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1 Introduction1

This paper revisits the dynamics of potential competition in a natural monopoly
context. In such situations an incumbent is repeatedly facing an entrant. Rent
dissipation ordinarily prevails (see among others Fudenberg and Tirole, 1987
and Wilson, 1992). The intuitive idea behind rent dissipation is a rational ex-
pectations argument (Farrell, 1986). In Maskin and Tirole (1988) and in Pon-
ssard (1991) a proper game analysis confirms the rational expectations intuition.
These results provide some formal grounds to contestability theory (Baumol et
al., 1982).
Contestability is an important benchmark in applied industrial organization.

Originally designed for the airline industry it has been applied to many sectors
such as telecoms or electricity. The main idea is to restructure the industry
to reduce the length of commitments and the possible sunk costs, which is
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equivalent to have the discount factor go to one in a repeated entry game.
Other economic characteristics play no role.
Many economists have challenged this view (for survey articles see Brock,

1983 or Shepherd, 1984). Two criticisms are directly relevant for this paper: why
should the incumbent remain passive against a hit an run strategy ? why is it
that the intensity of competition in case of entry plays no role in the argument ?
The first question refers to a theorical issue which can only be handled in a game
framework. The second question (first pointed out in Dasgupta and Stiglitz,
1986) refers to empirical matters. Indeed, Sutton (p. 35, 1991) provided ample
evidence that ”a very sharp fall in price suffices to deter entry and maintain a
monopoly outcome”.
This paper provides a game theoretic formalization of hit and run strategies

in an infinite horizon: if the incumbent makes a mistake, the equilibrium path is
such that the entrant comes in, makes some money and then leaves. Equilibrium
paths are such that the intensity of competition in case of entry plays a major
role2 .
More specifically, rent dissipation need not necessarily prevail.3 In this ap-

proach rent dissipation depends on the monopoly rent relative to the cost of
entry: when this ratio is high rent dissipation occurs and when it is low it does
not. Consequently, the tougher the competition in case of entry the more likely
rent dissipation fails to hold.
In addition to rent dissipation, selection is also analyzed. Selection means

that only the more efficient firm can remain a permanent incumbent (selection
was introduced in Gromb et al., 1997, in which finitely repeated asymmetric
entry games were first analyzed). Selection is an important economic property to
look for since it encourages innovation and the search for competitive advantage.
In a dynamic context it seems preferable to the static productive efficiency
criteria. The empirical results reported by Scherer (1992) and Gerovski (1995)
indeed show that most entries occur after large innovations. It is proved that
equilibrium paths satisfy selection if the asymmetry between the two firms is
high enough.
These results on rent dissipation and on selection can be conveniently sum-

marized through a new and interesting taxonomy of competitive situations.
Depending on its economic characteristics, a given situation may be qualified
as typical of:
excess-competition: if a more efficient incumbent were to choose to deter

entry forever, it would have to dissipate all of its profits;
under-competition: a less efficient incumbent can deter entry forever and

make stationary positive profits;
selection: a less efficient incumbent is not able to deter entry forever and
2There are formalizations of this idea in the context of two stage games (see for instance

Henry, 1988, Sutton, 1991 chap 2, or d’Aspremont and Motta, 2000) but to the author’s
knowledge none in the infinite horizon context. In the two stage models, the firms cumulative
pay-offs are zero by construction.

3 See Boyer et al., 2003, for a recent contribution in which rent dissipation does not prevail.
Their argument is based on capacity constraints and is unrelated to the current discussion.
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make stationary positive profits, but a more efficient incumbent may.
At the formal level, the adopted Markov equilibrium concept extends the

one used by Maskin and Tirole (1988).4 The idea is to relax the stationarity
assumptions which they impose on the strategies. This relaxation is motivated
by the results obtained in Gromb, Ponssard and Sevy (1997).5 There it was
shown that when one firm is more efficient than the other, at equilibrium, the
less efficient firm cannot remain a permanent incumbent in a long enough game.
This suggests that the stationarity assumption is too strong and is the reason for
the drawback of the MT approach pointed out in Lahmandi et al. (1996) namely,
that the less efficient firm can remain a permanent incumbent and, moreover,
that its stage rent is higher than what the more efficient firm would obtain were
it the permanent incumbent. Yet, the GPS approach, when extrapolated to
infinitely repeated games, has drawbacks of its own. The issue remained open.
The paper is organized as follows. Section 2 introduces the class of infinitely

repeated entry games under study. Various solution concepts may be used to
analyze these games. In section 3 the new Markov solution concept is defined.
Similarities and differences with previous appraoches are detailed in the appen-
dix. Section 4 studies the mathematical properties of the proposed solution
concept: the given finite time horizon for incumbency of the hit and run firm is
the key parameter. It is proved that when an equilibrium exists it is necessarily
unique, that this firm would prefer to play in a game in which its given time
as an incumbent is as long as possible but that when this given time exceeds
some bound such an equilibrium may no longer exist. Whenever there is no
such bound the situation is one of rent dissipation. A necessary and sufficient
condition for such a bound to exist is obtained. In section 5, the conditions
for rent dissipation are interpreted and a new taxonomy of situations is intro-
duced, economic illustrations are detailed in the appendix. Section 6 concludes
with open questions that should be studied to improve our understanding of the
proposed solution concept.

2 The game Γδ
∞

Various game forms may be used to capture the idea of short run commitments
in a natural monopoly context. For convenience, our model is very similar to
the one introduced in GPS. Denote Γ∞ such an entry game.
Denote the two firms player 1 and player 2. Let i be anyone of the two

players and j 6= i be the other one.
The game Γ∞ is constructed from two one stage Stackelberg entry games,

denoted G(1) and G(2).The game Γ∞ consists of a sequence of such one stage
games (G(i1), G(i2), ..., G(ik)....) in which any ik may be either 1 or 2 depending
on the actual moves selected along the way6.

4 to be later refered to as the MT approach. Originally designed for entry games, this
approach has been extended to any extensive game (Maskin and Tirole, 2001).

5 to be later refered to as the GPS approach.
6 Strictly speaking the game under study is not a reapeated game since the stage game varies
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Each game G(i) is played as follows:
step 1: the first player to move is player i , it is called the incumbent, player

i may either select a move xi in < or move out;
step 2a: if player i selects xi at step 1 then player j may either select in

(with respective payoffs for i and j : di(xi),−Cj(xi)) or out (with respective
payoffs : vi(xi), 0) ;
step 2b: if player i selects out at step 1 then player j may either select a

move xj in < or move out;
step 3 : if player i selects out at step 1 and player j selects xj at step 2b

then player i may either select in (with respective payoffs : −Ci(xj), dj(xj)) or
out (with respective payoffs : 0, vj(xj));
step 4: if player i selects out at step 1 and player j selects out at step 2b

then the game Γ∞ stops (with respective payoffs : 0, 0).
Moreover the actual play of G(i) determines the incumbent in the next G(i0)

to be played :
- player i0 is again player i if this sequence is (xi, out) or (out, xj , in);
- player i0 is player j if the sequence is (xi, in) or (out, xj , out).

• Denote i+(i) the next stage incumbent determined according to this tran-
sition rule.

