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1 Introduction

The dominant paradigma of modern business cycle theory is the stochastic growth mo-
del with flexible labor. The stochastic growth model, however, is difficult to compute
as multiplicative elements such as the production function interact with additive ele-
ments such as depreciation or investment. As a consequence, only special cases (with
log utility and full depreciation) can be solved analytically. For this reason, the compa-
rison of different computational techniques that approximate the solution numerically
is important. Previous work by Taylor and Uhlig (1980) has focused on the study of
the stochastic growth model with inelastic labor supply, while Christiano and Fisher
(2000) compare different numerical techniques for the solution of the stochastic growth

model with binding constraints on nonnegative investment.

In the present paper, we evaluate the numerical techniques that are most widely app-
lied in recent research on non-linear rational expectations general equilibrium models
from a different angle. We analyze the properties of standard methods with regard
to their accuracy and appropriateness for business cycle research. Importantly for the
study of business cycles, we introduce flexible labor supply in the stochastic growth
model. Furthermore, we study the sensitivity of the first two moments of the variables
that are important for the business cycle researcher, i.e. output, employment, invest-
ment, consumption, and wages, with regard to the computational method varying both
the functional form of the utility function and the parameterization of the model. In
particular, we apply parameter values in the range that are typically observed across

countries.

The paper is organized as follows. In section 2, the model is presented. In section 3, we
briefly review the methods most relevant for the computation of modern business cycle
models, and section 4 presents summary statistics for the various methods. Section 5

concludes.

2 The standard business cycle model

We consider a decentralized economy with households and firms. Households maximize

their expected life-time utility

Ey Zﬁtu(ct,nt) (1)



with respect to consumption ¢y and labor supply ng in period 0. The time endowment
is normalized to one so that 1 — n; denotes leisure in period t. Utility is discounted
by # € (0,1). Instantaneous utility in period ¢ will be chosen among the following

functional forms that are commonly applied in business cycle models:

(

ITln [Ci*n(l — )’ — 1] I
L (e — L An) T - 1] IT
wlenn)=q T (o= tznt) )
In¢;, — Ony II1
| Ing + 250 IV

The functions [,IIT, and IV meet the requirements of King, Plosser, and Rebelo (1988),
p-292 that allow for a balanced growth path in the presence of exogenous labor augmen-
ting technical progress A;.! If one uses specification IT a balanced growth path exists
only if one is willing to assume that the disutility of work is proportional to A4;.2 We
use the common parameter 6§ to ensure that the fraction of working hours per worker

in total hours available equals the respective empirical magnitude.

The households receives income from capital k; and labor n;. The budget constraint in
period t is given by:
ki = (1 +r)k +wng — (3)

where r; and w; denote the real interest rate and the wage rate, respectively.

Firms are of measure one and produce output with labor N, and capital K; with

constant returns to scale according to:
Y, = ZF(Ky, ANy = Zy(AN) K[ ~°, (4)

where A; denotes the level of labor augmenting technical progress that grows determi-
nistically at the rate a — 1 > 0:
At+1 = aAt. (5)

Total factor productivity Z; follows the stochastic AR(1)-process:

InZ, = plnZ;_; + ¢, (6)

I'Function I is the standard functional type. Function III models indivisible labor as in Hansen
(1985) and is able to explain the fact that total hours and the number of employed workers is much
more variable than individual working hours. Function IV, finally, is used by Castafieda et al. (2004)
in their work on heterogeneous agent economies. For this type of the utility function, working hours

vary less with individual productivity and are in better accordance with empirical observations.
2This functional form is suggested by Greenwood et al. (1998) and has the attractive feature that

there is no wealth effect on the labor supply decision. Hence, richer households do not supply less

labor ceteris paribus.



where € is a serially uncorrelated, normally distributed random variable with mean 0

and variance o2.

In a factor market equilibrium, factors are rewarded with their marginal products:

07Z,F (K, N,)

ry = a—K,t - (S, (7)
_ OZ,F(Ky, Ny)

Capital depreciates at rate 4.

In a competitive equilibrium, aggregate variables equal individual variables, k; = K,
n; = Ny, ¢, = Cy, and the economy-wide resource constraint is given by Y, = K;,; —
(1 —6)K; + Cy. The solution of the model consists of policy functions of the household
for consumption ¢(ky, Z;), labor supply [(k;, Z;) and next-period capital £'(k;, Z;) that

cannot be solved analytically in the presence of elastic labor supply.

3 Computation of Solutions

The solution of the model satisfies the following set of conditions, where — different
from the previous usage — lower case variables are scaled by A,, i.e., z; = X;/A;, except
for the shadow price of wealth A;, where )\; := A, A}

ou(cy, Ny)
=\ 9
aCt ts ( a)
Ou(cy, Ny) a-1p1-a
T A (9b)
a,kt+1 = ZtNtaktlia + (1 — (S)kt — Cy, (9C)
A = Ba TEN 1 (1 =04+ (1 — a) Zyp 1 N kL) (9d)

We solved this model with five different methods.? The value function iteration method

iterates to convergence over:

'US+1 (I{?t, Zt) = Imax U,(ZtNtaktlia —+ (1 — 6)kt — akt+1, Nt) —+ 60/17”Et'ljs (kt+17 Zt+1)-

kt41,Nt

Given a pair (kq, kyy1) we must solve the first order condition for optimal labor supply.

