MONOPOLY, InEQUALITY AND REDISTRIBUTION Via the Public Provision of Private goods

Margarita Katsimi
Thomas Moutos

CESIFO Working Paper No. 1318
Category 2: Public Choice
October 2004

- from the CESifo website: www.CESifo.de

Monopoly, InEQUALITY and REDISTRIBUTION Via the Public Provision of Private goods

Abstract

The relationship between inequality and redistribution is usually studied under the assumption that the government collects different amounts of taxes from each citizen (voter) but gives back the same amount (in cash or in kind) to everyone. In this paper we consider what happens if the government can redistribute through both sides of its budget (revenue and expenditure). We study the effects of inequality on the size (and structure) of redistributive programs in both perfectly competitive and monopolistic settings. We find that the presence of monopoly results in a higher tax rate than in the competitive case and that in the latter case an increase in inequality can be associated with a fall in the tax rate. We find also that although the median voter may not vote for a positive tax rate in the presence of public sector inefficiency under perfect competition, she may prefer - ceteris paribus - a positive tax rate in the presence of monopoly.

JEL Code: H23, H42, P16.
Keywords: monopoly, redistribution, inequality, public goods, median voter.

Margarita Katsimi
DIEES, AUEB
Patission 76
Athens 10434
Greece
mkatsimi@aueb.gr

Thomas Moutos
DIEES, AUEB
Patission 76
Athens 10434
Greece
tmoutos@aueb.gr

We wish to thank Lambros Pechlivanos, Euclid Tsakalotos, Spyros Vassilakis and seminar participants at the University of Queensland and the CRETE 2004 conference for helpful comments and suggestions.

1. Introduction

Following the influential contributions of Romer (1975), Meltzer and Richard (1981), Alesina and Rodrik (1994) and Persson and Tabellini (1994), the conventional wisdom is that higher income inequality among voters leads to increased government redistribution. The intuition behind this result is that the greater is the gap between median and mean income, the higher will be the level of spending preferred by the median income voter and - since political competition drives policy decisions toward the ideal point of the median income voter - the higher will be the equilibrium amount of redistribution. Nevertheless, despite some empirical evidence in support of this hypothesis (see, Meltzer and Richard (1983), Milanovic (2000)), other empirical studies have not found that higher income inequality among voters leads to an increase in the size of redistributive programs (see, for example, Clarke (1995), Perotti (1996) and Rodriguez (1999)). This has led some (e.g., Benabou (1996) and Rodriguez (1999)) to urge the profession to take seriously the need to relax median voter assumptions in order to gain an understanding in variations in redistributive activity across countries and over time.

Political scientists have long argued that unadulterated, fully participatory, median-voter democracy describes no actual political system - rather, the translation of resources into influence occurs in highly institutionalized environments that amplify some voices and mute others. Although we do not want to dispute the validity of this claim, in this paper we show that the median voter-framework can generate a more diverse set of outcomes once we take into account that redistribution is often effected through the public provision of private goods ${ }^{1}$. Moreover, we demonstrate that if the assumption of perfect competition is relaxed

[^0](i.e., monopoly), the median-voter's preferred policy will involve -ceteris paribus- a higher tax rate than in the perfectly competitive case. We also find that the median voter will be willing to support redistributive policies under monopoly even when, due to public sector inefficiency, under perfectly competitive conditions the median voter would prefer no public provision.

Our finding that the relationship between inequality and redistribution is not positive once we assume that redistribution is effected through the public provision of private goods is not novel. Indeed, Grossman (2003) has shown that higher inequality of capital endowments may reduce redistribution if the government uses the tax proceeds to finance public provision of a homogeneous good rather than (income) transfers. Both poor and rich households in Grossman's model have no choice other than consuming the freely-provided public good. In contrast, in the present paper the government uses the tax proceeds to finance the provision of a rival public good which is also provided by the private sector, albeit at different quality levels - a vertically differentiated product (VDP) like health, education, or day care ${ }^{2}$. Households are assumed to derive utility from the consumption of the VDP (either of the variety freely provided by the government or of one of the varieties offered by the private sector) and of a privately produced homogeneous product. We assume that both goods are rival in consumption. This implies that if a higher proportion of households decide to