The payoffs in the game are the sum of the stage payoffs using a discounted
factor δ. Attention is focued on δ close to 1.
This completely specifies Γδ∞.
The functions vi, Ci, di respectively stand for stage monopoly profits, entry

costs and exit payoffs. For i ∈ (1, 2) it is assumed that vi is strictly increasing,
Ci strictly decreasing and di non positive.
For Γδ∞ to be of economic interest it is assumed that :

C−1j (0) > v−1i (0)

C−1i (0) > v−1j (0)

The first inequality means that the static “limit price” of player i, C−1j (0),
should be higher than player i ’s “average cost”, v−1i (0), otherwise player i is def-
initely barred from entry (the situation is one of ”bockaded entry”). Similarily
for player j.
For mathematical convenience it will be further assumed that the functions

vi and Ci have derivatives and that these derivatives are uniformly bounded
away from zero and from infinity. It is believed that this technical assumption
may be relaxed without affecting the results.
Two classes of games shall be of special interest.
The class of symmetric entry games in which v1 = v2 and C1 = C2. The

economic issue is rent dissipation : at equilibrium, does the stage payoff of the
incumbent vi(xi) converge to zero when the discount factor goes to one ?

among two distinct ones. However, folk theorems apply and some form of Nash selection is
required.
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The class of asymmetric entry games in which v1 = v2 +∆f in which ∆f is
a constant, and C1 = C2. The economic issue is selection : suppose i1 = 2, then
is it true that for all ∆f > 0, at equilibrium, player 1 is the long run incumbent
i.e., for all k ≥ k∗, ik = 1, whatever the discount rate close enough to one ?
Interpretation
Consider a standard Stackelberg model such as Dixit (1980). The leader

commits to some move qL then the follower reacts with qF . The entry barrier is
constructed in such a way that the profit of the follower is not positive. Denote
the two players profits hL(qL, qF ) and hF (qL, qF ) . With our notations CF (qL) =
−maxqF hF (qL, qF ) and vL(qL) = hL(qL, qF ) when the follower does not enter.
In a static model the optimal entry preventing commitment maximizes vL(qL)
under the constraint maxqF hF (qL, qF ) ≤ 0 that is, CF (qL) ≥ 0. In the context
of a repeated entry game with short term commitments this is not enough since
the follower takes into account the future stream of profits he could obtain
acting as a leader in the next Stackelberg game, etc. There are several ways to
precisely define such a dynamic entry game (Eaton and Lipsey, 1980, Maskin
and Tirole, 1988, Ponssard, 1991).
The selected game form has several advantages: the endogeneity of leader-

ship is key, the game has no simultaneous moves which avoids multiplicity of
stage equilibria, it is easier to track than alternate move models, players are en-
couraged to move in to avoid stopping the game and the results can be extended
with some effort to the other game forms.

3 The selected Markov equilibrium concept
The game Γδ∞ has many Nash equilibria ranging from predatory behavior (one
player behaves as an unconstrained monopolist if incumbent and always moves
in if not, and the other always stays out) to collusive behavior (the two players
alternate as incumbent using tit for tat as a threat). Such equilibria are not
illustrative of hit and run competition.
This section proposes a new Markov equilibrium concept, to be denoted as

SME for selected Markov equilibrium, among more general Markov approaches.
Markov strategies depend on the way the state variable is defined. The state

variable precises the stakes of a given stage game G. It of course says who is the
incumbent. A time variable will be included in the state variable to capture the
non stationarity of the hit and run behavior.
The general Markov approach
Let

• t be the discrete time variable;
• θ be the state variable, θ = (i, t) which means that G(i) is the stage game
to be played;

• (zθ1 , zθ2) stand for the decisions in G(i) given θ and (Z1, Z2) stand for the
strategies ;
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• Gθ
1(z

θ
1 , z

θ
2) andG

θ
2(z

θ
1 , z

θ
2) stand for the two players’ respective stage payoffs

in G(i) given θ and (zθ1 , z
θ
2) ;

• θ+(zθ1 , z
θ
2) = (i

+, t+) be the next stage state variable given θ and (zθ1 , z
θ
2)

where i+ is defined according to the rules of Γδ∞ and t+ is to be defined
later;

• δ be the discount rate ;

• (Y1, Y2) be a Markov equilibrium when it exists ;

• π1(Y1, Y2 | θ) and π2(Y1, Y2 | θ) refer to the players discounted equilibrium
payoffs given an initial state θ and an equilibrium (Y1, Y2).

Definition 1 Markov equilibria7 are such that :

π1(Y1, Y2 | θ) =Maxzθ1
£
Gθ
1(z

θ
1 , y

θ
2) + δπ1

¡
Y1, Y2 | θ+(zθ1 , yθ2)

¢¤
π2(Y1, Y2 | θ) =Maxzθ2

£
Gθ
2(y

θ
1 , z

θ
2) + δπ2

¡
Y1, Y2 | θ+(yθ1 , zθ2)

¢¤
By construction, these Markov equilibria are refinements of Nash equilibria

of Γδ∞. They need not be perfect since they may depend on past moves through
the variable t.
In the MT approach there is no such time variable, the GPS extension to

infinitely repeated games provides some hints on how to design the time variable,
this is done in the SME approach (see appendix for the formalizations of MT
and GPS).
The SME approach
This approach relies on the following assumptions:

• the two players are exogeneously distinguished. One player is called player
L (for long term incumbent) and the other player is called player S (for
short term player to be seen as the hit and run player). No assumption is
made at this point as regards the relative efficiency of L versus S.

• an integer n is exogeneously given and let t = 0, 1...n.
• when the game is in state θ = (i, 0), if i+ = L then t+ = 0 but if i+ = S
then t+ = 1.

• when the game is in state θ = (S, t) with 1 ≤ t < n, if i+ = S then
t+ = t+ 1 but if i+ = L then t+ = 0.

• when the game is in state θ = (S, n), t+ = 0 whether i+ = L or S.
7This system of equations is known as the Shapley recursive equations for recursive games

(Shapley, 1953)
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For a given value of the parameter n, the following proposition gives sufficient
conditions to obtain such a Markov equilibrium. Existence and uniqueness will
be addressed later.

Proposition 2 Let yL and ytS for t ∈ {0, 1.2...n} be a solution (if it exists) of
the following system denoted Φnδ :
−CL(ytS) + vL(yL)δ(1− δn−t)/(1− δ) = 0 for t ∈ {0, 1, 2...n}
−CS(yL) +Σt=nt=1 δ

tvS(y
t
S) = 0

and
vL(yL) ≥ 0Pt0=n
t0=t δ

t0−tvS(yt
0
S ) ≥ 0 for t ∈ {1, 2...n}

butPt0=n
t0=0 δ

t0vS(y
t0
S ) < 0

Then the following moves in Γδ∞ are a Markov equilibrium:
- if θ = (L, 0) player L plays xL = yL and player S plays out iff xL ≤ yL
(in case player L moves out then player S also moves out);
- if θ = (S, 0) player S plays out then player L plays xL = yL and player S

plays out iff xL ≤ yL
(in case player S plays xS player L moves out iff xS ≤ y0S);
- if θ = (S, t) with t 6= 0 player S plays xS = ytS and player L plays out iff

xS ≤ ytS
(in case player S moves out then player L plays xL = yL and player S plays

out iff xL ≤ yL).