Depending on the type of utility function chosen, this requires the solution of the

3A detailed description of these methods is provided by Heer/Maufiner (2004). The Fortran pro-
grams for all five methods can be downloaded from Alfred Maufiners homepage ’http://www.wiwi.uni-

augsburg.de/vwl/maussner/’.



following (implicit) equation:

0= Z,NPky™ + (1= 8)ky — akyyr — (a/0)(1 = N)ZNP~" k™, (1
0= NJ*70 = (a/0) 2k}, a
0= ZNPE; ™ + (1= 0k — akier — (0/0) ZUNP ke, (11T
0= Z,N2Kk!™ + (1 — 0)k, — akpsr — (a/0)(1 — N,) Z, N2}, (v

It can be shown that each of this equations has a unique solution N € [0, 1] given

reasonable values of (k, k4 1).

To perform the iterations, we use a discrete version of the model: we approximate the
AR(1) process for the technological shock Z; by a finite Markov chain (see Tauchen,
1986) of 9 elements. The difference between the smallest and the largest value of In z is
three times the size of the unconditional standard deviation of (6). The upper (lower)
bound of the capital stock equals the value that the deterministic counterpart of the
model would approach if Z; would equal its maximum (minimum) value all the time.

We choose a grid of 5,000 equal spaced points between these bounds.*

The extended deterministic path method assumes that after a shock in period ¢ no
further shock occurs and computes the dynamics for the next 1" periods. Therefore, it
has to solves a set of 27" — 1 equations in the unknowns N, kiis11,8 = 0,2, 7 — 1
obtained from (9a) to (9d) assuming that k; 7 is equal to the respective stationary
solution of the deterministic counterpart of the model. From this solution only N, and
ki, 1 are retained. Then another shock is drawn and the respective systems of equations
is solved for N;,; and k; 5 and so forth. The accuracy of the solution depends upon
T. We found that T" = 150 gives a very accurate solution, yet at the cost of long

computational time.

The log-linear method obtains a linear approximation of the model in the vicinity of the
balanced growth path of its deterministic counterpart. This linear rational expectations
model can be solved by, e.g., applying the method of Blanchard and Kahn (1980), (see
King, Plosser, and Rebelo, 1988) or of King and Watson (2002).

The parameterized expectations approach approximates the rhs of (9d) by a polynomial

4We also computed the model for a grid of 50,000 equally spaced points and did not find any

difference in the solution.



n (Z,k).> We use a simple, complete, exponential polynomial of second degree,®

V(v,In Z,Ink) == exp(y1 + 2 In Z + 3 Ink + y4(In 2)? + v5(In k) + v In zIn k). (11)

The vector of parameters - is determined as solution to a non-linear set of equations.

This system depends itself on a long series of points obtained from iterations over

)‘t = ,QZ}(’Yaantalnkt)a (123‘)
Ju(cy, Ny)
=\ 12b
aCt ty ( )
Ou(c, Ny) a-1,1-a
et = NaZiNy (120)
akt+1 ZtNakl @ (1 — 6)kt — Ct, (12d)

where Z; is obtained from (6) using a random number generator that provides pseudo
normally distributed innovations ¢;. Given \;, equations (12b) and (12¢) can be reduced
to an equation that determines N; given (Z;, k;). Again, this equation depends upon

the choice of utility function and is given by

0=(1- Nt)ﬂ(l—n)/n 1 — (/)N /"ZtNO‘ 1k1 o (I
0= N1~ (a/0) 2k, (1
0=N""—(a/0)\Ziky ", (IIT
0=1-(a/f)(1 — N)NZNF kL TV’

Given NV, it is easy to solve for ¢;. For initial values of the parameters and the simulated
time series, we can compute the least squares of the residuals R(In Z;,Ink;) = C,}} —
Y(,In Zy,In k). The parameter vector v = (71, ...,7s) is the solution of the following

system of non-linear equations:

T—

—2
0= X;R(ln Z, Inky)

i=1,2...,6. (14)

The crucial step in applying this algorithm is to find acceptable starting values for the

non-linear equations solver. We use a genetic search algorithm to perform this task.”

5The method of parameterized expectations can be interpreted as a special case of the more general
class of projections methods as pointed out by Judd (1996). Furthermore, he emphasizes that the

approach was originally developed by Williams and Wright (1982,1984,1991).
6See, for example, den Haan and Marcet, (1994).
"In particular, we applied two different specifications of the genetic search algorithm. In our first

specification, we follow Duffy and McNelis (2001). Yet, different from this paper, our fitness criterium



To reduce computational time this algorithm operated over short time series of 4,000
points, say. When a solution was found, we used this as starting values for systems of
non-linear equations based on successively longer time series. Usually one additional
step with 10,000 observations was necessary to get the final solution based on 50,000

observations.

In the case of our German set of parameter values this strategy always proved successful.
Yet, in the case of the US set of parameters the search strategy sometimes failed,
especially in the cases of utility function (III) and (IV). Fortunately, an alternative
approach worked: we used the policy function of the log-linear solution to compute
time series of 500 points, say, for \;, k;, and Z;. Then, we regressed \; on (v, ki, Z;)
using non-linear least squares.® This gives a starting value for solving (14), which — as
above — was based on a much longer time series of 50,000 observations. Though this
method is much faster than the one based on stochastic search, it did not work in all
the cases considered. For instance, we were not able to find acceptable starting values

in the case of utility function (II) for the US parameter set.

