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1. Introduction 

 

This paper is about how to get good estimates of the determinants of transitions into and out 

of low pay. Among those who are currently low paid, what are the factors associated with 

remaining low paid the next year, or becoming high paid? Among those who are currently not 

low paid, what are the factors associated with becoming low paid? Answers to these 

questions are an important supplement to the work of bodies such as the Low Pay 

Commission that focus on the prevalence of low pay in a given year (and its trends) using 

cross-section survey data. With panel data on transitions, we can see whether it is the same 

people who are stuck in low pay, or whether there is fluidity in the membership of the low 

paid group. Persistent low pay exacerbates problems associated with one-off low pay 

episodes, for example difficulties in making contributions to private pension schemes, getting 

a mortgage, and saving more generally (Atkinson, 1973). Experience of low pay is associated 

with higher chances of becoming unemployed in the future (the ‘low pay – no pay cycle’) 

and, although the overlap between low pay and poverty is relatively low in any given year, 

the association between persistent low pay and poverty is much higher (Stewart, 1999). 

 Multivariate regression models of low pay transition probabilities are an obvious 

source of evidence for discussing these issues, but their usefulness is contingent on a number 

of other issues being addressed appropriately – notably non-random panel drop-out (attrition), 

non-response on the key economic variables, and non-random selection into low pay in the 

base year (the initial conditions problem). We estimate models that account for these 

processes, plus variants on these models that illustrate the consequences of neglecting the 

endogeneities, using data for men from the British Household Panel Survey, waves 1–10.  

We offer two contributions. First, there are the substantive results about low pay 

transition probabilities in Britain, derived from a model that extends the definitive study to 

date (Stewart and Swaffield 1999). Second, from a methodological perspective, we 

demonstrate the feasibility (and potential problems) of accounting for multiple endogenous 

selection mechanisms with panel data, and examine the differences between the general 

model and simpler models assuming ignorability of one or more selection mechanisms. As 

far as we are aware, we are the first to consider attrition, non-response and initial conditions 

simultaneously and jointly with a model of labour market transition probabilities. The results 

suggest that panel attrition is ignorable. Put another way, when estimating annual low pay 

transitions, ‘economic’ selection mechanisms such as whether some has low pay in the base 

year (initial conditions), and whether someone is employed, appear to be more important than 
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the ‘survey’ selection mechanism. Nonetheless, relatively simple models provide estimates of 

covariate effects that differ little from the estimates from the complicated models. 

In Section 2, we briefly review previous research about labour market behaviour 

using panel data, and its treatment of attrition, non-response, and initial conditions. We 

distinguish between ‘economic non-response’ (when data on pay is missing because a 

respondent does not have a job) and ‘survey item non-response’ (when someone has a job but 

data on pay is missing because of a refusal or ‘don’t know’ response). Our statistical models 

are set out in Section 3, and the British Household Panel Survey data are introduced in 

Section 4. The estimates of the general model (accounting for three types of endogenous 

selection) are discussed in Section 5, and models assuming ignorability of one or more 

selection mechanisms are discussed in Section 6. Section 7 contains a summary and 

conclusions. 

 

 

2. Models of labour market behaviour accounting for attrition and non-response 

 

There are four types of endogenous selection mechanisms that arise when modelling labour 

market behaviour using panel data:  

1. Panel drop-out (attrition): the individuals who are retained in the panel from one 

interview to the next may not be a random sample of the population. 

2. ‘Economic’ item non-response: for example, information about pay (or number of hours 

worked) is only available for panel members who are employed, and they may not be a 

random sample. 

3. ‘Survey’ item non-response: for example, among panel members who are employed, 

those who refuse to provide or don’t know their earnings (or work hours) may not be a 

random sample. 

4. Initial conditions: for example, the set of individuals who are low paid in the base year 

(those at risk of exiting low pay), or the set who are not low paid in the base year (those at 

risk of entering low pay), may not be a random sample of the population. 

The second and third mechanisms arise in cross-section surveys as well. Although the 

example given under the second heading is framed with reference to models of labour market 

behaviour, it has analogues in other applications. (For example, one might wish to model 

expenditures on some disease-specific medicine, expenditure is only observed for those with 

the disease, and unobserved factors that influence disease probability also affect expenditure 
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propensities.) The fourth issue arises when one estimates dynamic models, such as models of 

transition probabilities (like ours). 

 Each of the mechanisms cited selects of a subset of respondents from the base 

population of interest, a process that is potentially endogenous because the unobserved 

individual factors affecting each selection mechanism may be correlated with the unobserved 

individual factors affecting the economic process of interest (and also correlated across 

selection mechanisms). A selection mechanism is ignorable if the relevant unobservable 

correlation(s) are zero. In this case, a model for the economic process estimated using the 

selected sample will lead to consistent parameter estimates. To get consistent estimates in the 

case when selection is non-ignorable, economists have typically modelled the selection 

mechanism jointly and simultaneously with the economic process of interest, allowing for 

cross-equation correlations of unobservables, and based tests for ignorability on the estimates 

of these correlations. The most famous example of this general approach is the model of 

‘economic’ item non-response by Nobel-prizewinner James Heckman (1974, 1976, 1979), 

originally applied to estimation of the determinants of women’s work hours and accounting 

for the fact that not all women were employed.  

 

Table 1 
Models of labour market behaviour with endogenous selection: examples 

  Endogenous selection issues addressed? 
Paper Outcome of interest Attrition Economic 

item non-
response 

Survey 
item non-
response 

Initial 
conditions 

Hausman and Wise 
(1979) 

Earnings √    

Keane et al. (1988) Wages  √   
Zabel (1998) Wages, work hours √ √   
Stewart and 
Swaffield (1999) 

Low pay transitions    √ 

Cappellari and 
Jenkins (2004) 

Low income 
transitions 

√*   √ 

This paper Low pay transitions √ √  √ 
*: Attrition defined as sample drop-out or survey item non-response on income (see text). 
 

 Models that account for more than one endogenous selection issue are relatively rare 

in applications to labour market behaviour, as far as we are aware. Table 1 provides an 

overview of previous research accounting for endogenous selection issues, citing a small 

number of illustrative examples, each of which used panel data. Initial conditions issues were 

not relevant to the first three models because the outcomes referred to a point in time rather 
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than changes over time. None of the models considered survey item non-response as an 

endogenous selection issue: implicitly it has been treated as ignorable, or combined with 

panel attrition in a manner that we discuss further below. 

Hausman and Wise (1979) estimated models of earnings at each of two points in time 

for a panel of participants in the Gary Income Maintenance Experiment, accounting for panel 

attrition. Since their focus was on the potential effects on estimates of individuals leaving the 

experiment, they framed their analysis in terms of panel attrition – the possibility that 

earnings data were missing due to unemployment spells was not mentioned. The headline 

finding was that sample attrition was ignorable for analysis of the impact of the experiment 

on earnings. 

Keane et al. (1988) analyzed the correlation between real wages and the business 

cycle – whether wages varied pro- or counter-cyclically – using 12 waves of data from the 

National Longitudinal Study of Young Men. They were concerned that, if the probabilities of 

being fired during an economic downturn were larger for individuals with low (unobserved) 

ability than for otherwise comparable workers, then the average productivity among a sample 

employees would be larger in recessions than at other points of the business cycle, thereby 

imparting a counter-cyclical bias in average wages. Thus the paper was concerned with the 

potential impact of economic item non-response (and the effects of panel attrition were not 

examined). The authors found that unobserved factors that influenced employment 

propensities were correlated with those influencing earnings: models that ignored this 

dimension of endogenous selection over-estimated the pro-cyclicality of real wages. 

 Zabel’s (1998) paper is an example of research considering both panel attrition and 

economic item non-response when modelling labour market outcomes (he considered both 

wages and work hours, separately). The attrition and employment equations were modelled 

jointly, from which ‘selection correction’ terms were derived and employed as additional 

regressors in the equation for the outcome of interest (à la Heckman, 1979). The model was 

fitted to data for men from two panels, the Panel Study of Income Dynamics and the Survey 

of Income and Program Participation. Zabel found evidence of non-random selection into the 

labour force in the equation for work hours, and the equation for wages, but attrition bias was 

found only for the wage equation (and not hours). Nonetheless, ‘account for attrition bias has 

little impact on the parameter estimates’ (Zabel, 1998, p. 502), echoing Hausman and Wise 

(1979).  

Becketti et al. (1988, p. 490) also found ‘no compelling evidence that attrition (or 

entry) has any effect on estimates of the parameters of the earnings equations … studied’. 
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Ziliak and Kniesner (1998) reported a similar result when estimating ‘lifecycle-consistent’ 

labour supply models. Lillard and Panis (1998, p. 437) stated that ‘[a]lthough we find 

evidence of significant selectivity in attrition behavior, the biases that are introduced by 

ignoring selective attrition are very mild’. (All three studies were based on the PSID.) In 

addition, using Dutch panel data, Van den Berg and Lindeboom estimated multi-state labour 

market transition models using hazard regressions accounting for endogenous panel attrition. 

They found that attrition was non-ignorable, but ‘the estimates of covariate effects in the 

labor market transition rates do not change a lot when allowing for these relations between 

labor market durations and attrition’ (p. 477).  