Proof of this proposition is in the appendix.
Such an equilibrium may be interpreted as follows.8 The state θ = (L, 0) is

an absorbing state in which L remains a permanent incumbent using a stationary
strategy, L ’s equilibrium stage payoff is non negative in that state. If he makes
a mistake, S moves in and the next stage is θ = (S, 1), then S stays as an
incumbent for n stages using a non stationary strategy designed to make L
patient until S moves out. Player S ’s total equilibrium payoff in θ = (S, 1)
exceeds his entry cost in θ = (L, 0) given that L made a mistake, furthermore
S ’s total equilibrium payoff remains non negative along the way. At the state
θ = (S, 0) player S0s best move is out because it is not worthwhile for him to
make L patient for n+ 1 stages. If S makes a mistake along the way, L moves
in and the next state is θ = (L, 0).
A key feature of this equilibrium is that it is the long time incumbent’s best

strategy to wait until the hit and run player moves out and not to agressively
fight against him. This is because it is the hit and run player’s best strategy
to eventually move out. Similarily as in GPS, one would like the length of the
hit and run period (the parameter n) to be endogeneously determined. It will
be proved later that player S ’s total equilibrium payoff in state θ = (S, 1) is
increasing in n. It is proposed to select the most appropriate n as the highest
integer for which such a Markov equilibrium exists.

8These ideas go back to Louvert, 1998.
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4 Properties of SME’s for a given n
This section addresses the mathematical properties of SME’s for a given n.
Some preliminary comments are in order.
Our attention is focused on the case δ close to 1. It will be proved that if the

system Φnδ has a solution it is necessarily unique. For mathematical simplicity,
the proof is made on the limit system Φn1 derived from Φ

n
δ when δ goes to 1.

The same arguments would apply to Φnδ when δ is close to 1. Because Φnδ is
continuous in δ its unique solution when δ goes to 1 converges to the unique
solution of Φn1 . The properties of the solution of Φ

n
1 are studied and used to

infer the properties of the solution of Φnδ which describes a SME.
To avoid ambiguity the solution of Φn1 when it exists is indexed by n such

as yL(n) and ytS(n) for t ∈ {0, 1, 2...n}. The stage rent for player L refers to
vL(yL(n)) and the total rent for player S refers to Σt

0=n
t0=1vS(y

t0
S (n)).

Lemma 3 When δ goes to 1 the limit system Φn1 of the system Φ
n
δ defined in

Proposition 4 is such that:
for t ∈ {0, 1, 2...n} −CL(ytS) + (n− t)vL(yL) = 0 (1)

−CS(yL) +Σt=nt=1 vS(y
t
S) = 0 (2)

and
vL(yL) ≥ 0 (3)

for t ∈ {1, 2...n} Σt
0=n
t0=t vS(y

t0
S ) ≥ 0 (4)

but
Σt

0=n
t0=0 vS(y

t0
S ) < 0 (5)

The proof of this lemma is straightforward.

Theorem 4 Φn1 admits at most one solution for large enough n.

Proof of this theorem is in the appendix.

Theorem 5 If there exists a solution respectively in Φm1 and in Φn1 with m > n
then yL(m) ≤ yL(n).
Proof. Suppose yL(m) > yL(n) then vL(yL(m)) > vL(yL(n)). Since CL is

strictly decreasing this implies for all t ∈ {0, 1, 2...n}:
ym−tS (m) < yn−tS (n)

so that
Σt=0t=nvS(y

m−t
S (m)) < Σt=0t=nvS(y

n−t
S (n))

For t ∈ {n + 1, ..m} we still have ym−tS (m) < y0S(n) and, because of (5) we
also certainly have vS(y0S(n)) < 0 then

Σt=0t=m−1vS(y
m−t
S (m)) ≤ Σt=0t=nvS(y

m−t
S (m))
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Then

Σt=0t=m−1vS(y
m−t
S (m)) < Σt=0t=nvS(y

n−t
S (n))

By construction the left hand side should be greater or equal to zero while
the right hand side should be strictly negative thus a contradiction.

Theorem 6 Suppose there is a solution in Φn1 for all values of n then:

lim
n→∞ vL(yL(n)) = 0

lim
n→∞Σ

n
1 vS(y

t
S(n)) = CS(v

−1
L (0))

lim
n→∞ y

1
S(n) = x

∗

in which x∗ is uniquely defined as:ΦZ C−1L (0)

x∗
vS(x)

dCL
dx

(x)dx = 0

Proof of this theorem is in the appendix.

Corollary 7 If there is a solution in Φn1 for arbitrarily large values of n it is
necessary that:

vS(x
∗) + CS(v−1L (0)) ≤ 0

and if
vS(x

∗) + CS(v−1L (0)) < 0

there is a solution for arbitrarily large values of n.

Proof. Consider the first part. Using (5), for all n we have vS(y0S(n)) +
CS(yL(n)) < 0 so that at the limit we certainly have vS(x∗) + CS(v−1L (0)) ≤ 0.
As for the second part the above theorem in fact proves that in the construc-

tion of theorem 6 for n large enough ŷ1S converges to x
∗ as ŷL goes to v−1L (0);

since vS(x∗)+CS(v−1L (0)) < 0 it must be that (5) will be satisfied and a solution
is obtained.

These results may be used to infer properties of a SME in Γδ∞ with δ close
to 1. For a given n, the two systems Φn1 and Φ

n
δ are close to each other. If

Φn1 has a unique solution so does Φ
n
δ and this solution is a SME of Γ

δ∞. Ob-
serve that, as soon as δ < 1, Φnδ cannot have a solution for arbirarily large
values of n. This is easily seen by contradiction considering the constraints that
limn→∞Σt=nt=1 δ

tvS(y
t
S) = vS(y

1
S) would have to satisfy. Denote by nδ the largest

integer for which Φnδ has a solution. The following corollary summarizes the
main result of the paper: it provides a condition to obtain rent dissipation in
Γδ∞ when δ goes to 1 using SME as the solution concept.
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Theorem 8 Suppose vS(x∗) + CS(v−1L (0)) < 0, then limδ→1 vL(yL(nδ)) = 0.

Proof. If vS(x∗)+CS(v−1L (0)) < 0, Φn1 has a solution for arbitrarily large n,
this proves that limδ→1 nδ = ∞. Theorem 8 says that limn→∞ vL(yL(n)) = 0.
Since limδ→1 nδ = ∞, whatever n the solution of Φn1 and of Φnδ can be made
arbitrarily closed so that limδ→1 vL(yL(nδ)) = 0.