[^1]"consume" the publicly provided variety, the quality provided by the public sector must decline. Thus, if in response to higher income inequality the median voter would otherwise have chosen to vote for a higher tax rate, she must now also take into account that a rise in the tax rate may induce a larger number of the more wealthy households to consume the publicly provided variety (since their after-tax income declines). Consequently, the rise in the tax rate may leave the median voter with lower after-tax income without a corresponding rise in the quality of the publicly-provided variety. As a result, the median voter may not prefer a rise in the tax rate as inequality increases. In fact, our results indicate that if the private VDP is produced under perfectly competitive conditions, the median voter equilibrium tax rate will depend negatively on the level of inequality.

To our knowledge, the relationship between inequality and redistribution has been studied only under perfectly competitive settings. In this respect, the more interesting results of our analysis relate to the presence of monopoly in the production of the VDP. We find that, first, the equilibrium tax rate will be higher under monopoly than in the perfectly competitive case, second, that the relationship between the equilibrium tax rate and inequality becomes humpshaped, and third, that the presence of monopoly can induce the median voter to prefer a positive tax rate, even in cases where the inefficiency of the public sector relative to the private sector is so large that the median voter would not vote for a positive tax rate under perfectly competitive conditions (i.e., the presence of monopoly can result in the public provision of private goods even in case of "government failure"). The explanation for the above results rests on the fact that the median voter realizes that the presence of - even an inefficient - public sector, in effect, allows her to avoid paying a price above marginal cost, and that the incomes of those consuming the privately (monopoly) supplied variety will be further at the upper-tail of the income distribution than in the perfectly competitive case.

Consequently, the median voter expects that a rise in the tax rate will increase the number of households deciding to consume the publicly provided variety by a smaller number in the monopoly case -thus making the "congestion costs" of a higher tax rate smaller.

Our finding that the relationship between the equilibrium tax rate and inequality becomes hump-shaped is driven by the positive impact of inequality on the mark-up of monopoly prices over cost. At a high level of inequality, the mark-up of monopoly prices is such that only very high-income individuals will consume the privately-supplied variety. In that case, an increase in inequality will induce the median voter to choose a higher tax rate since the thinning tail of the income distribution ensures that the 'redistribution' effect of a tax rise is stronger than the implied 'congestion' effect. On the other hand, when inequality is low the monopoly prices are close to cost so that the relationship between inequality and taxes is similar to the perfectly competitive case.

The rest of the paper is organized as follows: The basic model is described in section 2. The median voter equilibrium size of government is derived in section 3 . Section 4 relaxes the assumption of perfect competition and introduces the case of monopoly. Section 5 concludes.

2. The Model

Consider a closed economy which produces and consumes two goods (X and Y) with the use of labour. We assume that perfect competition prevails in all markets and that all households (citizens-cum-voters) are endowed with one unit of labor, which they offer inelastically. There are, however, differences in skill between households, which are reflected in differences in the endowment of each household's effective labor supply. This is in turn reflected in differences in income across households. We assume that firms pay the same
wage rate per effective unit of labor -thus the distribution of talent across firms does not affect unit production costs. We will assume that the politico-economic equilibrium is determined according to the Downsian model of electoral competition.

a. Firms

Good X is a homogeneous good produced only by private sector firms under linear technology,

$$
\begin{equation*}
X=L, \tag{1}
\end{equation*}
$$

where L stands for the effective units of labour used. Using labour as the numeraire, we get that the price of good X, p_{X}, is unity.