 The next two studies differ from those discussed so far because the dependent 

variable referred to a change in a labour market outcome, and hence initial conditions were 

also relevant. Stewart and Swaffield’s (1999) paper is the definitive analysis of low pay 

dynamics in Britain. Using data for men and women from waves 1–6 of the British 

Household Panel Survey, they showed that ‘exogenous selection into the initial low pay state 

… is strongly rejected and that ignoring the endogenous selection … distorts the estimated 

coefficients’ (1999, p. 40). The marginal effects on the probability of being low paid 

conditional on initial low pay status were much smaller when initial conditions were 

accounted for. The importance of accounting for initial conditions was also emphasised by 

Arulampalam et al. (2000) in their panel model of unemployment dynamics. See Heckman 

(1981) for a general discussion of the issue. 

 Cappellari and Jenkins (2004) used a model of transition probabilities similar to 

Stewart and Swaffield’s, except that they added an additional equation to account for attrition 

as well as initial conditions (and the outcome was conditional low income status rather than 

conditional low pay status). Attrition was defined to occur either when data were missing 

because of panel drop-out, or because of incomplete response on income by the respondent or 

another adult in his or her household. (Poverty status was assessed using a measure of 

household income, and this could only be calculated for households in which all adults were 

complete respondents.) There was evidence of both attrition and initial conditions bias. From 

comparisons of the three-equation model with models assuming that either or both of the 

endogenous selection mechanisms were ignorable, Cappellari and Jenkins concluded that the 

estimates suggested that ‘neglecting to control for endogeneity of initial poverty status is 

more problematic that neglecting to control for endogeneity of retention’ (2004, p. 15).  

 The current paper builds on Stewart and Swaffield (1999) and Cappellari and Jenkins 

(2004). It models low pay transitions, but adds a fourth equation to account for ‘economic’ 
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survey non-response, and also explores the consequences of alternative assumptions about 

‘survey’ item non-response. Models corresponding to those used the earlier papers, i.e. 

assuming ignorability in one or more of the endogenous selection mechanisms, are also 

estimated to investigate the effects of ignoring non-ignorability. The general model is 

described in the following section. 

 

 

3. A model of low pay transitions accounting for three endogenous selection processes 

 

Consider a sample of men in some base year (year ‘t–1’), all of whom are in employment and 

all of whom have non-missing missing data on pay. Employment is defined as working for an 

employer. Thus the base year sample excludes men who are self-employed, or unemployed, 

or economically inactive, or who are employed but for whom pay data is missing. These 

selection criteria correspond to those used by all previous research on labour market 

transitions that we are aware of. Thus potential endogenous selection into the labour force, 

self-employment, or employment, in the base year is ignored. (One exception is Cappellari 

and Jenkins (2003) who allowed for endogenous selection into employment in the base year 

for a sample of men who were employed or unemployed.) 

 For each man in the base year sample, we assume that there is a latent low pay 

propensity, L*
t–1, and observed low pay status, Lt–1, depends on whether this propensity is 

greater or less than some unobserved threshold (set equal to zero without loss of 

information). That is, initial conditions are described by: 

L*
t–1  =  β′xt–1  +  ut–1, ut–1 ~ N(0,1) (1)

Lt–1  =  I(L*
t–1 > 0) (2)

where xt–1 is a vector of personal characteristics, β is a vector of parameters, and ut–1 

summarises unobserved differences (assumed uncorrelated with observed characteristics). 

I(L*
t–1 > 0) is a binary indicator function equal to one if the latent low pay propensity is 

positive and equal to zero otherwise. Stewart and Swaffield (1999) showed that this 

specification is equivalent to assuming that there exists some monotonic transformation of 

observed earnings such that the normality assumption holds.  

 Now consider outcomes in the following year (the current year, ‘t’) for this sample, 

taking account of potential non-ignorable attrition and economic item non-response. Suppose 

that there is a latent panel retention propensity, R*
t, which is a linear function of observed and 
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unobserved characteristics (analogous to that described above), and observed retention status, 

Rt, depends on whether this propensity is positive or not:  

R*
t  =  ψ′wt–1  +  εt,  εt ~ N(0,1) (3)

Rt = I(R*
t > 0) (4)

where I(.) is the binary indicator function, as above. In equation (3), and analogous equations 

below, year t outcomes are parameterized in terms of base year values of explanatory 

variables so as to avoid simultaneity between changes in outcomes and changes in attributes. 

Among the men retained in the panel, a second condition that must be satisfied in 

order for earnings mobility to be observed, namely being in employment in year t. We 

suppose that there is an employment propensity, E*
t, that is a linear function of observed and 

unobserved characteristics, and observed employment status, Et, depends on whether this 

propensity is positive or not:  

E*
t  =  λ′ht–1  +  ωt, ωt ∼ N(0,1) (5)

Et = I(E*
t > 0) if Rt = 1; unobserved otherwise. (6)

For men that drop out of the survey (Rt = 0), equation (5) is incidentally truncated.  

 Finally, there is the mechanism describing low pay status in the current year (L*
t). In 

order to characterize low pay transitions, we use a linear index specification again but 

condition the current year outcome on base year low pay status, thereby defining an 

endogenous switching regression:  

L*
t  =  [Lt–1γ1′  +  (1–Lt–1)γ2′]zt–1  +  vt,  vt ~ N(0,1) (7)

Lt = I(L*
t > 0) if Rt = 1 and Et = 1; unobserved otherwise. (8)

Equation (7) is incidentally truncated if either Et = 0 or Rt = 0. That is, equations (3) and (5) 

describe two (sequential) selection mechanisms governing whether respondents are in the 

balanced two-year panel of earners who contribute to the estimation of the low pay transition 

process. 

The combinations of current-year outcomes (Rt, Et, Lt) that are possible are shown in 

Table 2. We distinguish three groups of men (A, B, and C) with different types of likelihood 

contribution applicable to each group. The log-likelihood contribution of each man, L, has the 

form: 

logL  =  (1–Rt)log LA  + Rt(1–Et)log LB + RtEtlog LC (9)

where LA, LB, and LC are the contributions relevant to men in groups A, B, and C. Assuming 

that the unobservables (ut–1, vt, εt, ωt) have a four-variate standard normal distribution with 

correlation matrix Σ, then the sample log-likelihood contribution of each man can be written: 



 8

logL =  (1–Rt)log Φ2(ΞLt_Et; Ω_Lt_Et) + Rt(1–Et)log Φ3(ΞLt; Ω_Lt)  

                    +  RtEt log Φ4(Lt–1Ξ1 + (1–Lt–1)Ξ2; Ω) (10)

where Φj denotes the j-variate normal c.d.f., Ξk for k = 1, 2, is a vector of index functions, and 

matrices Ω, Ω_Lt_Et, and Ω_Lt, are derived from Σ. (The Appendix provides full details.) The 

_Lt subscript denotes vectors and matrices excluding elements referring to the low pay 

transition equation, and the _Lt_Et subscript denotes vectors and matrices excluding elements 

referring to the low pay transition equation and to the employment equation. 

 

Table 2 
Year t outcome combinations, and  

the treatment of item non-response on pay 
Group Retention Employment Low pay Interpretation 
A Rt = 0 Unobserved Unobserved Panel attrition 
B Rt = 1 Et = 0 Unobserved Retained; OLF|U|SE* 

Rt = 1 Et = 1 Lt = 0 Retained; high-paid employee 
C    { Rt = 1 Et = 1 Lt = 1 Retained; low-paid employee 
Notes. *: Out of the labour force or unemployed or self-employed. Year t–1 
sample: men with Et–1 = 1 and no non-response on Lt–1. Year t sample, Model 1: 
men with Et = 1 but non-response on Lt excluded from estimation. Year t 
sample, Model 2: men with Et = 1 but non-response on Lt included as cases with 
Rt = 0.  

 

 The discussion so far has ignored the possibility of item non-response on current year 

pay, but this is an empirical reality of course. (There are no men in our data set with Rt = 1 

and missing Et, and so we ignore this case here.) We took two approaches to this. The first, 

our leading case, was simply to exclude respondents in group C with non-response on pay 

from the analysis altogether (Model 1). This strategy, treating survey item non-response as 

ignorable, is consistent with practice in previous research of this kind, and treats this type of 

endogenous selection in the same way in both in the current and base years. Our second 

strategy was to define sample retention to mean no sample drop-out and no non-response on 

pay in the current year (Model 2), and to check how results differed from the first case. 

Alternatively, one might define those with survey item non-response on pay having Rt = 1 but 

Et = 0, and re-interpret the equation for E*
t in terms of combined non-response (economic and 

survey). Another approach, beyond the scope of this paper, would have been to add equations 

for survey item non-response to the model. 
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3.1. Identification and ignorability 

 

A sufficient condition for identification of Model 1 (or Model 2, given unconstrained 

cross-equation correlations, is a set of exclusion restrictions referring to the regressors 

assumed to relevant for the various endogenous selection equations but not relevant for the 

equations that are conditioned upon those processes. (The variables used are described in the 

next section.) Since the model is also identified by the non-linearities in functional form, the 

over-identification restrictions concerning the exclusion of the instruments (and hence their 

validity) can also be tested.  

Tests of the ignorability of each endogenous selection mechanism were based on 

whether the cross-equation correlations associated with each mechanism were jointly equal to 

zero. Initial conditions are ignorable if corr(ut–1, εt) = corr(ut–1, ωt) = corr(ut–1, vt) = 0, 

retention is ignorable if corr(εt, ut–1) = corr(εt, ωt) = corr(εt, vt) = 0, and economic item non-

response is ignorable if corr(ωt, ut–1) = corr(ωt, εt) = corr(ωt, vt) = 0.  

