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1 Introduction

The Belgian Unemployment Insurance (UI) system is unique in the world in that the receipt of
unemployment benefits (UB) is not limited in time. There is, however, an exception to this rule.
For partners of workers with (replacement) labour income (mostly women), benefits may under
some conditions expire beyond some threshold unemployment duration. This paper aims at
estimating the average treatment effect of benefit exhaustion on the probability of employment
for women belonging to this group.2 For this purpose we use an existing database that was
constructed for evaluation purposes (see De Lathouwer et al. (2000)). It consists of two samples.
One is drawn from the flow of UB recipients for whom benefits have expired between March
and June 1997. The second sample is drawn from the stock of long-term unemployed workers
in March 1997 for whom the benefits were not yet withdrawn. The database combines survey
and administrative information. It allows to construct the employment history of these workers
from 63 months prior to the sample selection date to 14 months after. On the basis of simple
logit estimations, De Lathouwer et al. (2003) find that the scheme boosts employment rates by
14 percentage points 3 months after benefit expiration, decreasing to 9 percentage points after
15 months. These effects are significantly different from zero at the 95% level of significance.
Our paper verifies whether these results uphold if one uses evaluation methods that require less
restrictive identifying assumptions.

Job search theory predicts that benefit exhaustion generates three effects (see Mortensen
(1977, 1990), van den Berg (1990), Fredriksson and Holmlund (2003b) for a survey). The two
first effects realise ex post, once the entitlement has expired. First, as the worker has an interest
in maintaining her living standard, the absence of unemployment benefits enhances incentives
to search for and to accept jobs. Second, since the worker is no longer eligible, she has an
additional interest in being hired and in remaining employed until she can re-qualify for UB 3.
Thirdly, since the moment at which one finds a job is not deterministic 4, workers will alter their
behaviour well in advance of the UB exhaustion. To the extent that workers are aware of future
benefit exhaustion, they anticipate this event by starting to search for a job beforehand as to
preclude the income loss in the event that a job is not timely found. Theory predicts that this
anticipation will gradually increase the employment hazard as one approaches the expiration
date. However, if initially workers are unaware of the finite entitlement length, the employment
hazard will jump upwards from the point at which they become informed and subsequently
increase gradually as for the informed workers. Due to the lack of transparency of the Belgian
scheme, we argue below that the latter case applies: the behaviour will only change as from
the moment at which the (unemployed) worker is notified by the Unemployment Agency (UA).
This occurs roughly three months before benefit exhaustion.

There exists a vast empirical literature that tries to test these theoretical predictions. Devine
and Kiefer (1991), Atkinson and Micklewright (1991), Layard et al. (1991), and more recently,
Holmlund (1998), Pedersen and Westerg̊ard–Nielsen (1998) and Fredriksson and Holmlund
(2003a) survey this literature. The first generation of studies, realised both in the US and

2Men were not retained, since they form a too small subsample of treated workers to perform any sensible
statistical analysis.

3Note that this effect disappears once the worker has completed the qualifying period.
4Note that this may not be true if the worker is recalled by his previous employer, see e.g. Katz and Meyer

(1990).
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in Europe between the seventies and the early 1990s, generally confirm the predictions of the
theoretical model, but impacts are generally quite modest. Layard et al. (1991) state that ”the
basic result of these studies is that the elasticity of expected duration with respect to benefits is
generally relatively low, situated in a range between 0.2 and 0.9”. The problem with this earlier
literature is that, due to methodological flaws, the estimations cannot always be interpreted as
the true causal effect of a variation in the unemployment compensation.5 The last ten years the
evaluation literature has evolved enormously and generally performs much more careful analy-
sis in this respect. Remarkably, the more recent (European) studies (Dormont et al. (2001) for
France, Carling et al. (2001) for Sweden and Roed and Zhang (2003) for Norway)6 seem to find
a much larger impact of UB on the unemployment duration with elasticities ranging between
0.95 and 1.6.

Another strand of the empirical literature studies the impact of benefit exhaustion on the
profile of the hazard rate to employment as well as the impact of variation in the length of
entitlement period. These studies tend to support the last mentioned findings in that impacts
are generally found to be important and consistent with job search theory. Almost every study
7 reports increases of the job finding rate as benefit exhaustion is approached (Wurzel (1990);
Lindeboom and Theeuwes (1993); Carling et al. (1996); Joutard and Ruggiero (1996); Thoursie
(1998); Bratberg and Vaage (2000); Dormont et al. (2001); Roed and Zhang (2003)). Moreover,
all studies find that the extension of the entitlement duration significantly reduces the rate
at which unemployment is left for employment (Moffit (1985); Ham and Rea (1987); Katz
and Meyer (1990); Hunt (1995); Winter-Ebmer (1998); Card and Levine (2000); Lalive and
Zweimüller (2002)).

A final piece of evidence, suggesting that monetary incentives matter, comes from the sparse
evidence of the impact of UB sanctions on the employment hazard. Sanctions are punitive ben-
efit reductions that are used to enforce compliance of UB claimants to job search requirements.
An important feature of a sanction is the benefit reduction itself. In that sense effects of sanc-
tions indirectly provide evidence for the effects of benefit reductions. However, one should be
careful with this interpretation : ”the monitoring and sanctioning regime itself can be expected
to affect individual behavior, and the incentives to comply with the rules may increase as the
regime is typically tightened after a violation of the rules” (Abbring et al., 2000, p.3). Neverthe-
less, the benefit cut undoubtedly represents a significant component of the impact of a sanction
and can be considered as a useful complementary evidence. Abbring et al. (2000) find very large
impacts of sanctions in the Unemployment Insurance Scheme in the Netherlands. The implied
absolute values of the elasticities of the employment hazards with respect to the benefit levels
would range between 2 and 5. Van den Berg et al. (2004) find similar results for sanctions on
transitions from welfare to work. Finally, Lalive et al. (2002) and Jensen et al. (2003) find also
quantitatively important effects of benefit sanctions in respectively the Swiss and Danish UB
scheme.

Our paper contributes to this literature by providing a new estimate of the impact of benefit
exhaustion on the basis of modern evaluation methods (See e.g. Heckman et al. (1999), Blundell

5See also Abbring et al. (2000, p.26–27) on this point.
6Neither Jenkins and Garcia-Serrano (2000) or Bover et al. (2002) seem to find large elasticities for Spain,

however.
7Again the study of Jenkins and Garcia-Serrano (2000) is an exception in that the employment hazard in

Spain does virtually not change as one approaches benefit expiration.
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and Costa-Dias (2002)). As to enhance the credibility of our findings, we estimate the impact on
the basis of three different methods: a standard, a before-after and an Instrumental Variables
(IV) propensity score matching estimator. Since all three methods are based on matching, they
are not sensitive to functional form or parametric assumptions and they take care of individual
heterogeneity in the treatment effect of the treated.

The paper is structured as follows. In Section 2 we briefly describe the system of benefit
exhaustion in the Belgian UI scheme. In Section 3, we describe the database used in our study.
Section 4 explains the estimation methods and results. A last section concludes.

2 Benefit Exhaustion in Belgium

As in most European countries, in Belgium workers qualify for UI after involuntary redundancy
if their record of salaried employment is sufficiently long.8 However, unlike in most countries,
once workers qualify for UI in Belgium, if they are ”available for the labour market” and if they
comply to certain administrative rules, they are entitled to benefits for an indefinite period.
There is only one exception to this rule: benefits may be withdrawn after an unemployment
duration, ranging from two to eight years, if one is less than 50 years old and partner of someone
with a (replacement) income exceeding a particular level.9 The precise value unemployment
duration at which benefits exhaust depends on the age class (3), the region of residence (30)
and the gender of the unemployed person10. The thresholds are calculated as 1.5 times the
average unemployment duration for each class , as measured at a certain point in the past.11

From Table 1, one can deduce that these durations are quite heterogenous across and within
age classes.

For the subsequent analysis it is crucial to realise that unemployment duration is not mea-
sured according to the standard ”ILO” or ”EUROSTAT” definitions. The counter accumu-
lates any day of unemployment since the first entry, days of part-time (un)employment being
weighted appropriately. It is only reset to zero if there is a period of at least two years of full-
time employment between two subsequent unemployment spells. It is not affected by temporary
interruptions of unemployment.

Table 1: Threshold Durations for Women (in months)

Age < 36 36–45 45–50
Mean 50 60 79
St.Dev 10 11 13
Min. 30 35 45
Max 74 84 99

8One particularity of the Belgian system is that school-leavers are also entitled, after some waiting period.
9For this category of workers the unemployment benefit is degressive, decreasing in three phases: it starts at

a replacement rate of 55% during the first 12 months (with a floor and a ceiling of respectively 540 EUR and 920
EUR in January 2004), falling to 40% (within the range of 540-670 EUR) during the next three months (possibly
longer according to the employment experience) and finally falls to a flat rate level (380 EUR in January 2004).
Benefit exhaustion always occurs in the last phase.

10Thus, there are 3 ∗ 30 ∗ 2 = 180 different thresholds.
11At which point in time these unemployment durations were calculated is unclear. It is clear, however, that

they haven’t been updated for a long time.
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An unemployed worker is notified not later than three months before the potential benefit
exhaustion, i.e. the date at which the unemployment duration crosses the threshold. From
that moment onwards, one may appeal against that decision on the following grounds. (1)
If the annual net taxable family income (excluding the benefit) is below a certain threshold.
In January 2003, this threshold was 16,750 EUR, i.e. roughly 140% of the minimum wage,
augmented by 670 EUR, for each dependant person of the household. (2) If the unemployed
worker can prove ”an exceptional and continuous job search effort throughout the unemployment
spell”. (3) If the unemployed worker is participating in an active labour market policy. (4) If
the unemployed worker can prove a substantial degree of disability. If the appeal is justified,
benefit exhaustion is postponed definitely or temporarily, for a defined or undefined time period.
As consequence, between 1991 and 2003 only roughly 40% of those notified had their benefits
effectively withdrawn. In 1997, this concerned slightly less than 19,000 individuals or roughly
4% of the total number of benefit recipients during that year.