As in the parameterized expectations approach, the Galerkin projection method rests
on the approximation of the rhs of (9d). Contrary from the previous method, however,
we use a second degree product base, Chebyshev exponential polynomial in (In Z, In k)
as the approximating function. In addition, we do not apply Monte Carlo simulation
in order to fit the parameterized function, but compute the weighted residual over
the state space with the help of Galerkin methods, i.e. using the weight one and the

Chebyshev polynomials as projection functions.’

The critical step in the projection method is the choice of a bounded interval for
the capital stock so that the algorithm always stays within this interval. We solve
this problem in the following way that, to the best of our knowledge, has not be-
en emphasized in the previous literature on projection methods: We simply use a
larger interval for the approximation that embeds the latter but integrate the re-

sidual over the smaller only. More exactly, the conditional expectation is approxi-

is the minimal absolute value of the rhs of (14). Secondly, we use a different selection scheme and
employ a larger set of cross-over operators as Duffy and McNelis (2001) do. In particular, we use
stochastic universal sampling as in Mitchell (1996). The genetic search algorithms are described in
more detail in Heer and MauBiner (2004). None of the two algorithms is found to dominate the other

in terms of speed across all calibrations and parameterizations in our model.
8Since the error term in A\; — ¢ (7, k¢, Z;) is additive it is inappropriate to regress In(\;) on In(k;)

and In(Z;) by means of ordinary least squares.
9For a more detailed description of the projection methods, see Judd (1992, 1998) and McGrattan

(1999).



mated over the interval [In(kn), In(kpaz)], while the Galerkin integral is computed
over [In(kmin), 10(kmaz)] C [I0(kmin), I0(kmaz)]. While our program does not find a
solution for l%mm = Kkpin and ImeM = Kpaz, it converges for INcmm = 1.1 k,,;, and
kimaz = kmaz/1.1.22 The basic reason for this behavior of the algorithm is that for in-
itial values of v in the parameterized function, In k;; might happen to fall outside the
interval [In(Kmin ), (kg )] if we choose [In(kmin), In(Kmag )] too wide. In this case, ho-
wever, we get highly inaccurate solutions for the policy functions. An additional device
helped us to reduce the second interval [In(Epin), In(kmae)] further. We also implemen-
ted a zero constraint on investment from which we know that it never binds in our
calibrated model (since the standard deviation of the innovations of (6) is too small).
This step requires a third set of equations to be solved for N; if the constraint binds,

ie., if ¢, =y, :== Z,Nfk}® holds:

B a/0 »
0=N, — T (o) (1)
0= N~ (o)) Z;k} ™, (I17)
0=N, — (a/d), (1117)
0= (1= N) 7~ (a/f). V)

[t can be shown that in this case p; := A\, — (7, In Z;, In k;) > 0 holds, where p; denotes
the (scaled) Lagrange multiplier of the constraint ak; . > (1 — 0)k;.

Again, starting values for the non-linear equations solver are supplied by a genetic
search routine based on a first degree polynomial. In two steps we increase the degree
to the final second degree polynomial. Alternatively, we use the solution for A; from the
log-linearization algorithm and approximate it by a Chebyshev polynomial of second

degree.

4 Results

We evaluate the methods with regard to 1) 1st and 2nd moments of employment,
output, investment, consumption, and 2) computational time.'! As we are aiming to
assess the suitability of the different methods for business cycle models more generally,

we analyze two different sets of calibration parameters. The first set reflects parameters

0For the German calibration, we even had to shorten the interval to [1.2 - In(kmin ), In(kmaz)/1.2].
HTn addition, the den Haan/Marcet (1994) statistic and the policy functions are displayed in the

appendix.



commonly applied in the business cycle study of the postwar US economy. The second
set, of parameters is calibrated with the help of German postwar data prior to unification
in 1989.!2 Importantly, these two economies are characterized by different institutional
settings. In particular, the German capital market is less competitive as many banks
are state-owned or subsidized by the state. As a consequence, capital depreciates less
rapidly in Germany as capital utilization is lower. Furthermore, the capital coefficient
of output, 1 — «, is lower in Germany (0.27) than in the US (0.36). One possible reason
may be the presence of unions. Secondly, labor markets are more rigid in Germany and
the social security system is more generous. As a consequence, average labor supply is

lower in Germany as well.