To assess the consequences of neglecting to account for panel attrition and economic 

item non-response, we estimated three additional models. Model 3 was analogous to that 

considered by Cappellari and Jenkins (2004). That is, no distinction was made between panel 

attrition and economic item non-response, in effect combining groups A and B in Table 2 into 

one group. (There was no Et equation, and Rt = 0 if there was panel attrition or the respondent 

was out of the labour force, unemployed or self-employed.) In Model 4, only the base year 

low pay equation (initial conditions) was estimated jointly with the low pay transition 

equation. This model corresponds closely to Stewart and Swaffield’s (1999). Their model 

was estimated using information about current year pay status only for respondents who were 

low paid in the base year (a bivariate probit model with partial observability). By contrast, 

our model used current pay status information for both high- and low-paid respondents in the 

base year (a bivariate probit model with endogenous switching). Finally, in Model 5, the low 

pay transition equation was estimated ignoring all three endogenous selection issues. (The 

likelihood functions for Models 3–5 are provided in the Appendix.) 

 

3.2. Estimation issues 

 

Our sample data consisted of repeated observations on the same individual across 

successive pairs of years because we pooled transitions from our panel (see later). Hence the 
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standard i.i.d. assumption underlying the maximum likelihood principle is violated. If the 

individual effects across the pooled transitions could be integrated out, then, this approach 

would provide consistent and efficient estimates of parameters and their asymptotic standard 

errors. This was computationally infeasible, and so instead we used an approach providing 

consistent parameter estimates and adjusted their standard errors using a robust variance 

estimator.  

The sum across all transition-years for all men in the data set of the expression given in 

equation (10) defines a sample ‘partial log likelihood’ (or ‘pseudo-likelihood’). This is an M-

estimator problem for which the estimators maximizing the partial likelihood are consistent 

and asymptotically normal (assuming fixed T and N → ∞), but for which the standard errors 

need to be adjusted for the correlations between observations (Wooldridge, 2002, chapter 13). 

The method is analogous to that used in the survey statistics literature for adjusting the 

estimates of the parameter covariance matrix to account for clustering induced by survey 

design. We treated all transitions observed for each man as belonging to the same cluster, 

thereby allowing for arbitrary correlations between observations on the same individual from 

different panel transitions.  

We evaluated the multivariate standard normal distribution functions using simulation 

methods based on the GHK simulator (Gourieroux and Monfort, 1996) with 140 random 

draws. For maximization, we used the modified Gauss-Newton routine implemented in 

Stata’s ml command, together with its cluster option to derive the robust variance estimator 

(StataCorp, 2003). 

 

 

4. Data: samples and variables from the British Household Panel Survey 

 

We used data from interview waves 1–10, survey years 1991–2000, of the British Household 

Panel Survey (Taylor, 2001). Data from consecutive waves were used to estimate annual 

transition rates, using a sample that pooled all transitions. We analysed men aged 18–64, in 

full time employment and not in full time education in year t–1. We restricted attention to 

men in order to avoid addressing issues of endogenous female labour supply. We defined a 

man to be unemployed if he was not working and had been looking for a job during the four 

weeks prior to the interview. The low pay threshold in each year was defined as two-thirds of 

contemporary sample median hourly earnings, i.e. just under £4.50 in August 2000 prices, 
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with little trend over the decade. In any given year, the proportion of employed men that was 

low paid was between 11 and 15 percent. 

 

4.1. Explanatory variables  

 

 The sets of explanatory variables were similar to those commonly used in this 

context: marital status (legally married or cohabiting rather than single), age and age-squared, 

educational qualifications, health status (number of health problems reported), and region of 

residence. All were measured using the values pertaining at the interview in the base year   

(t–1), and assumed to be pre-determined. These variables were included in each of the vectors 

xt–1, wt–1, ht–1, and zt–1. In addition, the number of employees in the firm (‘firm size’), and 

whether the respondent was in a skilled occupation was included in xt–1 and zt–1 (the base- and 

current-year low pay equations). Year-of-interview (year t–1) indicator variables were 

included in every equation. 

The instruments used to define the exclusion conditions for identification were as 

follows. A dichotomous indicator of whether there was a change in interviewer between the 

interview at t–1 and at t was included as an instrument in the retention equation, but excluded 

from the equations for current year employment and low pay. (The idea is that interviewer 

continuation fosters respondent trust and hence survey participation: see inter alia Schräpler 

(2003).) Use of this instrument meant that low pay transitions involving survey year 1991 

were not used.) Dichotomous indicator variables summarising whether the first employment 

spell in his working career was in a full-time job, or information missing about this, were 

used to explain both base year low pay (instrumenting initial conditions, also used by Stewart 

and Swaffield (1999)) and current year employment (instrumenting endogenous selection into 

employment), but they were excluded from the low pay transition equation. Finally, we used 

the number of unemployed people divided by the number of job vacancies in the respondent’s 

travel-to-work area (the ‘UV ratio’), a measure of labour market slackness, as an instrument 

in the current year employment equation, but excluded the variable from the low pay 

transition equation.  

 

4.2. Average transition probabilities 

 

To set the scene, we begin by describing the average transition probabilities for our 

samples, and show how these differ depending on whether attrition and non-response are 
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treated as potential destination states. See Table 3. When the ‘balanced’ panel of respondents 

who provided earnings in two successive years was used to estimate the transition 

probabilities (panel a), the chances of being low paid in current year were nearly ten times 

greater for those who were low-paid rather than high-paid in the base year (54.7 percent 

compared with 5.2 percent). There is substantial state dependence in low pay. We do not 

consider here how much of this aggregate state dependence is genuine, or simply representing 

observed or unobserved differences between individuals (‘heterogeneity’). On this issue, see 

Cappellari and Jenkins (2003), Stewart (2004),and Stewart and Swaffield (1999). 

 

Table 3 
Average transition probabilities for British men (BHPS data)  

Row percentages
 Year t state 

‘Economic’ item non-response 
on pay 

Year t–1 
state 

High 
pay 

Low 
pay 

Self-
employed

Unemployed Other 

Attrition ‘Survey’ 
item 
non-
response 

All 
(col. 
%) 

 (C)* (C) (B) (B) (B) (A)   
(a) Balanced panel of wage earners (N = 13,967) 
High pay 94.9   5.2        86.2
Low pay 45.3 54.7        13.9
All 88.0 12.0      100.0
         
(b) Unbalanced panel, distinguishing by source of missing pay data (N = 16,249) 
High pay 82.8   4.5 1.6 1.3 2.0   7.7    84.8
Low pay 35.4 42.9 2.2 3.7 4.1 11.7    15.2
All 75.6 10.3 1.7 1.7 2.3   8.3  100.0
         
(c) Unbalanced panel, distinguishing by source of missing pay data (N = 18,785) 
High pay 81.4   4.4 1.6 1.3 2.0   7.6 1.7   84.8
Low pay 34.9 42.3 2.1 3.7 4.0 11.5 1.6   15.2
All 73.4 10.2 1.7 1.6 2.3   8.2 1.7 100.0
Notes. *: Groups A, B, C, as described in Table 2. Pooled transitions from British Household 
Panel Survey, waves 1–10. Men aged 16–64, excluding full-time students and self-employed 
(or missing pay data at t–1). The low pay threshold is two-thirds of median contemporary 
hourly earnings. 

 

The transition probabilities in panel (b) were estimated from a sample enlarged to 

include individuals who dropped out of the sample altogether, or who did not drop out but for 

whom there was ‘economic’ item non-response – they moved from employment in the base 

year to unemployment, self-employment, or some other status (e.g. economic inactivity, full-

time education) in the current year. The number of observations increased by 16.3 percent. 
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Although the relative chances of being low paid in the current year were much the same as 

for the panel (a) sample, the relative chances of being high paid fell for those who were low 

paid in the base year (from 0.47 to 0.43). The table also shows that exits from the earnings 

distribution are not evenly distributed according to initial pay states, but were more likely 

among men who were low paid rather than high paid in the base year (22 per cent compared 

to 13 percent). Differential non-response by base year pay category was greater for 

‘economic’ item non-response than for panel attrition, however. For the former type of non-

response, base-year low-paid men were twice as likely not to respond (10.0 percent compared 

with 4.9 percent) – an illustration of the ‘low-pay no-pay cycle’ – whereas for attrition the 

corresponding ratio is about 1.5 (11.7 percent compared with 7.7 percent).  

 In panel (c) of Table 3, the sample was enlarged further, to incorporate individuals 

who did not drop out of the panel, but for whom there was survey item non-response on pay. 

The prevalence of missing pay data among employees seems to be slightly larger among 

those were higher paid in the base year rather than lower paid. The increase in sample 

numbers compared to panel (b) is small, however, only two percent. This suggests that 

exclusion or inclusion of this group is unlikely to affect model estimates substantially. 

The descriptive statistics in Table 3 point to non-trivial rates of non-response and of 

several different kinds. Much of the rest of the paper is concerned with whether these non-

responses are ignorable when one estimates models of low pay transitions for men. Models 1 

and 2, accounting for three types of endogenous selection are discussed first, and then we 

consider Models 3–5, which assume ignorability of one or more selection mechanisms. 

 

 

5. Results: models accounting for three types of endogenous selection  

 

5.1. Tests of instrument validity and for ignorability of the endogenous selection mechanisms 

 

The results from our Wald tests of instrument validity, and thence of the identification 

strategy, are shown in Table 4. The null hypothesis in each case was that the coefficient(s) on 

the relevant variable tests were equal to zero. A sufficient condition for identification was 

rejection of the null in the case where instrument(s) were included in an equation(s) and non-

rejection of the null in the low pay equation (from which the instruments were excluded). 

Rows (1)–(5) of the table refer to tests of the former type and, for both Models 1 and 2, the p-

values are less than conventional thresholds in every case. Row 6 shows that our exclusion 
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restrictions were supported by the data: the Wald test χ2 values are small for both Model 1 

and Model 2, and the associated p-values are large (0.33 and 0.47, respectively). 