Good Y is a vertically differentiated good (VDP) which is produced at various quality levels in both the private and the public sector. We wish to capture the fact that, for many government-provided goods (or services), some citizens choose not to "consume" them (even though they are eligible for doing so and there is no price-tag attached to them), preferring instead to purchase them from the private sector. Typical examples of such publicly provided goods are health care, child care, old-age care and education. One reason for this phenomenon is that these goods are vertically differentiated according to quality (thus displaying large income elasticity) and there is a large degree of lumpiness associated with their consumption. For example, it is nearly impossible for a student to attend at the same time a public and a private educational institution (or to attend both part-time thus achieving a full-time status), or for a patient to have part of a heart operation at a public hospital and the rest of the operation at a private one. Moreover, in many cases it confers no extra utility (or it is detrimental) to supplement publicly provided goods with privately provided ones (i.e., first having an operation at a public hospital and afterwards supplementing it with another
operation at a private hospital). Wealthy households will often elect to pay in order to avail themselves of the highest quality of these services - rather than be satisfied with the (sometimes) mediocre quality offered by the public sector.

We assume that quality is measured by an index $Q>0$, and that there is complete information regarding the quality index. We further assume that for private sector firms average costs depend on quality and that, for any given quality level, the average cost is independent of the number of units produced. These assumptions are captured by the following production function,
$Y_{Q}=L / \beta Q \quad \beta \leq 1$.
In equation (2), Y_{Q} denotes the number of units of quality Q produced. This particular specification implies that as quality increases more (effective) units of labour are required to produce each unit of the $\quad Y$ good. It also implies that the (average cost) and price at which each variety of the good will be offered is
$A C(Q)=P(Q)=\beta Q$.
For simplicity, and without loss of generality, we assume that the public sector uses a similar technology to produce the good, pays the same wage rate, but for various reasons may be a less efficient producer than private sector firms ${ }^{3}$. We capture this (potential) difference in efficiency between the private and the public sector by assuming that average costs in the public sector are
$A C^{G}(Q)=Q$,
where the superscript G denotes the public sector.

b. Households

All households are assumed to have identical preferences. Following Rosen (1974) and Flam and Helpman (1987), we assume that the homogeneous good is divisible, whereas the quality-differentiated product is indivisible and households can consume only one unit of it. For simplicity - and with some loss of generality- we write the utility function as ${ }^{4}$

$$
U_{i}=\sqrt{Q_{i} X_{i}}
$$

where X_{i} and Q_{i} stand for the quantity of the homogeneous good and the quality of good Y (the VDP) consumed by household i.

Let e_{i} stand for household's i endowment of effective number of labour units. Since the wage rate per effective units of labour is unity, e_{i} also stands for household income. We assume that there is a continuum of households, $i \in[0,1]$, with Pareto distributed incomes. The Pareto distribution is defined over the interval $e \geq b$, and its CDF is

$$
\begin{equation*}
F(e)=1-(b / e)^{a}, a>1 \tag{4}
\end{equation*}
$$

Parameter b stands for the lowest income, and parameter a determines the shape of the distribution (higher values of a imply greater equality). The Pareto distribution, in addition to being easy to work with, is a good approximation of actual income distributions. Empirical estimates of the value of a range between 1.7 and 3.0 (see, Creedy (1977)). The mean of the Pareto distribution is equal to

$$
\begin{equation*}
\mu=a b /(a-1) \tag{5}
\end{equation*}
$$

[^2]and the income of the median voter (household) is
\[

$$
\begin{equation*}
m=2^{1 / a} b \tag{6}
\end{equation*}
$$

\]

Since good Y is also offered by the public sector, and households can consume either a privately-provided variety or the (single) variety provided by the government, in effect households face two mutually exclusive budget constraints. The budget constraint of a household deciding to acquire a variety of Y which is offered by the private sector is

$$
e_{i}(1-t)=P(Q)+P_{X} X_{i}=\beta Q_{i}+X_{i}
$$

whereas, if the household chooses to consume the publicly (and freely) provided variety the budget constraint is,

$$
e_{i}(1-t)=X_{i}
$$

where t stands for the income tax rate. Let Q^{G} stand for the quality of good Y provided by the public sector. Then, if the household consumes a privately provided variety, the utility maximizing demands for Q and X are (we assume that for all households income is high enough to generate positive demand for both goods),

$$
\begin{align*}
& Q_{i}=e_{i}(1-t) / 2 \beta \\
& X_{i}=e_{i}(1-t) / 2 \tag{8}
\end{align*}
$$

whereas if the household consumes the publicly provided variety, the entire disposable income of the household $\left(=e_{i}(1-t)\right)$ is spent on X.

