case, they cannot be used in standard policy formulas that require positive welfare weights. Third, they are sensitive to the assumptions about the elasticity of taxable income.

The third strand of literature aims to incorporate normative ideals in the optimal policy formulas by modifying individuals' utilities or the objective function (e.g., Weinzierl 2014, Fleurbaey \& Maniquet 2006). A key limitation of this approach is that it may be theoretically intractable to incorporate multiple ideals. In our paper, we elicit the welfare weights of the general population, which can capture various underlying ideals, and use

[^1]these weights to evaluate "standard" optimal policy formulas.
The structure of our paper is as follows. In Section 2, we present the theoretical framework based on the framework of Saez \& Stantcheva (2016). This section provides a mapping from the theory of optimal taxation to the experimental design. Section 3 presents the experimental design. Section 4 presents the results on the general population weights. Section 5 compares the general population weights to the weights implied by tax and transfer policies and the weights used in the optimal policy literature. Finally, Section 6 discusses and concludes.

2 Theoretical Framework

Our theoretical framework is based on the framework by Saez \& Stantcheva (2016). It describes the mapping from the theory of optimal taxation to the experimental design described in the next section.

2.1 Recipients' Utilities

Consider a population of N Recipients indexed by j. A Recipient j 's indirect utility function is given by $U_{j}=z_{j}-T_{j}\left(z_{j}\right)-v\left(z_{j}, \alpha_{j}\right)$ where z_{j} denotes Recipient j 's optimal income (implicitly based on their optimal choice of labor) given the tax schedule, T_{j} denotes the taxes paid by Recipient j given their optimal income, and v represents Recipients' disutility of work, which is a function of their optimal income and various personal characteristics α_{j} (e.g., disability status). ${ }^{3}$

2.2 Welfare Weights

A Social Architect assigns generalized social marginal welfare weights (henceforth welfare weights) to the Recipients. The welfare weight g_{j} measures how much the Social Architect values a $\$ 1$ increase in consumption for Recipient j relative to other Recipients and is given by $g_{j}=g\left(c_{j}, \theta_{j}\right)$. Welfare weights are a function of Recipients' consumption $c_{j}=$ $z_{j}-T_{j}\left(z_{j}\right)$ and Recipients' characteristics contained in the vector θ_{j}. Some characteristics in θ_{j} (e.g., disability status) may also be included in α_{j}, implying that a Social Architect is guided by "welfarist motives." Other characteristics in θ_{j} (e.g., parental income) may not be contained in α_{j}, indicating that a Social Architect is guided by "non-welfarist motives." The welfare weights are relative and thus defined up to a multiplicative constant.

A Social Architect's welfare weights can be guided by various ideals, such as equality of opportunity, utilitarianism, distribution based on the source of income, and poverty alleviation. For example, a utilitarian Social Architect would assign welfare weights pro-

[^2]portional to Recipients' marginal utility of consumption (captured by c_{j}). A Social Architect guided by equality of opportunity would assign higher welfare weights to Recipients from disadvantaged backgrounds (captured by θ_{j}) compared to those from more advantageous backgrounds.

2.3 Evaluating Reforms

In this framework, reforms are conditioned only on Recipients' incomes. However, a Social Architect's welfare weights g_{j} are at a more disaggregated level-they may assign different welfare weights to Recipients earning the same income. To evaluate a reform, the welfare weights have to be aggregated up to the level of the reform. ${ }^{4}$ We assume that a Social Architect facing Recipient j reports their mean welfare weights \bar{g}_{j} given by

$$
\begin{equation*}
\bar{g}_{j}=\frac{\sum_{j: z_{j}=z} g_{j}}{h(z)} \tag{1}
\end{equation*}
$$

where $h(z)$ is the number of Recipients with earnings z. A set of mean welfare weights can be consistent with multiple underlying ideals. For example, utilitarianism and equality of opportunity may lead to the same mean weights. A utilitarian Social Architect would assign welfare weights proportional to Recipients' marginal utility of consumption. Since the marginal utility of consumption decreases with income, mean welfare weights also decrease with income. A Social Architect guided by equality of opportunity would assign higher welfare weights to Recipients from disadvantaged backgrounds. Since the share of Recipients from disadvantaged backgrounds decreases with income, mean welfare weights also decrease with income. There exists a distribution of Recipients from disadvantaged backgrounds that makes the mean welfare weights corresponding to these two ideals identical.

Consider a setting in which a Social Architect faces two Recipients with incomes z_{l} and z_{h}, such that $z_{h}>z_{l}$. Each Recipient earning z is selected from the set of all Recipients earning z. We consider a "small" (marginal) budget-neutral reform. The reform $\epsilon R=\left(\epsilon r_{l},-\epsilon r_{h}\right)$ with $r_{h}=r_{l}$ changes the Recipients' disposable incomes by taking the monetary amount ϵr_{h} from the higher-income Recipient and giving the amount ϵr_{l} to the lower-income Recipient. ${ }^{5}$ A Social Architect maximizes a utilitarian social welfare func-

[^3]tion given by
\[

$$
\begin{align*}
W & =\bar{g}_{l} \cdot U_{l}+\bar{g}_{h} \cdot U_{h} \\
& =\bar{g}_{l} \cdot\left(z_{l}-T_{l}\left(z_{l}\right)+\epsilon r_{l}-v\left(z_{l}, \alpha_{l}\right)\right)+\bar{g}_{h} \cdot\left(z_{h}-T_{h}\left(z_{h}\right)-\epsilon r_{h}-v\left(z_{h}, \alpha_{h}\right)\right) . \tag{2}
\end{align*}
$$
\]

Taking the first derivative of Equation (2) with respect to ϵ, we get

$$
\begin{equation*}
\Delta W=\bar{g}_{l} \cdot r_{l}+\bar{g}_{h} \cdot\left(-r_{h}\right) . \tag{3}
\end{equation*}
$$

Equation (3) shows that the weighted reform amounts, weighted by the mean welfare weights, has a first-order effect on Recipients' welfare. The reform $R=\left(r_{l},-r_{h}\right)$ is defined as being desirable if $\Delta W>0$. Saez \& Stantcheva (2016) derive the necessary conditions for a tax system to be at a local optimum: If a tax system is at a local optimum, then for any small budget-neutral reform $R, \Delta W=0$.

2.4 Identifying Welfare Weights

To identify the mean welfare weights \bar{g}_{l} and \bar{g}_{h}, we identify a non-budget-neutral reform $R^{\prime}=\left(r_{l}^{\prime},-r_{h}^{\prime}\right)$ with $r_{l}^{\prime} \neq r_{h}^{\prime}$ that makes the Social Architect indifferent between the reform R^{\prime} and the budget-neutral reform $R=\left(r_{l},-r_{h}\right)$ with $r_{l}=r_{h} .{ }^{6}$ Setting $\Delta W(R)=$ $\Delta W\left(R^{\prime}\right)$ allows to recover the welfare weights \bar{g}_{l} and \bar{g}_{h}, which is given by the following equation.

$$
\begin{equation*}
\tilde{g}=\frac{\bar{g}_{h}}{\bar{g}_{l}}=\frac{r_{l}^{\prime}-r_{l}}{r_{h}^{\prime}-r_{h}} . \tag{4}
\end{equation*}
$$

In our framework, knowing a Social Architect's mean welfare weights is sufficient to learn their assessment of the welfare implications of a reform (ΔW) and, by extension, its desirability. We do not need to specify or uncover the underlying ideals that guide the Social Architects. Even though a set of mean welfare weights may be consistent with multiple underlying ideals (e.g., utilitarianism or equality of opportunity), these ideals have the same welfare implications. This sufficient statistics approach is powerful because uncovering the underlying normative ideals can be challenging when Social Architects are guided by a wide array of ideals. In the following section, we discuss how we identify Social Architects' mean welfare weights.
sequently, their optimal pre-tax income z.
${ }^{6}$ A special case of the budget-neutral reform is $R=(0,0)$.

3 Experimental Design

3.1 Eliciting Welfare Weights

Approach

Participants in our experiment assume the role of either a "Social Architect" or a "Recipient." Each Social Architect faces a pair of real Recipients. The Social Architect learns the Recipients' real-world disposable incomes accrued from the current tax and transfer system. They also learn that the Recipients receive a $\$ 1500$ endowment. The Social Architect makes several choices between monetary amounts that resemble policy reforms. The amounts are added to or subtracted from the Recipients' endowment. These monetary choices involve a tradeoff between equity and efficiency. A Social Architect's choices are used to identify the welfare weights assigned to the Recipients. These welfare weights reflect the Social Architect's assessment of the value of consumption to the Recipients, given the current tax and transfer system. The Recipients are passive subjects who receive money based on the Social Architect's decisions.

The reforms in our experiment do not make references to the government. This feature allows us to elicit Social Architects' welfare weights unconfounded by their concerns about the implementation of policies and concerns about factors for which governments have objective estimates, such as behavioral responses to taxation. Our experiment is designed such that the welfare weights capture people's assessment of the value of consumption to individuals, based on their underlying normative ideals.

Following the small reform approach to taxation presented by (Saez \& Stantcheva 2016), the reforms in our experiment constitute a small one-time transfer. Nevertheless, we assume a parametric functional form for the welfare weights that allows the estimated weights to generalize to larger policies.

Decisions

As described in Section 2.4, to identify the welfare weights, we need to identify a nonbudget neutral reform R^{\prime} that makes a Social Architect indifferent between R^{\prime} and a budget-neutral reform R. A Social Architect is asked to choose between a "Balanced Reform" $R=(\$ 500,-\$ 500)$ and various "Unbalanced Reforms" of the type $R^{\prime}=(\$ t r,-\$ r)$; the reforms $(\$ t r,-\$ r)$ take $\$ r$ from the higher-income Recipient and give $\$ t r$ to the lowerincome Recipient. Our goal is to identify the reform ($\$ t r,-\$ r$) that makes a Social Architect indifferent between $(\$ t r,-\$ r)$ and $(\$ 500,-\$ 500) .{ }^{7}$ Setting $\Delta W((\$ 500,-\$ 500))=$

[^4]$\Delta W((\$ t r,-\$ r))$ in Equation (3), we get
\[

$$
\begin{equation*}
\tilde{g}=\frac{\bar{g}_{h}}{\bar{g}_{l}}=\frac{t r-500}{r-500} . \tag{5}
\end{equation*}
$$

\]

Equation (5) shows that \tilde{g}, the welfare weight assigned to the higher-income Recipient relative to the lower-income Recipient, is an increasing function of the parameter t. These welfare weights \bar{g}_{h} and \bar{g}_{l} are only defined up to a multiplicative constant.

If $t<1$ in Equation (5), the welfare weight assigned to the higher-income Recipient is lower than that assigned to the lower-income Recipient ($\tilde{g}<1, \bar{g}_{h}<\bar{g}_{l}$), which corresponds to "progressive" welfare weights. For example, suppose a Social Architect is indifferent between $(\$ 500,-\$ 500)$ and $(\$ 625,-\$ 1375)$. If a Social Architect wants to give $\$ 125$ more to the lower-income Recipient in the Unbalanced Reform relative to the Balanced Reform, then she would be willing to take away $\$ 875$ more from the higher-income Recipient in the Unbalanced Reform relative to the Balanced Reform.

Analogously, if $t>1$, the welfare weight assigned to the higher-income Recipient is higher than that assigned to the lower-income Recipient ($\tilde{g}>1, \bar{g}_{h}>\bar{g}_{l}$), which corresponds to "regressive" welfare weights. For example, suppose a Social Architect is indifferent between $(\$ 500,-\$ 500)$ and $(\$ 1375,-\$ 625)$. If a Social Architect has to take away $\$ 125$ more from the higher-income Recipient in the Unbalanced Reform relative to the Balanced Reform, then she would have to give $\$ 875$ more to the lower-income Recipient in the Unbalanced Reform relative to the Balanced Reform.

Finally, $t=1$ implies equal weights to both Recipients $\left(\tilde{g}=1, \bar{g}_{h}=\bar{g}_{l}\right)$. A Social Architect is indifferent between (\$500, - \$500) and (\$1000, - $\$ 1000$).

Table 1 presents fifteen Unbalanced Reforms that are used to elicit welfare weights. The reforms are selected such that the expected total amount paid to Recipients (\$2000) is similar to the amount disbursed in the COVID-19 stimulus checks in the U.S. In Row 8, the Unbalanced Reform ($\$ 1000,-\$ 1000$) corresponds to $t=1$. Unbalanced Reforms above Row 8 correspond to $t<1$, while those below Row 8 correspond to $t>1$. Lower row numbers include Unbalanced Reforms with smaller values of t, which are more progressive reforms. The maximum amount that can be taken from the higher-income Recipient corresponds to the initial endowment of $\$ 1500$. The minimum possible amount that can be taken from the higher-income Recipient corresponds to the $\$ 500$ in the Balanced Reform. The amount given to the lower-income Recipient is chosen such that the sum of the absolute value of the reform amounts for both Recipients is $\$ 2000$.

Unbalanced Reforms ($\$ t r,-\$ r$) with larger values of t are less progressive. However,

Table 1: Set of Reforms

Row	Balanced Reform	Unbalanced Reform	t
1	$(\$ 500,-\$ 500)$	$(\$ 550,-\$ 1450)$	0.38
2	$(\$ 500,-\$ 500)$	$(\$ 625,-\$ 1375)$	0.45
3	$(\$ 500,-\$ 500)$	$(\$ 700,-\$ 1300)$	0.54
4	$(\$ 500,-\$ 500)$	$(\$ 750,-\$ 1250)$	0.60
5	$(\$ 500,-\$ 500)$	$(\$ 800,-\$ 1200)$	0.67
6	$(\$ 500,-\$ 500)$	$(\$ 875,-\$ 1125)$	0.78
7	$(\$ 500,-\$ 500)$	$(\$ 950,-\$ 1050)$	0.90
8	$(\$ 500,-\$ 500)$	$(\$ 1000,-\$ 1000)$	1.00
9	$(\$ 500,-\$ 500)$	$(\$ 1050,-\$ 950)$	1.11
10	$(\$ 500,-\$ 500)$	$(\$ 1125,-\$ 875)$	1.29
11	$(\$ 500,-\$ 500)$	$(\$ 1200,-\$ 800)$	1.50
12	$(\$ 500,-\$ 500)$	$(\$ 1250,-\$ 750)$	1.67
13	$(\$ 500,-\$ 500)$	$(\$ 1300,-\$ 700)$	1.86
14	$(\$ 500,-\$ 500)$	$(\$ 1375,-\$ 625)$	2.20
15	$(\$ 500,-\$ 500)$	$(\$ 1450,-\$ 550)$	2.64

Notes: The table presents fifteen Unbalanced Reforms. An Unbalanced Reform ($\$ t r,-\$ r$) takes $\$ r$ from the higher-income Recipient in the pair and gives $\$ t r$ to the lower-income Recipient.
they are more efficient since they lead to a larger pie $(t r+r)$. Our setting is characteristic of real-world settings in which there is a tradeoff between the equity and efficiency of reforms. It is unavoidable to vary the progressivity of the reforms while keeping their efficiency constant. Eliciting the progressivity of the welfare weights is akin to asking how much efficiency loss the Social Architect is willing to accept. Nevertheless, evidence in the literature suggests that efficiency concerns are not an important factor driving people's redistributive decisions (Stantcheva 2021, Almås et al. 2020).

Our theory predicts that a Social Architect would choose a Balanced Reform starting from Row 1 in Table 1 before switching to an Unbalanced Reform. We calculate the midpoint of the Unbalanced Reform that a Social Architect switches to and the Unbalanced Reform in the previous row. A Social Architect is indifferent between the Unbalanced Reform given by the mid-point and a Balanced Reform. If a Social Architect switches in the first (last) row, we calculate the mid-point of the Unbalanced Reform in the first (last) row and the bound on possible reforms. ${ }^{8}$ Plugging the mid-point of the Unbalanced

[^5]Reforms into Equation (5) allows us to estimate $\tilde{g} .{ }^{9}$
To identify a Social Architect's switch-point in Table 1, we use the "staircase method" and present them with four decisions. The first decision, indicated in Row 8, asks a Social Architect to choose between the reforms $(\$ 500,-\$ 500)$ and $(\$ 1000,-\$ 1000)$. The second, third, and fourth decisions are selected adaptively, i.e., they depend on the choices of the Social Architect in the first, second, and third decisions, respectively. ${ }^{10}$ Figure A2 in Appendix Section C. 1 presents a graphical representation of the selection of the four decisions. As is common in the literature on preference elicitation (e.g., Falk et al. 2018), the staircase method enforces that a Social Architect has a unique switch-point and can only switch in one direction (from a Balanced Reform to an Unbalanced Reform). It also ensures that a Social Architect is presented with decisions from only the top half of the table if they select an Unbalanced Reform in the first decision and only the bottom half if they select a Balanced Reform in the first decision. Thus, a Social Architect's response to the first decision determines if their welfare weights are progressive or regressive. This feature ensures that if a Social Architect's choice in the first decision is free from measurement error, the qualitative assessment of their welfare weights (whether progressive or regressive) is also free from measurement error.

Decision Screens

Social Architects face a pair of Recipients in each "decision screen." They learn the disposable incomes of the Recipients. Table 2 displays the incomes of the Recipients in each decision screen. For half the Social Architects, the order of the decision screens is reversed. The Recipients' incomes span the income distribution of the U.S., roughly covering the various tax brackets. Figure 1 plots the incomes of the seven Recipients (dots) against the disposable income distribution (line) in the U.S.

A Social Architect is presented with four decisions in each decision screen using the staircase method. Their choices are used to estimate \tilde{g}, the welfare weight assigned to the higher-income Recipient relative to the lower-income Recipient, in each decision screen.
switches), we take the mid-point of $(\$ 1450,-\$ 550)$ and $(\$ 1500,-\$ 500)$. The reform $(\$ 1500,-\$ 500)$ takes the minimum possible amount from the higher-income Recipient, corresponding to the amount in the Balanced Reform. The reform ($\$ 1500,-\$ 500$) corresponds to an undefined \tilde{g}.
${ }^{9}$ For example, if a Social Architect prefers a Balanced Reform in Rows 1-6 and switches to the Unbalanced Reform in Row 7, they are indifferent between (\$500, $-\$ 500$) and ($\$ 912.5,-\$ 1087.5$), where the latter is the mid-point of $(\$ 875,-\$ 1125)$ and $(\$ 950,-\$ 1050)$. Plugging these reforms into Equation (5), we get $\tilde{g}=\frac{\bar{g}_{h}}{\bar{g}_{l}}=\frac{t r-500}{r-500}=\frac{912.5-500}{1087.5-500}=0.702$.
${ }^{10}$ The staircase method has several advantages. First, it is easy to explain to participants. Falk et al. (2018) use the staircase method in nationally representative samples across the world, highlighting its simplicity. Second, it allows us to get more accurate weights with fewer decisions than a typical multiple-price list because it adaptively selects a few questions from a list.

Table 2: Pairs of Recipients in Decision Screens

	Decision Screen						
	1	2	3	4	5	6	
Recipient l	$\$ 8,000$	$\$ 35,000$	$\$ 70,000$	$\$ 70,000$	$\$ 70,000$	$\$ 70,000$	
Recipient h	$\$ 70,000$	$\$ 70,000$	$\$ 100,000$	$\$ 170,000$	$\$ 250,000$	$\$ 500,000$	

Since the Recipient earning $\$ 70,000$ is common across the six decision screens, a Social Architect's choices across the six decision screens are used to identify the relative welfare weights assigned to the seven Recipients. ${ }^{11}$ We re-normalize the weights so that their sum is 1 . The weight assigned to a Recipient can be interpreted as the share of the total weight.

Figure 1: Disposable Incomes of the Seven Recipients
Notes: The figure plots the incomes of the seven Recipients (dots) against the disposable income distribution (line) in the U.S. in 2019. The horizontal axis indicates the percentiles and the vertical axis indicates the threshold annual disposable incomes corresponding to the percentiles. Data on income is obtained from the World Inequality Database (WID). Details on the construction of the figure can be found in Appendix Section E.1.

Incentives

We informed the Social Architects that one of them will be randomly selected in the study. For the selected Social Architect, one randomly selected choice in one randomly selected decision screen will be implemented. Thus, at the end of the study, two Recipients would

[^6]receive $(\$ 1500+\$ t r, \$ 1500-\$ r)$ or $(\$ 1500+\$ 500, \$ 1500-\$ 500)$, depending on the choice of the selected Social Architect. We included a sentence at the top of each decision that reminded Social Architects of the incentives. We present a screenshot of one of the decisions in the experiment in Appendix Section F.

Information about Recipients

A Social Architect learns that they will face seven real Recipients who will be randomly selected from a survey panel and will not participate in the same survey as them. They learn that the Recipients are above the age of 18 and are U.S. citizens. They view the real-world disposable incomes of the seven Recipients. Finally, we inform them about the incentives described in the previous section. In the experiment, we refer to the Social Architects as "Participants" and the Recipients as "Persons." We refer to the annual disposable incomes of the Recipients as "After-tax annual income."

3.2 Treatments and Waves

We collected data in two waves. In Wave 1, we recruited 1965 participants in the role of Social Architects. These participants were randomly assigned to one of four treatments designed to test the robustness of the elicited welfare weights with respect to changes in the experimental design. In Wave 2, we recruited 1992 participants in the role of Social Architects. We implemented four treatments in Wave 2 to further test the robustness of the elicited welfare weights.

In Wave 1, Social Architects are randomly assigned to one of four treatments in a 2×2 design. The first treatment dimension tests if Social Architects' welfare weights are sensitive to the framing of the reforms. While Treatments Loss involve taking money away from the higher-income Recipient and giving money to the lower-income Recipient, Treatments Gain involve giving money to both Recipients in the pair. In Treatments Loss, each Recipient is given an initial endowment of $\$ 1500$, and a Social Architect decides between the reforms ($\$ t r,-\$ r$) and ($\$ 500,-\$ 500$). In Treatments Gain, the endowment is included in the reform amounts: a Social Architect decides between ($\$ 1500+\$ t r, \$ 1500-\$ r)$ and ($\$ 2000, \$ 1000$). The experimental design described in the previous sections corresponds to Treatments Loss. The framing of the reform should not affect a Social Architect's assigned welfare weights since the welfare weights depend on Recipients' consumption, which is the same in the two treatments. However, if a Social Architect is influenced by loss aversion, then, in Treatments Loss, they will choose Unbalanced Reforms with smaller values of r, which are less progressive reforms.