Table 1
Model Calibration

German Calibration US Calibration

Production Preferences Production Preferences

a=1.005 £=0.994 a=1.0055 £=0.99

a=0.73 n=1.0 a=0.64 n=1.00
0=0.011 v=>5.0 0=0.025 v=3.33
p=0.90 v=33.5 p=0.95 v=17.00

0=0.072 N=0.13 0=0.0072  N=0.33

For the US economy, we use the set of parameters displayed in Table 1. Except for the
rate of per capita output growth they are in accordance with Hansen (1985). The ave-
rage quarterly growth rate of the US economy exceeds the one of the German economy,
a' = 1.0050, and amounts to a = 1.0055 during 1960-2002 on average. The estimates of
the Frisch intertemporal labor supply elasticity 7, , implied by microeconometric stu-
dies and the implied values of v and v vary considerably. MaCurdy (1981) and Altonji
(1986) both use PSID data in order to estimate values of 0.23 and 0.28, respectively,
while Killingsworth (1983) finds an US labor supply elasticity equal to n,, = 0.4."
We will use the conservative estimate 7,, = 0.3 and, accordingly, apply the values

v = 3.33 and v = 7.0 in utilities III and IV, respectively.'* For Germany, we use the

12A detailed description of this calibration is provided in Chapter 1 of Heer and Maussner (2004).
13Domeij and Floden (2001) argue that these estimates are biased downward due to the omission

of borrowing constraints.
1 Greenwood et al. (1988) even apply a value 7, ,, = 1.7 corresponding to ¥ = 0.6 in their study,
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same set of parameters as in Heer and Maufiner (2004) (see Table 1).!" In addition,
we use the value 7,, = 0.2 following Heer and Trede (2003) implying v = 5.0 and
v = 33.5.

Our estimation results for the US calibration are displayed in tables 3-6 for the utility
functions I-IV, respectively. Consider table 3. The first column presents the variable,
the next three columns display the standard deviation of the variable, the variable’s
correlation with output, and its autocorrelation, respectively. As is obvious from the
inspection of the table, the minimum and maximum values obtained in the computation
with either methods are close to the mean values. As one exception, the volatility
of investment as computed by the different methods varies considerably. The spread
between the minimum and maximum value, 3.54 and 4.03, amounts to 13.3%, but is
still below the standard deviation of this moment that is displayed in the row below
these numbers. These observations also hold for the three other utilities II, III, and IV

displayed in tables 4-6, respectively.

Notice further that the moments are very much alike for the four different utility functi-
ons. If you consider the mean correlation of investment I, consumption C', employment
N, and wages W with output Y, displayed in the sixth columns of tables 3-6, the di-
vergence is small. Similarly, the mean autocorrelations of Y, I, C, N, and W, that are
displayed in column 9 in each table are hardly discernable. There are only two mar-
ked differences between these four parameterizations: 1) the volatility of output (and,
similarly, investment) is more pronounced for utilities I and III, and, 2) employment
is much more volatile relative to both output and wages in cases I and III as well.
Consequently, utility functions I and III are often applied in business cycle research
in order to generate the empirically observed (rather high) volatility of output and
employment, while utilities IT and IV are often applied in heterogenous-agent models

in order to replicate the (rather low) dispersion of hours worked among the workers.

The accuracy of the five different computational methods for the German paramete-
rization does not significantly differ from the one for the US calibration as is obvious
from comparison of tables 7-10 with tables 3-6, respectively. Again, the only moment
that displays economically significant variation among the different methods applied is
the standard deviation of investment. Also in the German case, the standard deviation
of this moment is higher than the difference between the lowest and the highest com-

puted value. In summary, all our qualitative results with regard to the computation

while Castaneda et al. (2004) use v = 5.5.
15In particular, we found no compelling evidence, that the intertemporal elasticity of substitution

is different between the US and Germany.



also hold in the model calibrated for the German economy. With regard to its busi-
ness cycle features, the two economies are also very much alike with one exception. If
you compare tables 3 and 7, in particular, you notice that the volatility of output and
investment (consumption) is higher (lower) in Germany than the one in the US. As
Germans value leisure more than US households (and hence work less in steady state)
in this particular case, the relative weight 1/6 of consumption in utility is smaller than
in the US for the functional form I of utility. As a consequence, German households
have to vary their intertemporal labor supply to a larger extent than US households
in order to smooth intertemporal utility and, for this reason, the volatility of hours
worked relative to consumption is higher in Germany than in the US. Higher volatility

of labor also results in higher volatility of investment and output in Germany.

Table 2

Computational Time

Method Time

Value function iteration 34 minutes 2.65 seconds

Extended deterministic path 2 hours 34 minutes 29.88 seconds

Parameterized expectations

- one step with search 36 minutes 29.59 seconds
- three steps with search 3 minutes 31.25 seconds
- given initial value (utility III) 17.17 seconds
Galerkin projection

- four steps 23 minutes 32.37 seconds
- given initial value (utility IV) 4 minutes 56.08 seconds
Log-linear approximation 0.48 seconds
Notes:

If not otherwise mentioned, the results are based on the solution for utility func-
tion (I) and the German parameter set. The program run on a 3.2 Gigahertz
Pentium IV personal computer. The program is written in Fortran 95 and com-
piled with the Compaq Digital Fortran developer environment. Computational
time comprises the time needed to compute the solution and to compute the
summary statistics from 500 simulations. The stochastic search routine rests on
a population of 50 candidate solution vectors and iterates over 100 generations.