Once benefits are withdrawn, the worker can re-qualify in one of the three following cases :
(1) the worker separates from his/her partner; (2) the yearly net taxable income drops below a
lower threshold (in January 2003 14,795 EUR plus 670 EUR per additional dependant person);
(3) proof of 312 days of full time employment over an uninterrupted period of 18 months is
delivered. As opposed to other countries, there is no unemployment assistance scheme that
sets in when benefits exhaust. In principle, the individuals can claim means-tested welfare
assistance. However, since only workers with family income above some threshold can loose UI
benefits, this only very rarely occurs 12: within the sample analysed in this paper only 0.3%
claimed welfare benefits within the first 4 months following the expiration (De Lathouwer et al.,
2003, p.91).

From this description it is clear that the rules pertaining to benefit exhaustion are complex.
Indeed, the precise moment of benefit exhaustion depends on a number of criteria that may vary
over time: partner-status, place of residence, family income, age, etc. Moreover, for workers
with irregular employment histories it is rather difficult to keep track of their effective elapsed
unemployment duration. We therefore claim that it is unlikely that workers anticipate the
benefit exhaustion before being notified. This claim cannot be rejected on the basis of the
empirical analysis below.

3 Data

The analysis is based on an existing database that was constructed for the purpose of evaluating
the benefit exhaustion scheme (see De Lathouwer et al. (2000)). The structure of this database
is rather complex. So as to facilitate the explanation, we summarised its features in Figure
1. The database consists of two samples of unemployed workers. Since in both samples the
workers are less than 50 years old and cohabiting with a partner earning some (replacement)
labour income, benefits can potentially expire for both groups. The first sample, the treatment
group, contains 1,506 individuals and is randomly drawn from the flow of UI recipients for whom
benefits effectively expired between March and June 1997. The second sample, the control group,

12e.g. if there is a recent drop in family income that is not captured by the past annual net taxable income.
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contains 1,205 individuals and is drawn from the stock of ”long-term” 13 unemployed workers
in March 1997 from whom the benefits were not yet withdrawn.

Figure 1: The Time Structure of the Database

We imposed three additional sample selection criteria. First, even if the response rate at
the survey date was fairly high (66% for the treatment group and 73% for the control group),
it was not complete. In the analysis we do not account for the potential selection bias on
unobserved characteristics induced by non-response. There is, however, no reason for serious
concern, since no significant selection could be detected on the basis of the observed individual
characteristics (see De Lathouwer et al. (2000) for details). Second, since only few partners
of unemployed men earn a (replacement) labour income, men are a too small sub-sample (169
among the treated respondents and 196 among the controls) to perform a sensible statistical
analysis. Only women are therefore retained. Thirdly, we excluded 188 ”polluted controls”
(=27% of the female respondents in the control group). These refer to workers whose benefits
were not yet suspended at the sampling date in March 1997, but for whom one of the three
following events occurred between the sampling and the survey date: (1) they were notified, but
benefits did not (yet) exhaust; (2) they were notified and benefits expired effectively; (3) benefits
were withdrawn for another reason (e.g.: refusing a job offer, misrepresentation of household
composition as to obtain higher benefits,...). The survey allows to identify these individuals,
but, unfortunately, does not inform on the date at which the above-mentioned events occurred.
After imposing these selection criteria, we retain 826 women in the treatment group and 404 in
the control group.

Both samples were drawn from administrative files on UI recipients. These contain informa-
tion on individual characteristics (the age, an indicator for the Belgian nationality, the highest
level of education attained and the sub-region of residence) and on unemployment histories

13”Long-term” means here that the worker has experienced unemployment - possibly with interruptions -
during more than 18 months since January 1992.
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during up to 63 months prior to the sample selection date. The administrative information was
completed by responses to a survey conducted at one point in time between September 1998
and May 1999.14 The reported number of children in the household at the survey date was
the only additional individual characteristic retained. Besides, the survey respondents reported
their monthly labour market status between January 1997 and the date of the survey.

The data contain three major deficiencies for our purposes. First, there is a break in the
series regarding the labour market histories, since it comes from two sources: prior to the
sampling date from the administrative source and afterwards from the survey. Second, they
do not contain a variable that defines unemployment duration in exactly the same way as the
administrative rules regarding benefit expiration. Thirdly, the data do not inform at which
moment unemployed women are notified of the benefit exhaustion.

As to the last deficiency, we only know that the rules impose that the unemployed workers
must be notified not later than 3 months before benefits expire. In the sequel we simply assume
that it occurs at that moment. The first two deficiencies are addressed differently according to
the statistical method applied to the data. The benchmark ”before-after” method described in
the next section only analyzes the treatment sample. For this group, we assume that the effective
elapsed duration at the moment of expiration coincides with the theoretical threshold duration
at which benefits should be withdrawn according to the rules. The elapsed duration prior to
benefit exhaustion is then calculated backwards starting from the date of benefit withdrawal
on the basis of the 63 monthly administrative information regarding the number of days of
benefit receipt. After the expiration date, one month of unemployment duration is added for
each month the female workers reported to be unemployed or inactive according to the monthly
labour market status of the survey’s questionnaire.

In the causal analysis below the monthly employment status 15 is the outcome variable.
After January 1997, the monthly employment status corresponds to the one reported by survey
respondents at the time of the interview. However, the ”before-after” estimator requires infor-
mation prior to this date. We therefore construct a series predicted on the basis of an estimated
relationship between the monthly employment status reported in the survey and the number
of days unemployed every month according to the administrative files. Such an estimation is
possible, since there is a period of overlap between January 1997 and June 1997, during which
information of both sources is available. Details of the estimation can be found in Appendix A.

For the other statistical methods discussed in section 4.2, the above-mentioned data problems
are resolved differently. First, we estimate the impact of benefit exhaustion only as from the
moment at which benefits are withdrawn and not before. As a consequence, the outcome variable
can be exclusively based on the employment histories reported in the survey. Second, we cannot
follow the same procedure as to define the elapsed unemployment duration, since for the control
sample the date of effective benefit exhaustion is unknown. We use two complementary notions
of unemployment duration: the cumulative number of days (as expressed in months) of UI
entitlement up to 63 months before the sample selection date and the duration of the last UI
spell.16 An indicator identifies left censored spells.

14The large discrepancy between the starting and the ending date of the survey was a consequence of some
budgetary problems as explained in De Lathouwer et al. (2000).

15We do not distinguish between full- and part-time.
16A spell was interrupted if the individual did not receive any unemployment benefits during at least one

calendar month
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Table 2: Sample Means of Explanatory Variables

Controls Treated
(N = 404) (N = 826)

Individual Characteristics
Age 35.67 32.81
Number of children in the household 1.22 1.73
Non-Belgian nationality 0.12 0.10
No diplomaa 0.38 0.24
Lower secondarya 0.27 0.31
Higher secondarya 0.29 0.33
Collegea 0.06 0.08

Labour Market History in March 1997
Cumulative Unemployment durationb 45.74 53.69
Number of unemployment spellsc 2.62 3.11
Duration of the last spelld 29.92 26.36
Last spell left censorede 0.27 0.19

Local Unemployment Ratef 0.22 0.23
All these variables come from administrative registers, with the exception
of the ”number of children in the household”, which was reported by the
individuals in the survey.

a

”No diploma”: less than 9 years of education; ”Lower secondary”: at least
9 years of education; ”Higher secondary”: at least 12 years of education;
”College”: at least 15 years of education

b

Cumulative number of months spent in unemployment 63 months prior to
the sampling date.

c

Number of uninterrupted unemployment spells during the 63 months prior
to the sampling date.

d

Duration of the last unemployment spell, ending or still ongoing in March
1997.

e

Binary variable, indicating whether the last unemployment spell was left–
censored 63 months prior to the sampling date.

f

Sub-regional unemployment rate for women as reported by the National
Administration of UI (ONEM/RVA).

Table 2 reports descriptive statistics of the retained control and treatment sample. It turns
out that the treated individuals are on average younger than the controls, slightly better edu-
cated, and have on average more dependant children in their households. As far as the labour
market histories are concerned, the treated have a higher cumulated unemployment duration
than the controls, and their last unemployment spell is substantially longer. The average local
unemployment rate in the sub-region of residence is very close for both groups.

4 The Impact of Benefit Exhaustion on the Employment Rate

This paper aims at providing an estimate of benefit exhaustion on the women retained in the
above-mentioned treatment sample. As to enhance the credibility of our findings, we estimate
the impact on the basis of different methods and contrast the results. A common thread in
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these methods is that they will all be based on propensity score matching methods. As such
our estimation methods do not require functional form or parametric assumptions and take care
of individual heterogeneity in the treatment effect of the treated.

The standard cross section matching method requires an assumption of unconfoundedness
or ”selection on observables” (see Rosenbaum and Rubin (1983); Heckman et al. (1997, 1998);
Dehejia and Wahba (1999); Imbens (2003) for a recent review). Since in many applications, as
for the one presented in this paper, this assumption is overly restrictive, one calls for the use of
difference-in-differences (DD) matching estimators to eliminate any remaining fixed unobserved
bias term (Heckman et al. (1997) ; Smith and Todd (2004)). Nevertheless, we do not implement
a DD estimator in the present application, but rather a simple before-after estimator, be it on
an unusual time-scale. We justify this choice below.