The second treatment dimension tests if Social Architects' welfare weights are sensitive to the income of the Recipient common across the decision screens. In Treatments 70K,
the Recipient common across the decision screens has an income of $\$ 70,000$. In contrast, in Treatments 500K, the Recipient common across the decisions screens has an income of $\$ 500,000$. The experimental design described in the previous sections corresponds to Treatments 70 K . We test whether the welfare weights elicitation is sensitive to the choice of the Recipient common across the decision screens.

In Wave 2 of data collection, Social Architects are randomly assigned to one of four treatments. The first two treatments test whether Social Architects' welfare weights are sensitive to the existence of real stakes. In Treatment Real, Social Architects make real decisions regarding real Recipients, while in Treatment Hypothetical, Social Architects make hypothetical decisions regarding hypothetical Recipients. If the welfare weights from the two treatments are similar, then future research can use hypothetical decisions. These are cheaper and easier to implement. However, if the welfare weights from the two treatments differ, then we defer to Treatment Real since the presence of real stakes is likely to lead to more reliable welfare weights. Both treatments are similar to Treatments Loss $\times 70 \mathrm{~K}$ in structure. ${ }^{12}$

In the above treatments, Social Architects assume the role of impartial spectators, with self-interest motives playing a minimal role. However, in reality, people are often impacted by reforms. To examine the role of self-interest motives, we included Treatments No Self-Interest and Self-Interest. In the former, Social Architects act as impartial spectators, while in the latter, Social Architects can potentially be affected by their own choices, meaning that one of them could potentially receive a payment in the study. ${ }^{13}$ In these two treatments, unlike in Treatment Real, the Social Architects view the income brackets of the Recipients instead of their exact incomes. This feature allows us to assign every Social Architect to one of the seven distinct income brackets that span the income distribution. In Treatment Self-Interest, each Social Architect replaces the Recipient whose income bracket contains their own income. For example, if a Social Architect earns $\$ 400,000$, they would replace the Recipient whose income bracket is " $\$ 375,000$ and above." Thus, each Social Architect can potentially be affected by their own choices. In Treatment No Self-Interest, Social Architects cannot be affected by their own choices.

3.3 Additional Questions

We present an overview of the additional questions that Social Architects are asked to answer. More details on some of these questions can be found in Appendix Section A.

[^7]Table 3: Overview of Treatments

Treatment	Framing of Reforms	Income of Common Recipient
Loss $\times 70 \mathrm{~K}$	Loss	70 K
Gain $\times 70 \mathrm{~K}$	Gain	70 K
Loss $\times 500 \mathrm{~K}$	Loss	500 K
Gain $\times 500 \mathrm{~K}$	Gain	500 K
Wave 2		
Treatment	Framing of Reforms	Income of Common Real
Hypothetical	Loss	70 K
No Self-Interest	Loss	70 K
Self-Interest	Loss	70 K

Wave 1

We elicit Social Architects' support for government redistribution by asking them (i) their views on the taxes levied on those in the top-income tax category and (ii) whether the government should reduce income differences between the rich and the poor. We use these two questions to test whether Social Architects' welfare weights predict their support for government redistribution.

Wave 2

In Wave 2, we elicited Social Architects' support for government redistribution using a survey measure. The question asks Social Architects if they want additional redistribution beyond that achieved by the current tax and transfer system. Their responses can range from -2 to +2 , where positive values indicate redistribution from high-income individuals to low/middle-income, and negative values indicate redistribution from low/middleincome individuals to high-income individuals. This question has two key features. First, it asks Social Architects to consider the current incomes of individuals in society after all taxes and transfers, thereby fixing Social Architects' beliefs about the status quo beyond which redistribution should occur. Second, it allows redistribution from highincome individuals to low-/middle-income individuals as well as redistribution from low-/middle-income individuals to high-income individuals. The latter is useful to capture the views of those who want to "undo" the redistribution from the current tax and transfer system.

To explore the predictors of Social Architects' support for redistribution, we elicit their
misperceptions about taxation and society and views about taxation and government.

3.4 Data Collection

In Wave 1 of data collection, we recruited participants in the role of Social Architects from the general population of the U.S. using the data collection provider Lucid. ${ }^{14}$ Participants first answer questions about their demographics and political affiliation. We define quotas for recruitment based on gender, age, education, individual income, and region. The quotas are designed to match the sample to the population of the U.S. Participants had to pass one attention check and two comprehension checks to continue with the study. We implemented the survey using Qualtrics. The data collection for Wave 1 began on 8 December 2021 and lasted approximately two weeks. Our final sample includes 1965 participants. ${ }^{15}$

In Wave 2 of data collection, we recruited participants in the role of Social Architects from the data collection provider Prolific ${ }^{16}$ In Wave 2, we used Prolific instead of Lucid because Prolific allows us to pay participants a bonus, a feature required in Treatment Self-Interest. This feature is not available in Lucid. The recruitment procedure is similar to the procedure used in Wave 1. Participants were recruited based on three quotas available in Prolific: age, sex, and ethnicity. We implemented the survey using oTree (Chen et al. 2016). The data collection for Wave 2 began on 14 December 2022 and lasted eight days. Our final sample includes 1992 participants. ${ }^{17}$

3.5 Summary Statistics

Table 4 presents the average characteristics of our sample and the population of the

[^8]U.S. in 2019. The sample characteristics in Wave 1 closely match the population characteristics because we implemented quotas while recruiting participants. ${ }^{18}$ The sample in Wave 2 also broadly matches the population, but includes slightly richer, younger, and more educated individuals. In the following sections, we report analyses that are weighted using sampling weights that ensure that the sample averages match the population averages.

Table 4: Summary Statistics

	Population	Wave 1	Wave 2
Income: $<30,000$	0.51	0.53	0.38
Income: $30-59,999$	0.26	0.26	0.29
Income: $60-99,999$	0.14	0.13	0.22
Income: $100-149,999$	0.06	0.05	0.09
Income: $>149,999$	0.04	0.03	0.04
Age: $18-34$	0.30	0.29	0.37
Age: 35-44	0.16	0.17	0.22
Age: $45-54$	0.16	0.17	0.15
Age: 55-64	0.17	0.17	0.16
Age: >64	0.21	0.19	0.10
Edu: Up to Highschool	0.39	0.46	0.14
Edu: Some college	0.22	0.20	0.20
Edu: Bachelor or Associate	0.28	0.24	0.49
Edu: Masters or above	0.11	0.10	0.16
Region: West	0.24	0.21	0.18
Region: North-east	0.17	0.18	0.20
Region: South	0.38	0.40	0.43
Region: Mid-west	0.21	0.21	0.20
Male	0.49	0.46	0.50
Republican	0.28	0.32	0.19

Notes: The population average demographics are computed using the 2019 American Community Survey (ACS) 1-year estimates. The ACS sample only includes individuals above the age of 18. The population share of Republicans is obtained as the average share of people identifying as Republican over multiple surveys fielded in 2019 by the Gallup poll (https://news.gallup.com/poll/15370/party-affiliation.aspx). The sample means from Wave 1 are computed using the 1965 Social Architects recruited from Lucid. The sample means from Wave 2 are computed using the 1992 Social Architects recruited from Prolific.

Table A1 and Table A2 in Appendix Section C. 2 presents the average characteristics of the sample across the four treatments in Wave 1 and Wave 2, respectively. We find

[^9]statistically significant differences for several characteristics across treatments, but the magnitude of the differences for most of these characteristics is small. When we explore the welfare weights across treatments, we account for these imbalances by weighting each treatment using sampling weights such that the sample averages in each treatment match the population averages.

3.6 Pre-registration

We pre-registered the design as well as the analyses. There are a few deviations from the pre-registration in the implementation of the experiment and the analyses. The deviations are discussed in Appendix Section B.

4 Welfare Weights of the General Population

4.1 Data Description

We explore the distribution of \tilde{g}, the welfare weight assigned to the higher-income Recipient relative to the lower-income Recipient, across the six pairs of Recipients in the six decision screens. The parameter \tilde{g} is calculated using Equation (5).

Figure 2 presents the results, each sub-figure relating to a pair of Recipients. Each of the sixteen bars in the figure corresponds to a unique value of \tilde{g}, which is derived from the unique row in Table 1 where the Social Architects switch from a Balanced Reform to an Unbalanced Reform. The last bar corresponds to those who never switch to an Unbalanced Reform. The figure uses the data of Social Architects in all treatments and waves where the Recipient common across the pairs of Recipients has an income of \$70,000.

We observe considerable heterogeneity in \tilde{g} across the pairs of Recipients, comprising both progressive welfare weights $(\tilde{g}<1)$ and regressive welfare weights ($\tilde{g}>1$). This heterogeneity also extends within these two groups. The distribution of \tilde{g} across the pairs of Recipients is skewed towards progressivity (towards $\tilde{g}=0$), suggesting that the welfare weights assigned to the seven Recipients are progressive on average. We discuss the heterogeneity in the welfare weights assigned to the seven Recipients in Section 4.3.

We observe bunching across the six pairs of Recipients at three values: $\tilde{g}=0.03$, representing the most progressive weights; $\tilde{g}=0.9$, representing the least progressive among the progressive weights; and $\tilde{g}=39$, representing the most regressive weights. ${ }^{19}$

We observe a similar shift in the distribution of \tilde{g} towards progressivity and similar bunching in the treatments where the Recipient common across the pairs of Recipients has

[^10]an income of $\$ 500,000$. The results are presented in Figure A1 in Appendix Section C.1.

Figure 2: Distribution of \tilde{g} Across Recipient Pairs
Notes: The figure presents the distribution of \tilde{g}, the welfare weight assigned to the higher-income Recipient relative to the lower-income Recipient, across the six pairs of Recipients in the six decision screens. The parameter \tilde{g} is calculated using Equation (5). The sample includes Social Architects in all treatments in both waves where the Recipient common across the pairs of Recipients has an income of $\$ 70,000$.

4.2 Progressivity of Welfare Weights

Social Architects' decisions across the six pairs of Recipients are used to estimate $g\left(R_{1}\right) \ldots g\left(R_{7}\right)$, the relative welfare weights assigned to the seven Recipients. We explore the progressivity of Social Architects' assigned welfare weights.

In this section, we consider the average progressivity of the welfare weights since it is easy to interpret. In Section 5, when we compare the general population weights to the weights implied by tax and transfer policies, the aggregation of welfare weights is more relevant. We consider the median progressivity of the welfare weights in Section 5. Assuming that a democratic government aggregates societal welfare weights, the aggregate weights under the median voter theorem correspond to the median welfare weights.

To estimate the progressivity of the welfare weights, we use a simple parametric function that is commonly used in the literature (e.g., Saez 2002, Allcott et al. 2019). This para-
metric function allows the estimated weights to be portable to other policies in which the beneficiaries' incomes may differ (see Section 5.2 for a discussion). The parametric function is given by c^{v}, where c is the disposable incomes (or consumption) of the Recipients, and v is a parameter that governs the progressivity of the weights. The parameter v can be interpreted as the elasticity of the weights with respect to Recipients' incomes. A value $v<0$ indicates progressive weights, while a value $v>0$ indicates regressive weights. To estimate the parameter v, we estimate the following linear regression.

$$
\begin{equation*}
\log \left(g\left(R_{j}\right)_{i}\right)=\beta_{0}+v \log \left(\text { recipient income }_{j}\right)+\epsilon_{i j} \tag{6}
\end{equation*}
$$

where $\log \left(g\left(R_{j}\right)_{i}\right)$ is the natural logarithm of the welfare weight assigned by Social Architect i to Recipient j and recipient income $_{j}$ is the disposable income of Recipient j. We estimate the regression using Social Architects from all the treatments in both waves. We weight this regression using sampling weights constructed such that the average sample characteristics match the population characteristics.

We find that the estimated value of v is -0.34 , implying progressive welfare weights on average. Our elasticity estimate implies that if a Social Architect assigns a weight of 1 to a Recipient, they would assign a weight of 66 cents to a Recipient earning twice as much. This means that for every dollar that a Social Architect gives to a Recipient, they are willing to take $\$ 1.5$ from a Recipient earning twice as much. ${ }^{20}$ We find similar results when we (i) use an unweighted regression and (ii) consider the median progressivity of the welfare weights. ${ }^{21}$ This leads to the following result.

Result 1. The aggregate general population weights are progressive.
A value $v=0$ would imply an indifference between giving a dollar to the rich and to the poor, indicating that the general population is satisfied with the redistribution achieved by the current tax and transfer system. Our finding of $v<0$ suggests that, on average, the general population wants additional redistribution beyond that achieved by the current tax and transfer system.

We compare our elasticity estimate to the benchmarks proposed in the literature: $v=$ $|0.25|$ corresponds to "weak" redistributive tastes, $v=|1|$ corresponds to "fairly strong" redistributive tastes, and $v=|4|$ corresponds to "extremely strong" redistributive tastes

[^11](Saez 2002, Allcott et al. 2019). Based on our experimental design, the range of the possible values of v is [$-2.25,2.25$]. Since only 15% of the Social Architects make choices that imply the most regressive or most progressive weights, the limited range of v does not severely affect our inferences. Comparing our estimate of $v=-0.34$ to the benchmarks proposed in the literature suggests that the general population weights are characterized by weak to strong redistributive tastes.

4.3 Individual Heterogeneity in Welfare Weights

In this section, we explore the individual-level heterogeneity in the progressivity of the welfare weights. We estimate the elasticity of the weights with respect to Recipients' incomes (v) for each Social Architect using the following regression. ${ }^{22}$

$$
\begin{equation*}
\log \left(g\left(R_{j}\right)\right)=\beta_{0}+v \log \left(\text { recipient income }_{j}\right)+\epsilon_{j} \tag{7}
\end{equation*}
$$

where $g\left(R_{j}\right)$ is the welfare weight assigned by a Social Architect to Recipient j and recipient income ${ }_{j}$ is the disposable income of Recipient j.

We find that 65% of the Social Architects have progressive welfare weights ($v<0$), while the remaining 35% have regressive welfare weights ($v>0$). A share of the Social Architects with regressive weights may be libertarians, advocating for no additional redistribution. They may be assigning regressive welfare weights to undo the redistribution accrued due to the current tax and transfer system. Our results align with findings from Almås et al. (2020), who find, in a different setting, that 30% of the participants sampled from a nationally representative population of the U.S. are libertarians. Furthermore, we find that the share of participants with regressive weights is very similar to the share of participants who do not want additional government redistribution (see Section 4.6).

Only about 15% of the Social Architects make choices that imply the most regressive (5\%) or most progressive (10%) welfare weights, which suggests that there is limited polarization in Social Architects' welfare weights.

There is considerable heterogeneity in the estimated values of v, which can be seen in the cumulative distribution function presented in Figure A4 in Appendix Section C.1. We

[^12]compare the estimates of v with the benchmarks proposed in the literature in Table A3 in Appendix Section C.2.

Finally, we test whether the resulting heterogeneity in the Social Architects' welfare weights is a result of random choices. If that were the case, then v would be distributed uniformly between -2.25 and +2.25 . We can reject the null hypothesis that the distribution of v is uniform, based on Kolmogorov-Smirnov test (D statistics $=0.205$, p -value $<$ 0.0001).

4.4 Welfare Weights and Background Characteristics

We explore the role of Social Architects' background characteristics in explaining the observed heterogeneity in welfare weights, focusing on two important characteristics highlighted in the literature: income and political affiliation. We estimate the following regression.

$$
\begin{gather*}
\log \left(g\left(R_{j}\right)_{i}\right)=\beta_{0}+v_{0} \log \left(\text { recipient income }_{j}\right)+\beta_{1} x_{i}^{1}+\ldots \beta_{n} x_{i}^{n}+ \tag{8}\\
v_{1} x_{i}^{1} * \log \left(\text { recipient income }_{j}\right)+\ldots+v_{n} x_{i}^{n} * \log \left(\text { recipient income }_{j}\right)+\epsilon_{i j}
\end{gather*}
$$

where $\log \left(g\left(R_{j}\right)_{i}\right)$ is the natural logarithm of the welfare weight assigned by Social Architect i to Recipient j and recipient income $_{j}$ is the disposable income of Recipient j. The variables x^{1}, \ldots, x^{n} (shortened to X) include a set of treatment dummies from Wave 1 and Wave 2 and Social Architects' background characteristics including Republican ($=1$ if Republican), High Income (= 1 if above median income), Male (=1 if male), High Education (=1 if above median education), and High Age (=1 if above median age).

Figure 3 presents the coefficient estimates with and without sampling weights. Except for the main effect of the log of the incomes of the Recipients, we do not present the main effects of the other variables. We also do not present the coefficient estimates related to the treatment dummies. The coefficient estimate of \log (recipient income ${ }_{j}$) indicates the estimated elasticity of the weights in the base category or base characteristic. The coefficient estimates of \log (recipient income) \times Characteristic can be interpreted as the change in the estimated elasticity in the given characteristic relative to the elasticity in the base characteristic.

We find that Republicans assign less progressive weights relative to Democrats and Independents $(|\Delta \nu|=0.24)$. We find very similar results in the unweighted regression. This suggests that a part of the partisan gap in support for real-world government redistribution documented in the literature (e.g., Stantcheva 2021) is likely driven by the partisan gap in welfare weights. Our decomposition analysis in Appendix Section D. 4
suggests that Social Architects' welfare weights explain 8% of the partisan gap in support for redistribution. While Republicans assign less progressive weights, their assigned weights are progressive on average, indicating that, on average, Republicans also want additional redistribution at the margin.

Social Architects with higher incomes, i.e., above median incomes ($\$ 32,700$), have less progressive weights $(|\Delta v|=0.16)$. The results are similar when we consider the unweighted regression. This suggests that a part of the gap in support for redistribution between low-income and high-income individuals documented in the literature (e.g., Singhal 2008, Cohn et al. 2019) is likely due to the gap in welfare weights. We have the following result.

Result 2. Social Architects with higher incomes and those identifying as Republicans assign less progressive welfare weights.

To further understand the role of income, we test whether Social Architects assign a higher weight to Recipients with incomes similar to their own relative to other Recipients. We find that Social Architects assign a higher weight to Recipients with incomes similar to their own relative to other Recipients. This effect is larger for Social Architects with lower incomes. We present the results in Appendix Section D.1.

4.5 Treatment Effects

We implemented four treatments in Wave 1 and four treatments in Wave 2 to test whether the welfare weights are robust to changes in the experimental design. In this section, we compare the progressivity of Social Architects' welfare weights across treatments. We estimate the regression specified in Equation (6) separately for each treatment. We present unweighted and weighted regressions but focus on the weighted regressions. The weighted regressions use sampling weights constructed such that the average characteristics in each treatment match the average population characteristics. Table 5 presents the results.

Role of Framing of the Reforms: To test whether Social Architects' welfare weights are sensitive to the framing of the reforms, we compare Treatments Loss $\times 70 \mathrm{~K}$ and Gain \times 70K. In Treatment Loss $\times 70 \mathrm{~K}$, participants face reforms that take money away from the higher-income Recipient and give money to the lower-income Recipient. In contrast, in Treatment Gain $\times 70 \mathrm{~K}$, the reforms are framed as a gain to both Recipients. We find that Social Architects have more progressive welfare weights in Treatment Gain $\times 70 \mathrm{~K}$ relative to Treatment Loss $\times 70 \mathrm{~K}(|\Delta v|=0.14)$, and this effect is statistically significant. ${ }^{23}$ In

[^13]

Figure 3: Social Architects' Welfare Weights and Characteristics
Notes: The figure presents coefficient estimates. The dependent variable is the log of the welfare weights assigned by Social Architects. The explanatory variables are the log of the incomes of the Recipients, a set of treatment dummies, and Social Architects' characteristics including Republican ($=1$ if Republican), High Income (= 1 if above median income), Male ($=1$ if male), High Education ($=1$ if above median education), and High Age ($=1$ if above median age), and the interaction terms of the \log of the incomes of the Recipients with all the other variables. Except for the main effect of the \log of the incomes of the Recipients, we do not present the main effects of the other variables. We also do not present the coefficient estimates related to the treatment dummies. The weighted regressions are weighted using sampling weights. Error bars are computed using HC3 standard errors.

Treatments Loss, Social Architects may be reluctant to take money away from the higherincome Recipients due to loss-aversion (Charité et al. 2022); their choices would lead to less progressive welfare weights.

We also test the role of gain framing by comparing Treatment Loss $\times 500 \mathrm{~K}$ to Treatment Gain $\times 500 \mathrm{~K}$. We find that Social Architects have more progressive welfare weights in Treatment Gain $\times 500 \mathrm{~K}$ relative to Treatment Loss $\times 500 \mathrm{~K}(|\Delta v|=0.04)$. This effect is smaller than the effect we found above. Furthermore, this effect is not statistically significant.

Role of the Common Recipient: To test whether Social Architects' welfare weights are sensitive to the income of the Recipient common across the decision screens, we compare Treatments Loss $\times 70 \mathrm{~K}$ and Loss $\times 500 \mathrm{~K}$. In the former, the Recipient common across the decision screens has an income of $\$ 70,000$, while in the latter, the Recipient common across the decision screens has an income of $\$ 500,000$. We find that Social Architects
treatments, we estimate a version of Equation (8) in which the vector X includes a set of treatment dummies. The results can be found in Figure A5 in Appendix Section C.1.

Table 5: Elasticity of the Weights by Treatments

	(1)	(2)	(3)	(4)
Case	mean	se	mean	se
All	-0.35	0.01	-0.34	0.01
Loss x 70K	-0.36	0.03	-0.37	0.03
Gain x 70K	-0.49	0.03	-0.51	0.04
Loss x 500K	-0.09	0.03	-0.1	0.03
Gain x 500K	-0.13	0.02	-0.14	0.02
Real	-0.58	0.03	-0.53	0.05
Hypothetical	-0.67	0.03	-0.76	0.04
No Self-Interest	-0.14	0.03	-0.07	0.05
Self-Interest	-0.38	0.03	-0.46	0.04
Weighted?	No	No	Yes	Yes

Notes: The table presents the coefficient estimates (v) and the standard errors of Social Architects' elasticity of the welfare weights with respect to Recipients' incomes. Each row presents regression estimates obtained by estimating Equation (6) using the subset of Social Architects indicated in the column "Case." In the first row, we pool Social Architects across all eight treatments. Columns (1) and (2) report the estimates from an unweighted regression, while Columns (3) and (4) report the estimates from a weighted regression using sampling weights. In the first row, the sampling weights are constructed such that the characteristics in the full sample match the population characteristics. In other rows, the sampling weights are constructed such that the characteristics in each treatment match the population characteristics.
have less progressive welfare weights in Treatment Loss $\times 500 \mathrm{~K}$ relative to Loss $\times 70 \mathrm{~K}$ $(|\Delta v|=0.27 \mid)$. A part of the treatment difference is a mechanical effect. In Treatment Loss $\times 500 \mathrm{~K}$, always choosing the Unbalanced Reform would imply equal weights for Recipients one through six because the first six Recipients are compared to the seventh Recipient and because there is a bound on the welfare weights. This results in a mechanical flattening of the welfare weights. ${ }^{24}$ If Social Architects choose the Unbalanced Reform in every decision in every decision screen, the elasticity of the weights in Treatment Loss $\times 70 \mathrm{~K}$ is -2.25 , while it is -0.567 in Treatment Loss $\times 500 \mathrm{~K}$, highlighting the flattening of the welfare weights in the latter treatment. However, a part of the treatment difference may also be due to a behavioral effect that may result from the different reference points in the two treatments.