With respect to computational time, the algorithms can be ordered as follows: 1) Log-
linear approximation is by way the fastest method. Using a 3.2 Gigahertz Pentium IV
personal computer it takes less than a second to compute the policy function and to run

500 simulations over 60 periods each. The further ranks depend on our measurement
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of computational time and our strategy to find acceptable starting values for the non-
linear equations solver. If we use initial values obtained from the loglinear solution
method 2) the parameterized expectations approach (PEA) is much faster than 3)
the Galerkin projection method (GPM) and both need less time than 4) the value
function iteration method (VIM). The PEA needs less than twenty seconds whereas
the GPM consumes almost five minutes of computer time. The reason is that the
Galerkin projection must evaluate a sum over 2500 elements (we use 50 nodes for 7
and 50 nodes for k£ to compute the respective double integral), where each summand
(namely the approximation of the conditional expectation) is itself a sum over 100
elements. The ranking between the PEA and the GPM does not change, if we use
stochastic search. As can be seen from Table 2 it pays in the case of the parameterized
expectations approach if we do not operate on the final long time series of 50,000
elements, but start with a much shorter one and use this solution to initialize the
computation of the next vector that is based on a longer time series. This approach
reduces computation time by a factor of ten. If one uses brute force and operates over
50,000 elements the PEA takes a bit more time than the VIM. One must be either
very lucky or very patient if one wants to get the final solution from the GPM in one
step. Neither were we lucky nor patient enough. So we started with a 2 x 2 polynomial
and 10 nodes for Z and k. If the search routine was successful, we used this solution
and increased the number of nodes and the degree in a few steps. Compared to the
stepwise parameterized expectations approach, the Galerkin method is about 5 to six
times slower. Since it seems always possible to shorten the search process, the VIM gets
rank 4. In any case, 5) the extended deterministic path method is by far the slowest.
If you do not own such a fast machine as we do (2.5 hours) you should compute the
solution over night, as it may well take six to eight hours.'® Finally, we like to mention
that the solution in the case of utility functions IT and III, where an analytical solution
for N given A, k, and Z is available, requires substantially less time. For instance, the

extended path method finds the solution in about 50 minutes.

16Tf you do your programming work with GAUSS you must multiply this time by a factor of six.
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Table 3
Summary Statistics: Utility [, US Calibration

Variable Sy Sy T

Min  Mean Max Min Mean Max Min Mean Max
Output 1.24 1.28 1.31 1.00 1.00 1.00 0.65 0.65 0.67
Standard Dev. 0.21 0.22 0.23 0.00 0.00 0.00 0.10 0.10 0.11
Investment 3.54 3.74 4.03 0.99 0.99 0.99 0.63 0.64 0.65

Standard Dev. 0.60 0.65 0.73 0.00 0.00 0.00 0.10 0.11 0.11
Consumption 0.38 0.41 0.46 0.86 0.89 0.91 0.75 0.76 0.78
Standard Dev. 0.08 0.09 0.10 0.02 0.03 0.04 0.09 0.09 0.09

Hours 0.58 0.62 0.67  0.98 0.98 0.98 0.63 0.64 0.65
Standard Dev. 0.10 0.11 0.12 0.01 0.01 0.01 0.10 0.11 0.11
Real Wage 0.67  0.68 0.71 0.98 0.98 0.98 0.68 0.69 0.70

Standard Dev. 0.11 0.12 0.13 0.01 0.01 0.01 0.10 0.10 0.10

Notes:

s is the standard deviation of variable z listed in the first column. s;, is the correlation of
x with output. s, denotes the first order autocorrelation of . All moments are averages over
500 simulations. The length of the respective time series was 60 periods in each simulation.
All time series are HP-filtered with weight A\ = 1600. The columns labeled "Min’, "Mean’, and
"Max’, respectively, display the minimum, the mean, and the maximum from the five different
methods. The rows labeled 'Std. Dev.’ give the standard deviation of the respective moment,

computed from the 500 simulated time series.
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Table 4
Summary Statistics: Utility II, US Calibration

Variable Sy Sy T

Min Mean Max Min Mean Max Min Mean Max
Output 1.03 1.03 1.05 1.00 1.00 1.00 0.66 0.66 0.67
Standard Dev. 0.18 0.18 0.18 0.00 0.00 0.00 0.10 0.10 0.10
Investment 2.52 2.60 2.76 0.99 0.99 0.99 0.64 0.65 0.66
Standard Dev. 0.42 0.44 0.47 0.00 0.00 0.00 0.10 0.11 0.10
Consumption 0.45 0.48 0.50 0.95 0.97 0.98 0.69 0.70 0.71
Standard Dev. 0.08 0.09 0.09 0.01 0.01 0.01 0.10 0.10 0.10
Hours 0.24 0.24 0.24 1.00 1.00 1.00 0.66 0.66 0.67
Standard Dev. 0.04 0.04 0.04 0.00 0.00 0.00 0.10 0.10 0.10
Real Wage 0.79 0.80 0.81 1.00 1.00 1.00 0.66 0.66 0.67
Standard Dev. 0.13 0.14 0.14 0.00 0.00 0.00 0.10 0.10 0.10
Notes: See table 3.