 

Table 4 
Tests for identification and instrument validity  

(Low pay transitions for British men, BHPS data, Models 1 and 2) 
Test Instrument(s)* Equation d.f. Model 1  Model 2 
    χ2  p-value  χ2  p-value 
(1) FW Lt–1 2   8.47 0.015    8.45 0.015 
(2) IC Rt 1 48.49 0.000  33.94 0.000 
(3) FW, UV Et 3 14.78 0.002  15.34 0.002 
(4) (2), (3) jointly 4 63.63 0.000  49.00 0.000 
(5) (1), (2), (3) jointly 6 68.62 0.000  53.57 0.000 
(6) FW, IC, UV Lt 8   9.15 0.330    7.66 0.467 
Notes. Wald tests that coefficient estimate(s) for instrument(s) are zero for in 
equation. *: Instruments are as follows. FW: respondent’s first work post-school 
was in full-time employment, or not known (two variables). IC: Interviewer 
changed. UV: unemployment-vacancies ratio in respondent’s travel-to-work area. 
Differences between Models 1 and 2 explained in Table 2 and text.  

 

Estimates of the cross-equation correlations between unobservables provide insights 

about the endogenous selection processes. They are shown in Table 5. As it happens, none of 

the correlations associated with the panel retention process was statistically significant at 

conventional confidence levels, which suggests that such selection process could be ignored 

when estimating the relationship of economic interest. This is true for both Models 1 and 2. 

Observe, however, that the inclusion in the estimation sample for Model 2 of respondents 

with item non-response on current pay (classified among the Rt = 0 cases) switches the sign 

of the correlation between unobservables in the retention and employment equations from 

positive to negative. This is consistent with Table 3 (panel c), which showed that men who 

were low paid in the base-year were more likely that high paid men to drop out of the panel, 

but more likely to provide earnings information if they stayed in the panel and were 

employed. 

There was a statistically significant correlation between unobserved factors affecting 

base-year low pay propensities and those affecting current-year employment propensities:     

–0.139 according to Model 1, –0.130 according to Model 2. Men who were more likely to be 

low-paid, other things being equal, were less likely to remain employed – an association that 

is consistent with the ‘low-pay no-pay cycle’ hypothesis. The result suggests that there may 

be endogenous selection into employment (and we test this shortly).  
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The correlation between unobservables in the current-year employment and conditional 

low pay equations was not statistically significant. Nor was the correlation between the 

unobservable factors associated with base-year low pay propensities and with current-year 

conditional low pay propensities. Taking the estimates all together, Models 1 and 2 provide a 

similar picture about the correlation structure: the different treatment of men with item non-

response on current-year pay appears to have little impact. 

 

Table 5 
Estimated correlations of unobservables, and 

tests of the ignorability of endogenous selection mechanisms 
(Low pay transitions for British men, BHPS data, Models 1 and 2) 

Correlations of unobservables  Model 1  Model 2 
  Estimate |t|  Estimate |t| 
Retention, low pay at t–1  (ρ1) –0.031 [1.32]  –0.016 [0.69] 
Retention, employee at t (ρ2)   0.275 [1.33]  –0.297 [1.65] 
Retention, low pay at t (ρ3)   0.226 [1.35]    0.268 [1.51] 
Low pay at t–1, employee at t (ρ4) –0.139 [5.28]  –0.130 [4.82] 
Low pay at t–1, low pay at t (ρ5)   0.173 [1.13]  –0.129 [0.69] 
Employee at t, low pay at t (ρ6) –0.431 [1.82]  –0.311 [0.68] 
       
Wald tests of ignorability   χ2 p-value  χ2 p-value 
Initial conditions  H0: ρ1= ρ4= ρ5=0  30.04 0.000  24.21 0.000 
Retention   H0: ρ1= ρ2= ρ3=0    5.71 0.127    5.42 0.144 
Economic item non-response 
   H0: ρ2= ρ4= ρ6=0  36.10 0.000  30.80 0.000 
Notes. Estimated marginal effects are shown in Tables 6 and 7 below. |t| is the absolute 
asymptotic t-ratio. 

 

Tests for the ignorability of each selection mechanism were based on a Wald test that 

every correlation connecting that selection equation to the rest of the model was equal to 

zero: see the bottom panel of Table 5. The results tell the same story for both Model 1 and 

Model 2. Panel retention is exogenous, but the null hypotheses of exogeneity of selection into 

current-year employment (economic item non-response) and base-year low pay (initial 

conditions) are each overwhelmingly rejected. The results indicate that, although the sample 

selection associated with the survey process is not problematic for the analysis of pay 

dynamics, the economic mechanism moving individuals into and out from the distribution of 

pay could be a more serious issue. (Comparisons with models assuming ignorability provide 

evidence about the magnitude of this problem: see Section 6.) 
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5.2. The impacts of the explanatory variables 

 

The estimates of model parameters (other than cross-equation correlations) are 

summarised in Table 6 (Model 1) and Table 7 (Model 2). We focus on Model 1 in the 

discussion, and then comment briefly on differences compared with Model 2. To facilitate 

interpretation, the estimate associated with each covariate in each equation is presented in the 

form of a marginal effect (ME) rather than a coefficient. An ME shows the effect on the 

relevant probability of a change in the chosen covariate, whereas the corresponding 

coefficient shows the effect on the relevant latent propensity.  

For a dichotomous variable, the ME was computed as the change in probability 

induced by a change in value from zero to one, holding all other covariates fixed at their 

sample mean values. For continuous covariates, the ME was defined as the change in 

probability induced by a change from the lower quartile to the upper quartile value (28 to 46 

for age; 4.3 to 18.1 for the unemployment-vacancies ratio).  

Calculation of MEs is complicated for the key probabilities of economic interest by 

the fact that they are conditional probabilities (cf. the probability of current-year low pay 

conditional on being low paid in the base year). A change in the value of a covariate may 

influence both the conditional and conditioning events (the numerator and denominator of the 

conditional probability). In order to keep the probability of a conditioning event constant in 

the computation of an ME, we set the covariates in the index function(s) for that probability 

equal to those of the (hypothetical) man who had the average conditioning probability. See 

Stewart and Swaffield (1999) or Cappellari and Jenkins (2004) for a more detailed 

explanation. In all but the simplest models, the MEs (and their standard errors) are functions 

of the estimated cross-equation correlations as well as estimated coefficients. 

 ME estimates for Model 1 are shown in Table 6. To help assess whether they are large 

or small, the table also shows the predicted probabilities of each outcome calculated at mean 

covariate values.  

The effects of changes in covariates on the probability of base-year low pay are large 

compared to those for the other probabilities: there are many MEs of five percentage points 

or more (with an average predicted probability baseline of 0.11), whereas the MEs in the 

other equations are smaller (and the average probabilities of retention, employment, and low 

pay entry are much higher). The results are congruent with those typically found in 

economists’ wage regressions. For example, low pay probabilities were lower for married 

men compared to singles, lower the higher the educational qualifications held, and lower for 
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those working in large firms or in a skilled occupation. Low pay propensities were higher for 

those with health problems or who lived outside London and the South-East. 

Year-on-year panel retention rates were higher, ceteris paribus, for married men than 

single men (by about four percentage points), older men compared to younger men, and for 

men with educational qualifications compared to men with none (by about three percentage 

points). There appears to be no marked variation in the retention probability with 

qualification level, however. Retention probabilities did not have statistically significant 

associations with differences in the prevalence of health problems or residential location. 

There were statistically significant survey year effects on retention probabilities (not shown 

for brevity’s sake), being higher by about three percentage points for 1993 and thereafter 

compared to 1992 (the year refers to t–1).  

The third selection mechanism relevant to the study of earnings mobility is whether 

someone was employed in the current year. Probabilities were estimated to be higher for 

married men compared to single men, and for older men compared to younger men. The 

more health problems reported, the lower the employment probability. The effect is relatively 

large: a difference of some eight percentage points for someone with 4+ health problems 

compared to a man with none. 

In the equations for low pay transition probabilities, the MEs are typically of the 

expected sign, being negative for the educational qualification variables and positive for the 

health problems ones, for example. Few of the MEs were precisely estimated, however, 

particularly in the low pay entry equation. (In most cases the corresponding regression 

coefficient was precisely estimated (see the Appendix), with the differences in significance 

largely reflecting the non-linear transformations involved in calculation of MEs.) The 

probability of low pay persistence was lower for men with a higher degree (by about 14 

percentage points), men living in London (13 percentage points), men working in an 

establishment with more than 100 workers (16 percentage points), and men who worked in 

skilled occupation (10 percentage points). These are relatively large effects. 

How do the results change if men with item non-response on current-year pay are 

treated as Rt = 0 cases, rather than dropped from the analysis? The answer, according to 

Model 2, is: not much. Compare Table 7 with Table 6. Unsurprisingly, the average predicted 

probability of retention is now lower (0.908 rather than 0.925), and also the average predicted 

probabilities of remaining, and falling into low pay, are smaller. However, estimated MEs are 

remarkably similar to their counterparts in Table 6 for the base-year low pay, retention, and 

employment equations. The most noticeable differences are for the low pay transition 
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equations: Model 2 MEs are generally less precisely estimated than Model 1 MEs, though of 

the same sign. Overall, the results suggest that accounting for survey item non-response in 

this manner makes little difference. Of course, this conclusion may not be applicable to 

situations where the prevalence of this type of non-response is much greater.  