We find a similar effect when we compare Social Architects in Treatment Gain $\times 70 \mathrm{~K}$

[^14]to those in Treatment Gain $\times 500 \mathrm{~K}(|\Delta v|=0.36)$.
Comparing Treatments Across Waves: Treatment Loss $\times 70 \mathrm{~K}$ was implemented in Wave 1 of data collection, while Treatment Real was implemented in Wave 2 of data collection. These two treatments are similar in structure. We find that Social Architects are more progressive $(|\Delta v=0.15|)$ in Treatment Real relative to Treatment Loss $\times 70 \mathrm{~K}$. The difference is not due to differences in observables since we weight each treatment to match the population characteristics. However, participants in the two waves may differ by unobservables. The patterns in the welfare weights across the two treatments are presented in Table A4 in Appendix Section C.2.
Role of Stakes: We examine whether the presence of real stakes affects Social Architects' welfare weights. In Treatment Real, Social Architects make real decisions regarding real Recipients, while in Treatment Hypothetical, Social Architects make hypothetical decisions regarding hypothetical Recipients. We find that Social Architects' welfare weights are more progressive in Treatment Hypothetical relative to Treatment Real $(|\Delta v|=0.23)$. We do not find evidence that participants in Treatment Hypothetical have more progressive welfare weights because they are less attentive in the survey. The results are presented in Appendix Section D.2.

Role of Self-Interest Motives: We explore the role of self-interest motives. In Treatment Self-Interest, Social Architects can potentially be affected by their own choices, while in Treatment No Self-Interest, Social Architects are in the role of impartial spectators. We find that participants in Treatment Self-Interest have more progressive weights than participants in Treatment No Self-Interest, indicating that Social Architects' welfare weights are guided by self-interest motives. We explore the role of self-interest separately for each income group in Appendix Section D.2.

Discussion: We find that framing the reforms as gains leads Social Architects to assign more progressive welfare weights, likely due to loss aversion. Social Architects assign less progressive weights when the Recipient common across the decision screens has a high income. This effect is partly a mechanical effect and partly a behavioral effect. Social Architects assign more progressive welfare weights in Wave 2 relative to Wave 1, likely because the pool of participants in Wave 2 is different on unobservables. Finally, we find that self-interest motives affect Social Architects' welfare weights. We compare Treatments Real and No Self-Interest in Appendix Section D.2.

For all of the above comparisons, we obtain very similar results when we estimate the progressivity of the weights using unweighted regressions. This can be seen by comparing columns (1) and (2) of Table 5.

The above results suggest that the general population weights are characterized by a range of estimates. The range of policies that can be obtained using the general population weights is much narrower than that obtained using the full range of welfare weights estimates in the experiment $v \in[-2.25,+2.25]$ and the range of estimates that are sometimes used in the literature $v \in[-4,0]$ (e.g., Saez 2002). Section 5 discusses the range of estimates that we use when comparing the general population weights to other estimates of welfare weights.

4.6 Welfare Weights and Support for Government Redistribution

4.6.1 Do Welfare Weights Predict Support for Redistribution?

Social Architects' support for real-world government redistribution could depend on their welfare weights and other factors. In this section, we explore the empirical link between Social Architects' welfare weights and their support for government redistribution. This exercise highlights the value of using the welfare weights of the general population to identify policies that would broadly receive societal support, i.e., those that are "socially acceptable."

In Wave 2, we elicited Social Architects' support for government redistribution using a survey measure. The question asks Social Architects if they want additional redistribution beyond that achieved by the current tax and transfer system. Their responses can range from -2 to +2 , where positive values indicate redistribution from high-income individuals to low/middle-income, and negative values indicate redistribution from low/middleincome individuals to high-income individuals.

The correlation between Social Architects' elasticity of the weights and their support for government redistribution is -0.37 , which is significant at the 1% level. This estimate implies that Social Architects with more progressive welfare weights have stronger support for progressive government redistribution.

We benchmark the predictive power of Social Architects' welfare weights against their stated political affiliation. Political affiliation has been identified as an important predictor of people's support for redistribution (e.g., Stantcheva 2021). We regress Social Architects' support for redistribution on their elasticity of the weights or their political affiliation. To assess the predictive power of a specification, we compute the root mean squared error (RMSE) of the out-of-sample predictions obtained from a specification. ${ }^{25}$

Table 6: Welfare Weights and Support for Redistribution

Row	Explanatory variable	Controls?	RMSE
1	Republican	No	0.85
2	Elasticity of the weights	No	0.83
3	Republican	Yes	0.85
4	Elasticity of the weights	Yes	0.83
5	Republican + Elasticity of the weights	No	0.80
6	Republican + Elasticity of the weights	Yes	0.80

Notes: Each row of the table presents the root-mean-squared error (RMSE) of the predictions generated from a linear regression using a k -fold cross-validation procedure with $k=4$. The dependent variable (Redistribution) takes values from -2 to +2 , where positive (negative) values indicate redistribution from highincome (low/middle-income) individuals to low/middle-income (high-income) individuals. Elasticity of the weights is the elasticity of Social Architects' weights with respect to Recipients' incomes. Republican is a dummy variable taking a value of 1 for Republicans and a value of 0 for Democrats or Independents. The controls in the regression include a set of treatment dummies, High Income (= 1 if above median income), Male ($=1$ if male), High Education ($=1$ if above median education), and High Age ($=1$ if above median age). The regressions use data from Wave 2.

The lower the RMSE of a specification, the higher the predictive power.
Table 6 presents the results. Looking at the first two rows, we find that the elasticity of Social Architects' welfare weights is just as good a predictor of their support for redistribution as their stated political affiliation. We find similar results in specifications that include treatment dummies and background characteristics as controls (Rows 3 and 4). We also find similar results when we use two validated measures of support for redistribution that are used in the literature. The results are presented in Appendix Section D.3.1. This leads to the following result.

Result 3. Social Architects' support for government redistribution can be predicted with similar accuracy using either their stated political affiliation or their assigned welfare weights.

Our finding that Social Architects' welfare weights predict their support for government redistribution suggests that calibrating optimal policy formulas with the welfare weights of the general population would likely lead to socially acceptable policies.

[^15]
4.6.2 Comparing the Share Supporting Progressive Redistribution

How does the share of Social Architects with progressive welfare weights compare to the share supporting additional progressive government redistribution in the survey measure? We find that 65% of the Social Architects have progressive welfare weights. Since these welfare weights were elicited given the current tax and transfer system, Social Architects with progressive welfare weights will, all else equal, desire additional redistribution. In the survey measure, we find that 71% of the Social Architects support additional progressive government redistribution. We present the frequencies of responses to this question in Figure A6 in Appendix Section C.1. The weighted share, weighting by sampling weights, of Social Architects supporting additional progressive government redistribution is 67%. This number is very close to the share of Social Architects who want additional redistribution based on their welfare weights. These results provide further evidence that calibrating optimal policy formulas with the general population weights would likely lead to socially acceptable policies.

4.7 Which Factors do Welfare Weights Capture?

Our experimental measure of welfare weights is designed to capture welfare preferences. However, empirically, welfare weights may also capture factors orthogonal to welfare preferences. In this section, we explore which factors are captured by welfare weights. Details about the other factors can be found in Appendix Section A.

To identify which factors are captured by Social Architects' assigned welfare weights, we proceed in two steps. First, we estimate the overall variation in support for redistribution that can be explained by welfare weights using a linear regression. Some of this overall variation may be explained by factors orthogonal to welfare preferences. A factor that predicts Social Architects' support for redistribution via their welfare weights is thus captured by welfare weights. In the second step, we decompose this overall variation into the variation explained by each of the other factors. Our estimation assumes that the set of concerns captured by support for redistribution is a superset of the set of concerns captured by welfare weights.

The overall variation in support for redistribution that is explained by welfare weights can be estimated by regressing Social Architects' support for redistribution on their standardized elasticity of the weights. The results are presented in Model s1 in Figure 4a. We find that the coefficient estimate of the elasticity of the weights is -0.33 .

In Model s2 in Figure 4a, we add other variables (capturing other factors) to the regression. We find that the coefficient estimate of the elasticity of the weights drops, in absolute value, from -0.33 in Model s1 to -0.18 in Model s2. This suggests that about

(a) Coefficient Estimates

(b) Covariate Decomposition

Figure 4: Predictors of Support for Redistribution and Decomposition of Weights

Notes: Panel (a) presents coefficient estimates. The dependent variable (Redistribution) takes values from -2 to +2 , where positive (negative) values indicate redistribution from high-income (low/middle-income) individuals to low/middle-income (high-income) individuals. A value of zero indicates that incomes should not be further redistributed. See the main text for an explanation of the explanatory variables. Models s1 and s2 are weighted using sampling weights. Error bars are computed using HC3 standard errors. Panel (b) presents the effect of each variable on the coefficient estimate of Elasticity of the weights - std. The effects are computed using the covariate decomposition procedure proposed by Gelbach (2016). The figures use data from Wave 2.
half of the overall variation in support for redistribution explained by welfare weights goes through these other factors.

How much of the change in the coefficient estimate of the elasticity of the weights (between Model s1 and s2) is explained by each of the other variables? Figure $4 b$ presents the effect of each variable on the coefficient estimate of the elasticity of the weights. The effects are computed using the covariate decomposition procedure proposed by Gelbach (2016). A negative value for a variable indicates that its inclusion in the regression reduces the absolute value of the coefficient estimate of the elasticity of the weights in Model s1. We find that the change in the coefficient estimate of the elasticity of weights is driven by Social Architects' beliefs about the externalities due to inequality and their beliefs about higher taxes on high-income individuals hurting the economy.

Factors that affect Social Architects' support for redistribution via their welfare weights are captured by our measure of welfare weights. Thus, Social Architects' welfare weights partly capture their beliefs about the externalities due to inequality and their beliefs about higher taxes on high-income individuals hurting the economy.

We also measured Social Architects' misperceptions about the level of taxes paid by individuals, the share of individuals with incomes below $\$ 35,000$, and upward mobility. While Social Architects do have misperceptions along these margins, their welfare weights do not capture their misperceptions. This means that correcting people's misperceptions is unlikely to affect their welfare weights.

5 Comparing Welfare Weights

In this section, we compare the general population weights to the weights implied by tax and transfer policies and the weights used in the optimal policy literature. To compare these different sets of welfare weights, we assume a parametric form for the welfare weights, as done in the previous sections, given by c^{v}, where c represents Recipients' incomes and v is a parameter that governs the progressivity of the weights. This is a simple parametric function that is commonly used in the literature (e.g., Saez 2002, Allcott et al. 2019). We find that the power function provides a good approximation of the general population weights. The results are presented in Appendix Section D.5.

For these comparisons, we focus on Treatments Loss $\times 70 \mathrm{~K}$, Gain $\times 70 \mathrm{~K}$, and Real. ${ }^{26}$

[^16]We identify the median progressivity of the welfare weights across these three treatments. The median welfare weights correspond to the aggregation of societal welfare weights under the median voter model.

The elasticity estimate (\hat{v}) for each Social Architect is obtained using Equation (7). We then estimate the weighted median of these elasticity estimates, weighting by sampling weights. The range of estimates is given by $v \in[-0.6,-0.3]$. We find similar results when we consider the unweighted median estimates ($v \in[-0.64,-0.28]$). These median progressivity estimates are very similar to the average progressivity estimates documented in Table $5(v \in[-0.53,-0.37])$.

5.1 Comparing to Weights Implied by Tax and Transfer Policies

How do the general population weights compare to the weights implied by the income tax schedule and transfer policies in the U.S.? The weights implied by the tax schedule and transfer policies can be represented as politicians' aggregation of societal welfare weights, potentially influenced by political economy considerations.

We obtain the weights implied by the income tax schedule in the U.S. from Hendren (2020). This paper uses the universe of tax returns in 2012, and computes individuals' tax liabilities based on ordinary income taxes, alternative minimum tax (AMT), earned income tax credits (EITC), state taxes, local taxes, and Medicare. ${ }^{27}$

The weights implied by transfer policies in the U.S. are derived based on the framework outlined in Hendren \& Sprung-Keyser (2020). In this framework, the desirability of a policy can be assessed by its Marginal Value of Public Funds (MVPF). The MVPF indicates the welfare accrued to the beneficiaries of a policy from $\$ 1$ of government spending. There exists an inverse relationship between the MVPF of a policy and the welfare weights assigned to its beneficiaries. Intuitively, a policy with a low MVPF may be deemed desirable if a high welfare weight is placed on its beneficiaries. ${ }^{28}$ Hendren \&

[^17]Sprung-Keyser (2020) provide estimates of the MVPF of various policies. We use their estimates to compute the welfare weights implied by these policies. We focus on taxes, cash transfers, and in-kind transfers, as they are the policies most similar to those in our experiment. ${ }^{29}$ Additionally, we restrict the sample to policies with a positive MVPF, as our theoretical framework and experimental design cannot accommodate negative welfare weights.

Figure 5 plots welfare weights interpolated using the function c^{v} against the disposable income distribution. We find that the elasticity of the weights implied by the income tax schedule is -0.10 and by transfer policies is -0.27 . The general population weights $(v \in[-0.6,-0.3])$ are 3 to 6 times more progressive than the weights implied by the income tax schedule and 1.1 to 2.2 times more progressive than the weights implied by transfer policies.

As a robustness check, we estimate the above regressions using a Poisson pseudomaximum likelihood (PML) estimation procedure, which produces consistent estimates even in the presence of heteroskedasticity. We find similar results, qualitatively, with the PML estimates. ${ }^{30}$

The general population weights were elicited based on Recipients' disposable incomes. If the general population weights were elicited based on Recipients' pre-tax income, they would likely be even more progressive. This suggests that the observed gap between the general population weights and the weights implied by the tax schedule and transfer policies is a lower bound. We now have the following result.

Result 4. The general population welfare weights are 3 to 6 times more progressive than the weights implied by the income tax schedule in the U.S. and 1.1 to 2.2 times more progressive than the weights implied by transfer policies in the U.S.

Decomposing the Gap

Why are the general population weights more progressive than the weights implied by the income tax schedule (henceforth "political weights")? We present several explana-

[^18]

Figure 5: General Population Weights and Weights Implied by Tax and Transfer Policies
Notes: The figure plots welfare weights against percentiles of the disposable income distribution. The xaxis has a natural log spacing. We use the function c^{v} to interpolate the welfare weights for the disposable income (c) distribution and then re-normalize the welfare weights such that they sum to 1 . The figure plots the re-normalized weights implied by the income tax schedule computed by Hendren (2020) ($v=-0.1$), weights implied by transfer policies computed by Hendren \& Sprung-Keyser (2020) ($v=-0.27$), lower bound of the general population weights $(v=-0.3)$, and upper bound of the general population weights $(v=-0.6)$. Details on the construction of the figure can be found in Appendix Section E.2.
tions that can rationalize the gap between the general population weights and the political weights.

First, we consider alternative assumptions about the group of individuals that the politicians consider when aggregating societal welfare weights. In particular, politicians may be considering only the voting population, not the entire population. The weighted median estimate of v across the three treatments, weighting the sample using sampling weights, is -0.45 . We find that the weighted median estimate of v, weighting the sample using sampling weights and the likelihood of being a registered voter, is also -0.45 . This result suggests that accounting for the voting population does not close the gap between the general population weights and the political weights. Details on the analysis can be found in Appendix Section E.3.

Second, we explore the hypothesis of "elite capture," which posits that politicians relatively overweight the interests of high-income individuals when aggregating societal preferences. We observe an upward spike in the political weights for the two highest percentiles in Figure A7 in Appendix Section C.1. Does this mean that politicians overweight the welfare weights of high-income individuals? To test this hypothesis, we estimate the "aggregation" weights that can rationalize the gap between the general population
weights and the political weights. We conduct this analysis using data aggregated up to deciles to reduce the noise in the data. Details on the analysis can be found in Appendix Section E.3. The aggregation weights resulting from this analysis are significantly higher for the top decile compared to the other deciles. Figure A9 in Appendix Section C. 1 plots the aggregation weights against the deciles. The weighted median estimate of v, weighting the sample by these aggregation weights, drops to -0.26 or -0.31 , depending on the initial aggregation weights assumed in the optimization. ${ }^{31}$ Approximately 44% to 58% of the overall gap can be attributed to assigning disproportionately higher aggregation weights to high-income individuals. This explanation is consistent with the evidence in the literature suggesting that implemented policies are often more likely to reflect the interests of high-income individuals (e.g., Gilens \& Page 2014, Karabarbounis 2011).

Third, the gap could arise if the welfare weights elicited in our experiment are not the welfare weights that politicians aggregate. For example, politicians may be aggregating the weights of individuals guided by self-interest motives. ${ }^{32}$ In addition, politicians may be aggregating the weights of individuals who may be guided by factors that matter in the real world but which are not captured (intentionally) by the welfare weights in our experiment, such as trust in government.

Finally, the gap could arise if politicians' beliefs about the behavioral responses to taxation, captured by the elasticity of taxable income, differ from the estimates used by Hendren (2020) in the tax formulas to identify the political weights.

5.2 Comparing to Weights Used in the Literature

How do the general population weights compare to the weights assumed in the optimal policy literature? While the literature assumes different estimates of welfare weights, one frequently assumed estimate is inversely proportional to Recipients' disposable incomes or consumption (e.g., Saez 2001). These "inverse-consumption" weights can be derived by assuming constant relative risk aversion (CRRA) in consumption utilities with a coefficient of relative risk aversion given by $\gamma=1$. ${ }^{33}$

Inverse-consumption weights can be characterized by the function c^{v} with $v=-1$. We find that these inverse-consumption weights are 1.7 to 3.3 times more progressive

[^19]than the general population weights $(v \in[-0.3,-0.6])$. We plot the inverse-consumption weights and the general population weights in Figure A10 in Appendix Section C.2. We have the following result.

Result 5. Welfare weights that are inversely proportional to Recipients' consumption are about 1.7 to 3.3 times more progressive than the general population weights.

To better align policy recommendations with the general population's views, the optimal policy literature could use the estimates of welfare weights provided in our paper. Optimal policy formulas based on Recipients' incomes can use the function c^{v} with $v \in[-0.6,-0.3]$ to characterize welfare weights. Optimal policy formulas based on Recipients' utilities can characterize welfare weights using constant relative risk aversion (CRRA) utilities with a coefficient of relative risk aversion given by $\gamma=-v=[0.3,0.6]$.

5.3 Calibrating Optimal Labor Income Taxes

We explore the implications of the estimated welfare weights for the optimal nonlinear labor income taxes in the U.S. We use the optimal tax formula derived in Saez (2001), which provides the optimal marginal tax rates (MTRs) for different incomes as a function of (i) the shape of the ability (wage) distribution, (ii) the elasticity of taxable income, and (iii) welfare weights. We use the actual income distribution in the U.S. to identify the shape of the underlying ability distribution. The estimates of the elasticity of taxable incomes are taken from the literature. Finally, we use the different estimates of welfare weights computed in the previous section. The progressivity of the optimal MTRs is increasing with the progressivity of the welfare weights.

We use an updating rule to find the fixed-point tax schedule, drawing from Mankiw et al. (2009) and Støstad \& Cowell (2022). First, we assume an initial tax schedule. Second, given the tax schedule, we estimate individuals' labor supply responses to the taxation and, consequently, utilities. We assume an estimate for the elasticity of taxable income of 0.25 , which is a mid-range estimate (Saez et al. 2012). We assume CRRA utilities with a coefficient of relative risk aversion given by γ. We use different values of $\gamma=-v$ to obtain different estimates of welfare weights (see Section 5.2). Third, given the utilities, we calculate the optimal MTRs. We iterate on this process until an optimum is found.

Figure 6 plots the optimal MTRs for different estimates of welfare weights against the labor income distribution. The figure also plots the current MTRs. ${ }^{34}$ The optimal MTRs exhibit a U-shape pattern, mirroring the pattern commonly observed in the literature. Individuals with the lowest income receive a guaranteed income. The high MTRs near

[^20]the bottom are used to phase out the guaranteed income. The low MTRs for middleincome earners are intended to reduce the distortions to the high share of individuals earning these incomes.

The optimal MTRs calibrated using inverse-consumption welfare weights ($v=-1$), which are the most progressive among the set, are depicted in the top line. The average MTR in this case is 62%. This is similar to the average MTR of 59% found in Saez (2001). Table A5 in Appendix Section C. 2 presents the average MTRs.

The average optimal MTR calibrated using the lower bound of the general population weights ($v=-0.3$) is 41%, and that based on the upper bound ($v=-0.6$) is 53%. The average optimal MTRs based on the general population weights are 9-21 percentage points lower than the average optimal MTR based on inverse-consumption weights.

The current MTRs are depicted by the solid black line. The current MTRs are similar to the optimal MTRs based on the weights implied by the tax schedule $(v=-0.1)$. The latter is presented in Figure A11 in Appendix Section C.1. The optimal MTRs calibrated using the general population weights are higher than the current MTRs for all incomes except for incomes roughly between $\$ 150,000$ and $\$ 200,000$. The average current MTR is 28%. This is $13-25$ percentage points lower than the average optimal MTRs based on the general population weights.

Figure 6: Marginal Tax Rates (MTRs)
Notes: The figure plots MTRs against the labor income distribution. The figure plots the optimal MTRs obtained using the lower bound of the general population weights ($v=-0.3$), upper bound of the general population weights ($v=-0.6$), and inverse-consumption weights $(v=-1)$. The figure also plots the current MTRs. See Appendix Section E. 4 for details.

Overall, a key result with policy implications is that the optimal MTRs calibrated using the general population weights are lower than those calibrated using inverse-consumption weights but higher than the current MTRs. We now have the following result.

Result 6. The optimal marginal income tax rates calibrated using the general population weights are lower than those calibrated using inverse-consumption weights but higher than the current marginal income tax rates.