Table 5

Summary Statistics: Utility III, US Calibration
Variable Sg Sy Ty

Min Mean Max Min Mean Max Min Mean Max
Output 1.63 1.68 1.77 1.00 1.00 1.00 0.65 0.65 0.66
Standard Dev. 0.26 0.27 0.29 0.00 0.00 0.00 0.10 0.10 0.11
Investment 4.80 5.02 5.56 0.99 0.99 0.99 0.63 0.64 0.65
Standard Dev. 0.78 0.84 0.90 0.00 0.00 0.00 0.10 0.11 0.11
Consumption 0.49 0.51 0.52 0.84 0.87 0.89 0.76 0.77 0.79
Standard Dev. 0.10 0.11 0.11 0.03 0.03 0.04 0.08 0.09 0.09
Hours 1.19 1.26 1.40 0.98 0.98 0.98 0.63 0.64 0.64
Standard Dev. 0.19 0.21 0.22 0.01 0.01 0.01 0.10 0.11 0.11
Real Wage 0.49 0.51 0.52 0.84 0.87 0.89 0.76 0.77 0.79
Standard Dev. 0.10 0.11 0.11 0.03 0.03 0.04 0.08 0.09 0.09

Notes: See table 3.
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Table 6
Summary Statistics: Utility IV, US Calibration

Variable Sy Sy T

Min Mean Max Min Mean Max Min Mean Max
Output 0.96 0.98 1.00 1.00 1.00 1.00 0.66 0.66 0.67
Standard Dev. 0.16 0.17 0.17  0.00 0.00 0.00 0.10 0.10 0.10
Investment 2.67 2.79 3.00 0.99 0.99 0.99 0.64 0.65 0.65
Standard Dev. 0.44 0.46 0.49 0.00 0.00 0.00 0.10 0.10 0.10
Consumption 0.32 0.35 0.37  0.86 0.91 0.93 0.74 0.75 0.75
Standard Dev. 0.07  0.07 0.07  0.02 0.02 0.03 0.09 0.09 0.10
Hours 0.14 0.15 0.17 097 0.98 0.98 0.63 0.65 0.65
Standard Dev. 0.02 0.02 0.03 0.01 0.01 0.01 0.10 0.10 0.10
Real Wage 0.82 0.83 0.84 1.00 1.00 1.00 0.66 0.67 0.67
Standard Dev. 0.14 0.14 0.14 0.00 0.00 0.00 0.10 0.10 0.10
Notes: See table 3.

Table 7
Summary Statistics: Utility I, German Calibration

Variable Sg Sy Ty

Min Mean Max Min Mean Max Min Mean Max
Output 1.88 1.90 1.92 1.00 1.00 1.00 0.61 0.62 0.63
Standard Dev. 0.28 0.31 0.32 0.00 0.00 0.00 0.11 0.11 0.11
Investment 8.55 8.72 9.04 0.99 0.99 1.00 0.60 0.62 0.63
Standard Dev. 1.35 1.40 1.45 0.00 0.00 0.00 0.11 0.11 0.11
Consumption 0.29 0.32 0.34 0.75 0.81 0.83 0.76 0.77 0.79
Standard Dev. 0.06 0.07 0.08 0.04 0.04 0.05 0.08 0.09 0.09
Hours 1.41 1.44 1.48 0.99 0.99 0.99 0.60 0.62 0.63
Standard Dev. 0.22 0.23 0.24 0.00 0.00 0.00 0.11 0.11 0.11
Real Wage 0.47  0.50 0.52 0.93 0.94 0.95 0.68 0.68 0.69
Standard Dev. 0.08 0.09 0.10 0.02 0.02 0.02 0.10 0.10 0.10

Notes: See table 3.
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Table 8
Summary Statistics: Utility [T, German Calibration

Variable Sy Sy T

Min Mean Max Min Mean Max Min Mean Max
Output 0.95 0.98 1.00 1.00 1.00 1.00 0.62 0.63 0.64
Standard Dev. 0.14 0.16 0.17  0.00 0.00 0.00 0.10 0.11 0.11
Investment 3.83 3.87 3.90 0.99 0.99 1.00 0.60 0.62 0.64
Standard Dev. 0.57  0.62 0.65 0.00 0.00 0.00 0.11 0.11 0.11
Consumption 0.28 0.30 0.31 0.91 0.95 0.96 0.62 0.67 0.69
Standard Dev. 0.04 0.05 0.06 0.01 0.02 0.02 0.10 0.10 0.11
Hours 0.16 0.16 0.17 1.00 1.00 1.00 0.62 0.63 0.64
Standard Dev. 0.02 0.03 0.03 0.00 0.00 0.00 0.10 0.11 0.11
Real Wage 0.79 0.82 0.83 1.00 1.00 1.00 0.62 0.63 0.64
Standard Dev. 0.12 0.13 0.14 0.00 0.00 0.00 0.10 0.11 0.11
Notes: See table 3.