5 Economic analysis of the SME solution
Recall the results for δ close to 1. If Γδ∞ has a SME of duration n, it is unique.
If there are SME’s with respective durations n and m, the hit and run player
should select the longest one to maximize its total rent. A condition is provided
to obtain rent dissipation in Γδ∞, in which case the hit and run player would at
the limit stay indefinitely.
In the remaining part of this paper it will be assumed that the hit and run

player selects the maximal duration for which Φnδ has a solution, letting δ go to
1. This seems as a natural assumption to make since by doing so the hit and run
player selects the duration of his stay to his best advantage. In the concluding
section this particular selection among SME’s is further argumented.
By construction this defines the SME solution of the limit game Γ1∞, the

economic properties of which we want to now discuss.
Come back to symmetric and asymmetric entry games. Recall that a sym-

metric game is such that v1 = v2 and C1 = C2 and that an asymmetric game
may be derived from a symmetric one such that v1 = v2 +∆f , in which ∆f is
a constant, and C1 = C2. If ∆f ≥ 0 player 1 is said to be strong and player 2
weak, and vice et versa.
Consider first the issue of rent dissipation in symmetric games. Theorem 8

proves that if there is rent dissipation with SME in Γ1∞, the relative time horizon
for S can be extended to infinity, the stage rent v(yL) goes to zero and the total
rent Σn1v(y

t
S(n)) goes to C(v

−1(0)); this solution is consistent with both MT
and GPS . Yet, one major difference should be pointed out. There need not
always be rent dissipation in Γ1∞.
This result suggests that the analysis of potential competition should be

revisited : the issue of short time commitment is no longer sufficient and more
attention should be given to other structural characteristics of the situation.
We proceed as follows. Firstly, the rent dissipation issue in symmetric games

is discussed. Secondly, a taxonomy of competitive situations is introduced to
analyze asymmetric ones.

5.1 Rent dissipation in symmetric games

Consider the special case in which v and C are linear functions.
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Proposition 9 If v and C are linear functions then rent dissipation prevails
if vS(C

−1
L (0)) > CS(v

−1
L (0)) while no rent dissipation prevails if vS(C

−1
L (0)) <

CS(v
−1
L (0)).

Proof. The equation that defines x∗ is
R C−1(0)
x∗ v(x)dCdx (x)dx = 0. Because

of the linearity of the v and C functions, x∗ is the symmetric of C−1(0) with
respect to v−1S (0) so that vS(x∗) = −vS(C−1L (0)). Then the result follows from
corollary 9.

Qualitatively speaking, this proposition says that the entry cost should be
high enough with respect to the monopoly profit for rent dissipation to occur.
It can be directly applied to the case of short run price commitment. This form
of competition is illustrative of the very notion of contestability (Baumol et al
1982). Generally speaking, the stage game may be described as follows:
- firm i is the incumbent and sets a price pi ;
- firm j decides to enter or not, if it does enter it sets a price pj = pi − s in

which s is a strictly positive function which may depend on pi;
- if firm j did not enter, firm i payoff is R(pi)−f in which R is the monopoly

revenue function with R0 > 0 and R00 < 0 and f a stage fixed cost;9

- if firm j did enter, firm j payoff is R(pi − s)− f, and firm j will play first
at the next stage;
- there are no commitments from one stage to the next one except the fact

that the order of moves is endogeneouly determined.10

The symmetric entry game is thus defined with

v(p) = R(p)− f
C(p) = −(R(p− s)− f )

In this framework contestability can be captured by letting ε go to zero and
one would expect that the incumbent price be forced to average cost i.e. to the
price pac such that R(pac)− f = 0.Such is not the case with SME. Consider the
simple case of constant switching cost that is, s = cst.

Proposition 10 In an entry game with short run price commitments and con-
stant switching costs, if this switching cost is close to zero, there is no rent
dissipation.

Proof. Since s is close to zero we may use linear approximations of the v
and C functions around the value p = pac. Denote by pl the value of p such
that C(pl) = 0. We certainly have pl close to pac . According to proposition 12

9Ordinarily the revenue function R(p) has a maximum (at the unconstrained monopoly
price); we assume that ε is small enough so that C−1(0) be less than this maximum so that
v is indeed increasing on the relevant range of analysis. This assumption may be relaxed
without affecting the results.
10This form of competition has been formalized as an entry game in Ponssard (1991). There

the simultaneous version was considered and a forward induction argument was used to select
among equilibria. In the sequential version this argument is superfluous.
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the ratio v(pl)/C(pac) relative to 1 characterizes the situation. We may write
v(pl)/C(pac) = −(v(pl) − v(pac)/(pl − pac))/(C(pac) − C(pl))/(pac − pl)) so
that v(pl)/C(pac) is close to −v0(pac)/C0(pac) = R0(pac)/R0(pac − s) < 1 since
R00 < 0.

This form of competition may be qualified as tough. A softer form of com-
petition would correspond to a case in which the cost of entry is lower (and the
static limit price higher). Eventually, rent dissipation would occur. A detailed
example is given in the appendix.

5.2 A taxonomy of competitive situations

Rent dissipation may or may not occur in symmetric games. This generates
an interesting taxonomy for the general case of asymmetric games in which one
player is more efficient than the other.

Definition 11 A competitive situation is said to be one of
under-competition: if L = weak and S = strong there exists n∗ such that

Φn1 has no solution for all n > n
∗

(a less efficient incumbent can deter entry forever and make stationary pos-
itive profits);
selection: if L = weak and S = strong there always exist a solution in Φn1

for all n large enough
but if L = strong and S = weak there exists n∗ such that Φn1 has no solution

for all n > n∗

(a less efficient incumbent is not able to deter entry forever and make sta-
tionary positive profits, but a more efficient incumbent may);
excess-competition: whether L = weak or L = strong there always exist a

solution in Φn1 for all n large enough
(if an incumbent were to choose to deter entry forever, it would have to

dissipate all of its profits ).

A general comparative statics result always holds. If there is excess-competition
in a symmetric game i.e., there is rent dissipation, then in the associated asym-
metric game in which the long-term player is more and more efficient (increasing
∆f), at some point, his rent will become strictly positive. Conversely, if there
is under-competition in a symmetric game then in the associated asymmetric
game in which the long-term player is less and less efficient (decreasing ∆f), at
some point, his rent will be fully dissipated.

Proposition 12 Take vL = v + ∆f , vS = v and CL = CS = C. Denote
H(∆f) = vS(x

∗) + CS(v−1L (0)) then:
- if H(0) < 0 there exists some ∆F > 0 such that for all ∆f > ∆F we have

H(∆f) > 0;
- if H(0) > 0 then there exists some ∆F 0 < 0 such that for all ∆f < ∆F 0

we have H(∆f) < 0.

12



Proof. Consider the first statement, in H(∆f) = vS(x
∗) + CS(v−1L (0))

observe that the first term does not depend on ∆f since x∗ is defined from the

equation
R C−1L (0)

x∗ vS(x)
dCL
dx (x)dx = 0 is independant of ∆f . As for the second

term we certainly have v−1L (0) strictly decreasing in ∆f so that, since CS is a
decreasing function and since we are assuming that its derivative is uniformly
bounded away from zero this provides the result. Reversing the argument we
obtain the second statement.

Excess-competition refers to the case in which a difference in efficiency is not
rewarded by an increase in profitability. Under-competition refers to the case
in which a less efficient firm may sustain with a strictly positive profit. Selec-
tion is what one would expect under Schumpeterian competition. An economic
illustration in which this taxonomy prevails is given in the appendix.