6 Discussion

We elicit the welfare weights assigned by the general population of the U.S. using two real-stakes online experiments with samples of the general population in the U.S. In our experiment, participants in the role of "Social Architects" make a number of realstakes redistributive decisions that are used to identify the welfare weights assigned to participants in the role of "Recipients." A Social Architect's assigned welfare weights can be guided by various underlying ideals, such as equality of opportunity or utilitarianism. However, knowing a Social Architect's welfare weights in the experiment is sufficient to learn their assessment of the welfare implications of a reform and, by extension, its desirability.

We find that the aggregate general population weights are progressive. This indicates that the general population wants additional redistribution beyond that achieved by the current tax and transfer system. The general population weights are more progressive than the weights implied by the current tax and transfer policies in the U.S. but less progressive than the weights frequently used in the optimal policy literature. We provide estimates of welfare weights that the optimal policy literature can use to implement the general population weights. Finally, we explore the implications of the general population weights for the optimal non-linear income taxes in the U.S.

Our sufficient-statistics approach to eliciting welfare weights and the "small-reform" approach to taxation used by Saez \& Stantcheva (2016) has a few limitations.

First, the welfare weights estimated in our paper cannot be used to evaluate nonmarginal ("large") reforms. ${ }^{35}$ For non-marginal reforms, the marginal value of the first dollar may not be the same as the marginal value of the last dollar. For example, a Social Architect with progressive welfare weights may find a marginal budget-neutral reform desirable but may find a non-marginal reform that completely equalizes incomes as undesirable. We assume a parametric form for the welfare weights, in which the welfare

[^21]weights depend on Recipients' disposable incomes, which allows the welfare weights to be applicable to evaluate large reforms.

Second, our welfare weights cannot account for spillover effects or general equilibrium effects. Spillover effects would imply that a reform affects individuals who were not the direct target of the reform. However, such effects are typically not incorporated by standard optimal policy formulas.

Third, the welfare weights may not be applicable across time, countries, and policy domains. There is evidence in the literature suggesting that people's support for redistribution may differ over time (Fisman et al. 2015) and across countries (e.g., Almås et al. 2020, Falk et al. 2018). Future work can test whether welfare weights differ across time, countries, and policy domains.

References

Allcott, H., Lockwood, B. B. \& Taubinsky, D. (2019), 'Regressive sin taxes, with an application to the optimal soda tax', The Quarterly Journal of Economics 134(3), 1557-1626.

Almås, I., Cappelen, A. \& Tungodden, B. (2020), ‘Cutthroat Capitalism versus Cuddly Socialism: Are Americans more Meritocratic and Efficiency-seeking than Scandinavians?', Journal of Political Economy 128, 1753-1788.

Bourguignon, F. \& Spadaro, A. (2012), ‘Tax-benefit revealed social preferences', The Journal of Economic Inequality 10(1), 75-108.

Bursztyn, L., Egorov, G., Haaland, I., Rao, A. \& Roth, C. (2023), 'Justifying dissent', The Quarterly Journal of Economics 138(3), 1403-1451.

Charité, J., Fisman, R., Kuziemko, I. \& Zhang, K. (2022), 'Reference points and redistributive preferences: Experimental evidence', Journal of Public Economics 216, 104761.

Chen, D. L., Schonger, M. \& Wickens, C. (2016), 'oTree—An open-source platform for laboratory, online, and field experiments', Journal of Behavioral and Experimental Finance 9, 88-97.

Chopra, F., Haaland, I. \& Roth, C. (2022), 'Do people demand fact-checked news? evidence from u.s. democrats', Journal of Public Economics 205, 104549.

Cohn, A., Jessen, L. J., Klasnja, M. \& Smeets, P. (2019), Why do the rich oppose redistribution? An experiment with america's top 5%. Working paper.

Drenik, A. \& Perez-Truglia, R. (2018), 'Sympathy for the diligent and the demand for workfare', Journal of Economic Behavior \& Organization 153, 77-102.

Enke, B., Graeber, T. \& Oprea, R. (2023), 'Confidence, self-selection, and bias in the aggregate', American Economic Review 113(7), 1933-1966.

Falk, A., Becker, A., Dohmen, T., Enke, B., Huffman, D. \& Sunde, U. (2018), ‘Global evidence on economic preferences', The Quarterly Journal of Economics 133(4), 1645-1692.

Fisman, R., Jakiela, P. \& Kariv, S. (2015), 'How did distributional preferences change during the great recession?', Journal of Public Economics 128, 84-95.

Fleurbaey, M. \& Maniquet, F. (2006), 'Fair income tax', The Review of Economic Studies 73(1), 55-83.
Freitas-Groff, Z. (2023), Persistence in policy: Evidence from close votes. Working Paper.
Gelbach, J. B. (2016), ‘When do covariates matter? And which ones, and how much?', Journal of Labor Economics 34(2), 509-543.

Gilens, M. \& Page, B. I. (2014), 'Testing theories of american politics: Elites, interest groups, and average citizens', Perspectives on politics 12(3), 564-581.

Haaland, I. \& Roth, C. (2023), 'Beliefs about racial discrimination and support for pro-black policies', Review of Economics and Statistics 105(1), 40-53.

Haaland, I., Roth, C. \& Wohlfart, J. (2023), ‘Designing information provision experiments', Journal of economic literature 61(1), 3-40.

Hendren, N. (2020), 'Measuring economic efficiency using inverse-optimum weights', Journal of Public Economics 187, 104198.

Hendren, N. \& Sprung-Keyser, B. (2020), 'A unified welfare analysis of government policies', The Quarterly Journal of Economics 135(3), 1209-1318.

Karabarbounis, L. (2011), 'One dollar, one vote', The Economic Journal 121(553), 621-651.
Lockwood, B. B. \& Weinzierl, M. (2016), 'Positive and normative judgments implicit in us tax policy, and the costs of unequal growth and recessions', Journal of Monetary Economics 77, 30-47.

Mankiw, N. G., Weinzierl, M. \& Yagan, D. (2009), ‘Optimal taxation in theory and practice', Journal of Economic Perspectives 23(4), 147-174.

Saez, E. (2001), 'Using elasticities to derive optimal income tax rates', The review of economic studies 68(1), 205-229.

Saez, E. (2002), 'Optimal income transfer programs: intensive versus extensive labor supply responses', The Quarterly Journal of Economics 117(3), 1039-1073.

Saez, E., Slemrod, J. \& Giertz, S. H. (2012), 'The elasticity of taxable income with respect to marginal tax rates: A critical review', Journal of economic literature 50(1), 3-50.

Saez, E. \& Stantcheva, S. (2016), ‘Generalized social marginal welfare weights for optimal tax theory', American Economic Review 106(1), 24-45.

Singhal, M. (2008), Quantifying preferences for redistribution. NBER Working Paper.
Stantcheva, S. (2016), 'Comment on "positive and normative judgments implicit in us tax policy and the costs of unequal growth and recessions" by benjamin lockwood and matthew weinzierl', Journal of Monetary Economics 100(77), 48-52.

Stantcheva, S. (2021), ‘Understanding tax policy: How do people reason?', The Quarterly Journal of Economics 136(4), 2309-2369.

Støstad, M. N. \& Cowell, F. (2022), Inequality as an externality: Consequences for tax design. Available at SSRN 4185685.

Weinzierl, M. (2014), 'The promise of positive optimal taxation: normative diversity and a role for equal sacrifice', Journal of Public Economics 118, 128-142.

Zoutman, F. T., Jacobs, B. \& Jongen, E. L. (2013), Optimal redistributive taxes and redistributive preferences in the netherlands. Working paper.

For Online Publication

Who Should Get Money? Estimating Welfare Weights in the U.S.

Francesco Capozza

Krishna Srinivasan

Contents

A Variable Definitions 3
B Pre-registration 5
C Additional Tables and Figures 7
C. 1 Additional Figures 7
C. 2 Additional Tables 14
D Additional Analysis 18
D. 1 Role of Social Architect's Own Income 18
D. 2 Treatment Effects 18
D. 3 Welfare Weights and Support for Redistribution 21
D.3.1 Do Welfare Weights Predict Support for Redistribution? 21
D. 4 Partisan Gap in Support for Redistribution 23
D. 5 Progressivity of General Population Weights 23
D.5.1 Fit 25
D.5.2 Robustness 25
E Details on Analyses 26
E. 1 Details on Plotting Recipients' incomes 26
E. 2 Details on Plotting Welfare Weights 26
E. 3 Gap Between General Population Weights and Political Weights 26
E.3.1 Estimating Likelihood of Being Registered Voters 26
E.3.2 Estimating Aggregation Weights 27
E. 4 Calibration of Optimal Income Taxes 28
F Instructions - Wave 1 31
F. 1 Treatment Loss x 70K 31
F. 2 Treatment Loss x 500K 40
F. 3 Treatment Gain x 70K 41
F. 4 Treatment Gain x 500K 43
G Instructions - Wave 2 44
G. 1 Treatment Real 44
G. 2 Treatment Hypothetical 59
G. 3 Treatment No Self-Interest 61
G. 4 Treatment Self-Interest 65

A Variable Definitions

Support for Redistribution

Redistribution: In Wave 2, we elicited Social Architects' support for government redistribution using a survey measure. The question asks Social Architects if they want additional redistribution beyond that achieved by the current tax and transfer system. Their responses can range from -2 to +2 , where positive values indicate transfers from highincome individuals to low/middle-income individuals, and negative values indicate transfers from low/middle-income individuals to high-income individuals. A value of 0 indicates a desire for no additional redistribution.
Govt should do more: In Wave 1, we ask Social Architects if they think the government should do more to reduce income differences between the rich and poor. This question was used in the General Social Survey (GSS). The variable Govt should do more takes values from 1 to 7 , with higher values indicating a greater desire for the government to do something to reduce inequality.
Increase top-taxes: In Wave 1, we ask Social Architects if they want to increase or decrease the taxes on top-income earners. A modified version of this question was used by Cohn et al. (2019) and Kuziemko et al. (2015). The variable Increase top-taxes takes values from 1 to 7. A value below 4 indicates a desire to decrease top-taxes, while a value above 4 indicates a desire to increase top-taxes. A value of 4 indicates a desire to leave the toptaxes unchanged.

Misperceptions

We elicit Social Architects' perceptions about the level of taxes paid by individuals, the share of individuals with incomes below $\$ 35,000$, and upward mobility.
Overestimate the level of taxes: We ask Social Architects four questions designed to elicit their perceptions about the level of taxes paid by individuals in society. In particular, Social Architects are asked about their beliefs regarding (i) the share of households in the top tax bracket, (ii) the average tax rate of those in the top tax bracket, (iii) the share of households who pay no taxes, and (iv) the average tax rate of households with the median income. We focus on perceptions along these four dimensions because they were the most predictive of people's support for redistribution in Stantcheva (2021). Social Architects can select a number from 0 to 100 using a slider for each of the four questions. We identify misperceptions in each of the four variables as follows.

- Gap in top-taxes $=$ Beliefs about top-taxes - 32.7
- Gap in top-share $=$ Beliefs about top-share - 0.73
- Gap in non-filers $=44$ - Beliefs about non-filers
- Gap in median-taxes = Beliefs about median-taxes - 13

We take the actual values from Stantcheva (2021). We orient the gap in non-filers such that a lower gap in non-filers corresponds to an overestimation in the level of taxes paid. We standardize each of the four misperception variables such that they have a mean of 0 and a standard deviation of 1 . Then, we create an index by taking the equally weighted average of the four standardized variables and standardizing the resulting variable. Overestimate share earning $<35 \mathrm{~K}$: We elicit Social Architects' beliefs about the share of households earning less than $\$ 35,000$. This income level corresponds to the income of the Recipient with the second lowest income in our experiment. Social Architects can select a number from 0 to 100 using a slider. We identify Architects' misperceptions by subtracting the actual value (29) from their responses. We obtain the actual value by looking at the share of individuals whose disposable income is below $\$ 35,000$ in the data obtained from Piketty et al. (2018) (variable diinc). Finally, we standardize the misperceptions. Perceptions about upward mobility: We ask Social Architects about their perceived likelihood of a child with parents in the first quintile of the income distribution growing up to be in the highest quintile as an adult. Social Architects can select a number from 0 to 100 using a slider. We identify Architects' misperceptions by subtracting the actual value (7.8) from their responses. We obtain the actual value from Alesina et al. (2018). Finally, we standardize the misperceptions.

Views about Taxes and Government

We ask Social Architects several questions that elicit their views about the tax system and their trust in government, each capturing a unique mechanism that may explain people's support for redistribution. These questions are drawn from Stantcheva (2021). The prompt for the question on inequality being a serious issue is taken from Lobeck \& Støstad Nyborg (2022).
Behavioral responses high earners: We ask Social Architects about their beliefs regarding the extent to which taxing high-income earners would encourage them to work less. The indicator variable Behavioral responses high earners takes a value of 1 if a Social Architect indicates "A moderate amount," "A lot," or "A great deal," and a value of 0 if the respondent indicates "A little," or "None at all."
Higher taxes high-incomes hurt economy: We elicit Social Architects' beliefs about whether taxing high-income earners would hurt the economy. The indicator variable Higher taxes high-incomes hurt economy takes a value of 1 if a Social Architect indicates that taxing highincome earners would "Hurt economic activity in the U.S." and a value of 0 if the Social

Architect indicates "Not have an effect on economic activity in the U.S." or "Help economic activity in the U.S."
Belief trickle down: Social Architects are asked whether the lower class and working class would win or lose if taxes on high-income earners were cut. Social Architects who believe in trickle-down economics would believe that if taxes on high-income earners were cut, the lower class and working class would mostly win. Belief trickle down is an indicator variable taking a value of 1 if a Social Architect indicates that the lower class and working class would "Mostly win" if taxes on high-income earners were cut and a value of 0 if the respondent indicates that they would "Mostly lose" or "Neither lose nor win."
Inequality is a serious issue: We ask Social Architects their beliefs about inequality being a serious issue, considering that inequality can have externalities on crime, trust, corruption, and social unrest. The indicator variable Inequality is a serious issue takes a value of 1 if a Social Architect indicates that inequality is "A serious issue" or "A very serious issue" and a value of 0 if a Social Architect indicates "An issue," "A small issue," or "Not an issue at all."

Trust the government: We ask Social Architects how much of the time they can trust the federal government to do what is right. The indicator variable Trust the government takes a value of 1 for the responses "Most of the time" or "Always" and a value of 0 for the responses "Only some times" or "Never."

B Pre-registration

The experimental design, data collection, and analyses were pre-registered. ${ }^{1}$ We do not discuss minor deviations from pre-registration in the instructions. We report three deviations from the pre-registration in data collection. First, we received slightly fewer participants than the number we pre-registered in Wave 1. Second, in Wave 1, we relaxed the quotas towards the end of the study to reach our target sample size faster. Third, we excluded participants with multiple survey responses (6 participants from Wave 1 and 7 participants from Wave 2). We did not pre-register this sample restriction as we did not expect participants to take the survey multiple times. Finally, we report some deviations from the pre-registration in the analyses.

1. We construct the sampling weights based on the population estimates in Table 4. These estimates differ by a few percentage points from the incorrect estimates in the pre-registration document.
2. We control for the income of the Social Architects using the variable High Income,

[^22]which is an indicator variable that takes a value of 1 if a Social Architect's income is above the median and 0 otherwise. We pre-registered using the \log of the income and the \log of the income squared as controls before Wave 1. We pre-registered using High Income as a control before Wave 2. We deviate because the variable High Income is easier to interpret.
3. We estimate Social Architects' individual-level elasticity of the welfare weights with respect to Recipients' incomes using OLS regressions (by minimizing the sum of squared errors). We pre-registered estimating the elasticity by minimizing the square root of the mean squared errors. While both methods should provide similar results, OLS regressions are computationally simpler to estimate.
4. In the section (Appendix Section D.1) exploring the role of Social Architects' own income on their assigned weights, we present regressions in which the explanatory variables are a set of seven dummy variables that indicate if a Social Architect's income is near the income of Recipients 1 through 7, respectively. In our preregistration, we specified including only one dummy variable that indicates if a Social Architect's income is near a given Recipient. We deviate because our current version helps us explore the role of self-interest separately by income.
5. We explore the role of self-interest motives (Table A13 in Appendix Section C) by comparing Treatment Self-Interest and Bracket separately for each of the seven income brackets. We had initially pre-registered an incorrect regression.
6. The actual value used to construct the variable Overestimate share earning $<35 \mathrm{~K}$ is 29. We incorrectly pre-registered the value as 30 .
7. The results in Table A6 were not pre-registered. Some regressions in Section 4.6 and Section D.3.1 were not pre-registered.

C Additional Tables and Figures

C. 1 Additional Figures

Figure A1: Distribution of \tilde{g} Across Recipient Pairs
Notes: The figure presents the distribution of \tilde{g}, the welfare weight assigned to the higher-income Recipient relative to the lower-income Recipient, across the six pairs of Recipients in the six decision screens. The parameter \tilde{g} is calculated using Equation (5). The sample includes Social Architects in all treatments where the Recipient common across the pairs of Recipients has an income of $\$ 500,000$.

Figure A2: Unbalanced Reforms Selected by the Staircase Method
Notes: "UR chosen" and "BR chosen" indicate that the Unbalanced Reform and the Balanced Reform $(500,-500)$ was chosen in the previous node, respectively. The parameter \tilde{g} is the ratio of the weight assigned to the higher-income Recipient to the weight assigned to the lower-income Recipient.

Figure A3: Distribution of Welfare Weights
Notes: The figure plots the average welfare weights (dots) assigned by the general population and the distribution of the weights (thickness of the shape around the dot) against the incomes of the seven Recipients.

Figure A4: Distribution of the Elasticity of Social Architects' Welfare Weights
Notes: The figure presents the cumulative distribution function (CDF) of the coefficient estimate \hat{v} obtained from the regression $\log \left(g\left(R_{j}\right)\right)=\beta_{0}+v \log \left(\right.$ recipient income $\left.{ }_{j}\right)+\epsilon_{j}$, where $g\left(R_{j}\right)$ is the weight assigned by a given Social Architect to Recipient j, and recipient income ${ }_{j}$ is the disposable income of Recipient j.

Figure A5: Welfare Weights and Treatments

Notes: The figure presents coefficient estimates. The dependent variable is the log of the welfare weights assigned by Social Architects. The explanatory variables include the log of the incomes of the Recipients, a set of treatment dummies, and the interaction terms of the log of the incomes of the Recipients with the treatment dummies. The base category is Treatment Loss $\times 70 \mathrm{~K}$. We do not present the main effects of the treatment dummies. The regressions weight each treatment using sampling weights. Error bars are computed using HC3 standard errors.

Figure A6: Frequency of Responses to the Question Redistribution
Notes: This figure presents the share of participants selecting each option in the question Redistribution. Positive (negative) responses to the question indicate a desire for redistribution from high-income (low/middleincome) individuals to low/middle-income (high-income) individuals. A value of zero indicates a desire for no additional redistribution.

Figure A7: Welfare Weights Implied by the Tax Schedule
Notes: The figure plots the welfare weights implied by the income tax schedule for each percentile of the income distribution. The welfare weights are computed by Hendren (2020). The welfare weights are not normalized to sum to 1 .

Figure A8: Welfare Weights Implied by Transfer Policies
Notes: The figure plots the welfare weights implied by transfer policies against the average incomes of the beneficiaries of the policies. The x-axis has a log-spacing. The welfare weight of a given policy is the inverse of its marginal value of public funds. The data on the marginal value of public funds of the policies is obtained from Hendren \& Sprung-Keyser (2020). The welfare weights are normalized to sum to 1

Figure A9: Optimal Aggregation Weights
Notes: The figure presents the aggregation weights that minimize the gap between the weights implied by the tax schedule computed by Hendren (2020) and the general population weights. The x-axis presents the average income of each decile in our sample. The y-axis presents the aggregation weights. See Section E. 3 for details. We assume three sets of initial weights in the optimization: equal weights (s1), weights randomly drawn from a uniform distribution (s2), and all the weight on the top decile (s3).

Figure A10: General Population Weights and Inverse-Consumption Weights
Notes: The figure plots welfare weights against percentiles of the disposable income distribution. The xaxis has a natural log spacing. We use the function c^{v} to interpolate the welfare weights for the income (c) distribution and then re-normalize the welfare weights to sum to 1 . The figure plots the re-normalized inverse-consumption weights $(v=-1)$, lower bound of the general population weights ($v=-0.3$), and upper bound of the general population weights $(v=-0.6)$. Details on the construction of the figure can be found in Appendix Section E.2.

Figure A11: Marginal Tax Rates (MTRs)
Notes: The figure plots MTRs against the labor income distribution. The figure plots the optimal MTRS obtained using the weights implied by the income tax schedule computed by Hendren (2020) ($v=-0.1$), weights implied by transfer computed by Hendren \& Sprung-Keyser (2020) ($v=-0.27$), the lower bound of the general population weights $(v=-0.3)$, upper bound of the general population weights $(v=-0.6)$, and inverse-consumption weights $(v=-1)$. The figure also plots the current MTRs. See Appendix Section E. 4 for details.

C. 2 Additional Tables

Table A1: Summary Statistics by Treatments in Wave 1

	$\text { Loss } \mathrm{x}$ 500K	$\begin{aligned} & \text { Loss } x \\ & 70 \mathrm{~K} \end{aligned}$	$\begin{aligned} & \text { Gain } x \\ & 500 K \end{aligned}$	$\begin{aligned} & \text { Gain x } \\ & 70 \mathrm{~K} \end{aligned}$	p-val
Income: < 30,000	0.49	0.54	0.53	0.55	0.00
Income: 30-59,999	0.26	0.26	0.26	0.26	0.53
Income: 60-99,999	0.14	0.12	0.13	0.13	0.00
Income: 100-149,999	0.07	0.03	0.06	0.04	0.02
Income: > 149,999	0.04	0.04	0.03	0.03	0.39
Age: 18-34	0.30	0.28	0.29	0.30	0.00
Age: 35-44	0.17	0.16	0.18	0.17	0.12
Age: 45-54	0.18	0.18	0.17	0.17	0.54
Age: 55-64	0.17	0.19	0.16	0.17	0.92
Age: >64	0.18	0.19	0.20	0.19	0.00
Edu: Up to Highschool	0.44	0.48	0.44	0.46	0.00
Edu: Some college	0.19	0.20	0.20	0.21	0.91
Edu: Bachelor or Associate	0.26	0.23	0.25	0.22	0.00
Edu: Masters or above	0.11	0.10	0.10	0.11	0.00
Region: West	0.19	0.24	0.22	0.20	0.57
Region: North-east	0.17	0.17	0.18	0.19	0.72
Region: South	0.39	0.39	0.41	0.40	0.70
Region: Mid-west	0.24	0.20	0.20	0.21	0.21
Male	0.44	0.53	0.47	0.43	0.00
Republican	0.29	0.35	0.33	0.32	0.00
Minutes Spent	7.42	7.48	7.79	7.66	0.00

Notes: The table presents the average sample characteristics by the four treatments in Wave 1. The last column indicates the p-value corresponding to the F-statistic when testing if the treatment dummies are jointly significant.