 

 

6. Results: models assuming ignorability of one or more endogenous selection 

mechanisms 

 

How would estimates differ if some or all of the endogenous selection mechanisms were not 

into account when modelling low pay transitions? Models 3–5 are informative about this. 

Table 8 reports estimates of the cross-equation correlations and the low pay transition 

equations from each of these models. (Retained panel members in employment with item 

non-response on pay are now dropped, as for Model 1. Estimates for the other equations are 

provided in the Appendix.)  

Model 3 is the one in which no distinction was made between panel attrition and non-

response on pay due to non-employment. The estimated correlation between unobservables in 

the base-year low pay and the retention equation, –0.089, lies in between the correlation 

between base-year low pay and current-year employment propensities (–0.139) and the 

correlation between panel retention and base-year low pay propensities (–0.031) that was 

estimated by Model 1 (Table 5). The correlation between base-year low pay and current-year 

conditional low pay propensities (0.165, |t| = 0.82) is similar to its Model 1 counterpart 

(0.173, |t| = 1.1); so too is the correlation between retention and current-year conditional low 

pay (cf. 0.336, |t| = 2.42 with 0.226, |t| = 1.35). In addition, it is remarkable how similar 

corresponding MEs (and their precision) are in Models 1 and 3. Overall, these results suggest 

that distinguishing between panel attrition and economic item non-response has little impact 

on the estimates of the low pay transition probabilities, as long as the combination of the two 

selection processes is modelled along with the process of interest (and so too are initial 

conditions).  

Model 4 is the one in which initial conditions were the only endogenous selection 

mechanism accounted for. The estimate of the correlation between unobservables affecting 

base-year and current-year low pay propensities is smaller in magnitude than in Models 1 and 

3, and less precisely estimated (0.156, |t| = 1.52). Observe, however, that the estimated MEs, 

and their precision, are little different from their counterparts from Models 1 and 3.
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Table 6.  Low pay transitions for British men (BHPS data): estimated marginal effects from Model 1 
Covariate  Pr(low pay t–1) Pr(retention) Pr(employee t) Pr(low pay t| low 

pay t–1) 
Pr(low pay t| high 

pay t–1) 
  ME |t| ME |t| ME |t| ME |t| ME |t| 

Predicted probability 0.105 0.925 0.951 0.617 0.041
Married –0.034 [2.34] 0.039 [3.16] 0.014 [1.82] –0.074 [1.85] –0.011 [1.01]
Age 0.000 [0.78] 0.018 [19.05] 0.001 [1.89] 0.000 [0.77] –0.001 [0.93]
Educ. qual.: other  –0.043 [2.81] 0.026 [2.87] 0.008 [1.11] –0.033 [0.57] –0.020 [1.13]
Educ. qual.: O-level(s) –0.060 [3.24] 0.018 [2.35] 0.006 [0.89] –0.086 [1.53] –0.027 [1.14]
Educ. qual.: A-level(s) –0.064 [3.23] 0.038 [3.52] –0.004 [0.45] –0.077 [1.27] –0.031 [1.10]
Educ. qual.: other higher degree –0.083 [3.33] 0.027 [3.02] 0.007 [1.22] –0.140 [2.23] –0.042 [1.15]
Educ. qual.: first degree or higher –0.104 [3.08] 0.013 [1.65] 0.013 [1.67] –0.113 [1.35] –0.054 [1.06]
No. health problems: 1 0.010 [1.28] –0.003 [0.67] –0.016 [2.04] 0.026 [0.92] 0.012 [1.09]
No. health problems: 2 0.016 [1.22] 0.008 [1.11] –0.028 [2.13] 0.070 [1.44] 0.013 [0.98]
No. health problems: 3 0.034 [1.47] –0.004 [0.26] –0.039 [1.87] 0.144 [1.83] 0.057 [1.23]
No. health problems: 4+ 0.063 [1.44] –0.023 [0.85] –0.077 [1.96] 0.067 [0.55] 0.085 [1.25]
Lived in South East –0.037 [2.80] 0.003 [0.60] 0.006 [1.26] –0.065 [1.70] –0.017 [1.11]
Lived in London –0.053 [2.87] –0.012 [1.32] 0.004 [0.55] –0.128 [2.03] –0.019 [1.06]
Firm size > 100 –0.105 [3.97]  –0.163 [2.83] –0.030 [1.32]
Skilled occupation –0.100 [3.90]  –0.097 [2.00] –0.049 [1.36]
First spell: full time employment –0.010 [0.92] 0.015 [1.91]
First spell: missing information 0.017 [1.32] –0.004 [0.53]
Unemployment-vacancies ratio 0.000 [0.28]
Interviewer changed –0.033 [3.35]  
Model chi-squared (d.f. = 117) 2257.58 p = 0.00         
Log Likelihood -16,491          
Number of observations 16,131          
Notes. Model 1 described in text. Predicted probabilities calculated at mean covariate values. Regressions also included year dummies. |t| is the 
absolute asymptotic t-ratio. The ME for age-squared was negligible for all models, and is not reported. 
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Table 7.  Low pay transitions for British men (BHPS data): estimated marginal effects from Model 2 
Covariate  Pr(low pay t–1) Pr(retention) Pr(employee t) Pr(low pay t| low 

pay t–1) 
Pr(low pay t| high 

pay t–1) 
  ME |t| ME |t| ME |t| ME |t| ME |t| 

Predicted probability 0.105 0.908 0.949 0.519 0.038
Married –0.034 [2.35] 0.038 [3.33] 0.010 [1.51] –0.052 [1.32] –0.007 [0.83]
Age 0.000 [0.79] 0.018 [11.22] 0.002 [2.17] –0.003 [2.12] –0.009 [1.64]
Educ. qual.: other  –0.043 [2.79] 0.031 [3.16] 0.005 [0.69] –0.005 [0.09] –0.015 [0.86]
Educ. qual.: O-level(s) –0.061 [3.24] 0.017 [2.11] 0.004 [0.62] –0.052 [1.05] –0.022 [0.86]
Educ. qual.: A-level(s) –0.064 [3.22] 0.038 [3.66] –0.009 [0.98] –0.041 [0.77] –0.026 [0.82]
Educ. qual.: other higher degree –0.083 [3.33] 0.025 [2.85] 0.005 [0.79] –0.091 [1.70] –0.035 [0.86]
Educ. qual.: first degree or higher –0.104 [3.08] 0.009 [1.03] 0.012 [1.62] –0.037 [0.46] –0.046 [0.80]
No. health problems: 1 0.010 [1.29] 0.000 [0.09] –0.016 [2.12] 0.022 [0.75] 0.010 [0.92]
No. health problems: 2 0.017 [1.28] 0.006 [0.75] –0.029 [2.33] 0.062 [1.24] 0.010 [0.89]
No. health problems: 3 0.031 [1.42] –0.007 [0.48] –0.039 [1.95] 0.129 [1.51] 0.045 [1.02]
No. health problems: 4+ 0.067 [1.51] –0.024 [0.85] –0.073 [1.99] 0.028 [0.22] 0.066 [1.09]
Lived in South East –0.037 [2.79] 0.004 [0.59] 0.006 [1.20] –0.046 [1.33] –0.013 [0.87]
Lived in London –0.054 [2.88] –0.012 [1.31] 0.005 [0.67] –0.095 [1.76] –0.015 [0.82]
Firm size > 100 –0.105 [3.96]   –0.122 [2.88] –0.021 [0.96]
Skilled occupation –0.101 [3.90]   –0.059 [1.55] –0.037 [0.98]
First spell: full time employment –0.011 [1.01]  0.016 [1.98]
First spell: missing information 0.017 [1.26]  –0.004 [0.55]
Unemployment-vacancies ratio  0.000 [0.29]
Interviewer changed  –0.030 [3.42]  
Model chi-squared (d.f. = 117)  2142.30 p = 0.00   
Log Likelihood  –17,279  
Number of observations  16,404  
Notes. Model 2 described in text. Predicted probabilities calculated at covariate mean values. Regressions also included year dummies. |t| is the 
absolute asymptotic t-ratio. The ME for age-squared was negligible for all models, and is not reported. 
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Table 8.  Low pay transitions for British men (BHPS data): estimated marginal effects from Models 3–5 
Covariate  Model 3 Model 4 Model 5 
  Pr(low pay t| low Pr(low pay t| high Pr(low pay t| low  Pr(low pay t| high Pr(low pay t| low Pr(low pay t| high 
  ME |t| ME |t| ME |t|  ME |t| ME |t| ME |t| 