One may be suspicious of the validity of the before-after estimator since it requires the strong
identifying assumption that all systematic time-varying effects can be captured by a number of
observed time-varying variables. In a sensitivity analysis we therefore contrast the findings of
the benchmark before-after estimator to two alternative estimators : a standard matching and
an IV estimator. Note, since we have a discrete outcome variable, Two Stage Least Squares
will in general yield inconsistent estimates (see e.g. Wooldridge (2002, p.478)). We avoid this
problem by implementing the IV estimator as a matching estimator (Heckman et al. (1999);
Ichimura and Taber (2001)).

4.1 The Benchmark Model : The Before–After Estimator

4.1.1 A Preliminary Analysis

Figure 2 displays the evolution of the employment rate (of the women) in the treatment group.
Calendar time is normalised to zero in the month that benefits exhaust, i.e. between March and
June 1997. The time scale runs from 62 calendar months before the expiration date to 14 months
afterwards.17 The employment rate evolves according to a U-shaped pattern. Starting at a level
of 24% at -62 it falls steadily to 11% at -11 months. Thereafter it increases continuously up to
a level of 26% at the end of the observation period.

One might be tempted to interpret this graph as proof for the presence of a temporary
”Ashenfelter-dip” in the employment rate (Ashenfelter, 1978). Alternatively, one may want to
interpret the initial decrease as ”permanent”, induced by an unemployment dependency effect
and the reversal of this evolution at -11 as an anticipated behavioural impact of the benefit
exhaustion that sets in well in advance of the moment at which women are notified, three
months beforehand. Neither of these interpretations is, however, correct. The observed pattern
is the consequence of an incorrect time-scale prior to the expiration date.

Workers are notified three months of benefit entitlement prior to the expiration date. This
corresponds to three months of calendar time only if workers don’t leave unemployment during
these last months of entitlement. However, in general workers may interrupt their unemployment
spell temporarily. As already stated (see Section 2), this interruption only stops the counter of
unemployment duration, but does not set it to zero. Consequently, one month of UI entitlement

17The survey response period starts in September 1998. This is 14 months after expiration for those women
whose benefits were withdrawn in June 1997. Beyond 14 months we therefore no longer observe the employment
status of all women.
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Figure 2: The Evolution of the Employment Rate over Calendar Time before and after Benefit
Expiration
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may cover a much longer calendar time period.
In Figure 3, the evolution of the employment rate is plotted as a function of entitlement

months prior to the expiration month and of calendar months afterwards. With this new time
scale the employment rate is no longer clearly defined, since one month of entitlement may
span several calendar months. We propose to define the employment status of a treated woman
as the average employment rate over the calendar months during which the benefit entitlement
duration remains constant.18

The plotted employment rates in Figure 3 are averages of this employment indicator over
the treatment sample. Note that with this new time scale we cannot go as far back in time,
since each month of benefit eligibility may correspond to several calendar months. In fact the
sample is incomplete prior to 4 entitlement months before benefit exhaustion. This means that
at least one woman has not been paid benefits during at least 63 months within the 4 last
months that she was entitled to UI. The employment rate prior to this date is therefore based
on an incomplete sample gradually decreasing in size. 19

The figure reveals that the evolution over this new time-scale of the employment rate is
completely different. The employment rate is now roughly constant until -4. Three months
prior to benefit expiration, i.e. roughly at the moment at which the unemployed woman is
notified, the employment rate suddenly starts to increase. It rises most steeply one month prior
to the month in which benefits are withdrawn.

Figure 3 provides unambiguous evidence of a positive causal impact of benefit exhaustion on
the employment rate: the increase of the employment rate one month prior to the exhaustion
is too abrupt to be credibly explained by other time-varying factors, such as labour market
conditions, unemployment duration or life-cycle events. To estimate the quantitative magnitude
of this impact we nevertheless need to purge the gross impact of these time-varying factors, in
particular if we wish to estimate the long-term impact, for instance 14 months later. We propose
a purging method in the next subsection.

Figure 3 also proves that the benefit exhaustion is anticipated. As a consequence, the impact
18The entitlement duration is rounded off up to the nearest month.
19This sample size is reported up to -13 in Table 3 in the following sub-section. Complete information is

available upon request.
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Figure 3: The Evolution of the Employment Rate over Eligibility Duration before Benefit
Expiration and of Calendar Time Afterwards
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as estimated on the available sample is necessarily a lower bound: women who manage to escape
benefit exhaustion, for instance by timely finding a full-time job lasting more than two years,
are not retained in the treatment sample. We need other data to gauge the importance of this
anticipation effect.

4.1.2 Methods to Control for Time-Varying Variables

The analysis of the preceding section suggests that, if applied on the modified time-scale, two
necessary identifying conditions of a before-after estimator are satisfied in this empirical ap-
plication. First, the beginning of the treatment period is clearly identified at three months of
benefit entitlement before the expiration date. Second, on the modified time-scale, the outcome
variable does not display any longer a temporary ”Ashenfelter dip” prior to the start of the
treatment.

Nevertheless, a before-after estimator is only an unbiased estimator of the impact to the ex-
tent that it purges the outcome variable of other time-varying determinants. The DD estimator
is a popular solution to this problem. We do not apply this method in our application for several
reasons. First, the DD estimator requires that the bias between control and treatment group
remains constant (Eichler and Lechner, 2002). However, it is not clear how this constancy can
be guaranteed in a ”nonlinear environment”: even if the bias is induced by fixed determinants,
the non-linear transformation of this fixed term evaluated at two different time points is gener-
ally no longer fixed. Since the outcome variable is (partly) discrete in our empirical application,
this critique applies.20 Blundell et al. (2001) solve this problem by assuming that a nonlinear
transformation (e.g. the inverse logistic) of the expected outcome variable can eliminate the
bias. However, it is not clear which is the appropriate choice of this transformation function
and how to generalise this to more than two outcomes (Athey and Imbens, 2002, p.24).

There is an additional reason why we do not implement DD. On the basis of the modified
time-scale a DD estimator is no longer feasible. The reason is twofold. First, the data on control
units only contain imperfect information on the entitlement duration left until expiration (see

20In the empirical analysis the outcome variable is the employment status as defined according to definition 1
in the previous section. Since this variable is an average, it is only partly discrete.
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Section 3). Second, even if we had this information, these units would no longer be controls,
since if they are measured at the same moment as the treated according to this new time scale,
their benefits would exhaust at the same moment as for the treated.21

We therefore control for time-varying variables in a different way. We assume that there
are essentially two important time-varying determinants of the employment rate: the state of
the local labour market and the elapsed cumulative unemployment duration.22 We believe that
other factors, such as those pertaining to the life-cycle, affect the population randomly at the
different time periods, so that they average out.

One may question whether it is appropriate to control for the unemployment duration at
the time of treatment. For, the observed unemployment duration after treatment is lower than
the counterfactual unemployment duration in the absence of treatment: if benefit exhaustion
enhances the time spent in employment, then the cumulative unemployment duration increases
less than if benefits did not expire. In principle, we should therefore condition in the after
treatment period on this higher counterfactual duration, but we cannot, since it is unobserved.
By this neglect we under-estimate the impact of benefit exhaustion on the employment rate. As
this indirect impact grows over time, this bias will increase with k. However, this bias cannot
be large. To obtain some sense for the order of magnitude we estimated the treatment effect
excluding the unemployment duration as a control. This reduces the impact estimate at k = 14
by about 1.5 percentage points.

We can control for these time-varying variables in two ways. The first method is described
in Heckman et al. (1999, p.1985) in which the outcome variable is adjusted by some function of
the time-varying variables. In principle, one could estimate this function non–parametrically,
but this may not be easy, especially if the outcome variable is discrete.23 We therefore propose
an alternative non-parametric procedure. This adjusts the outcome variable at each moment
by a method of matching on the propensity score of the time-varying variables. A drawback of
the method is that a common support problem is bound to occur. We solve this problem by
implementing the method as a sum of ”incremental” matching estimators applied to subperiods
of the period under consideration.

For a formal analysis, we introduce some notation. First note that the variables below are
all defined for women belonging to the treatment sample. To avoid burdensome notation, we
ignore everywhere the reference to these individuals, usually denoted by a subscript i.

Let k denote time according to the modified scale: if k is negative it means that |k| months
of entitlement are left until benefits exhaust; a positive k refers to the number of calendar
months after the expiration. D is an indicator equal to one if the individual is ”treated” and to
zero ”otherwise”. ”Treated” means that one is informed of the remaining entitlement duration
or that benefits have effectively been withdrawn. We assume that treatment starts when the

21This could be avoided if one constructed a hypothetical threshold duration for a group of women who are
never eligible to the treatment, e.g. singles or women cohabiting with a partner without (replacement) income
of employment. However, these data were not available.

22The first is captured by the sub-regional unemployment rate for women as reported by the National Admin-
istration of UI (ONEM/RVA). The second is captured by the cumulative (possibly interrupted) unemployment
duration. These variables are evaluated at the first calendar month of a period in which the duration of remaining
benefit eligibility remains constant.

23In Appendix E we describe this method and apply it on the basis of a linear adjustment function. The linear
specification is rejected on the pre-sample data, but for this application the impact estimates do not differ much
from the proposed non-parametric procedure.
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unemployed worker is notified, i.e. at k = k∗, and that k∗ = −3. The latter assumption can be
tested, as shown below.

Y1k and Y0k denote the potential outcomes of respectively being treated or not at time k.
The observed outcome Yk is then defined as:

Yk ≡ DY1k + (1−D)Y0k (1)

We aim at estimating the Average Treatment Effect on the Treated at time k:

ATTk ≡ E(Y1k − Y0k|D = 1) (2)

To control for time-varying determinants of the employment rate, we now propose a non-
parametric procedure based on propensity score matching. We consider two alternatives: ”di-
rect” and ”incremental” matching.