Table A2: Summary Statistics by Treatments in Wave 2

	Real	Hypo	No Self	Self	p-val
Income: $<30,000$	0.37	0.39	0.36	0.39	0.00
Income: 30-59,999	0.28	0.28	0.30	0.28	0.32
Income: 60-99,999	0.23	0.20	0.22	0.21	0.00
Income: $100-149,999$	0.08	0.10	0.08	0.07	0.00
Income: > 149,999	0.04	0.03	0.03	0.04	0.99
Age: 18-34	0.37	0.37	0.39	0.37	0.00
Age: $35-44$	0.20	0.21	0.22	0.23	0.02
Age: 45-54	0.14	0.14	0.16	0.16	0.74
Age: 55-64	0.19	0.17	0.13	0.16	0.13
Age: >64	0.10	0.10	0.10	0.09	0.00
Edu: Up to Highschool	0.13	0.15	0.14	0.15	0.00
Edu: Some college	0.20	0.21	0.20	0.20	0.91
Edu: Bachelor or Associate	0.49	0.47	0.48	0.53	0.00
Edu: Masters or above	0.17	0.17	0.18	0.12	0.00
Region: West	0.17	0.14	0.20	0.18	0.01
Region: North-east	0.18	0.21	0.20	0.20	0.19
Region: South	0.42	0.44	0.40	0.43	0.31
Region: Mid-west	0.22	0.20	0.19	0.18	0.38
Male	0.51	0.49	0.48	0.50	0.53
Republican	0.20	0.21	0.18	0.19	0.00
Minutes Spent	18.63	14.14	14.95	15.05	0.00

Notes: The table presents the average sample characteristics by the four treatments in Wave 2: Real, Hypothetical, No Self-Interest, and Self-Interest. The last column indicates the p -value corresponding to the F -statistic when testing if the treatment dummies are jointly significant.

Table A3: Classifying Social Architects

Redistributive Tastes	Interval	Share
Weak	$v \in(0,\|0.625\|]$	46%
Strong	$v \in(\|0.625\|,\|2\|]$	41%
Extremely Strong	$v \in(\|2\|, \infty)$	13%
Weak Progressive	$v \in(-0.625,0]$	28%
Strong Progressive	$v \in(-2,-0.625]$	29%
Extremely Strong Progressive	$v \in(-\infty,-2]$	9%
Weak Regressive	$v \in(0,0.625]$	19%
Strong Regressive	$v \in(0.625,2]$	12%
Extremely Strong Regressive	$v \in(2, \infty)$	4%

Notes: The table presents the share of Social Architects classified by the strength of the reditributive tastes implied by their welfare weights. The elasticity of the weights (v) for each Social Architect is computed using Equation (7).

Table A4: Patterns in the Welfare Weights

Variable	Full	Loss x	Real	p-val
Share always choosing BR	0.053	0.059	0.036	0.089
Share always choosing UR	0.099	0.096	0.094	0.934
Share w/ strictly progressive weights	0.001	0.000	0.002	0.321
Share w/ strictly regressive weights	0.000	0.000	0.000	NA
Share w/ weakly progressive weights	0.182	0.149	0.220	0.004
Share w/ weakly regressive weights	0.068	0.069	0.050	0.204
Share w/o weakly monotonic weights	0.751	0.782	0.729	0.054
Slope of the weights	-0.020	-0.019	-0.030	0.001
Share w/ negative slope	0.655	0.629	0.711	0.006
Elasticity of the weights	-0.355	-0.360	-0.576	0.004
Share w/ negative elasiticity	0.653	0.674	0.719	0.121
Maximum observed elasticity	2.249	2.249	2.249	NA
Minumum observed elasticity	-2.249	-2.249	-2.249	NA

Notes: The table presents the average patterns in the Social Architects' assigned welfare weights in the full sample (second column), in Treatment Loss $\times 70 \mathrm{~K}$ (third column), and in Treatment Real (fourth column). The last column indicates the p-value corresponding to the F-statistic when testing if the pattern is different, on average, between Treatment Loss $\times 70 \mathrm{~K}$ and Treatment Real. The F-statistic is based on a weighted regression that weights each treatment using sampling weights. Share always choosing $B R(U R)$ refers to the share who chooses the Balanced Reform (Unbalanced Reform) in every question. Strictly progressive (regressive) weights imply that the weights are strictly decreasing (increasing) with the Recipients' income. Weakly progressive (regressive) weights imply that the weights are weakly decreasing (increasing) with the Recipients' incomes. The slope of the weights is the coefficient estimate $\hat{\beta_{1}}$ obtained from the regression $g\left(R_{j}\right)=\beta_{0}+\beta_{1} j+\epsilon_{j}$, where $g\left(R_{j}\right)$ is the weight assigned by a given Social Architect to Recipient j, and the incomes earned by Recipients 1 through 7 are $\$ 8000$ through $\$ 500,000$. The elasticity of the weights is the coefficient estimate \hat{v} obtained from the regression $\log \left(g\left(R_{j}\right)\right)=\beta_{0}+v \log \left(\right.$ recipient income $\left._{j}\right)+\epsilon_{j}$, where $g\left(R_{j}\right)$ is the weight assigned by a given Social Architect to Recipient j, and recipient income ${ }_{j}$ is the income of Recipient j. Minimum (Махітиm) observed elasticity refers to the minimum (maximum) values of the estimated elasticity of Social Architects' weights observed in the sample.

Table A5: Average Optimal Marginal Tax Rates (MTRs)

Case	E[MTR]	Guaranteed Income Share
Inverse-consumption $(v=-1)$	62%	63%
General population lower-bound $(v=-0.6)$	53%	54%
General population upper-bound $(v=-0.3)$	41%	42%
Transfer policies $(v=-0.27)$	40%	40%
Tax schedule $(v=-0.1)$	24%	25%
Current MTRs	28%	-

Notes: The table presents the average optimal MTRs calibrated using different estimates of welfare weights and the guaranteed income share to bottom earners as a share of the average income. The table also presents the current average MTRs in the U.S. See Appendix Section E. 4 for details.

D Additional Analysis

D. 1 Role of Social Architect's Own Income

To explore whether Social Architects assign higher welfare weights to Recipients with incomes similar to their own, we estimate the following regression.

$$
\begin{equation*}
g\left(R_{j}\right)_{i}=\beta_{1} \text { Income near } R 1_{i j}+\ldots+\beta_{7} \text { Income near } R 7_{i j}+\gamma_{i}+\epsilon_{i j} \tag{A1}
\end{equation*}
$$

The variable $g\left(R_{j}\right)_{i}$ is the weight assigned by Social Architect i to Recipient j. The variable Income near $R 1_{i j}$ takes a value of 1 if Social Architect i^{\prime} s income is near the income of Recipient 1. In particular, the variable takes a value of 1 if a Social Architect's income is less than or equal to $\$ 22,000$. The other variables are similarly defined based on the following income brackets: $(\$ 22,000, \$ 53,000]$, ($\$ 53,000, \$ 85,000]$, ($\$ 85,000, \$ 135,000$], ($\$ 135,000, \$ 210,000],(\$ 210,000, \$ 375,000],(\$ 375,000, \infty)$. These income brackets are similar to the ones used in Treatments No Self-Interest and Self-Interest. We include Social Architect fixed effects γ_{i} to leverage the variation across decision screens. We exclude Treatment Self-Interest from the sample since this treatment incorporates self-interest motives by design. Here, we focus on understanding whether Social Architects are guided by self-interest motives in treatments designed to minimize the role of self-interest motives by design. We describe the role of self-interest motives in Treatment Self-Interest in Appendix Section D.2.

Figure A12 presents the coefficient estimates. Model s1 presents the specification described above. In Model s2, the variables Income near $R 1_{i j}$ through Income near $R 7_{i j}$ are indicator variables that take a value of 1 if Social Architect i 's income is within $+20 \%$ of the income of Recipients 1 through 7, respectively.

We find that Social Architects with incomes near Recipient 1 assign a 10 percentage point higher weight to Recipient 1 relative to other Recipients. We find a similar effect for Social Architects with incomes near Recipients 2 and 4. Social Architects with incomes near Recipient 3 (earning $\$ 70,000$) assign a lower weight to Recipient 3 relative to other Recipients. We do not find a statistically significant effect for Social Architects with incomes near Recipients 5,6, and 7; we are likely underpowered to detect an effect for these Social Architects since our sample has very few high-income earning Social Architects.

D. 2 Treatment Effects

Comparing Treatments Real and Hypothetical

We explore a possible reason why Social Architects might have more progressive welfare weights in Treatment Hypothetical relative to Treatment Real: Social Architects are less

Figure A12: Weights Assigned to Recipients with Similar Incomes
Notes: The figure presents coefficient estimates. The dependent variable is the weights assigned by Social Architects. In Model s1, Income near R1 takes a value of 1 if a Social Architect's income is less than or equal to $\$ 22,000$. The other variables in Model s1 are similarly defined based on the following income brackets: $(\$ 22,000, \$ 53,000]$, ($\$ 53,000, \$ 85,000]$, (\$85,000, $\$ 135,000]$, ($\$ 135,000, \$ 210,000],(\$ 210,000, \$ 375,000]$, $(\$ 375,000, \infty)$. In model s2, Income near R1 takes a value of 1 if a Social Architect's income is plus or minus 20% of the income of Recipient 1. The other variables in Model s2 are defined similarly. The regressions include Social Architect fixed effects and are weighted using sampling weights. The sample is restricted to all treatments, excluding Treatment Self-Interest. Error bars are computed using HC1 standard errors.
attentive in Treatment Hypothetical. Table A6 presents a series of regressions to investigate this hypothesis. The explanatory variable in each regression is a dummy variable that takes a value of 1 if a Social Architect is in Treatment Hypothetical and 0 if the Social Architect is in Treatment Real. In Column (1), the dependent variable is the time spent by the Social Architects on the survey. While Social Architects spend 1.6 fewer minutes on the survey in Treatment Hypothetical, this difference is not statistically significant. In Columns (2) and (3), the dependent variable takes a value of 1 if a Social Architect chooses the Balanced Reform and the Unbalanced Reform in each decision, respectively. We test whether Social Architects in Treatment Hypothetical choose one option throughout the survey to complete the survey quickly. We do not find evidence that the share of participants always choosing the Balanced Reform or the Unbalanced Reform is different in Treatment Hypothetical relative to Treatment Real. Overall, we do not find evidence that Social Architects in Treatment Hypothetical are less attentive in the survey.

Comparing Treatments Real and No-Self Interest

We explore the role of framing the Recipients' incomes by comparing Treatment No SelfInterest to Treatment Real. Treatments No Self-Interest is similar to Treatments Real, ex-

Table A6: Comparing Treatments Real and Hypothetical

Dependent Variables:	Time spent (mins)		
Model:	(1)	Always BR (2)	Always UR (3)
Constant	16.758	0.039	0.119
	(1.542)	(0.011)	(0.026)
Hypothetical	-1.679	0.018	-0.036
	(1.623)	(0.017)	(0.029)
Observations	997	997	997
Sampling Weights?	Yes	Yes	Yes

Notes: The table presents linear regressions. Time spent (min) is the time spent on the survey in minutes. Always $B R$ (Always $V R$) is an indicator variable taking a value of 1 if a Social Architect chooses the Balanced Reform (Unbalanced Reform) in every decision. Hypothetical is an indicator variable taking a value of 1 if a Social Architect is in Treatment Hypothetical and a value of 0 if the Social Architect is in Treatment Real. The sample is restricted to Social Architects in Treatments Hypothetical and Real. The regressions weight each treatment using sampling weights. The Standard errors are robust to heteroskedasticity (HC3).
${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$
cept that in the former, we provide Social Architects with the income brackets of the Recipients instead of the exact incomes of the Recipients. These income brackets span the income distribution. ${ }^{2}$ We assume that Social Architects use the incomes $\$ 8,000, \$ 35,000$, ... , $\$ 500,000$ as a reference when assigning welfare weights. These incomes are similar to the mean income of each income bracket. The results in Table 5 in the main text indicate that Social Architects are less progressive in Treatment No Self-Interest compared to Treatment Real $(|\Delta v|=0.45)$.

Treatment No Self-Interest does not control for Social Architects' beliefs about Recipients' incomes. For example, Social Architects might believe that the Recipient in the " $\$ 375,000$ and above" income bracket has an income of either $\$ 375,000$ or $\$ 2,000,000$. The estimated elasticity in this treatment can be sensitive to the assumptions about Social Architects' beliefs about Recipients' incomes.

Exploring Self-Interest Motives

In the main text, we found that participants in Treatment Self-Interest have more progressive weights than participants in Treatment No Self-Interest, indicating that Social Architects' are guided by self-interest motives. In this section, we compare Social Archi-

[^23]tects' welfare weights across these two treatments, separately by income groups. We pool the three groups with the highest incomes because we have a smaller share of participants in these groups. Figure A13 presents the results.

Considering the coefficient estimate of $\ln ($ recipient income $) \times$ Self-Interest, we find that for all income groups except the group earning above $\$ 135,000$, the welfare weights are more progressive in Treatment Self-Interest relative to Treatment No Self-Interest. We are likely underpowered to detect effects for the group earning above $\$ 135,000$. Overall, we find evidence that Social Architects across the income distribution are guided by selfinterest motives.

Figure A13: Social Architects' Weights and Self-Interest Motives
Notes: The figure presents coefficient estimates. The dependent variable is the log of the welfare weights assigned by Social Architects. The explanatory variables are the log of the incomes of the Recipients, SelfInterest, and the interaction term of the log of the incomes of the Recipients with Self-Interest. Self-Interest is a dummy variable taking a value of 1 if a Social Architect is in Treatment Self-Interest and 0 if a Social Architect is in Treatment No Self-Interest. The regressions use data from Treatments No Self-Interest and Treatment Self-Interest. Models s1 to s5 include Social Architects from the following income brackets [0, $\$ 22,000$], [$\$ 22,000, \$ 53,000]$, [$\$ 53,000, \$ 85,000]$, [\$85,000, \$135,000], [\$135,000, \$210,000], [\$210,000, \$375,000], $[\$ 375,000, \infty)$, respectively. We do not present the main effects of Self-Interest. Error bars are computed using HC3 standard errors.

D. 3 Welfare Weights and Support for Redistribution

D.3.1 Do Welfare Weights Predict Support for Redistribution?

We explore the empirical link between Social Architects' welfare weights and their support for government redistribution. In the main text, we explored the link using a question (Redistribution) administered in Wave 2. In this section, we explore the link using two validated measures of support of redistribution administered in Wave 1. The first
question, Govt should do more, asks Social Architects if they think the government should do more to reduce income differences between the rich and poor. The second question, Increase top-taxes, asks Social Architects if they want to increase or decrease the taxes on top-income earners. The order of the questions was counterbalanced across participants. Details about the variables can be found in Appendix Section A.

We benchmark the predictive power of Social Architects' welfare weights, measured by the elasticity of the weights, against their stated political affiliation. We estimate regressions in which the dependent variables are Govt should do more or Increase top-taxes. To assess the predictive power of a specification, we compute the root mean squared error (RMSE) of the out-of-sample predictions obtained from a specification. ${ }^{3}$ The lower the RMSE of a specification, the higher the predictive power of that specification.

Table A7: Welfare Weights and Support for Redistribution

Row	Dependent variable	Explanatory variable	Controls?	RMSE
1	Increase top-taxes	Republican	No	1.57
2	Increase top-taxes	Elasticity	No	1.57
3	Increase top-taxes	Republican	Yes	1.55
4	Increase top-taxes	Elasticity	Yes	1.56
5	Govt should do more	Republican	No	2.00
6	Govt should do more	Elasticity	No	2.06
7	Govt should do more	Republican	Yes	1.97
8	Govt should do more	Elasticity	Yes	2.01
9	Increase top-taxes	Republican + Elasticity	No	1.55
10	Increase top-taxes	Republican + Elasticity	No	1.99

Notes: Each row of the table presents the root-mean-squared error (RMSE) of the predictions generated from a linear regression using a k -fold cross-validation procedure with $k=4$. The dependent variable Govt should do more takes values from 1 through 7 , with higher values indicating a greater desire for the government to do something to reduce inequality. The dependent variable Increase top-taxes takes values from 1 to 7 , with higher values indicating a greater desire for the government to increase top-taxes. Elasticity is the elasticity of Social Architects' weights with respect to Recipients' incomes. Republican is a dummy variable taking a value of 1 for Republicans and a value of 0 for Democrats or Independents. The controls in the regression include a set of treatment dummies, High Income ($=1$ if above median income), Male ($=1$ if male), High Education ($=1$ if above median education), and High Age ($=1$ if above median age), and Policy Order (dummy indicating the order of the two questions). The regressions use data from Wave 1.

Table A7 presents the results. In rows one and two, we find that the elasticity of Social

[^24]Architects' welfare weights is just as good a predictor of their support for redistribution as their stated political affiliation. In rows five and six, we find that the predictive power of welfare weights is slightly lower than that of political affiliation. However, the difference in the average prediction is small: the difference of 0.06 is 3% of the standard deviation (2.07) of the support for redistribution. We find similar results in rows three, four, seven, and eight, which include treatment dummies and background characteristics as controls in the regressions.

D. 4 Partisan Gap in Support for Redistribution

The results presented in the main text suggest that Republicans have less progressive support for government redistribution compared to Democrats and Independents. In this section, we explore the factors that explain the partisan gap in support for redistribution.

We explore the overall partisan gap in support for redistribution by regressing Social Architects' support for redistribution (variable Redistribution) on their political affiliation. The results are presented in Model s1 in Figure A14. The coefficient estimate of Republican in Model s1 is -0.69 . This estimate reflects the overall partisan gap in support for redistribution.

Next, we explore the change in the coefficient estimate of Republican when we include other variables in the regression. Details about the other variables can be found in Appendix Section A. The results are presented in Model s2 in Figure A14a. We find that the coefficient estimate of Republican drops from -0.69 in Model s1 to -0.14 in Model s2 when we include other variables in the regression, indicating that these variables explain 79% of the partisan gap in support for redistribution.

How much of the change in the coefficient estimate of Republican (between Model s1 and s2) is due to each of the other variables? Figure A14b presents the effect of each variable on the coefficient estimate of Republican. The effects are computed using the covariate decomposition procedure proposed by Gelbach (2016). A negative value for a variable indicates that its inclusion in the regression reduces the absolute value of the coefficient estimate Republican in Model s1. We find that about 8% of the partisan gap in support for redistribution is driven by welfare weights. Beliefs about higher taxes on high-income individuals hurting the economy and beliefs about the externalities from inequality explain 14% and 27% of the partisan gap, respectively.

D. 5 Progressivity of General Population Weights

For the comparisons in Section 5, we assume that the general population weights are characterized by the power function c^{v}, where c represents Recipients' incomes and v is a parameter that governs the progressivity of the weights. We identify the range of v

Figure A14: Partisan Gap in Support for Redistribution

Notes: Panel (a) presents coefficient estimates. The dependent variable (Redistribution) takes values from -2 to +2 , where positive (negative) values indicate redistribution from high-income (low / middle-income) individuals to low/middle-income (high-income) individuals. A value of zero indicates that incomes should not be further redistributed. See the main text for an explanation of the explanatory variables. In these regressions, we reverse-code the variable Inequality is a serious issue. Models s1 and s2 are weighted using sampling weights. Error bars are computed using HC3 standard errors. Panel (b) presents the effect of each variable on the coefficient estimate of Republican. The effects are computed using the covariate decomposition procedure proposed by Gelbach (2016). The figures use data from Wave 2.
across the following three treatments: Treatments Loss $\times 70 \mathrm{~K}$, Gain $\times 70 \mathrm{~K}$, and Real. We estimate v for each Social Architect by regressing the log of the welfare weights on the log of the Recipients' incomes, as discussed in Section 4.3. We then estimate the median value of \hat{v} in each treatment. In our benchmark estimates, the range of the median estimates across the treatments is given by $\hat{v} \in[-0.6,-0.3]$.

D.5.1 Fit

To test whether the power function is a good approximation of the general population weights, we test how sensitive the estimates are to dropping observations in the tails of the welfare weights distribution. In particular, we compute (\hat{v}) for each Social Architect based on the welfare weights they assign to the Recipients excluding the lowest income Recipient earning $\$ 8,000$. We find that the range of the median estimates across the treatments is given by $\hat{v} \in[-0.68,-0.31]$. We similarly compute (\hat{v}) excluding the welfare weights assigned to the highest income Recipient earning $\$ 500,000$. The range of the median estimates across the treatments is given by $\hat{v} \in[-0.57,-0.33]$. The estimates obtained by dropping observations in the tails of the welfare weights distribution are very similar to our benchmark estimates. This suggests that the power function is indeed a good approximation of the general population weights.

D.5.2 Robustness

We test how robust the estimates are to dropping Social Architects who choose the Balanced Reform in every decision (5\%), and consequently, have the more regressive weights. The range of the median estimates obtained after dropping these Social Architects is given by $\hat{v} \in[-0.64,-0.41]$. These estimates are similar to the benchmark estimates.

As another robustness check, we estimate the unweighted median estimates of v. The range is given by $\hat{v} \in[-0.64,-0.28]$.

E Details on Analyses

E. 1 Details on Plotting Recipients' incomes

We present the details of the construction of the figure that plots Recipients' incomes. Data on the income distribution is obtained from the Distributional National Accounts micro-files of Piketty et al. (2018). Our measure of income is disposable incomes (diinc), which includes in-cash and in-kind transfers. For simplicity, every individual in the dataset is treated as a single filer, irrespective of their actual tax filing status.
Step 1: Exclude individuals with negative disposable incomes.
Step 2: Identify disposable income thresholds for percentiles ($1, \ldots, 99$).
Step 3: Assign the seven Recipients to the percentile matching their incomes.
Step 4: Plot the disposable income thresholds against the corresponding percentiles. Overlay the incomes of the Recipients.

E. 2 Details on Plotting Welfare Weights

We present the details on constructing the figures that plot welfare weights against the income distribution. Data on the income distribution is obtained from the Distributional National Accounts micro-files of Piketty et al. (2018). Our measure of income is disposable incomes (diinc), which includes in-cash and in-kind transfers. For simplicity, every individual in the dataset is treated as a single filer, irrespective of their actual tax filing status.
Step 1: Exclude individuals with negative disposable incomes.
Step 2: Identify disposable income thresholds for percentiles ($1, \ldots, 99,99.9$).
Step 3: Compute the average disposable income in each percentile.
Step 4: Interpolate the welfare weights using the function c^{v}, where c is the average disposable income in each percentile, and v is a parameter. Different values of v lead to different welfare weights.
Step 5: Re-normalize the welfare weights so that they sum to 1.
Step 6: Plot the re-normalized welfare weights against the percentiles of the income distribution.