Predicted probability  0.598  0.038 0.579   0.037 0.549 0.037
Married  –0.070 [1.68] –0.008 [0.88] –0.080 [1.81]  –0.009 [0.73] –0.072 [2.44] –0.008 [1.32]
Age  0.000 [1.18] –0.005 [1.88] 0.000 [0.92]  –0.003 [1.33] –0.001 [1.89] –0.007 [2.61]
Educ. qual.: other qualification  –0.028 [0.48] –0.018 [0.98] –0.033 [0.54]  –0.018 [0.75] –0.021 [0.48] –0.017 [1.97]
Educ. qual.: O-level(s)  –0.080 [1.38] –0.025 [0.99] –0.084 [1.29]  –0.025 [0.74] –0.066 [1.75] –0.023 [2.08]
Educ. qual.: A-level(s)  –0.076 [1.20] –0.029 [0.95] –0.082 [1.16]  –0.029 [0.72] –0.062 [1.50] –0.028 [2.07]
Educ. qual.: other higher degree  –0.131 [2.01] –0.038 [1.00] –0.137 [1.82]  –0.038 [0.76] –0.112 [2.94] –0.036 [2.12]
Educ. qual.: first degree or higher  –0.108 [1.23] –0.049 [0.92] –0.104 [1.03]  –0.048 [0.69] –0.066 [1.17] –0.047 [2.01]
No. health problems: 1  0.018 [0.63] 0.009 [0.91] 0.023 [0.80]  0.009 [0.71] 0.021 [0.81] 0.009 [1.56]
No. health problems: 2  0.063 [1.26] 0.008 [0.74] 0.068 [1.33]  0.008 [0.63] 0.066 [1.55] 0.008 [1.03]
No. health problems: 3  0.129 [1.59] 0.044 [1.03] 0.135 [1.57]  0.044 [0.80] 0.133 [1.88] 0.043 [1.82]
No. health problems: 4+  0.024 [0.19] 0.058 [1.02] 0.043 [0.32]  0.065 [0.86] 0.026 [0.24] 0.061 [1.57]
Lived in South East  –0.062 [1.57] –0.015 [0.97] –0.065 [1.52]  –0.015 [0.76] –0.055 [1.80] –0.014 [1.92]
Lived in London  –0.123 [1.99] –0.017 [0.95] –0.121 [1.86]  –0.016 [0.75] –0.104 [1.97] –0.015 [1.78]
Firm size > 100  –0.166 [2.54] –0.027 [1.18] –0.164 [2.06]  –0.026 [0.92] –0.143 [5.84] –0.023 [2.20]
Skilled occupation  –0.098 [1.80] –0.046 [1.21] –0.097 [1.43]  –0.044 [0.93] –0.077 [2.98] –0.040 [2.33]
Corr(retention, low pay at t–1)  –0.089 [4.45]   
Corr(retention, low pay at t)  0.336 [2.42]   
Corr(low pay at t, low pay at t–1)  0.165 (0.82] 0.156 [0.53]  
Model chi-squared (d.f. = 93) 1981.76 (d.f. = 71) 1241.94    (d.f. = 23) 125.29 (d.f. = 23) 492.09
Log Likelihood –15,219.2   –7,874.26    –1,268.53 –2,196.48 
Number of observations 16,249   13,967    1,933 12,034 
Notes. Models described in text. Predicted probabilities calculated at covariate mean values. Regressions also included year dummies. Model 3 Wald test of 
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 Model 5 incorporates the assumption that all selection mechanisms (including initial 

conditions) are ignorable. Now there may be some more perceptible differences. In both the 

low pay persistence and low pay entry equations, it appears that the MEs from Model 5 are 

generally larger in magnitude than their counterparts from the other models (with the 

exception of the ME for age), and the statistical precision is higher, so that many estimates in 

the low pay entry equation become statistically significant at conventional levels. However, 

the differences in the size of corresponding MEs remains relatively small. For example, men 

with an ‘other higher degree’ are estimated to have a low pay persistence probability some 11 

percentage points lower than men with no educational qualifications according to Model 5 

and 14 percentage points lower according to Model 1. Living in London reduced the low pay 

persistence probability by 10 percentage points according to Model 5 and 13 percentage 

points according to Model 1.  

 

 

7. Summary and conclusions 

 

Our starting point was the argument that, in order to get good estimates of the determinants of 

transitions into and out of low pay, one needs to account for the potential non-ignorability of 

selection processes. We have built on previous research by extending the number of selection 

mechanisms considered to three: two related to sample drop-out (panel attrition, non-

employment), plus ‘initial conditions’ (base year low pay status). This model, and variants 

that ignore one or more of these selection mechanisms, were fitted to data for men from the 

British Household Panel Survey. Tests of the ignorability of the selection processes suggested 

that, when estimating models for annual low pay transition probabilities, ‘economic’ 

selection mechanisms such as initial conditions and retention of employment are more 

important than the ‘survey’ selection mechanism (attrition). 

From their model of low pay transitions also estimated using BHPS data (but for men 

and women), and controlling only for initial conditions, Stewart and Swaffield concluded that 

‘[t]ypically, the estimated marginal effects on the conditional probability of remaining low 

paid (and the asymptotic t-ratios on the maximum likelihood coefficient estimates) are much 

reduced when allowance is made for endogenous selection.’ (1999, p. 40). Our results are 

consistent with Stewart and Swaffield’s, but more clearly regarding the reduction in precision 

than magnitude of marginal effects. Few MEs in the low pay transition equations were 

statistically significant according to Model 1, whereas many were according to Model 5. This 
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suggests that a model of low pay transitions that assumes ignorability of all selection 

processes may lead to misleading inferences about which factors are relevant for explaining 

differences in low pay transition propensities.  

More positively, however, the relatively small differences in corresponding MEs 

across models are also striking. It appears that relatively simple models provide estimates of 

covariate marginal effects that differ little from estimates from the complicated models. (In 

addition, it appears that ignoring survey item non-response on pay makes little difference, 

perhaps because its prevalence is relatively low.) In this sense our results are consistent with 

the findings for the related US studies summarised in Section 2.  
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APPENDIX  
 
A1. Likelihood functions for Models 1–5 

 

Models 1 and 2 

 

The equations characterising Models 1 and 2 are given in equations (1)–(8) of the main text. 

We assumed that unobservables had a four-variate standard normal distribution:  

(ut–1, vt, εt, ωt) ~  N(0, Σ) 

where symmetric correlation matrix Σ has diagonal elements equal to unity and off-diagonal 

elements equal to σjk, j ≠ k, where subscripts j and k refer to the jth and kth elements of the 

ordered list {R, E, Lt–1, Lt}. For example, σ34 = σ43 is the correlation between unobservables 

determining base-year low pay (Lt–1) – the initial condition – and current-year low pay (Lt). 

(Note that σ43 is referred to as ρ5 in Table 5.) 

There are three types of year t outcome, implying three types of likelihood 

contribution: men with Rt = 0 (group A in Table 2), men with Rt =1 & Et = 1 (group B), and 

men with Rt =1 & Et= 0 (group C). 

Define a set of indices, kj, for j = 1, 2, 3, 4, where  

k1 =2Rt – 1 

k2 =2Et – 1 

k3 =2Lt–1 – 1 

k4 =2Lt – 1. 

We shall use these indices to sign the arguments of multivariate normal c.d.f.s entering the 

likelihood function. Let K be a 4×4 matrix with the kjs on the diagonal, and with 0 

extradiagonal terms.   

Define the vectors of index functions: 

Ξ1 = (k4γ1′zt–1, k2λ′ht–1, k3β′xt–1, k1ψ′wt–1)′ 

Ξ2 = (k4γ2′zt–1, k2λ′ht–1, k3β′xt–1, k1ψ′wt–1)′ 

Then, for each man with Rt =1 & Et= 1 (group C), the likelihood contribution takes the form: 
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LC  =Φ4(Lt–1Ξ1 + (1–Lt–1)Ξ2; Ω) 

where Ω = KΣΚ and Φm(.) denotes an m-variate normal c.d.f.  

For each man with Rt =1 & Et= 0 (group B), the likelihood will be truncated because 

earnings in year t are not observed. Let  

Ξ_Lt  = (k2λ′ht–1, k3β′xt–1, k1ψ′wt–1)′ 

and   

Ω_Lt  = M1 Ω M1′ 

where  

M1 = 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1000
0100
0010

. 

Thus, subscript _Lt denote vectors and matrices deprived of elements referring to the year t 

low pay equation; for these cases, likelihood contributions take the form. The likelihood 

contribution for each group B member can then be written as 

LB =Φ3(Ξ_Lt; Ω_Lt). 

For each man with with Rt =1 & Et= 0 (group A), there is additional truncation. Let  

Ξ_Lt_Et=(k3β′xt–1, k1ψ′wt–1)′ 

and   

Ω_Lt_Et  = M2 Ω M2′ 

where  

M2 = 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1000
0100
0000

. 

Thus, subscript _Lt_Et denotes vectors and matrices deprived of elements referring to the 

year t low pay and employment equations. The likelihood contribution for each group A 

member can then be written as 

LA = Φ2(Ξ_Lt_Et; Ω_Lt_Et). 

We may combine the expressions for the different types of likelihood contribution for 

each man:  

logL  =  (1–Rt)log LA  + Rt(1–Et) log LB + RtEt log LC. 

This is equation (9) in the main text. 
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Model 3 

In the main text we discussed additional models nested within Models 1 and 2. Model 

3 collapsed panel retention and employment into a single process, yielding a single selection 

mechanism that discriminated between sample observations according to whether Lt was 

observable or not. In this model, therefore, the sample retention process (equations 2 and 3) 

refers to having observable earnings in year t, and there is no equation for employment 

propensity in t. The conditioning set for sample retention is the same as in equation (2).  

For individuals with earnings observed in year t, likelihood contributions take the 

form 

LD  = Φ3(Lt–1Ξ1_Et + (1–Lt–1)Ξ2_Et; Ω_Et), 

where  

Ξ1_Et = (k4γ1′zt–1, k3β′xt–1, k1ψ′wt–1)′ 

Ξ2_Et = (k4γ2′zt–1, k3β′xt–1, k1ψ′wt–1)′ 

and  

Ω_Et = M3 Ω M3′ 

where  

M3=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1000
0100
0001

. 

For men with earnings not observed in year t, the likelihood contribution is LA.  

The likelihood contribution for each man can therefore be written as  

logL  =  (1–Rt)log LA  + Rt log LD. 