6 Discussion
The major result of this paper is that whether or not commitments are short-
term no longer dominates the other economic characteristics in the analysis of
rent dissipation. To obtain rent dissipation, it is no longer sufficient that the
discount factor goes to 1.
These new results are obtained through a Markov equilibrium concept which

embeds the hit and run idea. The results are derived under fairly general as-
sumptions.
This approach suggests that potential competition is not very effective in

markets in which competition is tough while it may if it is soft. In the former
case the cost of entry is too high relative to the monopoly profit and, at equi-
librium, a hit and run player cannot stay long enough to force the incumbent
to average cost, in the latter case it may. This contradicts the standard results
of contestability but it is well in line with more traditional views on entry.
The SME approach requires some further theoretical work. In this last

section some open question are pointed out.
Question 1: There may be other Markov equilibria which are consistent

with the proposed definition of the state variable. Full characterization would
be helpful. This has been obtained with the MT approach.
Question 2: In corollary 9 it is suspected that the condition vS(x∗) +

CS(v
−1
L (0)) ≤ 0 is not only necessary but also sufficient.
Question 3: For the proposed taxonomy, it should be true that in case of

under-competition, when a weak player may remain with a strictly positive rent
indefinitely, a strong player may also. This is more difficult than it may seem
and does not follow from proposition 13.
Question 4: A more interesting issue concerns the fact that our assignment

of player 1 and player 2 to the respective L or S positions may be considered as
arbitrary. A more formal approach might be to have a preliminary stage at which
each player decides how long he could stay, say n1 for player 1 and n2 for player 2.
The choices n1 and n2 are then revealed and an infinitly repeated game Γn1,n2∞
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is played in which each player can only use hit and run strategies according
to the number of stages decided at the preliminary stage. Using a Markov
formalization similar to the present one, it is suspected that the equivalent of
theorem 7 holds (i.e., given ni the best response nj(ni) is the highest nj for
which the entry game Γn1,n2∞ has an equilibrium). If this were indeed the case,
our taxonomy could be stated as follows :
- selection: only the strong player would select to stay infinitely (the limit

equilibria in Γn1,n2∞ with respect to large values of (n1, n2) would have n∗1 =
∞, n∗2 <∞, where player 1 is the strong player) ;
- under-competition: either player could select to stay infinitely but if one

does, the other would not wish to, the preliminary game would be similar to
a battle of the sexes game (there would be two limit equilibria Γn1,n2∞ with
n∗1 =∞, n∗2 <∞ and n∗1 <∞, n∗2 =∞ ) ;
- excess-competition: either player would select to stay infinitely whatever

the other one does, the preliminary game would be similar to a prisonner
dilemma game (formally Γn1,n2∞ would have no limit equilibrium with respect to
large values of (n1, n2), the best response n1(n2) being ∞ and vice versa, while
both equilibrium payoffs in a game Γn1,n2∞ would decrease as (n1, n2) increases).
Answers to these questions would provide a better understanding of the SME

concept and of the associated taxonomy.
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8 Apendix

8.1 Other Markow equilibria

Each Markov approach amounts to interpret Γδ∞ as a specific stochastic game
(see figures 1 to 4).
The MT aproach (figure 2)
The strategies of the players depend only on the first component of θ that

is, who is the current incumbent. Provided that δ is sufficiently close to one,
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G(i1) G(i2) G(ik)i+ = i2

Figure 1: The game Γδ∞

G(i)

G(j)

i+ = i i+ = j

i+ = i

i+ = j

Figure 2: The game Γδ∞ in the MT approach
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G(i0)
t = 0

G(i1)
t = 1

G(ik)
t = Ν

i+ = i1 i+ = i0

Figure 3: The game Γδ∞ in the GPS approach

the following proposition holds (Maskin and Tirole, 1988)11:

Proposition 13 Let y1 and y2 be the solution, proved to exist and to be unique,
of the following system of two equations:12

for all i 6= j ∈ {1, 2} −Ci(yj) + δvi(yi)/(1− δ) = 0
then the following moves in G(i) generate a Markov equilibrium:
player i plays xi = yi
player j plays out if and only if xi ≤ yi.

This Markov equilibrium satisfies rent dissipation but not selection.
An equilibrium path may be interpreted as follows: anyone of the two play-

ers, whether it is the more efficient one or not, may remain as a permanent
incumbent. In case he makes a mistake, the other player moves in and stays as
the future permament incumbent.
The GPS approach (figure 3)
This refinement makes explicit use of the time variable. Let N be an integer

exogeneouly given. The following transition rule is adopted:
11Maskin and Tirole’s analysis is carried out on a specific Cournot model but their Markov

approach can be directly applied to the class of entry games defined in this paper. While
they identify other Markow equilibria, the focus in their paper is on the one characterized by
proposition 2.
12 In the following three propositions, we should more precisely write yi(δ), the dependency

of yi on the discount factor δ is left out to simplify the notations.
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• t+ = tmod(N + 1).

A Markov equilibria may be constructed as a direct extension of GPS for
finite games. Denote Γk a finite entry game where k here refers to the maximal
number of times the stage games G(i) may be repeated. The notation Γk(1)
and Γk(2) makes precise who is the initial incumbent in Γk. Observe that any
such game Γk(i1) is a finite perfect information game so that it has a unique
perfect equilibrium. Provided that δ is sufficiently close to one, the following
proposition holds.

Proposition 14 In any asymmetric entry game, for all ∆f > 0 (i.e. player 1
is more efficient than player 2) let an integer N and two sequences yt1 and y

t
2 for

t ∈ {0, 1, 2...N} be the solution, proved to exist and be unique, of the following
system of equations:
for all i 6= j ∈ {1, 2}
−Ci(yNj ) = 0
−Ci(ytj) +

Pt0=N
t0=t+1 δ

t0−tvi(yt
0
i ) = 0 for t ∈ {0, 1, 2...N − 1}

andPt0=N
t0=t δt

0−tv2(yt
0
2 ) ≥ 0 for t ∈ {1, 2...N}

butPt=N
t=0 δtv2(y

t
2) < 0.

Then the unique perfect equilibrium in Γk(2) is such that: 13

for 1 ≤ k ≤ N player i plays xi = y
k
i and player j plays out if and only if

xi ≤ yki
for k = 0 player 2 plays out, then player 1 plays x1 = y01 and player 2 plays

out if and only if x1 ≤ y01.

In the game Γk(2) the less efficient player may maintain as a permanent
incumbent if and only if k ≤ N. This proposition (Gromb et al., 1997) allows to
construct the unique perfect equilibrium of any game Γk(i1) whatever its length
k > N + 1 using a backward induction argument. Indeed, since the initial
equilibrium move for player 2 in ΓN+1(2) is out then in terms of payoffs, we
have ΓN+1(2) ≡ ΓN+1(1) with a zero equilibrium payoff for player 2, so that,
ΓN+2(2) ≡ Γ1(2) while ΓN+2(1) ≡ Γ1(1)+ΓN+1(1). Let k = (N +1)q+ r with
r < N + 1, then Γk(i1) will be played as a game Γr(i1) followed by q times
ΓN+1(1) games.
This equilibrium satisfies both rent dissipation and selection.
To construct the Markov equilibrium in Γδ∞ consistent with the adopted

transition rules, go as follows: decompose the game Γδ∞ into finite sequences
of N + 1 stages, within each such sequences use the strategies of ΓN+1, this
is feasible since the state variable says where the players stand within each
sequence. Clearly, if one player uses such a strategy, there is no way for the other
to obtain a higher payoff than the one he gets through his Markov strategy.
13For simplicity only the equilibrium path is described, the best response after non equilib-

rium moves is easily completed.
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G(S)
t = 1