E. 3 Gap Between General Population Weights and Political Weights

E.3.1 Estimating Likelihood of Being Registered Voters

We outline the methodology used to estimate the likelihood of Social Architects being registered voters. The data on voting behavior and demographics are obtained from the Cooperative Election Study (CCES) 2022 wave. The CCES is a $50,000+$ person national stratified sample survey administered by YouGov.

Step 1: Using the CCES data, estimate a logistic regression model to estimate the probability of an individual being a registered voter. The predictors in the model include dummy variables indicating individuals' family income, age, education, gender, region, and political affiliation. The set of predictors is the same as those indicated in Table 4, with the exception that we replace variables indicating individual income with variables indicating family income.
Step 2: Use the fitted logistic regression to obtain the predicted probability of an observation in our sample being a registered voter. Even though the model was trained using family income, the predictions are based on individual income because we only collected data on individual incomes in the survey.

E.3.2 Estimating Aggregation Weights

We outline the methodology used to identify the "aggregation weights" that can rationalize the gap between the general population weights and the weights implied by the income tax schedule ("political weights") computed by Hendren (2020).
Step 1: Estimate the elasticity of welfare weights v for each Social Architect.
Step 2: Identify income thresholds for deciles, and estimate the average elasticity in each decile. We estimate the average elasticity to minimize the noise in the data.
Step 3: Define an optimization problem as finding the set of aggregation weights that minimizes the absolute difference between the weighted average value of v, weighting by the aggregation weights, and the political weights ($v=-0.1$).
Step 4: Define the constraints on the aggregation weights in the optimization problem: (i) the sum of weights must equal one, (ii) weights must be non-negative, and (iii) weights must be less than or equal to 1 .
Step 5: Define three different initial aggregation weights: (i) equal weights, (ii) random weights drawn from a uniform distribution, (iii) all the weight on the top decile. We test if the optimization is sensitive to the choice of the initial aggregation weights.
Results: Figure A9 plots the optimal aggregation weights that minimize the gap between the general population weights and the political weights. These optimal aggregation weights are based on the three different initial aggregation weights: (i) equal weights, (ii) random weights drawn from a uniform distribution, and (iii) all the weight on the top decile. The weighted average value of v, weighting the sample by these optimal aggregation weights, are $-0.26,-0.30$, and -0.26 , respectively. The optimal aggregation weights are identical based on the initial weights in (i) and (iii).

E. 4 Calibration of Optimal Income Taxes

We explore the implications of the estimated welfare weights for the optimal non-linear labor income taxes in the U.S. The formula is the solution to the planner's problem of maximizing social welfare, given the constraints on government revenue. It provides the optimal marginal tax rates (MTRs) for different incomes as a function of (i) the shape of the ability (wage) distribution, (ii) the elasticity of taxable income, and (iii) welfare weights. We use the actual income distribution in the U.S. to identify the shape of the underlying ability distribution. The estimates of the elasticity of taxable incomes are taken from the literature. Finally, we use the different estimates of welfare weights computed in our paper. Our calibration draws from Mankiw et al. (2009) and Støstad \& Cowell (2022).

Optimal Tax Formula

We assume that individuals are on a continuum of abilities (wage) w with densities $f(w)$ and cumulative distribution function $F(w)$. Individuals' incomes are given by $z=w l$, where l is individuals' labor supply. Individuals' tax liabilities and consumption are denoted as $T(z)$ and $c=z-T(z)$. The planner observes income z and labor supply l, but does not know individuals' abilities w. We assume that every individual has additively separable preferences over consumption and labor given by

$$
\begin{equation*}
U(c, l)=u(c)+v(l)=\frac{c^{1-\gamma}}{1-\gamma}-\frac{l^{1+\frac{1}{E_{L}}}}{\left(1+\frac{1}{E_{L}}\right)} \tag{A2}
\end{equation*}
$$

These are constant relative risk aversion (CRRA) utilities in consumption with a coefficient of relative risk aversion given by γ. We assume a simple functional form for individuals' labor supply in which utilities are isoelastic in labor and depend on E_{L}, the elasticity of earnings with respect to the retention rate $1-T^{\prime}(z)$.

We denote the utility of an individual with wages w as $U(w)$. The planner has a utilitarian social welfare function given by $W=\int U(\theta) f(\theta) d \theta$, where θ indexes wages in the integral. The planner's first-order condition in Saez (2001) is given by

$$
\begin{equation*}
\frac{T^{\prime}(z(w))}{1-T^{\prime}(z(w))}=\left(\frac{1+E_{L}^{U}(w)}{E_{L}^{c}(w)}\right) \frac{u^{\prime}(c(w))}{w f(w)} \int_{w}^{\infty} \frac{1}{u^{\prime}(c(\theta))} f(\theta) d \theta-(1-F(w)) \frac{1}{p} \tag{A3}
\end{equation*}
$$

where $T^{\prime}(z(w))$ is the optimal MTR that applies to the income $z(w)$ at ability level w. The term $u^{\prime}(c(w))$ is the marginal utility of consumption. It can be interpreted as welfare weights. Our assumption of CRRA utilities would result in $u^{\prime}(c(w))=c(w)^{-\gamma}$. There is a mapping from the welfare weights $\left(c(w)^{-\gamma}\right)$ obtained assuming CRRA utilities with
a coefficient of relative risk aversion γ to the parametric form c^{ν} used in our paper to characterize welfare weights, given by $\gamma=-v$. Thus, we implement different estimates of welfare weights using different values of $\gamma=-v$. The progressivity of the optimal MTRs is increasing with the progressivity of the welfare weights.

The optimal MTRs are a function of $E_{L}^{u}(w)$ and $E_{L}^{c}(w)$, which are the average uncompensated and compensated elasticity of earnings with respect to the retention rate $1-T^{\prime}(z)$. The elasticity of earnings is assumed to be driven by the substitution effect (people work less due to increased taxes) and assumes no income effects (people work more due to increased taxes). Thus, we assume that $E_{L}^{U}(w)=E_{L}^{c}(w)=E_{L}$. The optimal MTR is decreasing in the elasticity of earnings to reduce the extent to which taxes distort people's labor supply.

In Equation A3, p is the marginal value of public funds. It measures the increase in social welfare obtained when the planner loosens the budget constraint. The cost in consumption terms of a marginal increase in utility for an individual with wage w is $\frac{1}{u^{\prime}(c(w))}$. The cost of a marginal increase in average utility is $\int_{0}^{\infty} \frac{1}{u^{\prime}(c(w))} f(w) d w$. The value to the planner of a marginal unit of public funds is the inverse of this cost, which is given by

$$
\begin{equation*}
p=\frac{1}{\int_{0}^{\infty} \frac{1}{u^{\prime}(c(w))} f(w) d w} \tag{A4}
\end{equation*}
$$

Estimating the Wage-Ability Distribution

The optimal taxes depends on individuals' incomes, which in turn depends on the taxes due to individuals' behavioral responses to taxes. We estimate the ability (wage) distribution from the current income distribution and use this exogenous ability distribution when we calibrate the tax formula in Equation (A3). Data on the income distribution is obtained from the Distributional National Accounts micro-files of Piketty et al. (2018). Each observation in the data corresponds to a tax unit.
Step 1: Use the NBER TAXSIM model to find the marginal tax rate for each tax unit. The tax rates are calculated based on the available information about the tax units, which include the number of dependents, the age of the primary filer, and marital status. Add a 5% state tax rate, a 2.9% tax rate for Medicare, and a 2.3% sales tax rate.
Step 2: Assuming that individuals have correctly optimized according to their utility function in Equation (A2), back out the resulting ability (w) of each tax unit.
Step 3: Create a smooth ability distribution using a Kernel density estimator with a band-
width of $\$ 5000$. The smooth distribution has 50,000 observations.
Step 4: Replace the top 0.5% of the distribution with a Pareto distribution. The Pareto parameter is the value of the Pareto parameter $\alpha(z(w))=\frac{z \cdot f(z)}{1-F(z)}$ just before the top 0.5%.

Calibrating Optimal Income Taxes

We use an updating rule to find the fixed-point tax schedule, drawing from Mankiw et al. (2009) and Støstad \& Cowell (2022). We assume an initial tax schedule. Given the tax schedule, we estimate individuals' labor supply. Individuals' labor supply is used to calculate their utilities. Given the utilities, we calculate the resulting optimal MTRs at each wage level using Equation (A3). We iterate on this process until an optimum is found. We check if the second-order condition holds at the optimum. This condition states that the pre-tax incomes are non-decreasing with wages.
Step 1: Start with an initial flat tax rate of 35%.
Step 2: Compute individuals' labor choices based on this tax rate, assuming that they have correctly optimized their utilities in Equation (A2). Computing the derivative of Equation (A2) with respect to l and setting it to 0 yields $l=\left(w \cdot\left(1-T^{\prime}(z)\right)^{E_{L}}\right.$. Set $E_{L}=0.25$, which is a mid-range estimate for the elasticity of taxable income (Saez et al. 2012).
Step 3: Based on the optimal labor choices computed in Step 2, calculate the optimal income choices $z=w l$ and the resulting utilities based on Equation (A2). Different values of γ in Equation (A2) lead to different estimates of welfare weights. For example, $\gamma=$ $-v=0.3$ can be used to obtain the lower-bound of the general population weights.
Step 4: Calculate the resulting optimal tax rate at each ability level based on Equation (A3). Step 5: Repeat the previous steps until the tax rates converge to a fixed point.

F Instructions - Wave 1

Bold text, underlining, tables, etc., appear as on the original screens.

F. 1 Treatment Loss x 70K

[Consent screen]

Introduction

Welcome to this research study. We appreciate your participation. We are a non-partisan group of researchers from University of Zurich and Erasmus University Rotterdam. This study contains real choices and questions regarding your demographic characteristics. No matter what your political views are, by completing this survey you are contributing to our knowledge as a society.

Time required

Approximately $\mathbf{1 0}$ minutes. You will have a maximum of one hour to finish the survey after starting it.

Requirements

You must be a U.S. resident to participate in this study. You must also be above the age of 18. The survey contains attention checks. You must pass these check in order to proceed with the survey.

Confidentiality

All data obtained from you will be used for research purposes only. Data will be anonymized immediately after collection. Researchers will at no point have access to any information that could be used to personally identify you.

Voluntary participation

It is voluntary to participate in the project, and you can at any time choose to withdraw your consent without stating any reason.

Questions about the Survey

If you have questions about this study or your rights, please get in touch with us at Kr ishna.srinivasan@econ.uzh.ch

Consent

I have received the above information about the project and am willing to participate.

- Yes; No
[If a participant did not provide consent]

End of survey

You did not give your consent to continue with the study.
Thank you for your time.
You will be automatically redirected in 5 seconds.
\qquad
[Demographics screen]
What is your sex?

- Male; Female

How old are you?

- 18 years old - 34 years old; 35 years old -44 years old; 45 years old -54 years old; 55 years old - 64 years old; Above 65 years old

In which state do you currently reside?

- Northeast (ME, NH, VT, MA, CT, RI, NY, PA, NJ); Midwest (OH, MI, IN, WI, IL, MN, IA, MO, ND, SD, NE, KS); South (DE, MD, DC, VA, WV, NC, SC, GA, FL, KY, TN, AL, MS, AR, LA, OK, TX); Pacific (MT, WY, CO, NM, ID, UT, AZ, NV, WA, OR, CA, AK, HI); I do not reside in the US

What is the highest level of education you have completed?

- Less than High School; High School/GED; Some College; Associate's Degree; Bachelor's degree; Master's degree; Doctoral or Profession Degree (PhD, ED.D, JD, DVM, DO, MD, DDS, or similar)

As of today, do you consider yourself a Republican, a Democrat, or an Independent?

- Republican; Democrat; Independent

The next question is about your total individual income in 2020 before taxes. This figure should include income from all sources, including salaries, wages, pensions, Social Se-
curity, dividends, interest, and all other income. What was your total individual income (USD) in 2020?

- \$29,999 and below; \$30,000 to $\$ 59,999$; $\$ 60,000$ to $\$ 99,999 ; \$ 100,000$ to $\$ 149,999$; \$150,00 and above
[Displayed if $\$ 29,999$ and below is chosen]
You have reported that your total individual income in 2020 before taxes was \$29,999 and below.
[Displayed if $\$ 30,000$ to $\$ 59,999$ is chosen]
You have reported that your total individual income in 2020 before taxes was between \$30,000 and \$59,999.
[Displayed if $\$ 60,000$ to $\$ 99,999$ is chosen]
You have reported that your total individual income in 2020 before taxes was between \$60,000 and \$99,999.
[Displayed if $\$ 100,000$ to $\$ 149,999$ is chosen]
You have reported that your total individual income in 2020 before taxes was between \$100,000 and \$149,999.
[Displayed if $\$ 150,000$ and above is chosen]
You have reported that your total individual income in 2020 before taxes was above \$150,000.
[Displayed in all cases]
Could you provide your best guess of what your total individual income was?
page break
[If quotas are full]

End of survey

Unfortunately, we already have the number of participants needed for this study. Thank you for your time.

You will be automatically redirected in 5 seconds.

page break

[If a participant does not reside in the U.S]

End of survey

Unfortunately, you do not fulfil the requirements of this study since you do not reside in the U.S.

Thank you for your time.
You will be automatically redirected in 5 seconds.
\qquad
[Attention check screen]
In surveys like ours, some participants do not carefully read the questions. This means that there are a lot of random answers that can compromise the results of research studies. To show that you read our questions carefully, please choose both "Extremely interested" and "Not at all interested" below:

- Extremely interested; Very interested; A little bit interested; Almost not interested; Not at all interested
[If a participant failed the attention check]

End of survey

Sorry, you failed the attention check. You were supposed to select both "Extremely interested" and "Not at all interested."

You cannot continue with the study.
Thank you for your time.
You will be automatically redirected in 5 seconds.
[Instructions screen]

Instructions

In this study, you will make several choices involving seven real people. These people will be selected at random from a survey panel and will not participate in the same survey as you. These people are above the age of 18 and are U.S. citizens. The incomes of the seven people are as follows:

Person	After-tax annual income
Person A	$\$ 8000$
Person B	$\$ 35,000$
Person C	$\$ 70,000$
Person D	$\$ 100,000$
Person E	$\$ 170,000$
Person F	$\$ 250,000$
Person G	$\$ 500,000$

Here is an example of a question that you will see in the survey:

	Person C	Person G
After-tax annual income	$\$ 70,000$	$\$ 500,000$

Question 2/4: Please choose your preferred alternative

Person C: $+\$ 750$	
Person G: $-\$ 1250$	Person C: $+\$ 500$
	Person G: $-\$ 500$

In this question, if you choose the option on the left, then $\$ 1250$ will be taken away from Person G and $\$ 750$ will be given to Person C. If you choose the option on the right, then $\$ 500$ will be taken away from Person G and $\$ 500$ will be given to Person C.

If you choose the option on the left, the final incomes of the two people (including an initial $\$ \mathbf{1 5 0 0}$ bonus) will be Person C: $\$ 72,250$ and Person G: $\$ 500,250$. If you choose the option on the right, the final incomes of the two people (including an initial $\$ 1500$ bonus) will be Person C: $\$ 72,000$ and Person G: $\$ 501,000$.

You will face four questions like the one you saw above in each "decision screen." Overall, you will face six decision screens with four questions in each. In each question, you
will see a different amount in the option on the left. In each decision screen, you will see a different pair of people.

There is a chance that you may be randomly selected in this study. If you are randomly selected, your choice on one randomly selected question on one randomly selected decision screen will be implemented. This means that if you are randomly selected, one of your choices will have real consequences for two other people. The final bonus of these two people will be transferred to them at the end of the study.

Please answer the following questions to demonstrate that you have understood the instructions. You can read the instructions above again if you feel the need to.

Please state True or False: "In this study, you will make several choices involving seven real people."

- True; False

Please state True or False: "If you are randomly selected, one of your choices will have real consequences for two other people."

- True; False
(You will be allowed to move to the next screen in 30 seconds)
page break
[If a participant fails the comprehension check]

End of survey

The correct answers were "True" and "True". You answered incorrectly.
You cannot continue with the study.
Thank you for your time.
You will be automatically redirected in 5 seconds.
[Decision Screen 1 Question 1 (D1Q1): shown to all participants]

Decision Screen $1 / 6$

Please consider each question carefully because if you are selected, one of your choices will have real consequences for two other persons.

	Person A	Person G
After-tax annual income	$\$ 8,000$	$\$ 500,000$

Question 1/4: Please choose your preferred alternative

| Person A: $+\$ 1000$ |
| :--- | :--- |
| Person G: $-\$ 1000$ |\quad Person A: $+\$ 500$

page break
[All questions hereafter in Decision Screen 1 look like D1Q1]
[D1Q2.1: If $(500,-500)$ chosen in D1Q1, choose between $(1250,-750)$ and $(500,-500)$]
[D1Q2.2: If $(1000,-1000)$ chosen in D1Q1, choose between $(750,-1250)$ and $(500,-500)$] page break
[D1Q3.1: If $(500,-500)$ chosen in D1Q2.1, choose between $(1375,-625)$ and $(500,-500)$] [D1Q3.2: If $(1250,-750)$ chosen in D1Q2.1, choose between $(1125,-875)$ and $(500,-500)$] [D1Q3.3: If $(500,-500)$ chosen in D1Q2.2, choose between $(875,-1125)$ and $(500,-500)$] [D1Q3.4: If $(750,-1250)$ chosen in D1Q2.2, choose between $(625,-1375)$ and $(500,-500)$] page break
[D1Q4.1: If $(500,-500)$ chosen in D1Q3.1, choose between $(1450,-550)$ and $(500,-500)$] [D1Q4.2: If $(1375,-625)$ chosen in D1Q3.1, choose between $(1300,-700)$ and $(500,-500)$] [D1Q4.3: If $(500,-500)$ chosen in D1Q3.2, choose between $(1200,-800)$ and $(500,-500)$] [D1Q4.4: If $(1125,-875)$ chosen in D1Q3.2, choose between $(1050,-950)$ and $(500,-500)$]
[D1Q4.5: If $(500,-500)$ chosen in D1Q3.3, choose between $(950,-1050)$ and $(500,-500)$] [D1Q4.6: If $(875,-1125)$ chosen in D1Q3.3, choose between $(800,-1200)$ and $(500,-500)$] [D1Q4.7: If $(500,-500)$ chosen in D1Q3.4, choose between $(700,-1300)$ and $(500,-500)$] [D1Q4.8: If $(625,-1375)$ chosen in D1Q3.4, choose between $(550,-1450)$ and $(500,-500)$]

[Decision Screens 2-6 are identical to Decision Screen 1, with the exception that the incomes of the Recipients are different. The pair of Recipients they view is as follows:

B: $\$ 35,000$ vs. C: $\$ 70,000$ (Decision Screen 2)
C: \$70,000 vs. D: \$100,000 (Decision Screen 3)
C: \$70,000 vs. E: \$170,000 (Decision Screen 4)
C: \$70,000 vs. F: \$250,000 (Decision Screen 5)
C: $\$ 70,000$ vs. G: $\$ 500,000$ (Decision Screen 6)]
[For half the participants, the order of the Decision Screens is reversed. The pair of Recipients are as follows: C: $\$ 70,000$ vs. G: $\$ 500,000$ (Decision Screen 1), C: $\$ 70,000$ vs. F: $\$ 250,000$ (Decision Screen 2), C: $\$ 70,000$ vs. E: $\$ 170,000$ (Decision Screen 3), C: \$70,000 vs. D: $\$ 100,000$ (Decision Screen 4), B: $\$ 35,000$ vs. C: $\$ 70,000$ (Decision Screen 5), and A: $\$ 8,000$ vs. C: \$70,000 (Decision Screen 6).]

[Policy views screen]

[The order of the two questions is counterbalanced across participants in each treatment.] We have some final questions. It is important for us that you answer them carefully.

The top income tax category in 2020 includes those with an annual individual income of over $\$ 518,400$. Do you think that income taxes levied on these people in the top income category should be increased, stay the same, or decreased?

- 1 - Increased a lot
- ...
- 4-Stay the same
- 7-Decreased a lot

Some people think that the government in Washington ought to reduce the income differences between the rich and the poor, perhaps by raising the taxes of wealthy families or by giving income assistance to the poor. Others think that the government should not concern itself with reducing this income difference between the rich and the poor.

Here is a scale from 1 to 7 . Think of a score of 1 as meaning that the government ought to reduce the income differences between rich and poor, and a score of 7 meaning that the government should not concern itself with reducing income differences. What score between 1 and 7 comes closest to the way you feel?

- 1 - Government should do something to reduce income differences between rich and poor
- ...
- 7-Government should not concern itself with income differences
page break

End of survey

Thank you for your time!
You will be automatically redirected in 5 seconds.

F. 2 Treatment Loss x 500K

[All screens, with the exceptions of those listed below, are identical to the screens in Treatment Loss x Moderate]
[Decision Screens 1 to 6 are identical to the corresponding Decision Screens in Treatment Loss x Moderate, with the exception that the incomes of the Recipients are different. The pair of Recipients they view is as follows:

A: $\$ 8,000$ vs. G: $\$ 500,000$ (Decision Screen 1)
B: $\$ 35,000$ vs. G: $\$ 500,000$ (Decision Screen 2)
C: \$70,000 vs. G: \$500,000 (Decision Screen 3)
D: $\$ 100,000$ vs. G: $\$ 500,000$ (Decision Screen 4)
E: \$170,000 vs. G: \$500,000 (Decision Screen 5)
F: \$250,000 vs. G: \$500,000 (Decision Screen 6)]
[For half the participants, the order of the Decision Screens is reversed]

F. 3 Treatment Gain x 70K

[All screens, with the exceptions of those listed below, are identical to the screens in Treatment Loss x 70K]
[Instructions screen]

Instructions

In this study, you will make several choices involving seven real people. These people will be selected at random from a survey panel and will not participate in the same survey as you. These people are above the age of 18 and are U.S. citizens. The incomes of the seven people are as follows:

Person	After-tax annual income
Person A	$\$ 8000$
Person B	$\$ 35,000$
Person C	$\$ 70,000$
Person D	$\$ 100,000$
Person E	$\$ 170,000$
Person F	$\$ 250,000$
Person G	$\$ 500,000$

Here is an example of a question that you will see in the survey:

	Person C	Person G
After-tax annual income	$\$ 70,000$	$\$ 500,000$

Question 2/4: Please choose your preferred alternative

In this question, if you choose the option on the left, then $\$ 250$ will be given to Person G and $\$ 2250$ will be given to Person C. If you choose the option on the right, then $\$ 1000$ will be given to Person G and $\$ 2000$ will be given to person C.