The resulting indirect utility of the household in the two cases is then,
$V_{i}^{P}=e_{i}(1-t) / \sqrt{\beta}, \quad$ if it chooses a privately-offered variety,
$V_{i}^{G}=\sqrt{e_{i}(1-t) Q^{G}}, \quad$ if it consumes the publicly-offered variety.

We note that the difference between V_{i}^{P} and V_{i}^{G} is increasing in income (e). Thus, only households with large incomes will be willing to pass by the possibility of consuming for
free the publicly provided variety and instead pay to acquire their preferred variety from the private sector. Let θ denote the income of a household that is indifferent between consuming the publicly provided variety and its optimally chosen privately produced variety, i.e., for this household it holds that

$$
\begin{equation*}
V^{P}=\theta(1-t) / \sqrt{\beta}=\sqrt{\theta(1-t) Q^{G}}=V^{G} . \tag{11}
\end{equation*}
$$

We term θ the dividing level of income (ability). Solving for θ we find that

$$
\begin{equation*}
\theta=4 \beta Q^{G} /(1-t) . \tag{12}
\end{equation*}
$$

From the Pareto distribution we know that the proportion of households with incomes smaller or equal to θ (that is, the proportion of households which choose to consume the publicly provided variety) is
$F(\theta)=1-(b / \theta)^{a}$.
Assuming that the government budget is kept in balance, we have that
$t \mu=\left[1-(b / \theta)^{a}\right] Q^{G}$.
In equation (13) the left-hand-side stands for tax revenue and the right-hand-side for the cost of providing the Y good at quality Q^{G} to all those wishing to consume it. Thus, the relationship between the tax rate and Q^{G} depends on how many households consume the publicly provided variety. Rewriting equation (13) and using equation (12) we get that
$Q^{G}=\frac{t \mu}{1-\left(b(1-t) / 4 \beta Q^{G}\right)^{\alpha}}$.

3. Median-voter equilibrium

In what follows we concentrate on the median voter (it can be easily established that all the conditions required for the median- voter theorem to apply are satisfied since the indirect
utility function of each voter can be written in the form $V\left(q ; e_{i}\right)=J(q)+K\left(e_{i}\right) H(q)$ where q is a vector of policies, $K\left(e_{i}\right)$ is monotonic in e_{i}, for any $H(q)$ and $J(q)$ common to all voters, see Grandmont (1978) and Persson and Tabellini (2000)). In the politico-economic equilibrium considered in this paper, the median-voter chooses the tax rate and the quality level of the publicly-provided variety which are implemented by the policy maker. We conceive that the median voter realizes that her choice of the tax rate and the quality of the publicly-provided variety will affect the proportion of households which will choose to consume the publicly provided good.

Substituting equation (6) into equations (9) and (10), we get that

$$
\begin{align*}
& V_{m}^{P}=b 2^{1 / \alpha}(1-t) / \sqrt{\beta}, \tag{15}\\
& V_{m}^{G}=\sqrt{b 2^{1 / \alpha}(1-t) Q^{G}}, \tag{16}
\end{align*}
$$

Evidently, the median voter will not decide on a positive tax rate if at this tax rate she chooses to consume a privately provided variety (since in such a case would consent to a drop to her disposable income without the benefit of consuming the publicly provided variety) ${ }^{5}$. Thus, the tax rate (and the associated publicly-provided variety, $Q^{* G}$) preferred by the median voter will be positive only if at this tax rate $\left(t^{*}\right)$ the resulting utility for the median voter is higher than that which the median voter would attain at a zero tax rate, i.e.