Direct Matching

In order to identify the ATTk according to this method, we need some assumptions. First,
we assume that the treatment status may not systematically affect the potential no-treatment
outcome given some realisation the observed time-varying variables:

Assumption 1 ∀k′ < k∗,∀xk′ :

E(Y0k′ |D = 1, Xk′ = xk′) = E(Y0k′ |D = 0, Xk′ = xk′)

This assumption means that in the pre-treatment period the treatment indicator may not
systematically affect the potential no-treatment outcome. As such, we can replace the average
potential outcome of the treated E(Y0k′ |D = 1, Xk′ = xk′) by the average observed adjusted
outcome of the same women prior to treatment E(Y0k′ |D = 0, Xk′ = xk′). Since the expectations
are taken over the same group of individuals, the assumption can only be violated if there is
an unobserved determinant of the outcome variable that systematically changes simultaneously
with the treatment status. This is very unlikely to occur in the current empirical application.

Second, we assume that, conditional on a realisation of the observed time-varying variables,
the potential no-treatment outcome for the treated does not systematically vary over time:

Assumption 2 ∀k, k′, xk : E(Y0k|D = 1, Xk = xk) = E(Y0k′ |D = 1, Xk′ = xk)

This assumption means that for every realisation of the time-varying variables, xk, the
distribution of unobserved determinants of the outcome variable is constant over time. This
assumption is violated if xk does not capture all time variation or if the composition of a sub-
sample with a particular realisation of xk changes over time. The first type of violation can be,
for instance, induced by a policy change after a particular date. A violation of the second type
can be the result of a movement from a an economic downturn to an economic upturn. If one
conditions on a high local unemployment rate, in a downturn the sub-sample of unemployed
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workers may contain a much larger share of qualified workers than in an upturn.24 Finally, we
must make a common support assumption (see e.g. Lechner (2001)):

Assumption 3 ∀ k , ∀ xk , ∃ k′ < k∗ : Prob(Xk′ = xk) 6= 0

This means that, for every realised values xk of the vector of time-varying variables in
treatment month k, there must in principle exist an identical realisation in month k′ in the
pre-treatment period.25 This is required to find a control unit for each realised treatment. The
larger the interval between the treatment and the pre-treatment period, the more likely this
assumption is violated. In fact, we report below that for the present empirical application there
is a substantial common support problem. As a consequence, we can not estimate the causal
impact of benefit exhaustion of a large share (30%) of the treated women. This neglect could
seriously bias the estimator ATTk of the total treated population. This is why we will propose
a variant of the method – ”incremental matching” – that recovers the causal impact for the
excluded treated units.

The following two propositions summarise how the Assumptions 1 and 2 imply testable
outcomes in the pre-treatment period on the one hand and how they identify ATTk on the basis
of a matching estimator on the other hand.

Proposition 1 26 If Assumptions 1-3 hold then: ∀ k′ < k∗,∀ xk∗−1 :

E[E(Yk′ |D = 0, Xk′ = xk∗−1)− E[Yk∗−1|D = 0, Xk∗−1 = xk∗−1)|D = 0] = 0

Thus, conditional on the time-varying factors, the outcome variable may on average not vary
in the pre-treatment period. If Proposition 1 cannot be statistically rejected, this provides
support for the hypothesis that the before-after estimator indeed identifies the causal impact of
the treatment. It is no proof, however. 27

Proposition 2 28 If Assumptions 1-3 hold then: ∀ k ≥ k∗, ∃ k′ < k∗ :

ATTk = E[E(Yk|D = 1, Xk = xk)− E(Yk′ |D = 0, Xk′ = xk)|D = 1]

where the outer expectation is over the distribution of Xk|D = 1

This proposition states that we can estimate the impact by matching each treated woman
to a woman who has not yet been treated, but who has the same realisation of the time-varying
variables. If these variables take on discrete values, one can match directly on each realisation
of the time-varying variables. Alternatively, we can use the results of Rosenbaum and Rubin
(1983) to justify matching on the propensity score.

24In the empirical application we do not only condition on the unemployment rate, but also on the unemploy-
ment duration. Since the latter variable is likely to be correlated with the level of qualification, this may mitigate
the problem.

25The literature usually states this assumption as follows:
Prob(D = 1|D = 0 or D = 1, xk) < 1.
26see Appendix B for a proof.
27See Heckman and Hotz (1989) for a discussion.
28see Appendix B for a proof.
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Incremental Matching

We mentioned that, as a consequence of lack of common support, the direct matching method
may not be very appealing. This is why we propose a variant that eliminates the problem, be
it at the cost of reducing the precision of the estimator. In a nutshell, incremental matching
consists in taking the sum of the impacts of moving, incrementally, from one time period to
the next. If we consider a sufficient number of increments, this sum measures the impact of
a treatment at some moment substantially beyond the start of the treatment. The common
support problem is avoided if the conditioning variables vary only gradually, since one must
only apply matching sequentially for adjacent time periods in stead of once for periods that far
off. We relax Assumption 3 in the following way:

Assumption 4 ∀ k, ∀ xk : Prob(Xk−1 = xk) 6= 0

We therefore only require that, for any realisation xk at time k, we can find with a strictly
positive probability the same realisation in the preceding month k−1. If satisfied together with
Assumptions 1 and 2, the following proposition shows how one can identify ATTk.29

Proposition 3 30 If Assumptions 1, 2 and 4 hold then: ∀ k ≥ k∗ :

ATTk =
k∑

j=k∗+1

E [E(Yj |D = 1, Xj = xj)−E(Yj−1|D = 1, Xj−1 = xj)|D = 1] +

E [E(Yk∗ |D = 1, Xk∗ = xk∗)−E(Yk∗−1|D = 0, Xk∗−1 = xk∗)|D = 1]

The proposition suggests estimating ATTk by a sum of incremental impacts in the successive
periods between the start of the treatment period and the moment k at which the eventual
(cumulative) impact is evaluated. However, since the outcome variable is in general positively
serially correlated, this procedure will come at the cost of inflating the standard error of the
estimated impact.31 We therefore apply the procedure of incremental matching only if necessary,
i.e. on the treated observations outside the region of common support if direct matching is
applied. Moreover, we reduce the number of terms in the sum by grouping time periods up to
the point that the problem of common support shows up.

Implementation and Results of the Direct and Incremental Matching Estimators

We first explain the benchmark propensity score matching method that we apply in this section.
Subsequently, we discuss how the test for the absence of any impact in the pre-treatment period
performs on the basis of a direct matching estimator. We then focus on a number of problems
and choices to be made in the estimation of the ATTk for k = 14. On the basis of this discussion
we select a method of estimation that we implement to estimate the ATTk for k ∈ [−3, 14].

29In the empirical application we need not relax Proposition 1.
30see Appendix B for a proof.
31In the empirical application we estimate this standard error by bootstrapping.
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Table 3: Treatment Effects in the Pre-Treatment Period a

k b Number of matched observations ATTk SEc

-5 825 -0.006 0.008
-6 825 0.007 0.008
-7 823 -0.003 0.009
-8 822 -0.015 0.009
-9 821 0.007 0.010
-10 820 0.000 0.010
-11 820 0.006 0.010
-12 819 -0.015 0.011
-13 814 0.007 0.009

a k =-4 is the reference
b Number of months of entitlement to UI left prior to the benefit
exhaustion = -k
c Bootstrapped standard error (1000 replications).

The propensity scores are estimated using a procedure proposed by Dehejia and Wahba
(2002) 32. This procedure aims at finding the correct specification of the propensity score that
satisfies the ”balancing property” (Rosenbaum and Rubin, 1983). Once the propensity score is
estimated, we must select a matching algorithm. We choose ”blocking” in which the matching
occurs over a number of blocks into which the support of the estimated propensity score has
been divided (see e.g. Rosenbaum and Rubin (1984) and Dehejia and Wahba (1999, 2002)).33

The same blocks, as those used for the specification test of the propensity score can be used.
The standard error of ATTk is calculated by a non-parametric bootstrap.

Before turning to the estimates of the average treatment effects, we discuss the results of
the testable implications of our assumptions as formalised in Proposition 1: the pre-treatment
outcomes may not differ over time. We contrast the outcome at k = −4 to those in the interval
[−13,−5]. Again note that the sample size (N = 826) gradually decreases from 825 to 814. We
do not go beyond k = −13, since the sample size reduces more quickly after that point: this
may invalidate the test. The findings are reported in Table 3. In any period, the impact effect
are rather small. Furthermore, it turns out that no impact effect is significantly different from
zero at a 5% level.

We now turn to the estimation of the treatment effects. We first tried to estimate ATT14 by
directly matching observations at k = 14 with those in the pre-treatment period at k = −4. On
the basis of the above-mentioned benchmark procedure we could not find any balanced speci-
fication of the propensity score. 34 We suspect that this failure is the consequence of the true
specification not being sufficiently smooth to be captured by a logit transformation of a polyno-
mial in the continuously valued explanatory variables. If the propensity score varies abruptly in
regions that lack common support, a propensity score that is a function of continuously valued

32see appendix C for a description.
33We contrasted the blocking algorithm to an Epanechnikov kernel matching estimator (see Heckman et al.,

1998) for two choices of the smoothing parameter. The point estimates (readily available on request) are slightly
lower, but not significantly different from those reported below. This confirms the general observation that
estimates are not very sensitive to the specific choice of the matching algorithm.

34We tried specifications with several higher order and interaction terms as well as ones in which we added the
time-constant explanatory variables.
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variables cannot be balanced in these regions. We therefore devised a procedure in which we
categorize the explanatory variables in a discrete number of intervals as to identify these regions.
On the basis of this procedure, described in Appendix D, we identified 249 women, representing
30% of the sample, for whom the propensity score lacks common support. If we now apply the
above-mentioned benchmark matching procedure on the 577 remaining women for whom we
identified a common support, we no longer have any problems in finding a specification for the
score that is balanced. The estimate of ATT14 of this group is reported in the first line of Table
4. The treatment effect is slightly higher than the one obtained by the methods of the previous
section. However, this result may be biased, because it neglects a sizeable proportion of treated
women. We therefore considered the procedure of incremental matching to re-incorporate the
women outside the common support in the estimation procedure.