G(S)
t = n

G(i)
t = 0

G(S)
t = 2

i+ = S i+ = S

i+ = L i+ = L

i+ = L

i+ = L or S

i+ = S

Figure 4: The game Γδ∞ in the SME approach

This Markov equilibrium can be interpreted as follows: only the more effi-
cient player may remain as a permanent incumbent, if he makes a mistake then
the other player (the less efficient one to be seen as the hit and run player)
moves in and stays in (at most N stages) until t = 0.
This equilibrium has at least three limitations. Firstly, the strategy of the

efficient player should be stationary and not cyclical. Secondly, after a mistake,
the number of stages the hit and run player may stay in should not depend on
where the players stand on the cycle. Thirdly, it seems awkward to rely on a
finite game to define the relevant N used to construct the solution of an infinite
horizon game. In this approach, the time variable says too much.
The SME approach (figure 4)

8.2 Proofs

Proof. (Proposition 2) Let (ZL, ZS) be the Markov strategies as defined in the
proposition. The associated paths are as follows:
- if θ = (L, 0) the path is : ((yL, out), (yL, out), ...);
- if θ = (S, 0) the path is : ((out, yL, out), (yL, out), (yL, out), ...);
- if θ = (S, t)with t 6= 0 the path is: ((ytS , out)...(ynS , out), (out, yL, out), (yL, out)...);
The corresponding non negative discounted payoffs are easily computed as

follows: πL(ZL, ZS | θ = (L, 0)) = πL(ZL, ZS | θ = (S, 0)) = vL(yL)/(1− δ)
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πL(ZL, ZS | θ = (S, t)) = δn+1−tπL(ZL, ZS | θ = (L, 0))
= vL(yL)δ

n+1−t/(1− δ) for t ∈ {1, 2...n}
πS(ZL, ZS | θ = (S, t)) = Σt0=nt0=t δ

t0−tvS(yt
0
S ) for t ∈ {1, 2...n}

πS(ZL, ZS | θ = (S, 0)) = πS(ZL, ZS | θ = (L, 0)) = 0
Part I : ZL is a best response to ZS .
Let θ = (L, 0)
- if player L selects xL ≤ yL player S moves out so that θ+ = (L, 0), then

player L discounted payoff is vL(xL) + δπL(ZL, ZS | θ = (L, 0))
which is maximized at xL = yL to be πL(ZL, ZS | θ = (L, 0));
- if player L selects xL > yL player S moves in so that θ

+ = (S, 1), then
player L discounted payoff is
dL(xL)+δπL(ZL, ZS | θ = (S, 1)) = dL(xL)+δn+1πL(ZL, ZS | θ = (L, 0)) <

πL(ZL, ZS | θ = (L, 0)) since dL(xL) ≤ 0 and δ < 1;
- if player L moves out player S also moves out and the game ends with zero

payoff for player L;
- this shows that xL = yL is a best response.
Let θ = (S, t) for t ∈ {0, 1, 2...n}
- if player S selects xS ≤ ytS then by moving out player L gets δπL(ZL, ZS |

θ = (S, t)) for t ∈ {0, 1, 2...n − 1}, and δπL(ZL, ZS | θ = (L, 0)) for t = n so
that his payoff may directly be written as δn+1−tπL(ZL, ZS | θ = (L, 0)), while
by moving in he gets −CL(xS) + δπL(ZL, ZS | θ = (L, 0))
since −CL(xS) ≤ −CL(ytS) we have :
−CL(xS) + δπL(ZL, ZS | θ = (L, 0)) ≤ −CL(ytS) + δπL(ZL, ZS | θ = (L, 0))
by construction CL(ytS) = vL(yL)δ(1 − δn−t)/(1 − δ) and πL(ZL, ZS | θ =

(L, 0)) = δvL(yL)/(1− δ) so that
−CL(ytS) + δπL(ZL, ZS | θ = (L, 0)) = δn+1−tπL(ZL, ZS | θ = (L, 0))
hence player L0s best response is to move out;
- if player S select xS > ytS the same argument but with −CL(xS) >

−CL(ytS) shows that player L0s best response is to move in;
- if player S moves out then, using the argument given for θ = (L, 0) it is

clear that player L should play xL = yL.
Part II : ZS is a best response to ZL.
Let θ = (L, 0)
- if player L selects xL ≤ yL by moving out player S gets πS(ZL, ZS | θ =

(L, 0)) = 0, while if he moves in he gets −CS(xL) + δπS(ZL, ZS | θ = (S, 1)).
Since −CS(xL) ≤ −CS(yL) we have
−CS(xL) + δπS(ZL, ZS | θ = (S, 1)) ≤ −CS(yL) + δπS(ZL, ZS | θ = (S, 1))
by construction CS(yL) = Σt=nt=1 δ

tvS(y
t
S) and πS(ZL, ZS | θ = (S, 1)) =

Σt
0=n
t0=1 δ

t0−1vS(yt
0
S )

so that
−CS(yL) + δπS(ZL, ZS | θ = (S, 1)) = 0
hence player S0s best response is to move out;
- if player L select xL > yL the same argument but with −CS(xL) >

−CS(yL) shows that player S0s best response is to move in;
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- if player L selects out and player S moves out the game ends and player S
gets 0, if player S selects xS > y0S , by the Markov assumption player L moves
in and player S discounted payoff is dS(xS)+ 0 ≤ 0, if player S selects xS ≤ y0S
player L moves out and θ+ = (S, 1) but in that case player S discounted payoff
is strictly negative since v(xS) ≤ v(y0S) and Σt

0=n
t0=0 δ

t0vS(y
t0
S ) < 0,

hence player S0s best response is to move out.
Let θ = (S, t) for t ∈ {0, 1, 2...n}
- if player S selects moving out or xS > ytS (in which case player L moves

in) he gets 0;
- if player S selects xS ≤ ytS player L plays out and player S discounted

payoff is vS(xS) + δπS(ZL, ZS | θ = (S, t+ 1modn+ 1))
which is maximized at xS = ytS to be

Pt0=n
t0=t δ

t0−tvS(yt
0
S ); by construction

this expression is non negative if t is different from 0, and strictly negative if
t = 0, consequently player S best response is xS = ytS for t ∈ {1, 2...n} but out
for t = 0.

Proof. 14 (Theorem 4) The proof runs as follows. Firstly prove that
conditions (1-2-3-4) of Φn1 have a unique solution. Secondly, check whether
condition (5) is satisfied: if it is, the unique solution of Φn1 is obtained, if it is
not Φn1 has no solution.
To prove the first part, for all xL ∈

£
v−1L (0), C−1S (0)

¤
, define the function

W (xL) = CS(xL) − Σn1 vS(xtS) in which the sequence (xtS) is derived from xL
through (1) that is,

−CL(xtS) + (n− t)vL(xL) = 0 for t ∈ {0, 1, 2...n}

then, show that W (xL) is negative (step 1) then positive (step 2) and that its
derivative is strictly positive (step 3) so that there is a unique solution to the
equation W (xL) = 0. Indeed:
Step 1: if xL = v

−1
L (0) then W (xL) < 0

In that case xtS = C−1L (0) for all t so that W
¡
v−1L (0)

¢
= CS

¡
v−1L (0)

¢ −
nvS

¡
C−1L (0)

¢
by assumption vS

¡
C−1L (0)

¢
> 0 so that for n large enough W

¡
v−1L (0)

¢
< 0.