$$
\begin{equation*}
V_{m, t^{*}, Q^{* G}}^{G}=\sqrt{b 2^{1 / \alpha}\left(1-t^{*}\right) Q^{* G}}>b 2^{1 / a} / \sqrt{\beta}=V_{m, t=0}^{P} \tag{17}
\end{equation*}
$$

Assuming, for the moment, that this is indeed the case we conceive that the politically determined tax rate and publicly-provided variety coincide with those that maximize the
median voter's utility subject to the limits imposed by the government budget constraint as expressed by equation (14), i.e.,
$\max _{t, Q^{G}} \Lambda=\sqrt{b 2^{1 / \alpha}(1-t) Q^{G}}+\lambda\left(Q^{G}-\frac{t \mu}{1-\left(b(1-t) / 4 \beta Q^{G}\right)^{\alpha}}\right)$

Rearranging the first-order-conditions corresponding to the above program and using equation (5) we find two equations which (implicitly) solve for t^{*} and $Q^{* G}$,

$$
\begin{align*}
& t^{*}=\frac{(\alpha-1) Q^{* G}\left(\left(4 \beta Q^{* G}\right)^{\alpha}-(b(1-t))^{\alpha}\right)}{b \alpha\left(4 \beta Q^{* G}\right)^{\alpha}} \tag{18}\\
& Q^{* G}=\left[\frac{2(\alpha-1)\left(b\left(1-t^{*}\right)\right)^{\alpha}}{b\left(1-2 t^{*}\right)(4 \beta)^{\alpha}}\right]^{1 /(\alpha-1)} \tag{19}
\end{align*}
$$

As the reader can easily verify the comparative statics effects of changes in the in(equality) parameter α on t^{*} and $Q^{* G}$ are, in general, ambiguous. However, after extensive experimentation with empirically relevant parameter values (which also satisfy the secondorder conditions and inequality (17)), we find that increases in inequality result in smaller tax rates (albeit the effect is rather small). Figure 1 displays the median voter's preferred tax rates (size of government) as a function of inequality (higher values of α imply lower inequality) and for two values of the parameter measuring the efficiency difference between the private and the public sector ($\beta=0.8$ and $\beta=1$). We note that -as expected - the lower

[^3]is the efficiency of the public sector the lower is the tax rate, since in this case the cost of expanding public sector production at the expense of the private sector is higher ${ }^{6}$.

The explanation for the - opposite to the literature - result that increases in equality result in a higher tax rate relies on the fact that the median voter in the present model must weigh the impact of two effects as she contemplates a rise in the tax rate in response to an increase in inequality. The first one is the traditional effect identified in the literature which leads to an increase in the tax rate preferred by the median voter as the gap between mean and median (pre-tax) income increases - since the median voter expects that a rise in the tax rate will bring to her a greater increase in public goods provision than before. But in addition to this, the median voter in the present paper must also take into account that a higher tax rate will induce some high-income households to switch their demand from a privately supplied variety to the publicly supplied. Accordingly, the government may not be able to use the
increased tax revenue to produce a variety of higher quality as it will have to provide the good to a higher number of households. It is thus by no means certain that a higher tax rate will procure the median voter (and everyone else) a higher quality of the public good. Our numerical results show that from the two effects mentioned the second tends to dominate the first, thus producing a small negative effect of inequality on the tax rate (size of government $)^{7}$.

The absence of a non-monotonic relationship between the tax rate and the quality of the publicly provided variety - due to the endogeneity of the proportion of households consuming this variety - is also verified by our numerical results. We find that starting from a low level of a, although increases in equality produce a mo notonic increase in tax rates, they result initially in decreases in the quality of the publicly provided variety and then in higher increases it (thus producing a U-shaped relationship between equality and the quality of publicly provided services). This is explained by the fact that a change in the inequality parameter changes the proportion of households belonging to a given interval of the income

[^4]distribution, thus altering the number of households that choose to consume the publiclyprovided variety as the tax rate changes.