The second line of Table 4 reports the result of the incremental matching procedure in
which we take the sum of incremental impacts in every month between k = −4 and k = 14.
The advantage of this method is that the benchmark procedure works and that we face nowhere
a common support problem. The cost is, as anticipated, a huge increase in the standard error,
inflating from 0.024 to 0.282!

In order to increase the precision, we modify the method in two respects. First, we apply
the incremental matching estimator only on the 249 women who were outside the common
support. The total ATT14 is then found by taking a weighted average35 of the impact of the
latter group and the impact of the women within the common support, as estimated by the
direct matching method. Second, rather than taking the sum of every monthly increment,
we reduce the number of terms in the sum by increasing the length of each increment in the
sum. To determine the length of each increment, we choose the maximal length for which
the propensity score satisfies the balancing property without having to introduce higher order
terms or interactions of the explanatory variables. In the empirical application this allows us to
reduce the number of increments from 18 to 4. Note that the standard error of this procedure
is estimated by bootstrapping.

The third line of Table 4 reports the point estimate of ATT14 for the previously neglected
group. It is clearly lower than the point estimate for the retained group: 0.198 versus 0.272.
The weighted average estimate of ATT14 for the total sample, reported in the fourth line, is
therefore slightly smaller (0.250). However, more importantly, the standard error of this new
estimate is of a reasonable magnitude (SE = 0.033) as compared to the one obtained by the
above reported incremental matching on the total sample (SE = 0.282).

In the 4th column of Table 5 and Figure 4 we report the estimated ATTk from the combined
direct and incremental matching estimators for all k ∈ [−3, 0] and for k equal to 3, 6, 12 and
14. We also contrast these results with those obtained by a ”naive” before-after estimator. The
latter estimator does not control for the time-varying variables and boils down to a matching
estimator in which each woman in the ”after period” is matched to herself in the ”before period”
(Heckman et al., 1999). It is implemented by simply taking the difference between the average
outcome at k and in the the first pre-treatment month (k = −4).

It turns out from Figure 4 that both estimators yield very similar results. This is because
the two time-varying variables affect the outcome in opposite directions. First, during the
observation period the economic conditions improve and this is reflected in a decrease in the

35The weights are taken to be proportional to the size of each sub-sample.
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Table 4: Estimates of ATT14 using Direct and Incremental Matching Methods

treatment effect standard error N treated
1 direct comparison a 0.272 0.024 577
2 IATT (1) b 0.224 0.282 826
3 IATT (2) c 0.198 0.094 249
4 direct + IATT (2) d 0.250 0.033 826

a direct comparison for the individuals on the common support
b sum of incremental impacts for the whole sample
c sum of incremental impacts for the individuals out of the common support
d weighted average of (1) and (3)

Table 5: Different Before-After Estimators of ATTk

k naive estimator combined direct and
incremental matching

ATTk SE a ATTk SE b

-3 0.024 0.005 0.024 0.009
-2 0.034 0.006 0.036 0.010
-1 0.149 0.012 0.151 0.013
0 0.169 0.013 0.173 0.015
3 0.186 0.014 0.190 0.016
6 0.204 0.014 0.207 0.016
12 0.225 0.015 0.208 0.033
14 0.224 0.015 0.250 0.033

a Analytical standard error: SE(ATTk) =

√
ATTK∗(1−ATTK)

N

b Bootstrapped standard error (1000 replications).

local unemployment rates. On the other hand, the cumulative unemployment duration can, by
construction, never decrease. Apparently, these two effects cancel each other out.

1.62
On the basis of these findings, we conclude that benefit exhaustion does significantly enhance

the probability of employment: by 17.3 percentage points in the month in which benefits are
withdrawn, gradually growing to 25 percentage points 14 months afterwards. Moreover, already
in the month in which one is notified the employment probability is 2.4 percentage points higher.
Subsequently, the impact jumps up from 3.6 percentage points two entitlement months before
the expiration to 15.1 percentage points one month before. This demonstrates that anticipation
effects are important.

4.2 A Sensitivity Analysis: Standard Propensity Score Matching and IV

One may be suspicious of the validity of the before-after estimator since it requires the strong
identifying assumption that all systematic time-varying effects can be captured by a number
of observed time-varying variables. In order enhance the credibility of the estimation result,
we therefore test whether similar results could be attained on the basis of different identifying
assumptions. We will consider two alternative methods: standard propensity score matching
on observed explanatory variables and an Instrumental Variable (IV) method.
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Figure 4: Different Before-After Estimators of the ATTk
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In contrast with the before-after estimator, the alternative methods are not only based on
the sampled treatment group, but also on the control group, i.e. the group of women for whom
benefits did not (yet) exhaust at the survey date. However, the sampling scheme complicates
an analysis that uses both groups, since the sampling criteria differ between these groups (see
Section 3). Women in the control group are selected among those who received unemployment
benefits during at least one day in March 1997. In contrast, a sizeable proportion (55%) of the
treated women were not unemployed in that month. There is clearly a lack of common support.

In order to resolve the problem, we exclude the 462 treated women who were not unemployed
in March 1997 from the analysis. This eliminates women who are attached to the labour market.
The excluded and retained treated do not differ very much with respect to their observed
individual characteristics.36 However, they differ quite a lot as far as their labour market history
is concerned. The excluded treated have on average a slightly lower cumulated unemployment
duration than the retained ones (respectively 52 and 56 months) but, in particular, their last
unemployment spell is shorter (respectively 19 and 36 months). The excluded treated therefore
seem to have a more volatile employment history: between January 1992 to March 1997 they
experienced 3.3 unemployment spells on average, whereas the retained group only 2.8. The lack
of recent employment experience of the retained women as compared to the disregarded group
also shows up in Figure 5. In this figure the average employment rates of the different groups
are plotted between January 1997 and August 199837. The employment rate of the excluded
treatment group is much higher than the one of the retained group. The latter is now even
everywhere consistently lower than the employment rate of the control group.

A first consequence of this sample restriction is that the effects of benefit exhaustion prior
to March 1997 are difficult to interpret, since they are conditional on a future event: being
unemployed in March 1997. As in the treatment sample benefits expire between March and
June 1997, we decided to disregard the anticipation effects in the estimation. In this section
the ATTk are therefore only estimated for k ≥ 0.

A second consequence of this restriction is that we can no longer compare the results obtained
36A description of the observed individual characteristics and the labour market histories of the the various

sub-samples is reported in Table 4 of Appendix F.
37The employment status corresponds to the one reported in the survey.

18



Figure 5: Monthly Employment Rates of Treated and Controls
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by the alternative methods with the ones of the before-after estimator reported in the previous
section. The comparisons reported below will therefore refer to the before-after estimator as
applied on the restricted treatment sample.38

4.2.1 The Standard Matching Method

We first consider the standard matching method. The method consists in matching members
of the retained treatment and control sample on the basis of the control variables reported in
Table 2 of Section 3. To avoid an endogeneity bias, we condition on the realisations of the time
varying variables at the beginning of March 1997, i.e. prior to the first benefit exhaustion that
we observe.39

We used the benchmark procedure described in the previous section to find a correctly
specified propensity score. However, in contrast to the before-after estimator, we applied the
nearest-neighbour matching algorithm with replacement in stead of blocking.

The results of the impact are reported in Table 6 and contrasted to the before-after estimator
as applied on the restricted sample in Figure 6. Over the whole period, the impact is negative
in a range between -11% and 0%. However, the standard errors are large, so that we cannot
reject the hypothesis that benefit exhaustion has no impact on employment probabilities. On
the other hand, the before-after estimate of the impact is not contained in the 95% confidence
interval. In the next section we will verify whether this is due to some selection on unobservables
not accounted for in the standard matching estimator.

4.2.2 IV as a matching estimator

According to legislation UB can only be withdrawn if the cumulative unemployment duration
exceeds a certain threshold. This threshold depends on the sex, the age class and the place

38Note that on this restricted sample, we did not have any problem of common support. Consequently, we did
not have to rely on the incremental matching method, but could use direct matching instead.

39De Lathouwer et al. (2003) condition on the income of the partner at the time of survey, after benefits have
exhausted. If the partner reacts to the income loss, e.g. by increasing the number of working hours, then the
employment status of the treated women is negatively related to this income. This induces a downward bias in
the estimated impact.
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Table 6: Various matching estimators for ATTk

k a Before-After b Simple Matching IV1 IV2
ATT ATT SE e ATT SE e ATT SE e

0 0.06 -0.03 0.05 0.04 0.07 0.07 0.24
1 0.07 -0.02 0.05 0.04 0.07 0.07 0.26
2 0.09 -0.01 0.06 0.06 0.08 0.09 0.28
3 0.09 -0.01 0.06 0.04 0.08 0.10 0.29
4 0.08 -0.02 0.06 0.04 0.08 0.14 0.29
5 0.09 -0.02 0.06 0.04 0.08 0.14 0.29
6 0.11 -0.01 0.06 0.03 0.09 0.13 0.30
7 0.13 0.00 0.07 0.04 0.09 0.14 0.32
8 0.14 -0.01 0.07 0.06 0.09 0.11 0.32
9 0.13 -0.03 0.07 0.04 0.09 0.14 0.32
10 0.13 -0.06 0.07 0.09 0.09 0.05 0.33
11 0.14 -0.10 0.07 0.11 0.09 0.02 0.34
12 0.16 -0.13 0.07 0.11 0.09 0.07 0.34
13 0.16 -0.11 0.07 0.12 0.09 0.11 0.35
14 0.16 -0.04 0.07 0.14 0.09 0.09 0.35

a Months after benefit exhaustion
b Direct matching applied to the restricted sample
c IV–matching using a ”simple” specification (c.f. discussion in Section 4.2.2)
d IV–matching using a ”complete” specification (c.f. discussion in Section 4.2.2)
e Analytical standard error (c.f. Appendix H)

of residence. These rules assign recipients of UB into an eligible and non-eligible population.
Benefits will not expire for all eligible women, since there exist several grounds for lodging an
appeal (see Section 2). Nevertheless, as a consequence of these rules, the probability of UB
exhaustion jumps up, once assigned to the eligible population. We exploit this variation in the
probability of treatment to identify the effect of UB expiration.