Table 9
Summary Statistics: Utility III, German Calibration

Variable Sg Sy Ty

Min Mean Max Min Mean Max Min Mean Max
Output 2.34 2.39 2.41 1.00 1.00 1.00 0.61 0.62 0.63
Standard Dev. 0.35 0.38 0.41 0.00 0.00 0.00 0.10 0.11 0.11
Investment 10.62 11.06 11.57  0.99 0.99 1.00 0.60 0.62 0.63
Standard Dev. 1.74 1.78 1.84 0.00 0.00 0.00 0.10 0.11 0.11
Consumption 0.34 0.38 0.39 0.74 0.79 0.83 0.76 0.78 0.79
Standard Dev. 0.07  0.08 0.09 0.05 0.05 0.05 0.08 0.09 0.09
Hours 2.03 2.10 217 0.99 0.99 0.99 0.60 0.62 0.63
Standard Dev. 0.31 0.33 0.35 0.00 0.00 0.00 0.10 0.11 0.11
Real Wage 0.34 0.38 0.39 0.74 0.79 0.83 0.76 0.78 0.79
Standard Dev. 0.07  0.08 0.09 0.05 0.05 0.05 0.08 0.09 0.09

Notes: See table 3.
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Table 10
Summary Statistics: Utility [V, German Calibration

Variable

Min
Output 0.93
Standard Dev. 0.13
Investment 4.22
Standard Dev. 0.61
Consumption 0.18
Standard Dev. 0.03
Hours 0.13
Standard Dev. 0.02
Real Wage 0.80
Standard Dev. 0.12

Sz
Mean
0.96
0.15
4.24
0.68
0.20
0.04
0.13
0.02
0.83
0.13

Max
0.97
0.16
4.25
0.71
0.20
0.04
0.13
0.02
0.84
0.14

Min

1.00
0.00
0.99
0.00
0.75
0.03
0.99
0.00
1.00
0.00

Sy
Mean
1.00
0.00
0.99
0.00
0.84
0.04
0.99
0.00
1.00
0.00

Max
1.00
0.00
1.00
0.00
0.87
0.05
0.99
0.00
1.00
0.00

Min
0.61
0.10
0.61
0.10
0.67
0.09
0.60
0.10
0.61
0.10

Tg
Mean
0.63
0.10
0.62
0.10
0.73
0.09
0.62
0.11
0.63
0.10

Max
0.64
0.11
0.63
0.11
0.75
0.10
0.63
0.11
0.64
0.11

Notes: See table 3.
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5 Conclusion

This paper has shown that several numerical methods can be applied in order to
study the standard business cycle model. Using either value function iteration, log-
linearization, deterministic extended path, parameterized expectations, or projection
methods basically results in the same values for the first and second moments of the
variables that the business cycle researcher is most interested in, ie output, employ-
ment, investment, consumption, and wages. Log-linearization, of course, is very easy to
implement and by far the fastest method. Furthermore, the solution from this method
can often be successfully applied as an initial value for more sophisticated non-linear
methods like parameterized expectations or projection methods where the computa-
tion of a good initial value with genetic search algorithm or homotopy methods may
become very time-consuming, as may be the case in more complex multi-dimensional
state-space applications. Our results, therefore, suggest that the researcher may benefit
from using log-linearization methods in the first place and, possibly, also use non-linear
methods such as parameterized expectations or projection methods to improve the ac-
curacy of the computation in more non-linear problem that may arise, for example, in
the presence of binding constraints, e.g. a non-negativity constraint on investment or

a constraint on the maximum number of working hours.

Our work also emphasized an important detail in the application of projection methods
for the approximation of polynomial solution function in more complex dynamic mo-
dels. In our example of the stochastic growth model with flexible labor supply, standard
projection methods failed to converge even for good initial values that were computed
with the help of the log-linear solution. We found that the basic reason for this ob-
servation is the poor approximation of functions with Chebyshev polynomials outside
the approximation interval. As a solution to this problem, we suggest to use a wider
interval for the appoximation of the function than for the integration over the residual

function.

17



References

Altonij, J.G., 1986, Intertemporal Substitution in Labor Supply: Evidence from Micro
Data, Journal of Political Economics, vol. 94, S17-S215.

Blanchard, O. J. and Ch. M. Kahn, 1980, The Solution of Linear Difference Models
Under Rational Expectations, Econometrica, vol. 48, 1305-1311.

Castaneda, A., J. Diaz-Giminénez, J.-V. Rios-Rull, 2004, Accounting for the US Ear-
nings and Wealth Inequality, Journal of Political Economy, forthcoming.

Christiano, L.J., and J.D.M. Fisher, 2000, Algorithms for solving dynamic models with
occasionally binding constraints, Journal of Economic Dynamics and Control,
vol. 24, 1179-1232.

Den Haan, W. J. and A. Marcet, 1994, Accuracy in Simulations, Review of Economic
Studies, vol. 61, 3-17

Domeij, D., and M. Floden, 2001, The labor supply elasticity and borrowing cons-
traints: Why estimates are biased, SSE/FEI working paper series in economics
and finance, no. 480.

Duffy, J., and P.D. McNelis, 2002, Approximating and Simulating the Stochastic
Growth Model: Parameterized Expectations, Neural Networks, and the Genetic
Algorithm, Journal of Economic Dynamics and Control, vol. 25, 1273-1303.

Greenwood, J., Z. Hercowitz, and G.W. Huffman, 1998, Investment, capacity utiliza-
tion, and the real business cycle, American Economic Review, vol. 78, 402-17.

Hansen, G., 1985, Indivisible Labor and the Business Cycle, Journal of Monetary
Economics, vol. 16, 309-327.

Heer, B., and A. Maufiner, 2004, Dynamic General Equilibrium Modelling: Computa-
tional Methods and Applications, Springer, Berlin, forthcoming.

Heer, B., and M. Trede, 2003, "Efficiency and Distribution Effects of a Revenue-neutral
Income Tax Reform’, Journal of Macroeconomics, vol. 25, 87-107.