 

Model 4 

 Model 4 assumes, in addition, that the availability of earnings information in year t is 

exogenous. The likelihood contribution for each man can be written as  

logL  = log[ Φ2(Lt–1Ξ1_Et_Rt + (1–Lt–1)Ξ2_Et_Rt ;  k4k3σ43) ] 

where 

Ξ1_Et_Rt = (k4γ1′zt–1, k3β′xt–1)′ 

Ξ2_Et_Rt = (k4γ2′zt–1, k3β′xt–1)′. 

The likelihood contribution may be written alternatively as 

logL  = log[ Lt–1Φ2(Ξ1_Et_Rt ; k4k3σ43)  +  (1–Lt–1)Φ2(Ξ2_Et_Rt ; k4k3σ43) ]. 
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By contrast, the likelihood contribution in Stewart and Swaffield’s (1999) partial 

observability model was 

logL  = log[ Lt–1Φ2(Ξ1_Et_Rt ; k4k3σ43)  +  (1–Lt–1)Φ1(k3β′xt–1) ]. 

 

Model 5 

Finally, Model 5 treated no selection mechanism as endogenous. The equation for 

year t low pay status, with coefficients differing according to base-year low pay status, could 

therefore estimated via two univariate probit models for year t low pay, one for the men who 

were low paid of year t–1, and the other for those who were not high paid. The likelihood 

contribution for each man may be written as  

logL  =   log[ Lt–1Φ1(k4γ1′zt–1)  +  (1–Lt–1)Φ1(k4γ2′zt–1) ]. 
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A2 Estimated coefficients for Models 1–5 
 