If you choose the option on the left, the final incomes of the two people will be Person C: $\$ 72,250$ and Person G: $\$ 500,250$. If you choose the option on the right, the final incomes of the two people will be Person C: $\$ 72,000$ and Person G: $\$ 501,000$.

You will face four questions like the one you saw above in each "decision screen." Overall, you will face six decision screens with four questions in each. In each question, you will see a different amount in the option on the left. In each decision screen, you will see a different pair of people.

There is a chance that you may be randomly selected in this study. If you are randomly selected, your choice on one randomly selected question on one randomly selected decision screen will be implemented. This means that if you are randomly selected, one of your choices will have real consequences for two other people. The final bonus of these two people will be transferred to them at the end of the study.

Please answer the following questions to demonstrate that you have understood the instructions. You can read the instructions above again if you feel the need to.

Please state True or False: "In this study, you will make several choices involving seven real people."

- True; False

Please state True or False: "If you are randomly selected, one of your choices will have real consequences for two other people."

- True; False
(You will be allowed to move to the next screen in 30 seconds)

[The incomes of the Recipients in the six decision screens are identical to the incomes of the Recipients in Treatment Loss x 70K.]
[Decision screen 1]
[D1Q1: Architect chooses between $(2500,500)$ and $(2000,1000)$]

— page break

[D1Q3.1: If $(2000,1000)$ chosen in D1Q2.1, choose between $(2875,875)$ and $(2000,1000)$] [D1Q3.2: If $(2750,750)$ chosen in D1Q2.1, choose between $(2625,625)$ and $(2000,1000)$] [D1Q3.3: If $(2000,1000)$ chosen in D1Q2.2, choose between $(2375,375)$ and $(2000,1000)$] [D1Q3.4: If $(2250,250)$ chosen in D1Q2.2, choose between $(2125,125)$ and $(2000,1000)$]

[D1Q4.1: If $(2000,1000)$ chosen in D1Q3.1, choose between $(2950,950)$ and $(2000,1000)$] [D1Q4.2: If $(2875,875)$ chosen in D1Q3.1, choose between $(2800,800)$ and $(2000,1000)$] [D1Q4.3: If $(2000,1000)$ chosen in D1Q3.2, choose between $(2700,700)$ and $(2000,1000)$] [D1Q4.4: If $(2625,625)$ chosen in D1Q3.2, choose between $(2550,550)$ and $(2000,1000)$] [D1Q4.5: If $(2000,1000)$ chosen in D1Q3.3, choose between $(2450,450)$ and $(2000,1000)$] [D1Q4.6: If $(2375,375)$ chosen in D1Q3.3, choose between $(2300,300)$ and $(2000,1000)$] [D1Q4.7: If $(2000,1000)$ chosen in D1Q3.4, choose between $(2200,200)$ and $(2000,1000)$] [D1Q4.8: If $(2125,125)$ chosen in D1Q3.4, choose between $(2050,50)$ and $(2000,1000)$] [The questions in the other decision screens are identical to those in Decision Screen 1]

F. 4 Treatment Gain $\times 500 \mathrm{~K}$

[All screens are identical to the screens in Treatment Gain x 70K, with the following exceptions: The incomes of the Recipients in the six decision screens are identical to the incomes of the Recipients in Treatment Loss x 500K.]

G Instructions - Wave 2

Bold text, underlining, tables, etc., appear as on the original screen.

G. 1 Treatment Real

This is an academic study conducted by the University of Zurich and Erasmus University Rotterdam.

- What you will do: You will make a number of decisions.
- Time required: Approximately 12 minutes.
- Requirements: In order to take part, you need to be a U.S. resident page break
[Consent screen]

Introduction

Welcome to this research study. We appreciate your participation. We are a non-partisan group of researchers from University of Zurich and Erasmus University Rotterdam. This study contains real choices and questions regarding your demographic characteristics. No matter what your political views are, by completing this survey you are contributing to our knowledge as a society.

Time required

Approximately $\mathbf{1 2}$ minutes.

Requirements

You must be a U.S. resident to participate in this study. You must also be above the age of 18. The survey contains attention checks. You must pass these check in order to proceed with the survey.

Confidentiality

All data obtained from you will be used for research purposes only. Data will be anonymized immediately after collection. Researchers will at no point have access to any information that could be used to personally identify you.

Voluntary participation

It is voluntary to participate in the project, and you can at any time choose to withdraw
your consent without stating any reason.

Questions about the Survey

If you have questions about this study or your rights, please get in touch with us at Kr ishna.srinivasan@econ.uzh.ch

Consent

I have received the above information about the project and am willing to participate.

- Yes; No

What is your prolific ID?
[If a participant did not provide consent]
You did not give your consent to continue with the study.
Thank you for your time.
Please return your submission on Prolific by selecting the 'Stop without completing' button.
\qquad
[Demographics screen]
What is your sex?

- Male; Female

How old are you?

- 18 years old - 34 years old; 35 years old - 44 years old; 45 years old -54 years old; 55 years old - 64 years old; 65 years old or above

In which state do you currently reside?

- Alabama; ...; Wyoming; I do not reside in the U.S.

In which ZIP code do you live? (5 digits)
What is the highest level of education you have completed?

- Less than High School; High School/GED; Some College; Associate's Degree; Bachelor's degree; Master's degree; Doctoral or Profession Degree (PhD, ED.D, JD, DVM, DO, MD, DDS, or similar)

As of today, do you consider yourself a Republican, a Democrat, or an Independent?

- Republican; Democrat; Independent

The next question is about your total individual income in 2021 before taxes. This figure should include income from all sources, including salaries, wages, pensions, social security, dividends, interest, and all other income. What was your total individual income (USD) in 2021?

- \$29,999 and below; \$30,000 to $\$ 59,999$; $\$ 60,000$ to $\$ 99,999 ; \$ 100,000$ to $\$ 149,999$; \$150,00 and above
[Displayed if $\$ 29,999$ and below is chosen]
You have reported that your total individual income in 2021 before taxes was \$29,999 and below.
[Displayed if $\$ 30,000$ to $\$ 59,999$ is chosen]
You have reported that your total individual income in 2021 before taxes was \$30,000 to \$59,999.
[Displayed if $\$ 60,000$ to $\$ 99,999$ is chosen]
You have reported that your total individual income in 2021 before taxes was $\$ 60,000$ to \$99,999.
[Displayed if $\$ 100,000$ to $\$ 149,999$ is chosen]
You have reported that your total individual income in 2021 before taxes was $\$ 100,000$ to \$149,999.
[Displayed if $\$ 150,000$ and above is chosen]
You have reported that your total individual income in 2021 before taxes was \$150,000 and above.
[Displayed in all cases]

Could you provide your best guess of what your total individual income was?
page break
[If a participant does not reside in the U.S]

End of survey

Unfortunately, you do not fulfil the requirements of this study since you do not reside in the U.S.

Thank you for your time.
Please return your submission on Prolific by selecting the 'Stop without completing' button.

page break

[Attention check screen]
In surveys like ours, some participants do not carefully read the questions. This means that there are a lot of random answers that can compromise the results of research studies. To show that you read our questions carefully, please choose both "Extremely interested" and "Not at all interested" below:

- Extremely interested; Very interested; A little bit interested; Almost not interested; Not at all interested
page break
[Instructions screen]

Instructions

In this study, you will make several choices involving seven real people. These people will be selected at random from a survey panel and will not participate in the same survey as you. These people are above the age of 18 and are U.S. citizens. The incomes of the seven people after all taxes paid and transfers received are as follows:

Person	After-tax annual income
Person A	$\$ 8,000$
Person B	$\$ 35,000$
Person C	$\$ 70,000$
Person D	$\$ 100,000$
Person E	$\$ 170,000$
Person F	$\$ 250,000$
Person G	$\$ 500,000$

Here is an example of a question that you will see in the survey:

	Person C	Person G
After-tax annual income	$\$ 70,000$	$\$ 500,000$

Question 2/4: Please choose your preferred alternative

Person C: $+\$ 750$	Person C: $+\$ 500$
Person G: $-\$ 1250$	Person G: $-\$ 500$

In this question, if you choose the option on the left, then $\$ 1250$ will be taken away from Person G and $\$ 750$ will be given to Person C. If you choose the option on the right, then $\$ 500$ will be taken away from Person G and $\$ 500$ will be given to Person C.

If you choose the option on the left, the final incomes of the two people (including an initial $\$ 1500$ bonus) will be Person C: $\$ 72,250$ and Person G: $\$ 500,250$. If you choose the option on the right, the final incomes of the two people (including an initial $\$ 1500$ bonus) will be Person C: $\$ 72,000$ and Person G: $\$ 501,000$.

You will face four questions like the one you saw above in each "decision screen." Overall, you will face six decision screens with four questions in each. In each question, you will see a different amount in the option on the left. In each decision screen, you will see a different pair of people.

One participant in this study will be randomly selected. If you are randomly selected, your choice on one randomly selected question on one randomly selected decision screen will be implemented. This means that if you are randomly selected, one of your choices will have real consequences for two other people. The final bonus of these two people will be transferred to them at the end of the study.

Please answer the following questions to demonstrate that you have understood the in-
structions. You can read the instructions above again if you feel the need to.
Please state True or False: "In this study, you will make several choices involving seven real people."

- True; False

Please state True or False: "If you are randomly selected, one of your choices will have real consequences for two other people."

- True; False
(You will be allowed to move to the next screen in 30 seconds)
[The timer updates dynamically. When the time elapses, the text disappears.]
[If a participant fails at least two out of three checks (one attention check and two comprehension checks)]

End of survey

Sorry, you answered at least two out of three comprehension/attention checks incorrectly.
You cannot continue with the study.
Thank you for your time.
Please return your submission on Prolific by selecting the 'Stop without completing' button.
[If a participant fails only one out of three checks (one attention check and two comprehension checks)]

End of survey

Thank you for your time.
We will pay you your $£ 2$ participation fee in the following days.
Please click the following link to finish the survey.

[D1Q1: shown to all participants]

Decision Screen 1/6

Please consider each question carefully because if you are selected, one of your choices will have real consequences for two other persons.

	Person A	Person C
After-tax annual income	$\$ 8,000$	$\$ 70,000$

Question 1/4: Please choose your preferred alternative:

Person A: +\$1000	Person A: $+\$ 500$
Person C: $-\$ 1000$	Person C: $-\$ 500$
\bigcirc	

[All questions hereafter in Decision Screen 1 look like D1Q1]
[D1Q2.1: If $(500,-500)$ chosen in D1Q1, choose between $(1250,-750)$ and $(500,-500)$]
[D1Q2.2: If $(1000,-1000)$ chosen in D1Q1, choose between $(750,-1250)$ and $(500,-500)$] page break
[D1Q3.1: If $(500,-500)$ chosen in D1Q2.1, choose between $(1375,-625)$ and $(500,-500)$] [D1Q3.2: If $(1250,-750)$ chosen in D1Q2.1, choose between $(1125,-875)$ and $(500,-500)$] [D1Q3.3: If $(500,-500)$ chosen in D1Q2.2, choose between $(875,-1125)$ and $(500,-500)$] [D1Q3.4: If $(750,-1250)$ chosen in D1Q2.2, choose between $(625,-1375)$ and $(500,-500)$] page break
[D1Q4.1: If $(500,-500)$ chosen in D1Q3.1, choose between $(1450,-550)$ and $(500,-500)$] [D1Q4.2: If $(1375,-625)$ chosen in D1Q3.1, choose between $(1300,-700)$ and $(500,-500)$] [D1Q4.3: If $(500,-500)$ chosen in D1Q3.2, choose between $(1200,-800)$ and $(500,-500)$] [D1Q4.4: If $(1125,-875)$ chosen in D1Q3.2, choose between $(1050,-950)$ and $(500,-500)$]
[D1Q4.5: If $(500,-500)$ chosen in D1Q3.3, choose between $(950,-1050)$ and $(500,-500)$] [D1Q4.6: If $(875,-1125)$ chosen in D1Q3.3, choose between $(800,-1200)$ and $(500,-500)$] [D1Q4.7: If $(500,-500)$ chosen in D1Q3.4, choose between $(700,-1300)$ and $(500,-500)$] [D1Q4.8: If $(625,-1375)$ chosen in D1Q3.4, choose between $(550,-1450)$ and $(500,-500)$]
\qquad
[Decision Screens 2-6 are identical to Decision Screen 1, with the exception that the incomes of the Recipients are different. The pair of Recipients they view is as follows:

B: $\$ 35,000$ vs. C: $\$ 70,000$ (Decision Screen 2)
C: \$70,000 vs. D: \$100,000 (Decision Screen 3)
C: \$70,000 vs. E: \$170,000 (Decision Screen 4)
C: \$70,000 vs. F: \$250,000 (Decision Screen 5)
C: $\$ 70,000$ vs. G: $\$ 500,000$ (Decision Screen 6)]
[For half the participants, the order of the Decision Screens is reversed.]
page break

How confident are you that the choices you made in the previous screens reflect what you really think?

Please provide your answer on a scale of 1 to 5 . A 1 indicates "Not confident all," and a 5 indicates "Completely confident."

- 5: Completely confident; 4:; 3:; 2:; 1: Not confident at all
page break

In the following screens, we would like to ask you some general questions about your views on society. Your opinion and thoughts are important to us.

Consider the current incomes of individuals in society obtained after all taxes are paid and transfers received.

Which of the following statements comes closest to how you feel?
High-income individuals ...

- do not deserve their current income and do not need their current income
- deserve their current income but do not need their current income
- do not deserve their current income but need their current income
- deserve their current income and need their current income

Which of the following statements comes closest to how you feel?
Low-income individuals ...

- do not deserve their current income and do not need their current income
- deserve their current income but do not need their current income
- do not deserve their current income but need their current income
- deserve their current income and need their current income
page break

Consider the current incomes of individuals in society obtained after all taxes are paid and transfers received.

Do you think that, given the current incomes of individuals in society, incomes should be further redistributed or should not be further redistributed?

Please provide your answer on a scale from -2 to +2 where a +2 means that income should be further redistributed by taking from the higher-income individuals and giving to the lower/middle-income individuals while a -2 means that income should be further redistributed by taking from the lower/middle-income individuals and giving to the higherincome individuals.

- -2: Incomes should be further redistributed by taking from the lower/middle-income individuals and giving to the higher-income individuals

○ -1 :

- +0 : Incomes should not be further redistributed
- +1 :
$0+2$: Incomes should be further redistributed by taking from the higher-income individuals and giving to the lower/middle-income individuals

The next set of questions is about the income tax system in the United States. These are questions for which there are right or wrong answers.

In order for your answers to be most helpful to us, it is really important that you answer these questions as accurately as you can. Although you may find some questions difficult, it is very important for our research that you try your best. Thank you very much!

Out of 100 households in the U.S., how many are in the top federal personal income tax bracket?
[slider 0-100]

What share of their total income do people in the top federal personal income tax bracket pay in taxes?
[slider 0-100]

Out of 100 U.S. households, how many pay no federal income taxes?
[slider 0-100]

Imagine a middle class household that is right at the middle of the income distribution, such that half of all households in the U.S. earn more than this household and half earn less. What share of their income do you think such a household pays in federal income taxes?
[slider 0-100]

Out of every 100 individuals in the U.S., how many earn an income (after all taxes paid and transfers received) below $\$ 35,000$?
[slider 0-100]

We would now like to ask you what you think about the life opportunities of children from very poor families.

For the following question, we focus on 500 families that represent the U.S. population. We divide them into five groups on the basis of their income, with each group containing 100 families. These groups are:

- The poorest 100 families
- The second poorest 100 families
- The middle 100 families
- The second richest 100 families
- The richest 100 families

How many out of 100 children coming from the poorest 100 families will grow up to be among the richest 100 families?
[Tax preferences screen]
We would like to ask you what you think the distribution of after-tax income in the U.S. should be.

There are 7 tax groups (tax brackets) in the U.S. Group 1 includes households with the lowest incomes and Group 7 includes households with the highest incomes. Groups 2 through 6 include households with incomes in the middle.

Column 2 of the table below lists the CURRENT average annual after-tax income of all households in each group. The after-tax income is obtained by subtracting all federal income taxes (e.g., ordinary income taxes, alternative minimum taxes) from the pre-tax income and adding all federal transfers (e.g., tax credits) to the pre-tax income.

In Column 3 of the table below, we list the average federal income tax rate of each group. This rate was determined based on the ordinary income taxes that households paid. As
an example, if a household with a pre-tax income of $\$ 80,000$ has an average tax rate of 15%, they would pay $80000 * 0.15=\$ 12,000$ in taxes.

We would like you to indicate what you think the average tax rate for each tax group in the U.S. should be. This can be done as follows. You can increase or decrease the average tax rates of the first six groups. The average tax rate of group 7 adjusts automatically so that all seven groups together pay as much taxes as they currently do.

Column 4 of the table below and the figure below indicate your DESIRED average annual after-tax incomes. The numbers in the table as well as the figure update automatically as you change the average tax rates.

Your choices will sometimes be limited for a variety of reasons. For example, you cannot set the tax rate for a group such that their average after-tax income becomes lower than the average after-tax income of the group below them or higher than the average after-tax income of the group above them.

Note also that there may be rounding-off errors in various calculations.
You can go back to the initial situation by refreshing the page.

DESIRED Income Distribution

Income group	Annual after-tax income (CURRENT)	Average tax rate	Annual after-tax income (DESIRED)
1	\$6,500	9\% V	\$6,500
2	\$30,600	11\%	\$30,600
3	\$76,200	15\%	\$76,200
4	\$119,100	19\%	\$119,100
5	\$147,000	21\%	\$147,000
6	\$182,300	25\% V	\$182,300
7	\$653,300	31\%	\$653,300

Please answer the following last set of questions.
Which has more to do with why a person is rich?

- Because she or he worked harder than others; Because she or he had more advantages than others

If the federal personal income tax rate were to increase for the richest people in the economy, to what extent would it encourage them to work less?

- A great deal; A lot; A moderate amount; A little; None at all

Do you think that increasing income taxes on high-income households would hurt economic activity, not have an effect on economic activity, or help economic activity in the U.S.?

- Hurt economic activity in the U.S.; Not have an effect on economic activity in the U.S.; Help economic activity in the U.S.

Typically, when the top federal income tax rate on high earners is cut, do you think that the lower class and working class mostly win or mostly lose from this change?

- Mostly lose; Neither lose nor win; Mostly win

Some people think that income inequality in society can affect the level of crime, trust, corruption, and social unrest in society.

How big of an issue do you think income inequality is in America?

- Not an issue at all; A small issue; An issue; A serious issue; A very serious issue

How much of the time do you think you can trust the federal government to do what is right?

- Always; Most of the time; Only some times; Never page break

End of survey

Thank you for your time!
We will pay you your $£ 2$ participation fee in the following days.
Please click the following link to finish the survey.

G. 2 Treatment Hypothetical

[All screens, with the exceptions of those listed below, are identical to the screens in Treatment Real]
[Instructions screen]

Instructions

In this study, you will make several choices involving seven hypothetical people. These people are not real but you should imagine them as above the age of 18 and U.S. citizens. The incomes of the seven people after all taxes paid and transfers received are as follows:

Person	After-tax annual income
Person A	$\$ 8,000$
Person B	$\$ 35,000$
Person C	$\$ 70,000$
Person D	$\$ 100,000$
Person E	$\$ 170,000$
Person F	$\$ 250,000$
Person G	$\$ 500,000$

Here is an example of a question that you will see in the survey:

	Person C	Person G
After-tax annual income	$\$ 70,000$	$\$ 500,000$

Question 2/4: Please choose your preferred alternative

Person C: $+\$ 750$	Person C: $+\$ 500$
Person G: $-\$ 1250$	Person G: $-\$ 500$

In this question, if you choose the option on the left, then $\$ 1250$ will be taken away from Person G and $\$ 750$ will be given to Person C. If you choose the option on the right, then $\$ 500$ will be taken away from Person G and $\$ 500$ will be given to Person C. If you choose the option on the left, the final incomes of the two people (including an initial $\$ \mathbf{1 5 0 0}$ bonus) will be Person C: $\$ 72,250$ and Person G: $\$ 500,250$. If you choose the option on the right, the final incomes of the two people (including an initial $\$ 1500$ bonus) will be Person C: $\$ 72,000$ and Person G: $\$ 501,000$.

You will face four questions like the one you saw above in each "decision screen." Overall, you will face six decision screens with four questions in each. In each question, you will see a different amount in the option on the left. In each decision screen, you will see a different pair of people.

The choices you make in the survey will not have real consequences.

Please answer the following questions to demonstrate that you have understood the instructions. You can read the instructions above again if you feel the need to.

Please state True or False: "In this study, you will make several choices involving seven hypothetical people."

- True; False

Please state True or False: "Your choices will not have real consequences."

- True; False
(You will be allowed to move to the next screen in 30 seconds)
[The timer updates dynamically. When the time elapses, the text disappears.]
\qquad
[D1Q1: shown to all participants]
Decision Screen 1/6
Please consider each question carefully.

	Person A	Person C
After-tax annual income	$\$ 8,000$	$\$ 70,000$

Question 1/4: Please choose your preferred alternative:

[All decision screens and questions and identical to those in Treatment Real. Only the first sentence differs between the two treatments]

G. 3 Treatment No Self-Interest

[All screens, with the exceptions of those listed below, are identical to the screens in Treatment Real]
[In the Demographics screen, all questions, with the exception of the question on own income, is the same as in Treatment Real]

The next question is about your total individual income in 2021 before taxes. This figure should include income from all sources, including salaries, wages, pensions, Social Security, dividends, interest, and all other income. What was your total individual income (USD) in 2021?