Judd, K.L., 1992, Projection methods for aggregate growth models, Journal of Eco-
nomic Theory, vol. 58, 410-52.

Judd, K.L., 1996, Approximation, Perturbation, and Projection Methods in Econo-
mic Analysis, in: H.M. Amman, D.A. Kendrick, and J. Rust, eds., Handbook of
Computational Economics, vol. I, Elsevier Science B.V., Amsterdam.

Judd, K.L., 1998, Numerical Methods in Economics, MIT Press: Cambridge, Ma.

Killingsworth, M.R., 1983, Labor Supply, Cambridge University Press, Cambridge,
MA.

18



King, R. G., Ch. I. Plosser, and S. Rebelo, 1988, Production, Growth and Business
Cycles I, The Basic Neoclassical Model, Journal of Monetary Economics, vol. 21,
195-232

King, R.G. and M.W. Watson, 2002, System Reduction and Solution Algorithms for
Singular Linear Difference Systems under Rational Expectations, Computational
Economics, vol. 20, 57-86

MaCurdy, T.E., 1981, An Empirical Model of Labor Supply in a Life-Cycle Setting,
Journal of Political Fconomy, vol. 89, 1059-85.

McGrattan, E.R., 1999, Application of Weighted Residual Methods to Dynamic Eco-
nomic Models, in: R. Marimon and A. Scott (Eds.), Computational Methods for
the Study of Dynamic Fconomies, Oxford University Press: Oxford and New York,
114-142

Mitchell, M., 1996, An introduction to genetic algorithms, Harvard University Press,
Cambridge, MA.

Tauchen, G., 1986, Finite State Markov-Chain Approximations to Univariate and
Vector Autoregressions, Fconomics Letters, vol. 20, 177-181.

Taylor, J.B., and H. Uhlig, 1990, Solving nonlinear stochastic growth models: A com-
parison of alternative solution methods, Journal of Business and Fconomic Sta-
tistics, vol. 8, 1-17.

Wright, B.D., and J.C. Williams, 1982, The Economic Role of Commodity Storage,
Economic Journal, vol. 92, 596-614.

Wright, B.D., and J.C. Williams, 1984, The Welfare Effects of the Introduction of
Storage, Quarterly Journal of Economics, vol. 99, 169-82.

Wright, B.D., and J.C. Williams, 1991, Storage and Commodity Markets, Cambridge
University Press, Cambridge, UK.

19



Appendix

DM-Statistic One of the measures of the accuracy of the approximate solution is
the statistic proposed by den Haan and Marcet (1994). It is a Wald test of the null
that the residual

er = Ba "N (1 =6+ (1 — o) * Zp i N k) — N

cannot, be predicted by past information. We use five lags of consumption, of working
hours, and of the productivity shock to test this hypotheses. Towards this end we
compute the residual from a time series of 3,000 points, regress it on a constant, ¢, j,
Ny j, Zi—j, 5 =1,2,...,5 and compute the Wald statistic of the hypothesis that the 16-
vector of coefficients a is not different from the zero vector. We repeat this experiment
500 times. Table 11 reports the fraction of simulations, in which the respective Wald
statistic is below (above) the respective 2.5 (97.5) percentile of the x*(16)-distribution.
In a large sample, this fraction should be not very different from 0.025.

Table 11
DM Statistics for Selected Solutions, German Calibration

Method Utility I Utility II

Below Above Below Above
Value function iteration 0.038 0.030 0.020 0.016
Parameterized expectations 0.018 0.024 0.026 0.036
Galerkin projection 0.030 0.024 0.014 0.016
Log-linear approximation 0.024 0.030 0.032 0.026
Notes:

The columns labeled Above (Below) display the fraction out of 500 simulations
in which the DM-Statistic was below (above) the 2.5 (97.5) percentile of the
x2(16) distribution.

Consumption Function Another measure of the accuracy of the solution is the
policy function for consumption, which is a non-linear function of the stock of capital
k and the level of the productivity shock Z. We use the consumption function from
value function iteration as a benchmark and plot its graph against those found by
the respective other methods. Since the extended path algorithm does not provide the
consumption function directly, we approximate this function in the following way: we
use the time paths computed from 500 simulations and project the solution for A on
the same polynomial used to compute the parameterized expectations function. Given
this, we compute the policy function in the same way as the policy function from the
PEA.

In each case the policy function is plotted over the range of k used in the value function
iteration method.
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Figure 1
Policy Functions in the Case of Utility Function I
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Figure 1 compares the policy functions obtained from the German calibration in the
case of utility function I and Figure 2 does the same in the case of utility function II.
In both figures 7 is kept at the stationary value of Z = 1.

As can be seen from both figures the log-linear consumption function (LA) is flatter
than the solution obtained via value function iteration (VI). Thus, for low as well as
for large values of the capital stock, it does not provide a good approximation. Yet,
since in the simulations the capital stock remains close to the stationary capital stock,
this is of no consequence for the second moments. For large values of the capital stock
the consumption function found from the parameterized expectations approach (PE)
lies a bit above the VI function. Very good approximations are provided by both, the
Galerkin projection (PJ) and the extended deterministic path (EP) method.
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Figure 2
Policy Functions in the Case of Utility Function IT
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