The variation in the probability of treatment induced by the legislation is not completely
exogenous, however: the above-mentioned determinants of assignment to the eligible population
are not exogenous to the outcome variable, the probability of employment. We therefore first
need to purge this variation of its component that is correlated with the employment rate. This
is realised on the basis of a ”Regression Discontinuity Design” (see e.g. Hahn et al. (2001)).
We assume that the relationship between the employment probability and the determinants of
eligibility is smooth. In contrast, the relationship between these determinants and the eligibility
status is discrete: the duration must exceed a threshold and this threshold in turn varies
discontinuously as the age crosses the boundary of an interval, or as the place of residence
changes. Consequently, there will remain some variation in the eligibility status once we control
for its determinants by means of continuous variables. Moreover, this variation is exogenous in
that it is no longer correlated with the outcome variable. This defines an instrumental variable.

We chose the following continuous control variables: the cumulated unemployment duration
covering 63 months prior to the sampling date, as calculated from the administrative files; the
age in years at the sampling date40; the female local unemployment rate as reported in the

40In March 1997 for the controls and between March and June 1997 for the treated women.
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Figure 6: Alternative Matching Estimators and the Before–After Estimator
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monthly statistics of the National Unemployment Office (RVA/ONEM). The unemployment
rate was taken to eliminate the correlation between the employment rate and the place of
residence. The unemployment duration and rate were both evaluated at the end of February
1997.

The eligibility status depends on the cumulative unemployment duration since the first
moment at which the worker became eligible to UI. However, since the observed duration
is left–censored (see section 4.1), we may underestimate it. As to prevent a systematically
incorrect assignment of the eligibility status, we adjust the observed duration as described in
Appendix G. The eligibility status is determined in June 1997. By this choice, we ensure that
all women for whom we observe the benefit exhaustion belong indeed to the eligible population:
all observed expirations occur before the end of June 1997. This choice avoids determining a
different eligible population according to the date at which benefits exhaust. On the basis of
this definition we identify 632 eligible women and 118 ineligible.

The discrete nature of the outcome variable complicates the implementation of an IV esti-
mator. For, the Two Stage Least Squares estimator is then inconsistent (see e.g. Wooldridge
(2002, p.478)). To avoid this problem, we follow the suggestion of Heckman et al. (1999) and
Ichimura and Taber (2001) to implement IV as a matching estimator. This choice has the
further advantage of being nonparametric. It avoids arbitrary parametric assumptions on both
the distribution of the binary outcome and on the functional relation of the outcome with the
explanatory variables.

The eligibility status, Z is a discrete IV, conditional on the above mentioned continuous
variables, X, fixed at their realisations x at the end of February 1997. Ypkt denotes the potential
outcome (p = 0, 1) k months after benefit exhaustion at calendar time t.41 Following Heckman
et al. (1999) we may write the potential and observed outcome respectively as follows:

Ypkt = gpkt(X) + Upkt (3)

41Since UB do not all exhaust at the same calendar time, but between March and June 1997, we distinguish k
and t.
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Ykt = g0kt(X) + D[∆kt(X) + U1kt − U0kt] + U0kt (4)

where ∆kt(X) ≡ g1kt − g0kt. In this notation the ATTk is defined by the following expression:

ATTk ≡ E [∆kt(X) + E(U1kt − U0kt|D = 1, X)|D = 1] (5)

where the outer expectation is over the distribution of X|D = 1 and, for each k, over the
four different t’s, corresponding to the four months - March to June 1997 - in which benefits
are observed to exhaust.

The next three assumptions allow us to identify ATTk by IV as a matching estimator.

Assumption 5 E(U0kt|X,Z) = E(U0kt|X)

This is the standard IV condition that the the eligibility status may not be correlated with
the no-treatment residual after conditioning on the above-mentioned continuous variables, X.

Assumption 6 E(U1kt − U0kt|X, Z,D = 1) = E(U1kt − U0kt|X, D = 1)

This assumption implies that the average idiosyncratic impact of benefit exhaustion on the
treated may not depend on the IV. In our empirical application this assumption is not restrictive,
since the IV corresponds to the eligibility status and therefore women are by definition only
treated if Z = 1. In other words, there are ”compliers” and ”never-takers”, but no ”always-
takers”. As a consequence, the Local Average Treatment Effect (LATE) identified by the IV
estimator (Imbens and Angrist, 1994) coincides with the ATT in this empirical application.

The third assumption requires that for any X the probability of treatment differs accord-
ing to the realisation of the IV. Since here the IV corresponds to the eligibility status, this
assumption is trivially satisfied:

Assumption 7 P1(X) 6= P0(X) = 0
where Pz(X) ≡ Pr(D = 1|X,Z = z) for z = 0, 1.

If the above assumptions hold, then the following proposition suggests a feasible IV estimator
of the ATTk:

Proposition 4 42 If Assumptions 5-7 hold then:

ATTk = E

[
E

[
Ykt

P1(X)
|X, Z = 1

]
− E

[
Ykt

P1(X)
|X, Z = 0

]
|Z = 1

]

where the outer expectation is over the distribution of X|Z = 1 and over the t’s.43.

This is a Wald–type estimator. By the above arguments, conditional on X, the systematic
difference in the outcome between the eligible (Z = 1) and the ineligible (Z = 0) must be
induced by the benefit exhaustion. Since benefits do not exhaust for every eligible woman (c.f.

42see Appendix B for a proof.
43If D = 0 and Z = 1, there is no natural starting point for calendar time. We arbitrary set t equal to March

1997 if k = 0.
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the conditions of appeal in Section 2), we have to weigh this impact by the fraction, P1(X), of
women among the eligible population for whom benefits effectively expire.

The above estimator is not operational, since it conditions on a vector of continuous vari-
ables, X: one cannot find women with both values of Z with exactly the same realisations of X.
To resolve this problem, Ichimura and Taber (2001) generalise the result from Rosenbaum and
Rubin (1983) obtained for standard matching methods to IV matching. These authors show
that, rather than conditioning directly on X, one may condition on the propensity of eligibility,
Q(X), in stead. Using this result they propose to match on the propensity score of eligibility
in stead of on the propensity score of treatment. If we apply the nearest-neighbor matching
routine with replacement, this results in the following operational estimator of ATTk:

ATTk =
1

NZ1

∑

i∈Z1

[
Ykti

P̂1(xi)
− Yktj(i)

P̂1(xj(i))

]
(6)

where Zz (z = 0, 1) denotes the set of respectively ineligible (z = 0) and eligible (z = 1)
women, NZ1 the number of eligible women, P̂1(x) is the estimated propensity score of treat-
ment conditional on Z = 1 , j(i) = argminj∈Z0 [Q̂(xi) − Q̂(xj)]2, where Q̂(x) is the estimated
propensity score of Z = 1 conditional on the realised explanatory variables x. Note that for
Z = D this boils down to a standard nearest-neighbor matching estimator.

We follow the benchmark procedure of Dehejia and Wahba (2002) described above and in
Appendix C to obtain a balanced specification of the estimated propensity scores. Note, as
for the standard matching method, we adjust the proposed procedure slightly as to account
for the calendar time variation t in the outcome variable. The standard errors are calculated
analytically, assuming that the propensity scores are fixed. 44

We implement two variants of this IV estimator. ”IV1” controls only for three explanatory
variables: the unemployment rate and duration, and the age. This set of conditioning variables is
in principle sufficient, since, by the above arguments, all remaining variation should be random.
However, if our sample were an unlucky draw, this assumption could be violated. In ”IV2” we
therefore tested whether the findings uphold if we include in the specification of the scores all
the remaining explanatory variables, i.e. those retained for the standard matching estimator.

The estimation results are reported in the last columns of Table 6 and in Figure 6. For both
variants they are much closer to the before-after than to the standard matching estimates. The
IV2 estimates are mostly closer to the before-after than IV1, suggesting that some bias remains
present in the IV1 estimator. However, the IV2 estimator seems to suffer from problems of
over-specification: standard errors more than triple in magnitude! Nevertheless, despite their
imprecision, the IV estimates corroborate the findings of the before-after estimator.

5 Conclusion

This paper aimed at estimating the causal impact of UB exhaustion on the probability of
employment of a specific category of long-term unemployed women in Belgium. To attain this
objective we had to surmount a number of methodological problems. Before summing up the
empirical findings, we briefly summarize the proposed resolution to the main problems.

44see the Appendix H for a derivation of the formula.
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First, we have shown that the fulfillment of the identifying assumptions of a before-after
estimator of a causal impact may crucially depend on the definition of the time-scale, i.e by
using the number of months of benefit receipt prior to the UI exhaustion date in stead of
calendar time. Second, for the implementation of the before-after estimator, we proposed a
non-parametric matching method to purge the outcome variable of time-varying determinants.
As to solve a problem of common support that was bound to occur, we developed a method
that did not require dropping any observations: the method of ”incremental matching”. This
method boils down to taking the sum of incremental impacts over a number of sub-periods
over the period of interest. Finally, as to overcome the inconsistency of the IV estimator in
the presence of a discrete outcome variable, we implemented IV as a matching estimator, as
suggested by Heckman et al. (1999) and Ichimura and Taber (2001).