4. Monopoly

We now assume that there is a single firm producing the vertically-differentiated product. In order to avoid unnecessary complications regarding the nature of the political equilibrium (which would not help in comparing this case with the perfectly competitive one), we assume that this is a foreign owned monopoly - so that its owners are not citizens of the home country and thus do not have voting rights. Moreover we assume that the profits accruing to the foreign owners are not taxed.

Unlike the perfectly competitive case, in which the price of each variety was equal to the cost of producing it, the monopolist will choose a price-quality combination which maximizes its profits. We assume that the monopolist will set a single price-quality combination.

Nevertheless, the presence of a publicly-provided variety creates a constraint (in effect defines the "demand curve") for the monopolist. As previously, let θ^{M} stand for the level of (pre-tax) income that makes a household indifferent between consuming the publiclyprovided variety $\left(Q^{G}\right)$ and the variety offered by the monopolist (Q^{M}) at the price P^{M}, i.e.

$$
\begin{equation*}
V^{P}=\sqrt{Q^{M}\left(\theta^{M}(1-t)-P^{M}\right)}=\sqrt{Q^{G} \theta^{M}(1-t)}=V^{G} . \tag{20}
\end{equation*}
$$

Thus,
$\theta^{M}=P^{M} Q^{M} /(1-t)\left(Q^{M}-Q^{G}\right)$
Equation (21) implicitly defines the proportion of households $\left(=\left(b / \theta^{M}\right)^{\alpha}\right)$ which will choose to pay the price charged by the monopolist in order to avail themselves of the higherquality variety offered by the monopolist. Thus, the monopolist sets P^{M} and Q^{M} so as to

$$
\max _{P^{M}, Q^{M}} \Pi=\left(P^{M}-\beta Q^{M}\right)\left(b / \theta^{M}\right)^{\alpha}
$$

subject to the constraint provided by equation (21). The first-order-conditions imply that $P^{M}=\frac{\alpha}{\alpha-1} \beta Q^{M}$
$Q^{M}=\frac{2 \alpha-1}{\alpha-1} Q^{G}$.
Equation (22) implies that the mark-up of price (P^{M}) over cost ($=\beta Q^{M}$) depends only on the (in)equality parameter α. The higher is inequality, the higher is the mark-up. Using equations (22), (23) and (21) we find that
$\theta^{M}=\frac{\beta(2 \alpha-1)^{2}}{(1-t)(\alpha-1)^{2}} Q^{G}$.
In effect, equation (24) informs the median voter how her choice of the tax rate and of the quality of the publicly-provided good (which will be implemented by the policy maker) affects the proportion of households which will be consuming the variety provided by the monopolist. It thus summarizes for the median voter the effects of her current policy choices on the future behavior of the monopolist, which she takes into account when deciding - in effect - policy in the current period (i.e. we impose sub-game perfection). It is worth noting that even though - in equilibrium - the median voter will not be consuming the variety offered by the monopolist, she must, nevertheless, take into account the monopolist's actions since these actions affect the proportion of households consuming the publicly-provided variety, and thus, through the government budget constraint, the feasibility of her choices. As explained in the previous section, the tax rate (and the associated publicly-provided variety, $\left.Q^{* G}\right)$ preferred by the median voter will be positive only if at this tax rate $\left(t^{*}\right)$ the resulting utility for the median voter is higher than that which the median voter would attain if the tax rate was zero and was consuming the variety offered by the monopolist, i.e.

$$
\begin{equation*}
V_{m, t^{*}, Q^{* G}}^{G}=\sqrt{b 2^{1 / \alpha}\left(1-t^{*}\right) Q^{* G}}>\sqrt{Q^{M}\left(b 2^{1 / \alpha}-P^{M}\right)}=V_{m, t=0}^{P} . \tag{25}
\end{equation*}
$$