- \$22,000 and below; $\$ 22,000$ to $\$ 53,000 ; \$ 53,000$ to $\$ 85,000 ; \$ 85,000$ to $\$ 135,000 ; \$ 135,000$ to $\$ 210,000 ; \$ 210,000$ to $\$ 375,000 ; \$ 375,000$ and above
page break
[Displayed if $\$ 22,000$ and below is chosen]
You have reported that your total individual income in 2021 before taxes was $\$ 22,000$ and below.
[Displayed if $\$ 22,000$ to $\$ 53,000$ is chosen]
You have reported that your total individual income in 2021 before taxes was $\$ 22,000$ to $\$ 53,000$.
[Displayed if $\$ 53,000$ to $\$ 85,000$ is chosen]
You have reported that your total individual income in 2021 before taxes was $\$ 53,000$ to $\$ 85,000$.
[Displayed if $\$ 85,000$ to $\$ 135,000$ is chosen]
You have reported that your total individual income in 2021 before taxes was $\$ 85,000$ to \$135,000.
[Displayed if $\$ 135,000$ to $\$ 210,000$ is chosen]
You have reported that your total individual income in 2021 before taxes was \$135,000 to \$210,000.
[Displayed if $\$ 210,000$ to $\$ 375,000$ is chosen]
You have reported that your total individual income in 2021 before taxes was $\$ 210,000$ to \$375,000.
[Displayed if $\$ 375,000$ and above is chosen]
You have reported that your total individual income in 2021 before taxes was $\$ 375,000$ and above.
[Displayed in all cases]
Could you provide your best guess of what your total individual income was?
\qquad
[Instructions screen]

Instructions

In this study, you will make several choices involving seven real people. These people will be selected at random from a survey panel and will not participate in the same survey as you. These people are above the age of 18 and are U.S. citizens. The incomes of the seven people after all taxes paid and transfers received put them in the following income brackets:

Person	After-tax annual income
Person A	$\$ 22,000$ and below
Person B	$\$ 22,000$ to $\$ 53,000$
Person C	$\$ 53,000$ to $\$ 85,000$
Person D	$\$ 85,000$ to $\$ 135,000$
Person E	$\$ 135,000$ to $\$ 210,000$
Person F	$\$ 210,000$ to $\$ 375,000$
Person G	$\$ 375,000$ and above

Here is an example of a question that you will see in the survey:

	Person C	Person G
After-tax annual income	$\$ 53,000$ to	$\$ 375,000$ and
	$\$ 85,000$	above

Question 2/4: Please choose your preferred alternative

Person C: $+\$ 750$	Person C: $+\$ 500$
Person G: $-\$ 1250$	Person G: $-\$ 500$

In this question, if you choose the option on the left, then $\$ 1250$ will be taken away from Person G and $\$ 750$ will be given to Person C. If you choose the option on the right, then $\$ 500$ will be taken away from Person G and $\$ 500$ will be given to Person C.

If you choose the option on the left, the final income brackets of the two people (including an initial $\$ \mathbf{1 5 0 0}$ bonus) will be Person C: $\$ 55,250$ to $\$ 87,250$ and Person G: $\$ 375,250$ and above. If you choose the option on the right, the final incomes of the two people (including an initial $\$ 1500$ bonus) will be Person C: $\$ 55,000$ to $\$ 87,000$ and Person G: $\$ 376,000$ and above.

You will face four questions like the one you saw above in each "decision screen." Overall, you will face six decision screens with four questions in each. In each question, you will see a different amount in the option on the left. In each decision screen, you will see a different pair of people.

One participant in this study will be randomly selected. If you are randomly selected, your choice on one randomly selected question on one randomly selected decision screen will be implemented. This means that if you are randomly selected, one of your choices will have real consequences for two other people. The final bonus of these two people will be transferred to them at the end of the study.

Please answer the following questions to demonstrate that you have understood the instructions. You can read the instructions above again if you feel the need to.

Please state True or False: "In this study, you will make several choices involving seven real people."

- True; False

Please state True or False: "If you are randomly selected, one of your choices will have real consequences for two other people."

- True; False
(You will be allowed to move to the next screen in 30 seconds)
[The timer updates dynamically. When the time elapses, the text disappears.]
page break
[D1Q1: shown to all participants]

Decision Screen 1/6
Please consider each question carefully because if you are selected, one of your choices will have real consequences for two other persons.

	Person A	Person C
After-tax annual income	$\$ 2,000$ and below	$\$ 33,000$ to $\$ 85,000$

Question 1/4: Please choose your preferred alternative:

Person A: $+\$ 1000$	Person A: $+\$ 500$
Person C: $-\$ 1000$	Person C: $-\$ 500$

[All questions are identical to those in Treatment Real. Decision Screens 1 to 6 are identical to the corresponding Decision Screens in Treatment Real, with the exception that the incomes of the Recipients are different. The pair of Recipients they view is as follows:

Decision Screen 2 (B: $\$ 22,000$ to $\$ 53,000$ and C: $\$ 53,000$ to $\$ 85,000)$
Decision Screen 3 (C: $\$ 53,000$ to $\$ 85,000$ and D: $\$ 85,000$ to $\$ 135,000$)
Decision Screen 4 (C: $\$ 53,000$ to $\$ 85,000$ and E: $\$ 135,000$ to $\$ 210,000)$
Decision Screen 5 (C: $\$ 53,000$ to $\$ 85,000$ and F: $\$ 210,000$ to $\$ 375,000$)
Decision Screen 6 (C: \$53,000 to \$85,000 and G: \$375,000 and above)]
[For half the participants, the order of the Decision Screens is reversed]

G. 4 Treatment Self-Interest

[All screens, with the exceptions of those listed below, are identical to the screens in Treatment No Self-Interest]
[Instructions screen]

Instructions

In this study, you will make several choices involving six real people and you. These six people will be selected at random from a survey panel and will not participate in the same survey as you. These people are above the age of 18 and are U.S. citizens. The incomes of the six people after all taxes paid and transfers received put them in the following income brackets:

Note that in this study, you are Person [A/B/C/D/E/F/G] earning [income].

Person	After-tax annual income
Person A	$\$ 22,000$ and below
Person B	$\$ 22,000$ to $\$ 53,000$
Person C	$\$ 53,000$ to $\$ 85,000$
Person D	$\$ 85,000$ to $\$ 135,000$
Person E	$\$ 135,000$ to $\$ 210,000$
Person F	$\$ 210,000$ to $\$ 375,000$
Person G	$\$ 375,000$ and above

Here is an example of a question that you will see in the survey:

	Person C	Person G
After-tax annual income	$\$ 53,000$ to	$\$ 375,000$ and
	$\$ 85,000$	above

Question 2/4: Please choose your preferred alternative

Person C: $+\$ 750$	Person C: $+\$ 500$
Person G: $-\$ 1250$	Person G: $-\$ 500$

In this question, if you choose the option on the left, then $\$ 1250$ will be taken away from Person G and $\$ 750$ will be given to Person C. If you choose the option on the right, then $\$ 500$ will be taken away from Person G and $\$ 500$ will be given to Person C.

If you choose the option on the left, the final income brackets of the two people (including an initial $\$ 1500$ bonus) will be Person C: $\$ 55,250$ to $\$ 87,250$ and Person G: $\$ 375,250$ and above. If you choose the option on the right, the final incomes of the two people (including an initial $\$ 1500$ bonus) will be Person C: $\$ 55,000$ to $\$ 87,000$ and Person G: $\$ 376,000$ and above.

You will face four questions like the one you saw above in each "decision screen." Overall, you will face six decision screens with four questions in each. In each question, you will see a different amount in the option on the left. In each decision screen, you will see a different pair of people.

Remember that in this study, you are Person [A/B/C/D/E/F/G] earning [income].

One participant in this study will be randomly selected. If you are randomly selected, your choice on one randomly selected question on one randomly selected decision screen will be implemented. This means that if you are randomly selected, one of your choices will have real consequences. If the selected question involves a payment to you, then we will pay out the bonus to you and to the other person. If the selected question involves a payment to two other persons, then we will pay out the bonus to these two other persons. The final bonus will be transferred at the end of the study. If you are among the winners, we will contact you in a few months and pay out your bonus via prolific.

Please answer the following questions to demonstrate that you have understood the instructions. You can read the instructions above again if you feel the need to.

Please state True or False: "In this study, you will make several choices involving six real people and you."

- True; False

Please state True or False: "If you are randomly selected, one of your choices will have real consequences for two other people or for you and one other person."

- True; False
(You will be allowed to move to the next screen in 30 seconds)
[The timer updates dynamically. When the time elapses, the text disappears.]
[D1Q1: shown to all participants]

Decision Screen 1/6

Please consider each question carefully because if you are selected, one of your choices will have real consequences.

	Person A	Person C
After-tax annual income	$\$ 22,000$ and below	$\$ 53,000$ to $\$ 85,000$

Question 1/4: Please choose your preferred alternative:

[All questions and decision screens are identical to those in Treatment No Self-Interest except that in the relevant decision screens, we replace "Person [A/B/C/D/E/F/G]" with "You." Furthermore, the first sentence in all decision screens is different.]

References

Alesina, A., Stantcheva, S. \& Teso, E. (2018), 'Intergenerational mobility and preferences for redistribution', American Economic Review 108(2), 521-554.

Cohn, A., Jessen, L. J., Klasnja, M. \& Smeets, P. (2019), Why do the rich oppose redistribution? An experiment with america's top 5\%. Working paper.

Gelbach, J. B. (2016), 'When do covariates matter? And which ones, and how much?', Journal of Labor Economics 34(2), 509-543.

Hendren, N. (2020), 'Measuring economic efficiency using inverse-optimum weights', Journal of Public Economics 187, 104198.

Hendren, N. \& Sprung-Keyser, B. (2020), 'A unified welfare analysis of government policies', The Quarterly Journal of Economics 135(3), 1209-1318.

Kuziemko, I., Norton, M. I., Saez, E. \& Stantcheva, S. (2015), 'How elastic are preferences for redistribution? Evidence from randomized survey experiments', American Economic Review 105(4), 1478-1508.

Lobeck, M. \& Støstad Nyborg, M. (2022), The consequences of inequality: Beliefs and redistributive preferences. Working paper.

Mankiw, N. G., Weinzierl, M. \& Yagan, D. (2009), 'Optimal taxation in theory and practice', Journal of Economic Perspectives 23(4), 147-174.

Piketty, T., Saez, E. \& Zucman, G. (2018), ‘Distributional national accounts: methods and estimates for the united states', The Quarterly Journal of Economics 133(2), 553-609.

Saez, E. (2001), 'Using elasticities to derive optimal income tax rates', The review of economic studies 68(1), 205-229.

Saez, E., Slemrod, J. \& Giertz, S. H. (2012), ‘The elasticity of taxable income with respect to marginal tax rates: A critical review', Journal of economic literature 50(1), 3-50.

Stantcheva, S. (2021), ‘Understanding tax policy: How do people reason?', The Quarterly Journal of Economics 136(4), 2309-2369.

Støstad, M. N. \& Cowell, F. (2022), Inequality as an externality: Consequences for tax design. Available at SSRN 4185685.

[^0]: ${ }^{1}$ As documented in the literature, this question is important because it has implications for the progressivity of policies (e.g., Saez 2002) and government spending (Hendren \& Sprung-Keyser 2020), which in turn have implications for inequality and growth (e.g., Lockwood \& Weinzierl 2016, Hendren 2020).

[^1]: ${ }^{2}$ Saez \& Stantcheva (2016) elicit people's views about whether individuals with various incomes and taxes deserve a tax break. However, they do not produce estimates of welfare weights.

[^2]: ${ }^{3}$ There is no common concave transformation of the utilities, implying that all the utility gains and losses are expressed in dollar terms. However, the assumption about Recipients' utilities does not affect the estimation of the welfare weights.

[^3]: ${ }^{4}$ There are two approaches to evaluating reforms that are conditioned jointly on incomes and other observable characteristics ("tags"). The first approach involves aggregating the weights up to the level of the reform, i.e., jointly on incomes and other observable characteristics. The second approach is to ignore the tags and aggregate the welfare weights up to Recipients' incomes. The latter approach is described in Hendren \& Sprung-Keyser (2020).
 ${ }^{5}$ Because of the envelope condition, the marginal reform does not affect their choice of labor and, con-

[^4]: ${ }^{7}$ In principle, we can identify the reform $(\$ t r,-\$ r)$ that makes a Social Architect indifferent between $(\$ t r,-\$ r)$ and $(\$ 0, \$ 0)$. However, we avoided this approach to minimize the Social Architect's susceptibility to status-quo bias, which entails choosing the status-quo ($\$ 0, \$ 0$).

[^5]: ${ }^{8}$ If a Social Architect always chooses the Unbalanced Reform (switches in the first row), we take the mid-point of $(\$ 550,-\$ 1450)$ and $(\$ 500,-\$ 1500)$. The reform $(\$ 500,-\$ 1500)$ takes the maximum possible amount from the higher-income Recipient, corresponding to their entire initial endowment. The reform $(\$ 500,-\$ 1500)$ corresponds to $\tilde{g}=0$. If a Social Architect always chooses the Balanced Reform (never

[^6]: ${ }^{11}$ A simple example can illustrate the calculation. Consider three Recipients: R1 (lowest income), R2, and R3 (highest income). A Social Architect has $\tilde{g}=0.25$ when facing R1 and R3 and $\tilde{g}=0.5$ when facing R2 and R3. Set the welfare weight assigned to R3 as 1 . The implied welfare weight on R1 is $\frac{1}{0.25}=2$, and R2 is $\frac{1}{0.5}=4$. Re-normalizing these weights to sum to 1 gives us the welfare weights assigned to R1, R2, and R3, as $\frac{2}{7}, \frac{4}{7}$, and $\frac{1}{7}$.

[^7]: ${ }^{12}$ In Wave 1, we referred to the Recipients' incomes as "after-tax" incomes. To further emphasize that these were disposable incomes, Wave 2 additionally clarified that the after-tax incomes were "accrued after all taxes and transfers."
 ${ }^{13}$ We did not inform the Social Architects in this Treatment whether they could potentially receive a payment based on the decision of another selected Social Architect.

[^8]: ${ }^{14}$ Lucid is commonly used in the literature (e.g., Haaland \& Roth 2023, Haaland et al. 2023).
 ${ }^{15}$ We recruited 6,735 participants in Wave 1 . After dropping participants with multiple survey responses (0.09%), who did not consent to participate in the study (2.5%), who did not fit into one of the demographic quotas or did not reside in the U.S. (28.1%), who dropped out before the attention check (6.4%), who failed the attention check (28.2%), who dropped out before the comprehension check (16.5%), who failed the comprehension check (21.3\%), who dropped out after passing the comprehension check (5.8%), we are left with 1965 participants. The share failing the attention check is much lower than the share observed in a few other papers. For example, 44% of the respondents failed the attention check in Chopra et al. (2022). The share of participants that passed the attention check but dropped out before the comprehension check is not different across the four treatments $(F=0.5228, p=0.66)$. The share of participants that passed the comprehension checks is not different across the four treatments ($F=1.763, p=0.1522$).
 ${ }^{16}$ Prolific has been used in several recent studies (e.g., Bursztyn et al. 2023, Enke et al. 2023).
 ${ }^{17}$ We recruited 2,313 participants in Wave 2. After dropping participants with multiple survey responses (0.3%), who did not consent to participate in the study (0.04%), who dropped out before the attention check (1.7\%), who failed the attention check (2%), who dropped out before the comprehension check (3.1%), who failed the comprehension check (5.9%), who dropped out after passing the comprehension check (1.6%), we are left with 1992 participants. The share of participants that passed the attention check but dropped out before the comprehension check is not different across the four treatments ($F=0.7024, p=0.5506$). The share of participants that passed the comprehension check is not different across the four treatments ($F=0.168, p=0.918$).

[^9]: ${ }^{18}$ Because we relaxed the quotas towards the end of the study to expedite reaching our target sample size, our sample has a higher share of people with education up to high school compared to the population.

[^10]: ${ }^{19}$ The value $\tilde{g}=0.03$ and $\tilde{g}=39$ are observed when a Social Architect selects the Unbalanced Reform and Balanced Reform, respectively, in all four decisions. The value $\tilde{g}=0.9$ is observed when a Social Architect selects the Unbalanced Reform in the first decision and the Balanced Reform in the subsequent three decisions.

[^11]: ${ }^{20}$ The social welfare gain of $1 * \$ 1$ equals the social welfare loss of $0.66 * \$ 1.5$.
 ${ }^{21}$ For (i), the unweighted regression yields $v=-0.35$. For (ii), we compute the individual-level elasticity of the weights (v) using Equation (7), and then compute the weighted median value of v, weighting the sample by sampling weights. The median estimate is -0.33 .

[^12]: ${ }^{22}$ We estimate the elasticity of Social Architects' welfare weights instead of exploring the share of participants with weakly monotonic weights, i.e., weights that are weakly increasing or decreasing with the incomes of the Recipients, because only 25% of the participants in our study have weakly monotonic weights. Non-monotonic weights may be due to measurement error or due to Social Architects' underlying normative ideals. For example, Social Architects may have progressive weights with a downward spike in the weight assigned to very low-income individuals, who they believe are "lazy" (Drenik \& Perez-Truglia 2018). Non-monotonic weights can also arise due to Social Architects assigning higher weights to Recipients with incomes similar to their own.

[^13]: ${ }^{23}$ To check whether the progressivity of the welfare weights is statistically significantly different between

[^14]: ${ }^{24}$ Although there is also a mechanical flattening of the weights in Treatment Loss $\times 70 \mathrm{~K}$, the extent of the flattening is lower because the welfare weights assigned to the Recipients earning less than $\$ 70,000$ can be different from the welfare weights assigned to those earning more than $\$ 70,000$.

[^15]: ${ }^{25}$ We divide the data into four sub-samples $(S(k), k \in 1,2,3,4)$ with $k=4$. For each sub-sample, we train the specification of interest using the other three sub-samples $(S(-k))$. Next, we predict values for the sub-sample we left out and calculate the squared error, which is the difference between the actual and predicted values squared. To obtain the RMSE, we compute the square root of the average of the squared errors across all four sub-samples.

[^16]: ${ }^{26} \mathrm{We}$ exclude the remaining treatments for various reasons. Treatments Loss $\times 500 \mathrm{~K}$ and Gain $\times 500 \mathrm{~K}$ are excluded because these treatments have a limited range of possible values of v. This limitation is discussed in Section 4.5. We exclude Treatment Hypothetical because we find that the elicited welfare weights are different in Treatments Hypothetical and Real; we defer to Treatment Real since the presence of real stakes is likely to lead to more reliable welfare weights. We exclude Treatment No Self-Interest because these treatments presented the income brackets of the Recipients rather than the exact incomes, which leaves Social Architects' beliefs about Recipients' incomes uncontrolled. For example, Social Architects

[^17]: could believe that the Recipient in the income bracket "\$375,000 and above" earns $\$ 375,000$ or $\$ 2,000,000$. The estimated elasticity of the weights in this treatment can thus be sensitive to the assumptions about Social Architects' beliefs about Recipients' incomes. Finally, Treatment Self-Interest is excluded because we follow the tradition in welfare economics of exploring people's views unconfounded by self-interest motives.
 ${ }^{27}$ The weights implied by the tax schedule are obtained using the optimal income tax formula, which provides the optimal marginal tax rates as a function of welfare weights and other relevant objects, such as the elasticity of taxable income. The formula can be inverted to obtain the "inverse-optimum" tax formula, which provides welfare weights as a function of marginal tax rates and other relevant objects. The current marginal tax rates can be used to identify the inverse-optimum welfare weights that make the current tax schedule optimal. We present the welfare weights implied by the income tax schedule at each quintile of the income distribution in Figure A7 in Appendix Section C.1.
 ${ }^{28}$ Consider a policy that affects Recipients with incomes near z^{*}. The Marginal Value of Public Funds (MVPF) of a policy is defined as the Recipients' willingness to pay for the policy (s^{*}) divided by the net cost (c) accrued from the policy to the government. If the government aims to achieve s^{*} through adjustments

[^18]: to the tax schedule instead of implementing the policy, the cost to the government would be $s^{*} g\left(z^{*}\right)$, where $g\left(z^{*}\right)$ is the marginal value of an additional dollar of consumption (welfare weight). It would be cheaper for the government to achieve s^{*} through the policy than through adjustments to the tax schedule if and only if $c \leq s^{*} g\left(z^{*}\right)$. Rewriting this expression yields the following equation: $M V P F=s^{*} / c \geq 1 / g\left(z^{*}\right)$.
 ${ }^{29}$ In these policies, similar to the ones we consider in our experiment, a $\$ 1$ spending on a policy costs the government $\$ 1$, and the beneficiaries' willingness-to-pay for the policy is $\$ 1$. We present the welfare weights implied by the selected policies against the income of the beneficiaries of the policies in Figure A8 in Appendix Section C.1.
 ${ }^{30}$ The general population weights $(v \in[-0.27,-0.19])$ are 2.1-3 times more progressive than the weights implied by the tax schedule $(v=-0.09)$ and 1.2-1.7 times more progressive than the weights implied by transfer policies $(v=-0.16)$.

[^19]: ${ }^{31}$ Note that the median value of v in the aggregate data is -0.47 .
 ${ }^{32}$ In Section 4.5, we find that Social Architects' weights are more progressive in Treatment Self-Interest relative to Treatment No Self-Interest. This suggests that allowing for self-interest motives to affect welfare weights would widen the gap between the general population weights and weights implied by the tax schedule.
 ${ }^{33}$ CRRA utilities are given by $u(c, l)=u(c)+v(l)=\frac{c^{1-\gamma}-1}{1-\gamma}+v(l)$, where c represents consumption, v represents the disutility of work (which depends on labor effort l), and γ is the coefficient of relative risk aversion. Taking the first-order condition of the utilitarian social welfare function $W=\sum u(c, l)$ results in $\Delta W=\sum u^{\prime}(c) \Delta c$. Thus, $u^{\prime}(c)=c^{-\gamma}$ characterizes the welfare weights.

[^20]: ${ }^{34}$ The current MTRs include the ordinary income taxes for single filers in 2019. Following Hendren (2020), we add a 5% state tax, a 2.9% tax rate for Medicare, and a 2.3% sales tax rate.

[^21]: ${ }^{35}$ It is worth noting that alternative approaches, such as using the inverse-optimum weights implied by policies, also cannot be used to evaluate non-marginal reforms (Hendren 2020).

[^22]: ${ }^{1}$ https:/ /doi.org/10.1257/rct.8372-3.2

[^23]: ${ }^{2}$ The income brackets are [0,\$22,000], [\$22,000, \$53,000], [\$53,000, \$85,000], [\$85,000, \$135,000], [\$135,000, $\$ 210,000]$, [\$210,000, \$375,000], [\$375,000, ∞).

[^24]: ${ }^{3}$ We divide the data into four sub-samples $(S(k), k \in 1,2,3,4)$ with $k=4$. For each sub-sample, we train the specification of interest using the other three sub-samples $(S(-k))$. Next, we predict values for the sub-sample we left out and calculate the squared error, which is the difference between the actual and predicted values squared. To obtain the RMSE, we compute the square root of the average of the squared errors across all four sub-samples.