Appendix Table.   Models 1–5: estimated coefficients  
 Model 1 Model 2 Model 3 Model 4 Model 4 (S&S) Model 5 
 Coeff. |t| Coeff. |t| Coeff. |t| Coeff. |t| Coeff. |t| Coeff. |t|
Retention (Rt)             
Married 0.265 [7.17] 0.226 [6.50] 0.236 [7.12]       
Age 0.061 [6.45] 0.051 [5.69] 0.110 [14.12]       
Age-squared –0.001 [5.80] –0.001 [5.22] –0.001 [14.97]       
Educ. qual.: other qualification 0.210 [3.16] 0.215 [3.41] 0.150 [2.56]       
Educ. qual.: O-level(s) 0.132 [2.39] 0.109 [2.05] 0.095 [1.92]       
Educ. qual.: A-level(s) 0.314 [5.21] 0.264 [4.57] 0.147 [2.83]       
Educ. qual.: other higher degree 0.204 [3.93] 0.157 [3.20] 0.144 [3.18]       
Educ. qual.: first degree or higher 0.096 [1.69] 0.055 [1.01] 0.084 [1.66]       
No. health problems: 1 –0.024 [0.69] –0.003 [0.09] –0.084 [2.87]       
No. health problems: 2 0.062 [1.11] 0.039 [0.75] –0.098 [2.16]       
No. health problems: 3 –0.025 [0.27] –0.043 [0.50] –0.164 [2.18]       
No. health problems: 4+ –0.146 [0.96] –0.136 [0.94] –0.363 [2.94]       
Lived in South East 0.023 [0.60] 0.021 [0.59] 0.042 [1.26]       
Lived in London –0.078 [1.46] –0.072 [1.42] –0.038 [0.79]       
Transition: waves 3–4 0.198 [3.55] 0.152 [2.89] 0.206 [4.29]       
Transition: waves 4–5 0.188 [3.48] 0.144 [2.85] 0.217 [4.61]       
Transition: waves 5–6 0.428 [7.47] 0.343 [6.44] 0.334 [6.95]       
Transition: waves 6–7 0.323 [5.72] 0.303 [5.71] 0.332 [6.87]       
Transition: waves 7–8 0.188 [3.47] 0.162 [3.17] 0.267 [5.68]       
Transition: waves 8–9 0.239 [4.27] 0.225 [4.26] 0.260 [5.43]       
Transition: waves 9–10 0.236 [4.21] 0.213 [4.05] 0.316 [6.49]       
Interviewer changed –0.227 [7.09] –0.178 [5.86] –0.148 [5.39]       
Constant –0.222 [1.27] –0.065 [0.39] –1.217 [8.20]       
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 Model 1 Model 2 Model 3 Model 4 Model 4 (S&S) Model 5 
 Coeff. |t| Coeff. |t| Coeff. |t| Coeff. |t| Coeff. |t| Coeff. |t|
Base year low pay (Lt–1)             
Married –0.185 [3.77] –0.184 [3.79] –0.189 [3.86] –0.175 [3.23] –0.176 [3.23]   
Age –0.186 [15.91] –0.184 [15.79] –0.187 [16.06] –0.201 [14.92] –0.200 [14.55]   
Age-squared 0.002 [14.22] 0.002 [14.10] 0.002 [14.34] 0.002 [13.47] 0.002 [13.19]   
Educ. qual.: other qualification –0.276 [3.47] –0.273 [3.42] –0.279 [3.51] –0.284 [3.23] –0.282 [3.22]   
Educ. qual.: O-level(s) –0.385 [5.64] –0.388 [5.70] –0.388 [5.69] –0.392 [5.16] –0.392 [5.14]   
Educ. qual.: A-level(s) –0.427 [5.82] –0.426 [5.82] –0.429 [5.85] –0.458 [5.58] –0.457 [5.57]   
Educ. qual.: other higher degree –0.526 [7.68] –0.525 [7.70] –0.526 [7.68] –0.558 [7.28] –0.556 [7.27]   
Educ. qual.: first degree or higher –0.805 [9.52] –0.815 [9.65] –0.809 [9.56] –0.826 [8.81] –0.826 [8.79]   
No. health problems: 1 0.053 [1.41] 0.053 [1.43] 0.050 [1.33] 0.049 [1.18] 0.049 [1.19]   
No. health problems: 2 0.084 [1.36] 0.088 [1.44] 0.089 [1.45] 0.060 [0.86] 0.061 [0.86]   
No. health problems: 3 0.167 [1.74] 0.157 [1.66] 0.169 [1.76] 0.103 [0.93] 0.103 [0.92]   
No. health problems: 4+ 0.290 [1.80] 0.307 [1.91] 0.289 [1.79] 0.373 [1.99] 0.375 [2.00]   
Lived in South East –0.220 [4.44] –0.219 [4.43] –0.223 [4.50] –0.218 [3.94] –0.220 [3.98]   
Lived in London –0.351 [5.09] –0.357 [5.20] –0.349 [5.08] –0.359 [4.56] –0.361 [4.58]   
Year t–1: 1993 0.058 [1.23] 0.056 [1.19] 0.051 [1.10] 0.046 [0.90] 0.045 [0.88]   
Year t–1: 1994 0.115 [2.30] 0.111 [2.25] 0.109 [2.19] 0.072 [1.28] 0.071 [1.25]   
Year t–1: 1995 0.124 [2.48] 0.117 [2.35] 0.117 [2.37] 0.114 [2.00] 0.110 [1.93]   
Year t–1: 1996 0.056 [1.05] 0.046 [0.87] 0.051 [0.96] 0.085 [1.44] 0.084 [1.39]   
Year t–1: 1997 0.054 [1.00] 0.046 [0.87] 0.049 [0.92] 0.071 [1.18] 0.069 [1.13]   
Year t–1: 1998 –0.007 [0.13] –0.017 [0.31] –0.007 [0.12] –0.009 [0.14] –0.010 [0.16]   
Year t–1: 1999 –0.046 [0.82] –0.044 [0.79] –0.046 [0.83] –0.023 [0.37] –0.025 [0.40]   
Firm size > 100 –0.506 [13.00] –0.506 [13.13] –0.510 [13.19] –0.518 [12.04] –0.517 [11.99]   
Skilled occupation –0.459 [10.39] –0.460 [10.40] –0.461 [10.47] –0.472 [9.63] –0.471 [9.62]   
First spell: full time employment –0.054 [0.94] –0.062 [1.04] –0.051 [0.91] –0.051 [0.80] –0.055 [0.84]   
First spell: missing information 0.092 [1.61] 0.093 [1.54] 0.079 [1.39] 0.070 [1.08] 0.074 [1.07]   
Constant 3.864 [17.97] 3.843 [17.85] 3.902 [18.22] 4.128 [16.75] 4.118 [16.44]   
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 Model 1 Model 2 Model 3 Model 4 Model 4 (S&S) Model 5 
 Coeff. |t| Coeff. |t| Coeff. |t| Coeff. |t| Coeff. |t| Coeff. |t|
Employment (Et)             
Married 0.135 [2.80] 0.094 [2.09]         
Age 0.117 [11.09] 0.108 [10.11]         
Age-squared –0.002 [13.17] –0.002 [11.97]         
Educ. qual.: other qualification 0.082 [1.05] 0.051 [0.65]         
Educ. qual.: O-level(s) 0.055 [0.84] 0.039 [0.60]         
Educ. qual.: A-level(s) –0.035 [0.49] –0.078 [1.19]         
Educ. qual.: other higher degree 0.072 [1.22] 0.045 [0.77]         
Educ. qual.: first degree or higher 0.132 [1.91] 0.124 [1.79]         
No. health problems: 1 –0.143 [3.64] –0.140 [3.57]         
No. health problems: 2 –0.228 [4.12] –0.235 [4.33]         
No. health problems: 3 –0.300 [3.37] –0.292 [3.30]         
No. health problems: 4+ –0.502 [3.55] –0.478 [3.37]         
Lived in South East 0.060 [1.37] 0.056 [1.27]         
Lived in London 0.038 [0.56] 0.046 [0.69]         
Year t–1: 1993 0.165 [2.50] 0.136 [2.10]         
Year t–1: 1994 0.200 [2.91] 0.179 [2.57]         
Year t–1: 1995 0.160 [2.12] 0.104 [1.47]         
Year t–1: 1996 0.296 [3.76] 0.240 [3.09]         
Year t–1: 1997 0.323 [3.96] 0.284 [3.41]         
Year t–1: 1998 0.264 [3.24] 0.220 [2.69]         
Year t–1: 1999 0.340 [3.93] 0.296 [3.43]         
First spell: full time employment 0.144 [2.62] 0.149 [2.65]         
First spell: missing information –0.037 [0.59] –0.039 [0.61]         
Unemployment-vacancies ratio –0.001 [0.29] –0.001 [0.30]         
Constant –0.714 [2.76] –0.353 [1.57]         
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 Model 1 Model 2 Model 3 Model 4 Model 4 (S&S) Model 5 
 Coeff. |t| Coeff. |t| Coeff. |t| Coeff. |t| Coeff. |t| Coeff. |t|
Low pay|past low pay             
Married –0.182 [1.96] –0.128 [1.33] –0.172 [1.83] –0.202 [2.07] –0.172 [1.25] –0.182 [2.39]
Age –0.111 [3.82] –0.067 [1.54] –0.086 [2.44] –0.103 [2.25] –0.071 [0.60] –0.080 [4.59]
Age-squared 0.001 [3.87] 0.001 [1.63] 0.001 [2.44] 0.001 [2.36] 0.001 [0.66] 0.001 [4.30]
Educ. qual.: other qualification –0.079 [0.60] –0.011 [0.09] –0.069 [0.50] –0.083 [0.57] –0.039 [0.19] –0.052 [0.48]
Educ. qual.: O-level(s) –0.209 [1.76] –0.128 [1.06] –0.198 [1.59] –0.210 [1.50] –0.148 [0.59] –0.166 [1.77]
Educ. qual.: A-level(s) –0.187 [1.42] –0.101 [0.77] –0.186 [1.35] –0.206 [1.31] –0.134 [0.48] –0.155 [1.51]
Educ. qual.: other higher degree –0.338 [2.63] –0.225 [1.66] –0.322 [2.34] –0.343 [2.08] –0.254 [0.75] –0.281 [2.95]
Educ. qual.: first degree or higher –0.270 [1.48] –0.091 [0.46] –0.264 [1.33] –0.260 [1.10] –0.126 [0.26] –0.165 [1.18]
No. health problems: 1 0.065 [0.94] 0.053 [0.76] 0.045 [0.64] 0.059 [0.83] 0.052 [0.69] 0.054 [0.80]
No. health problems: 2 0.178 [1.51] 0.153 [1.28] 0.160 [1.33] 0.176 [1.44] 0.167 [1.34] 0.170 [1.53]
No. health problems: 3 0.384 [2.03] 0.325 [1.63] 0.340 [1.77] 0.359 [1.83] 0.345 [1.67] 0.350 [1.79]
No. health problems: 4+ 0.169 [0.55] 0.069 [0.22] 0.060 [0.19] 0.111 [0.33] 0.048 [0.12] 0.066 [0.24]
Lived in South East –0.157 [1.90] –0.112 [1.34] –0.153 [1.77] –0.163 [1.75] –0.128 [0.86] –0.139 [1.82]
Lived in London –0.305 [2.21] –0.235 [1.71] –0.300 [2.13] –0.302 [1.98] –0.245 [1.00] –0.262 [1.96]
Year t–1: 1993 0.123 [1.04] 0.114 [0.93] 0.141 [1.21] 0.108 [0.90] 0.099 [0.77] 0.102 [0.82]
Year t–1: 1994 0.090 [0.76] 0.076 [0.63] 0.125 [1.07] 0.088 [0.74] 0.074 [0.57] 0.079 [0.64]
Year t–1: 1995 –0.022 [0.19] –0.053 [0.46] –0.006 [0.05] –0.062 [0.54] –0.085 [0.62] –0.079 [0.65]
Year t–1: 1996 –0.083 [0.74] –0.084 [0.71] –0.035 [0.31] –0.092 [0.79] –0.112 [0.84] –0.106 [0.89]
Year t–1: 1997 –0.199 [1.73] –0.208 [1.74] –0.151 [1.29] –0.209 [1.76] –0.229 [1.75] –0.224 [1.88]
Year t–1: 1998 –0.033 [0.28] –0.031 [0.24] 0.021 [0.17] –0.034 [0.28] –0.040 [0.32] –0.038 [0.31]
Year t–1: 1999 –0.072 [0.59] –0.057 [0.45] –0.017 [0.14] –0.073 [0.60] –0.078 [0.64] –0.077 [0.63]
Firm size > 100 –0.405 [4.89] –0.301 [3.24] –0.417 [4.35] –0.420 [3.42] –0.340 [1.13] –0.364 [6.14]
Skilled occupation –0.242 [2.82] –0.145 [1.65] –0.248 [2.58] –0.248 [2.03] –0.174 [0.63] –0.196 [3.04]
Constant 2.521 [5.12] 1.825 [2.30] 1.952 [3.32] 2.433 [3.43] 1.949 [1.07] 2.094 [6.61]
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 Model 1 Model 2 Model 3 Model 4 Model 4 (S&S) Model 5 
 Coeff. |t| Coeff. |t| Coeff. |t| Coeff. |t| Coeff. |t| Coeff. |t|
Low pay|past high pay             
Married –0.110 [1.89] –0.080 [1.38] –0.090 [1.51] –0.108 [1.81]   –0.098 [2.02]
Age –0.119 [5.57] –0.090 [2.86] –0.097 [4.22] –0.109 [3.58]   –0.095 [7.25]
Age-squared 0.001 [5.02] 0.001 [2.45] 0.001 [3.79] 0.001 [3.35]   0.001 [6.22]
Educ. qual.: other qualification –0.256 [2.83] –0.218 [2.51] –0.253 [2.70] –0.267 [2.71]   –0.251 [3.22]
Educ. qual.: O-level(s) –0.354 [4.55] –0.316 [4.26] –0.359 [4.44] –0.369 [4.21]   –0.346 [5.30]
Educ. qual.: A-level(s) –0.438 [5.07] –0.398 [4.97] –0.464 [5.25] –0.480 [4.95]   –0.455 [6.19]
Educ. qual.: other higher degree –0.541 [6.94] –0.491 [6.67] –0.541 [6.52] –0.558 [5.94]   –0.528 [8.22]
Educ. qual.: first degree or higher –0.951 [8.31] –0.876 [8.19] –0.955 [8.02] –0.969 [7.29]   –0.929 [9.97]
No. health problems: 1 0.122 [2.53] 0.110 [2.18] 0.099 [2.07] 0.108 [2.23]   0.106 [2.30]
No. health problems: 2 0.125 [1.63] 0.109 [1.32] 0.085 [1.12] 0.094 [1.21]   0.091 [1.24]
No. health problems: 3 0.424 [3.80] 0.394 [3.36] 0.375 [3.30] 0.391 [3.39]   0.387 [3.52]
No. health problems: 4+ 0.559 [2.91] 0.511 [2.50] 0.460 [2.44] 0.516 [2.65]   0.496 [2.74]
Lived in South East –0.194 [3.36] –0.170 [2.99] –0.189 [3.18] –0.193 [3.08]   –0.182 [3.53]
Lived in London –0.245 [2.72] –0.209 [2.40] –0.241 [2.60] –0.239 [2.42]   –0.220 [2.78]
Year t–1: 1993 –0.023 [0.28] –0.019 [0.23] 0.019 [0.25] –0.006 [0.08]   –0.010 [0.12]
Year t–1: 1994 0.044 [0.57] 0.040 [0.51] 0.089 [1.17] 0.067 [0.86]   0.061 [0.77]
Year t–1: 1995 –0.004 [0.05] –0.017 [0.22] 0.026 [0.34] –0.008 [0.11]   –0.017 [0.20]
Year t–1: 1996 –0.086 [1.06] –0.075 [0.85] –0.030 [0.39] –0.063 [0.78]   –0.071 [0.86]
Year t–1: 1997 –0.099 [1.25] –0.092 [1.08] –0.039 [0.50] –0.070 [0.89]   –0.077 [0.94]
Year t–1: 1998 –0.091 [1.15] –0.085 [1.01] –0.047 [0.61] –0.079 [1.01]   –0.083 [1.01]
Year t–1: 1999 –0.048 [0.59] –0.034 [0.38] 0.017 [0.22] –0.018 [0.23]   –0.020 [0.26]
Firm size > 100 –0.277 [4.80] –0.224 [4.32] –0.283 [4.44] –0.282 [3.66]   –0.251 [5.68]
Skilled occupation –0.398 [6.36] –0.349 [5.91] –0.408 [6.01] –0.412 [5.15]   –0.383 [7.63]
Constant 1.941 [3.68] 1.099 [1.44] 1.437 [2.37] 1.750 [2.11]   1.358 [5.43]
Notes. Models and estimation methods explained in main text. |t| is the absolute asymptotic t-ratio. See Tables 5–8 in main text for estimated cross-equation 
correlations, log-likelihoods, and marginal effects. Model 4 (S&S) uses the model specification of Stewart and Swaffield (1999, equation 8): see main text for 
discussion of difference between this model and Model 4. The estimated corr(low pay at t, low pay at t–1) for Model 4 (S&S) was –0.063 [|t| = 0.08], and the log-
likelihood value was –5,677. The omitted categories for categorical variables are: not married, no educational qualifications, no health problems, lived outside 
London and South East, transition years: waves  2–3, firm size < 100, non-skilled occupation.  
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