The reader may question why we did not analyze the effect of benefit exhaustion by hazard
regression models, as in the literature. A first answer is that matching estimators are non-
parametric and therefore less sensitive to specification errors45. However, the main reason is
the complexity of sampling scheme that, as mentioned above, combines a stock sample for the
controls and a flow sample into benefit exhaustion for the treated women. A drawback of our
choice is that it makes it more difficult to compare the magnitude of the estimated impact
to previous findings and to test the predictions of theory which are also phrased in terms of
hazard rates from unemployment to employment and not in terms of employment probabilities.
For instance, job search theory predicts that the hazard rate should jump up at the moment
of notification, should then gradually increase up to the expiration date and remain constant
afterwards. Note also that the hazard from employment to non-employment should follow
the reverse pattern (up to the point at which the worker is entitled to UB again). Since the
employment probability is the sum (integral) of past hazard rates to employment times the
probability of surviving in employment up to the considered moment, this pattern is smoothed:
we should therefore observe the employment rate to increase more gradually, to continue this
upward movement beyond the moment at which benefits expire and, subsequently, to converge
gradually to a higher level. This pattern corresponds exactly to our findings.

These findings can be summarized as follows. On the basis of the before-after estimator we
conclude that in Belgium the exhaustion of unemployment benefits of long-term unemployed
female workers has an important significant positive impact on the probability of employment.
From the moment at which the worker is notified, three months before expiration, the probability
of employment rises. One month before benefits expire it already attains a level that is 16
percentage points higher than in the absence of benefit exhaustion and afterwards the impact
rises more gradually up to 25 percentage points 14 months after the end of the entitlement
period. If benefits had not expired, the employment probabilities at these moments would have
been respectively of 2.5% and virtually zero (according to our estimations).

The before-after estimator has been compared to both a ”standard” and an IV matching
estimator, be it on a smaller sample, as a consequence of a lack of common support between the
treatment and the control sample. Even if the IV matching estimator was imprecise, it yielded
very close estimates of the ATT to the before-after estimator on the corresponding sample.
This corroborates our findings. On the other hand, the standard matching estimator that only

45In most cases a mixed proportional hazard (MPH) assumption is required. This can only be relaxed if one
has data on multiple spells for the same individual (Abbring and van den Berg, 2003).
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corrects for selection on observables consistently yielded negative (although not significantly
different from zero) impact estimates and therefore performed very badly in this empirical
application.

For the interpretation of the results it is important to realise that the treatment sample was
restricted to women whose benefits effectively expired. The impact is therefore underestimated,
since it does not take into account that women could escape the benefit exhaustion by leaving
unemployment for a full time job lasting more than two years. After such an employment period
workers regain entitlement to unemployment benefits and the unemployment duration clock is
reset to zero. On the other hand, the restriction of the analysis to those women whose benefits
were effectively withdrawn necessarily implies that all employment found prior to the moment
of benefit exhaustion must have lasted less than two years and can therefore be qualified as
”temporary”.

We conclude that our findings are in the line of the more recent studies, mentioned in the
introduction that find important disincentive effects of UB. However, these findings concern a
very specific sub-population of unemployed women in Belgium. We do not know whether these
results generalise to other unemployed workers. Moreover, we did not evaluate the quality of
the realised employment (as measured by the wage or other employment characteristics such
as the fraction of full-time employment or of permanent contracts, etc.). This requires further
research.

Appendix

The appendices are available from the following address:
http://www2.econ.ucl.ac.be/˜sexjrs/documents/ExhaustAppendix.pdf

A Employment Status before January 1997

B Proofs of the Propositions

C Dehejia and Wahba (2002) Specification Test

D Definition of the Regions of Common Support

E A Method based on an Adjustment Function

F Sample Characteristics for the IV analysis

G Constructing an Instrument

H Standard Errors for the Sensitivity Analysis
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la reprise de l’emploi. Economie et Statistique, 343(3):3–28.

Eichler, M. and Lechner, M. (2002). An evaluation of public employment programmes in the
east german state of sachsen-anhalt. Labour Economics, 9:143–186.

Fredriksson, P. and Holmlund, B. (2003a). Improving incentives in unemployment insurance:
A review of recent research. Working Paper 2003:10, Department of Economics, Uppsala
University.

Fredriksson, P. and Holmlund, B. (2003b). Optimal unemployment insurance design: Time
limits, monitoring, or workfare? Working Paper 2003:17, Department of Economics, Uppsala
University.

Hahn, J., Todd, P., and van der Klauw, W. (2001). Identification and estimation of treatment
effects by regression discontinuity design. Econometrica, 63(3):201–209.

Ham, J. C. and Rea, S. A. (1987). Unemployment insurance and male unemployment duration
in canada. Journal of Labor Economics, 5:325–353.

Heckman, J. J. and Hotz, V. J. (1989). Choosing among alternative nonexperimental methods
for estimating the impact of social programs: The case of manpower training. Journal of the
American Statistical Association, 84(408):862–880.

Heckman, J. J., Ichimura, H., and Todd, P. E. (1997). Matching as an econometric evaluation
estimator: Evidence from evaluating a job training program. Review of Economic Studies,
64:605–654.

Heckman, J. J., Ichimura, H., and Todd, P. E. (1998). Matching as an econometric evaluation
estimator. Review of Economic Studies, 65:261–294.

Heckman, J. J., Lalonde, R. J., and Smith, J. A. (1999). The economics and econometrics of
active labor market programs. In Ashenfelter, O. C. and Card, D., editors, Handbook of Labor
Economics, volume 3A, chapter 31, pages 1277–1366. North-Holland, Amsterdam.

Holmlund, B. (1998). Unemployment insurance in theory and practice. Scandinavian Journal
of Economics, 100(1):113–141.

Hunt, J. (1995). The effect of unemployment compensation on unemployment duration in
germany. Journal of Labor Economics, 13(1):88–120.

Ichimura, H. and Taber, C. (2001). Propensity score matching with instrumental variables.
American Economic Review, 91(2):119–124.

Imbens, G. W. (2003). Nonparametric estimation of average treatment effects under exogeneity:
A review. Working Paper T0294, NBER.

Imbens, G. W. and Angrist, J. D. (1994). Identification and estimation of local average treatment
effects. Econometrica, 62(2):467–475.

27



Jenkins, S. P. and Garcia-Serrano, C. (2000). Re-employment probabilities for spanish men:
What role does the unemployment benefit system play ? Working Paper 2000–17, ISER,
University of Essex.

Jensen, P., Rosholm, M., and Svarer, M. (2003). The response of youth unemployment to
benefits, incentives, and sanctions. European Journal of Political Economy, 19(2):301–316.

Joutard, X. and Ruggiero, M. (1996). Changements de régime d’indemnisation et transitions
vers l’emploi. Revue Economique, 47(1):143–166.

Katz, L. F. and Meyer, B. D. (1990). The impact of potential benefit duration of unemployment
benefits on the duration of unemployment. Journal of Public Economics, 41:45–72.

Lalive, R., van Ours, J. C., and Zweimüller, J. (2002). The effect of benefit sanctions on the
duration of unemployment. Discussion Paper 469, IZA, Bonn.

Lalive, R. and Zweimüller, J. (2002). Benefit entitlement and unemployment duration: The
role of policy endogeneity. Discussion Paper 492, IZA, Bonn.

Layard, R., Nickell, S., and Jackman, R. (1991). Unemployment: Macroeconomic Performance
and the Labour Market. Oxford University Press, Oxford.

Lechner, M. (2001). A note on the common support problem in applied evaluation studies.
Discussion Paper 2001–01, Department of Economics, University of St. Gallen.

Lindeboom, M. and Theeuwes, J. (1993). Search, benefits and entitlement. Economica, 60:327–
346.

Moffit, R. (1985). Unemployment insurance and the distribution of unemployment spells. Jour-
nal of Econometrics, 28(1):85–101.

Mortensen, D. T. (1977). Unemployment insurance and job search decisions. Industrial and
Labor Relations Review, 30:505–517.

Mortensen, D. T. (1990). A structural model of unemployment insurance benefit effects on the
incidence and duration of unemployment. In Weiss, Y. and Fishelson, G., editors, Advances
in the Theory and Measurement of Unemployment. Macmillan, Hampshire.

Pedersen, P. J. and Westerg̊ard–Nielsen, N. (1998). Unemployment: What do we know from
longitudinal data? In Lange, T., editor, Unemployment in Theory and Practice. Edward
Elgar, Cheltenham.

Roed, K. and Zhang, T. (2003). Does unemployment compensation affect unemployment dura-
tion? Economic Journal, 113(484):190–206.

Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in obser-
vational studies for causal effects. Biometrika, 70(1):41–55.

Rosenbaum, P. R. and Rubin, D. B. (1984). Reducing bias in observational studies using
subclassification on the propensity score. Journal of the American Statistical Association,
79(387):516–524.

Smith, J. A. and Todd, P. E. (2004). Does matching overcome Lalonde’s critique of nonexperi-
mental estimators. Journal of Econometrics, forthcoming.

28



Thoursie, A. (1998). Effects of renewable benefit periods on the exit rate from unemployment.
In Thoursie, A., editor, Studies on Unemployment Duration and on the Gender Wage Gap,
number 35 in Dissertation Series. Swedish Institute for Social Research, Stockholm.

van den Berg, G. J. (1990). Nonstationarity in job search theory. Review of Economic Studies,
57:255–277.

Van den Berg, G. J., van der Klauw, B., and van Ours, J. C. (2004). Sanctions and transitions
from welfare. Journal of Labor Economics, 22:211–241.

Winter-Ebmer, R. (1998). Potential unemployment benefit duration and spell length: Lessons
from a quasi-experiment in austria. Oxford Bulletin of Economics and Statistics, 60(1):33–45.

Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data. MIT Press,
Cambridge.