Step 2: if xL = C
−1
S (0) then W (xL) > 0

Since CL is strictly decreasing, the sequence (xtS) is a strictly increasing
sequence bounded by C−1L (0). Since vS is strictly increasing this implies that
Σn1 vS(x

t
S) is certainly negative for n large enough so thatW

¡
C−1S (0)

¢
= −Σn1vS(xtS)

is certainly positive.
Step 3: dW

dxL
> 0

We have

dW

dxL
=
dCS
dxL

− Σt=nt=1 (
dvS
dxtS

· dx
t
S

dxL
)

14 I am indebted to Rida Laraki for providing the argument for this proof.
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Using (1) we get:
dxtS
dxL

= (n− t) dvL
dxL

/
dCL
dxtS

By substitution it follows that:

dW

dxL
=
dCS
dxL

− dvL
dxL
Σt=nt=1 ((n− t)

dvS
dxtS

/
dCL
dxtS

)

By assumption − dvS
dxtS

/
dCL
dxtS

is uniformly bounded away from zero by ε so that

dW

dxL
≥ dCS
dxL

+
dvL
dxL

n(n− 1)
2

ε

Since
dvL
dxL

is bounded away from zero and since
dCS
dxL

is bounded away from

−∞ we certainly have
dW

dxL
> 0 for n large enough.

Hence for a given n large enough there is a unique solution to W (xL) = 0
that is, to (2). This solution is in

¤
v−1L (0), C−1S (0)

£
so that (3) is also satisfied.

Denote ŷL this solution and (ŷtS) for t ∈ {0, 1, 2...n} the associated sequence
obtained through (1). Observe that (4) is satisfied as well : since vS is increasing
the function Σt

0=n
t0=t vS(ŷ

t0
S ) is bell shaped with respect to t so for all t we have:

Σt
0=n
t0=t vS(ŷ

t0
S ) ≥Min(Σn1vS(ŷtS), vS(ŷnS)) =Min(CS(ŷL), v(C−1S (0)) > 0

because ŷL < C−1S (0) implies CS(ŷL) > 0 while ŷnS = v(C−1S (0) > 0 by
construction.
It is now a simple matter to check whether (5) holds or not. If it does a

complete solution to Φn1 is obtained, if it does not there cannot be a solution
for that value of n since conditions (1) through (4) have a unique solution.

Proof. (Theorem 6) Parts 1 and 2 of the theorem are easily proved.
Indeed, suppose vL(yL(n)) ≥ ε > 0 for all n, then using (1) the sequence

(ytS(n)) is a strictly increasing sequence defined backwards from y
n
S(n) = C

−1
L (0)

so (4) cannot hold for large n hence limn→∞ vL(yL(n)) = 0. Then Part 2 follows
from (2).
Part 3.
First of all, given that dCLdx is bounded away from infinity and from zero and

that vS(x) is bounded away from zero, there exists a unique x∗ < C−1L (0) such
that Z C−1L (0)

x∗
vS(x)

dCL
dx

(x)dx = 0

For all x ≤ C−1L (0) define F (x) =
R C−1L (0)

x
vS(u)

dCL
du (u)du, the function F is

such that F (x) > 0 iff x < x∗.
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We now show the convergence of y1S(n) to x
∗.

Using (1) and (2) we get :

CS(yL(n))vL(yL(n)) = Σt=nt=1vS(y
t
S(n))vL(yL(n))

= Σt=nt=1vS(y
t
S(n))

£
CL
¡
yt−1S (n)

¢− CL ¡ ytS(n)¢¤
When vL(yL(n) is small this non negative expression is close to F (y1S(n)).

15

This proves that y1S(n) cannot be far below x
∗. Using (2) and (5) for the two

sequences n and n+1, it is clear that y1S(n+1) and y
1
S(n) cannot be far appart

either. More precisely:

¯̄
y1S(n+ 1)− y1S(n)

¯̄ ≤ −Min(dCL
dx

(y1S(n)),
dCL
dx

(y0S(n)))vL(yL(n))

Since dCL
dx is bounded away from infinity, limn→∞

¯̄
y1S(n+ 1)− y1S(n)

¯̄
= 0,

this is enough to prove that y1S(n) converges to some limit and this limit can only
be x∗ since limn→∞CS(yL(n))vL(yL(n)) = limn→∞CS(yL(n)) limn→∞ vL(yL(n)) =
CS(0).0 = 0.

8.3 Economic illustrations of potential competition

Two economic models of entry are analysed. In both models under-competition
prevails when competition is tough in case of entry.

8.4 Competition through short run price commitments

Consider the specific price model detailed in Ponssard (1991), the switching cost
s is not constant. Still the situation remains one of under-competition when s
is small. But, if s is not close zero, we may have excess-competition. How tough
price competition is is the key factor.
More precisely, let ω be a parameter to be interpreted as a price cross elas-

ticity. The demand Di to firm i is defined as follows :

0 ≤ pi ≤ pj − (1− pj)/ω Di(pi, pj) = D
m
i (pi) = 1− pi

pj − (1− pj)/ω ≤ pi
pi ≤ pj + (1− pj)/(1 + ω)

Di(pi, pj) = D
d
i (pi, pj)

= (1 + ω)(1− pi + ω(pj − pi))/(1 + 2ω)
pj + (1− pj)/(1 + ω) ≤ pi Di(pi, pj) = 0

15Proof. Make the change of variable from xS to u = CL (xS) . As t goes from 1 to n, xS
increases from y1S(n) to y

n
S(n) and u from u1(n) = CL

¡
y1S(n)

¢
to un(n) = CL

¡
ynS(n)

¢
= 0

but ut−1(n)− ut(n) remains t independant and equals vL(yL(n)), let ∆u(n) = vL(yL(n)).
We may then write

vL(yL(n))Σ
t=n
t=1 vS(y

t
S(n)) = Σt=nt=1 vS(C

−1
L (ut(n)))∆u(n)

For large values of n we have

Σt=nt=1 vS(C
−1
L (ut(n)))∆u(n) ≈

Z 0

u1(n)
vS(C

−1
L (u))du =

Z C−1L (0)

y1
S
(n)

vS(x)
dCL

dx
(x)dx.
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The demand function is piece wise linear with a kink when the regime
changes from a monopoly to a duopoly one. The higher ω the smaller the
duopoly range in which Di = Dd

i and the tougher the price competition (ε close
to zero corresponds to large ω).
Firm i incurs a stage fixed cost f if and only if it produces. There is no

variable cost. Consequently player i’s profit as a function of the prices (pi, pj)
writes:

if Di(pi, pj) > 0 πi(pi, pj) = Di(pi, pj).pi − f
if Di(pi, pj) = 0 πi(pi, pj) = 0

The stage game G(i) is :
- player i is the incumbent, player i may either select a move pi with 0 ≤

pi ≤ 1 , or move out i.e., he proposes no price ;
- if player i selects pi then player j may select in, in this case this means

that he sets a price pj which is his best response to pi in terms of revenue that
is, without taking account of his fixed cost ; denote pj(pi) this best response,
then the players respective payoffs are (πi(pi, pj(pi)),πj(pi, pj(pi))); or he may
select out with respective payoffs (Dm

i (pi).pi − f, 0) ;
- etc.