Assuming that this condition is satisfied - this is further discussed in the following paragraphs - we conceive that the median voter solves the following program, i.e. $\max _{t, Q^{G}} U=\sqrt{b 2^{1 / \alpha}(1-t) Q^{G}}$,
subject to the government budget constraint (equation (14)) and equation (24). This maximization implies that

$$
\begin{align*}
& t^{*}=\frac{(\alpha-1) Q^{* G}\left((2 a-1)^{2 \alpha}\left(\beta Q^{* G}\right)^{\alpha}-(a-1)^{2 \alpha}(b(1-t))^{\alpha}\right)}{b \alpha\left(\beta Q^{* G}\right)^{\alpha}(2 a-1)^{2 \alpha}} \tag{26}\\
& Q^{* G}=\left[\frac{2(\alpha-1)^{2 \alpha+1}\left(b\left(1-t^{*}\right)\right)^{\alpha}}{b\left(1-2 t^{*}\right) \beta^{\alpha}(2 \alpha-1)^{2 \alpha}}\right]^{1 /(\alpha-1)} \tag{27}
\end{align*}
$$

Equations (22), (23), (24), (26) and (27) determine the values of $t^{*}, Q^{* G}, \theta^{M}, P^{M}$ and Q^{M}. As in the perfectly competitive case, the comparative statics effects of changes in the in(equality) parameter α are, in general, ambiguous. However, after extensive experimentation with empirically relevant parameter values (which also satisfy the secondorder conditions and inequality (25)), we find that increases in equality (rises in parameter α) initially result in (small) reductions in the tax rate, which are later reversed, thus producing an almost U -shaped relationship between equality and the tax rate. Figure 2 displays this relationship for three different values of β (the parameter measuring the efficiency difference between the private and the public sector). As expected, the lower is β, the lower is -ceteris paribus- the tax rate (and the quality of the publicly-provided variety).

Figure 2: Government size and inequality in monopoly

Comparing Figures 1 and 2 we see that the tax rate chosen by the median voter is higher in the case of monopoly ${ }^{8}$. This is understandable since the presence of monopoly is expected to lead -ceteris paribus- to a larger proportion of households choosing to consume the publiclyprovided variety (than in the perfectly competitive case) because the monopolist charges a price larger than cost. This implies that the median voter expects that any given rise in the tax rate (which increases the sum available for redistribution) will add a smaller number of households to those already consuming the publicly-provided variety (Q^{G}) in the monopoly case, since the income distribution is thinning at its tails. Consequently, the median voter will be expecting a larger rise in Q^{G} than the increase in government revenue effects in the monopoly case, and thus she will be willing to vote for a higher tax rate than in the competitive case. One can also note that as inequality decreases (parameter α rises) the

[^5]impact of inequality on the tax rate becomes similar in the monopoly and perfectly competitive cases. This is not surprising since as one can see from equation (22), an increase in parameter α shrinks the monopoly mark-up of price over cost, so that the difference between monopolistic and perfectly competitive behaviour becomes less significant.

Finally, it is interesting to compare the political equilibrium conditions for a positive tax rate under perfect competition and under monopoly. One can see from conditions (17) and (20) that the median voter's net utility gain from a positive tax equilibrium decreases with the level of inefficiency difference between the public and the private sector $(\text { parameter } \beta)^{9}$ Moreover, the value of β at which the median voter is indifferent between public consumption and private consumption (with zero tax rate) is lower for the monopoly case. This implies that the monopolistic setting preserves a positive tax rate equilibrium even though the efficiency difference between the private and the public sector would induce the median voter to vote for a zero tax rate if the private sector was competitive.

5. Conclusion

In this paper we consider what happens if the government can redistribute through both sides of its budget (revenue and expenditure). We model this by introducing the possibility that high-income individuals may decide not to "consume" what the government is offering as a public good to all citizens. We find that changes in inequality do not have an unambiguous effect on the size of government. Our simulation results suggest that this effect will depend

[^6]on the market structure for the vertically-differentiated product. Under perfect competition the relationship between equilibrium tax rate and equality is positive while the relationship becomes U-shaped under monopoly. Moreover, the assumption of a monopolistic structure in the production of the vertically-differentiated good has two important consequences for the size of the public sector: Firstly, we find a monopoly bias in the size of government in the sense that under monopoly the median voter will vote for a higher tax rate. Secondly, the presence of monopoly induces the median voter to be in favour of public provision of private goods (a positive tax rate), even in cases in which the public sector is so inefficient that under perfectly competitive conditions the political equilibrium would not be supportive of any positive tax rate.