Wurzel, E. (1990). Staggered entry and uneployment durations: an application to german data.
In Hartog, J., Ridder, G., and Theeuwes, J., editors, Panel Data and Labor Market Studies.
North–Holland, Amsterdam.

29



 

CESifo Working Paper Series 
(for full list see www.cesifo.de) 
 

________________________________________________________________________ 
 
1160 Romain Ranciere, Aaron Tornell, and Frank Westermann, Crises and Growth: A Re-

Evaluation, March 2004 
 
1161 Assaf Razin and Efraim Sadka, Transparency, Specialization and FDI, March 2004 
 
1162 Ludger Woessmann, How Equal Are Educational Opportunities? Family Background 

and Student Achievement in Europe and the United States, March 2004 
 
1163 B.M.S. van Praag and Barbara E. Baarsma, Using Happiness Surveys to Value 

Intangibles: The Case of Airport Noise, March 2004 
 
1164 Aaron Tornell, Frank Westermann, and Lorenza Martínez, The Positive Link Between 

Financial Liberalization, Growth, and Crises, March 2004 
 
1165 Helge Berger and Carsten Hefeker, One Country, One Vote? Labor Market Structure 

and Voting Rights in the ECB, March 2004 
 
1166 Clemens Fuest and Martin Kolmar, A Theory of User-Fee Competition, March 2004 
 
1167 Friedrich Schneider and Robert Klinglmair, Shadow Economies around the World: 

What Do We Know?, April 2004 
 
1168 Horst Raff and Nicolas Schmitt, Exclusive Dealing and Common Agency in 

International Markets, April 2004 
 
1169 M. Hashem Pesaran and Allan Timmermann, Real Time Econometrics, April 2004 
 
1170 Sean D. Barrett, Privatisation in Ireland, April 2004 
 
1171 V. Anton Muscatelli, Patrizio Tirelli and Carmine Trecroci, Can Fiscal Policy Help 

Macroeconomic Stabilisation? Evidence from a New Keynesian Model with Liquidity 
Constraints, April 2004 

 
1172 Bernd Huber and Marco Runkel, Tax Competition, Excludable Public Goods and User 

Charges, April 2004 
 
1173 John McMillan and Pablo Zoido, How to Subvert Democracy: Montesinos in Peru, 

April 2004 
 
1174 Theo Eicher and Jong Woo Kang, Trade, Foreign Direct Investment or Acquisition: 

Optimal Entry Modes for Multinationals, April 2004 
 
1175 Chang Woon Nam and Doina Maria Radulescu, Types of Tax Concessions for 

Attracting Foreign Direct Investment in Free Economic Zones, April 2004 



 
1176 M. Hashem Pesaran and Andreas Pick, Econometric Issues in the Analysis of 

Contagion, April 2004 
 
1177 Steinar Holden and Fredrik Wulfsberg, Downward Nominal Wage Rigidity in Europe, 

April 2004 
 
1178 Stefan Lachenmaier and Ludger Woessmann, Does Innovation Cause Exports? 

Evidence from Exogenous Innovation Impulses and Obstacles, April 2004 
 
1179 Thiess Buettner and Johannes Rincke, Labor Market Effects of Economic Integration – 

The Impact of Re-Unification in German Border Regions, April 2004 
 
1180 Marko Koethenbuerger, Leviathans, Federal Transfers, and the Cartelization 

Hypothesis, April 2004 
 
1181 Michael Hoel, Tor Iversen, Tore Nilssen, and Jon Vislie, Genetic Testing and Repulsion 

from Chance, April 2004 
 
1182 Paul De Grauwe and Gunther Schnabl, Exchange Rate Regimes and Macroeconomic 

Stability in Central and Eastern Europe, April 2004 
 
1183 Arjan M. Lejour and Ruud A. de Mooij, Turkish Delight – Does Turkey’s accession to 

the EU bring economic benefits?, May 2004 
 
1184 Anzelika Zaiceva, Implications of EU Accession for International Migration: An 

Assessment of Potential Migration Pressure, May 2004 
 
1185 Udo Kreickemeier, Fair Wages and Human Capital Accumulation in a Global 

Economy, May 2004 
 
1186 Jean-Pierre Ponssard, Rent Dissipation in Repeated Entry Games: Some New Results, 

May 2004 
 
1187 Pablo Arocena, Privatisation Policy in Spain: Stuck Between Liberalisation and the 

Protection of  Nationals’ Interests, May 2004 
 
1188 Günter Knieps, Privatisation of Network Industries in Germany: A Disaggregated 

Approach, May 2004 
 
1189 Robert J. Gary-Bobo and Alain Trannoy, Efficient Tuition Fees, Examinations, and 

Subsidies, May 2004 
 
1190 Saku Aura and Gregory D. Hess, What’s in a Name?, May 2004 
 
1191 Sjur Didrik Flåm and Yuri Ermoliev, Investment Uncertainty, and Production Games, 

May 2004 
 
1192 Yin-Wong Cheung and Jude Yuen, The Suitability of a Greater China Currency Union, 

May 2004 
 



1193 Inés Macho-Stadler and David Pérez-Castrillo, Optimal Enforcement Policy and Firms’ 
Emissions and Compliance with Environmental Taxes, May 2004 

 
1194 Paul De Grauwe and Marianna Grimaldi, Bubbles and Crashes in a Behavioural Finance 

Model, May 2004 
 
1195 Michel Berne and Gérard Pogorel, Privatization Experiences in France, May 2004 
 
1196 Andrea Galeotti and José Luis Moraga-González, A Model of Strategic Targeted 

Advertising, May 2004 
 
1197 Hans Gersbach and Hans Haller, When Inefficiency Begets Efficiency, May 2004 
 
1198 Saku Aura, Estate and Capital Gains Taxation: Efficiency and Political Economy 

Consideration, May 2004 
 
1199 Sandra Waller and Jakob de Haan, Credibility and Transparency of Central Banks: New 

Results Based on Ifo’s World Economicy Survey, May 2004 
 
1200 Henk C. Kranendonk, Jan Bonenkamp, and Johan P. Verbruggen, A Leading Indicator 

for the Dutch Economy – Methodological and Empirical Revision of the CPB System, 
May 2004 

 
1201 Michael Ehrmann, Firm Size and Monetary Policy Transmission – Evidence from 

German Business Survey Data, May 2004 
 
1202 Thomas A. Knetsch, Evaluating the German Inventory Cycle – Using Data from the Ifo 

Business Survey, May 2004 
 
1203 Stefan Mittnik and Peter Zadrozny, Forecasting Quarterly German GDP at Monthly 

Intervals Using Monthly IFO Business Conditions Data, May 2004 
 
1204 Elmer Sterken, The Role of the IFO Business Climate Indicator and Asset Prices in 

German Monetary Policy, May 2004 
 
1205 Jan Jacobs and Jan-Egbert Sturm, Do Ifo Indicators Help Explain Revisions in German 

Industrial Production?, May 2004 
 
1206 Ulrich Woitek, Real Wages and Business Cycle Asymmetries, May 2004 
 
1207 Burkhard Heer and Alfred Maußner, Computation of Business Cycle Models: A 

Comparison of Numerical Methods, June 2004 
 
1208 Costas Hadjiyiannis, Panos Hatzipanayotou, and Michael S. Michael, Pollution and 

Capital Tax Competition within a Regional Block, June 2004 
 
1209 Stephan Klasen and Thorsten Nestmann, Population, Population Density, and 

Technological Change, June 2004 
 
1210 Wolfgang Ochel, Welfare Time Limits in the United States – Experiences with a New 

Welfare-to-Work Approach, June 2004 



 
1211 Luis H. R. Alvarez and Erkki Koskela, Taxation and Rotation Age under Stochastic 

Forest Stand Value, June 2004 
 
1212 Bernard M. S. van Praag, The Connexion Between Old and New Approaches to 

Financial Satisfaction, June 2004 
 
1213 Hendrik Hakenes and Martin Peitz, Selling Reputation When Going out of Business, 

June 2004 
 
1214 Heikki Oksanen, Public Pensions in the National Accounts and Public Finance Targets, 

June 2004 
 
1215 Ernst Fehr, Alexander Klein, and Klaus M. Schmidt, Contracts, Fairness, and 

Incentives, June 2004 
 
1216 Amihai Glazer, Vesa Kanniainen, and Panu Poutvaara, Initial Luck, Status-Seeking and 

Snowballs Lead to Corporate Success and Failure, June 2004 
 
1217 Bum J. Kim and Harris Schlesinger, Adverse Selection in an Insurance Market with 

Government-Guaranteed Subsistence Levels, June 2004 
 
1218 Armin Falk, Charitable Giving as a Gift Exchange – Evidence from a Field Experiment, 

June 2004 
 
1219 Rainer Niemann, Asymmetric Taxation and Cross-Border Investment Decisions, June 

2004 
 
1220 Christian Holzner, Volker Meier, and Martin Werding, Time Limits on Welfare Use 

under Involuntary Unemployment, June 2004 
 
1221 Michiel Evers, Ruud A. de Mooij, and Herman R. J. Vollebergh, Tax Competition 

under Minimum Rates: The Case of European Diesel Excises, June 2004 
 
1222 S. Brock Blomberg and Gregory D. Hess, How Much Does Violence Tax Trade?, June 

2004 
 
1223 Josse Delfgaauw and Robert Dur, Incentives and Workers’ Motivation in the Public 

Sector, June 2004 
 
1224 Paul De Grauwe and Cláudia Costa Storti, The Effects of Monetary Policy: A Meta-

Analysis, June 2004 
 
1225 Volker Grossmann, How to Promote R&D-based Growth? Public Education 

Expenditure on Scientists and Engineers versus R&D Subsidies, June 2004 
 
1226 Bart Cockx and Jean Ries, The Exhaustion of Unemployment Benefits in Belgium. 

Does it Enhance the Probability of Employment?, June 2004 
 


	Abstract