The exit payoff which is di(pi) = πi(pi, pj(pi)) is certainly non positive for
all relevant pi.
Summing up the monopoly profit function v is such that :

v (p) = Dm (p) .p− f = (1− p) p− f
and the entry cost C is defined as16

C (p) = −Maxpj (Dj(p, pj).pj) + f
Our attention will be limited to symmetric games. We want to investigate

whether there is under or excess-competition depending on the two parameters
ω and f. This depends on the sign of v(p∗) + C(v−1(0)) in which p∗ is defined
by Z C−1(0)

p∗
v(p)

dC

dp
(p)dp = 0

Observe that the function C is not differentiable when the regime goes from
the monopoly one to the duopoly one, but this is for only one point and has no
bearing for the integral. Still we cannot obtain p∗ from an analytical formula and
a numerical analysis has to be made to characterize the competitive situation.17

Figure 6 summarizes the results. In this table, UC refers to under-competition,
EC refers to excess-competition.

16This makes the calculation of C−1(0) somewhat cumbersome.
17The corresponding calculations may be obtained from the author upon request.
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f
0,225 UC UC UC UC UC UC UC
0,200 UC UC UC UC UC UC UC
0,175 EC UC UC UC UC UC UC
0,150 EC EC EC UC UC UC UC
0,125 EC EC EC EC EC UC UC
0,100 EC EC EC EC EC EC UC
w 4 6 8 10 12 14 20

Figure 5: The taxonomy for the price model

The positions of UC and EC in the table clearly suggests a pattern. The
situation is always one of under-competition when f is high (which is consistent
with traditional economics) or when w is large (which is not). The higher f
the lower w to obtain under-competition. Such a context may be qualified as
tough since the profit to be made is structurally low because of f and the
price competition is high because of w. On the opposite side the case of excess-
competition corresponds to simultaneous low values of f and w, a context of less
intense competition for the reverse reasons. This confirms the interpretation
obtains with the previous example : structural factors related to the degree
of toughness of competition do impact potential competition, the tougher the
competition, the more likely it is that the incumbent may secure a positive rent.

8.5 Competition through durable capital

Consider the profit and entry cost functions defined as follows :

v(x) = πmx− f

C(x) = (πm − πd)(H − x)

Define symmetric and asymmetric games from these v and C functions.
This model may be interpreted as a reformulation18 of the Eaton and Lipsey

model (1980). There firms compete through plants which become obsolete after
H units of time. The strategic decision for the incumbent consists in early
replacement of its own plant. By doing so the incumbent prevent an entrant
to preempt its market. Each time it sets a new plant, a firm incurs a fixed
cost f. Operating costs are assumed to be zero. If both firms are in the market
simultaneously, their duopoly flow of revenue is πd per unit of time. If only one
is present, its flow of revenue is πm. For consistency we certainly have πm > 2πd

and πmH ≥ f so that 0 ≤ v−1(0) = f/πm ≤ H. For simplicity also assume that
18See Gromb et al (1997) for details on this reformulation.
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πdH ≤ f . Note that ∆f may be interpreted as the difference in the fixed costs
of the two firms.
In our framework a new stage game occurs each time a plant is set up, then

G(i) is such that:
- player i is the incumbent, player i may either select a move xi with 0 ≤

xi ≤ H = C−1(0) , i.e. he sets at what time he will replace his plant, or if he
will move out that is, he will decide not to set a new plant ;
- if player i selects xi then player j may select in, i.e. player j will preempt

player i by setting up his own plant exactly before the selected time xi (with
respective payoffs for i and j: di(xi),−Cj(xi); indeed player j ’s plant will be
operating under a duopoly situation for the remaining life time of player i ’s
plant that is, H − xi units of time ; this entry cost is the opportunity cost that
need be substracted from player j ’s next stage profit when he will be playing
as the incumbent); or player j may select out (with self explanatory payoffs
vi(xi), 0) ;
- etc.
Beware that the plant life time goes with the moves within a stage game

G(i) while the discrete time in Γδ∞ goes with the setting of new plants.
Note that the exit payoff is di(xi) = πmxi+π

d(H−xi)−f which is maximized
and positive for xi = H. Our Markov construction in state (S, 0) should be
adapted to let player S capture this exit payoff rather than simply moving
out.19

Corollary 15 The game of competition through durable capital has a SME for
arbitrary large values of n (i.e. there is rent dissipation for the long-term in-
cumbent):
for L = strong and S = weak, iff ∆f < (Hπm − f)πd/(πm − πd);
for L = weak and S = strong, iff −(Hπm − f)πd/πm < ∆f.
Proof. Consider the first case that is, vL(xL) = πmxL − f + ∆f and

vS(xS) = πmxS − f and C1 = C2 = C(x) = (πm − πd)(H − x).
Proposition 11 may be used. We have v−1L (0) = (f−∆f)/ πm and C−1(0) =

H.
Then −vS(C−1(0)) + C(v−1L (0)) = f −Hπm + (πm − πd)(Hπm − f)/πm +

∆f(πm − πd)/πm = −πd(Hπm − f)/πm +∆f(πm − πd)/πm

which is indeed negative iff ∆f < (Hπm − f)πd/(πm − πd).
The second case that is, vL = πmx − f and vS = πmxi − f + ∆f and C

unchanged, is obtained through similar calculations.

Fix πm, H and f and let πd and ∆f vary. Depending on the values of
(πd,∆f) the type of competition lies in different zones that may be depicted
in a diagram (see figure 5). This illustrates the taxonomy. The corresponding
zones are interpreted as follows:
19 In state θ = (S, 0) player S plays xS = H and player L moves out iff xS ≤ y0S . The

sequence (ytS) is now defined such that −CL(ytS)+ (n+1− t)vL(yL) = 0 to take into account
this change of strategies in θ = (S, 0). The other (in)equations in system Σ1 are revised
accordingly. This does not affect the mathematical properties of the SME.
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Excess competition

Under competition

Selection

Selection and
blockaded 
entry

πd = πm / 2

0

∆ f

πd = 0

∆f = Hπm - f
∆f = 0

Smooth
competition
πd > 0

Tough 
competition
πd < 0

Relative efficiency
Low High

Figure 6: The taxonomy for the Eaton and Lipsey model

- selection is obtained whatever πd as long as ∆f is large enough ; observe
that for ∆f > Hπm − f the least efficient firm is barred from the market
anyway (blockaded entry);
- excess-competition prevails for πd > 0 and small enough ∆f ;
- under-competition prevails for πd < 0 and small enough ∆f .
Rent dissipation does not always prevail. The toughness of competition in

the case of entry is the structural factor that matters : it directly determines
the ratio of the entry cost relative to the monopoly profit. With a negative
duopoly revenue the incumbent is able to secure a positive stage rent.
With GPS, selection always occurs as soon as ∆f > 0. With SME it only

occurs with ∆f large enough (except at the singular point πd = 0).
These results seem to make economic sense.
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