References

Alesina, A. and D. Rodrik (1994), "Distributive politics and economic growth", Quarterly Journal of Econmics,109, pp. 465-490.

Alesina, A., E. Glaeser, and B. Sacerdote (2001),"Why doesn’t the US have a European-style welfare system", Brookings Papers on Economic Activity, pp. 187-278.

Benabou, R. (1996) "Inequality and growth", in R. Bernanke and J. Rotemberg, (eds.), NBER Macroeconomics Annual, 11-74, NBER, Cambridge, Mass.

Benabou, R. (2000), "Unequal societies: Income distribution and the social contract", American Economic Review, 90, pp. 96-129.

Besley, T. and S. Coate (1991), "Public provision of public goods and the redistribution of income", American Economic Review, 81, pp. 979-984.

Blomquist, S. and V. Christiansen (1995), "Public Provision of Private Goods as a Redistributive Device in an Optimum Tax Model", Scandinavian Journal of Economics, 97, pp. 547-567.

Blomquist, S. and V. Christiansen (1999), "The Political Economy of Publicly Provided Private Goods", Journal of Public Economics, 73, pp. 31-54.

Boadway, R. and M. Marchand (1995), 'The Use of Public Expenditures for Redistributive Purposes", Oxford Economic Papers, 47, pp. 45-59.

Clarke, G.R.C. (1995), "More evidence on income distribution and growth", Journal of Developmant Economics, 47, pp. 403-427.

Creedy, J. (1977), "Pareto and the distribution of income," Review of Income and

Wealth, 23, pp. 405-411.
Flam, H. and E. Helpman, (1987), "Vertical product differentiation and North-South trade", American Economic Review, 77, pp. 810-822.

Grandmont, J.-M. (1978), " Intermediate Preferences and the Majority Rule", Econometrica, 46, pp. 317-330.

Grossmann, V. (2003), "Income inequality, voting over the size of public consumption, and growth", European Journal of Political Economy, 19, pp. 265-287.

Harms, P. and S. Zink (2003), "Limits to redistribution in a democracy: a survey", European Journal of Political Economy 19, pp. 651-668.

Lee, W. and J. Roemer (1999),"Inequality and redistribution revisited", Economics Letters, 65, pp. 339-346.

Meltzer, A. and S. Richard (1981), "A rational theory of the size of government", Journal of Political Economy, 89, pp. 914-27.

Meltzer, A. and S. Richard, (1983),"Tests of a rational theory of the size of government", Public Choice, 41, pp. 403-18.

Milanovic, B. (2000), 'The median-voter hypothesis, income inequality, and income redistribution: an empirical test with the required data", European Journal of Political Economy, 16, pp. 367-410.

Munro, A. (1991), "The Optimal Public Provision of Private Goods", Journal of Public Economics, 44, pp. 239-261.

Persson, T. and G. Tabellini(1994), "Is inequality harmful for growth?", American Economic Review, 84, pp. 600-621.

Persson, T. and G. Tabellini (2000), Political Economics:Explaining Economic Policy, The MIT Press.

Persson, T. and G. Tabellini (2003), The Economic Effects of Constitutions, The MIT Press.
Rodriguez, F.C. (1999), "Does distributional skewness lead to redistribution? Evidence from the United States," Economics and Politics, 11(2), pp. 171-99.

Roemer, J. (1998), "Why the poor do not expropriate the rich: an old argument in new garb", Journal of Public Economics, 70, pp. 399-424.

Romer, T. (1975), "Individual Welfare, Majority Voting, and the Properties of a Linear Income Tax", Journal of Public Economics, 7, pp. 163-185.

Rosen, S. (1974), "Hedonic Prices and Implicit Markets: Product Differentiation in Pure
Competition", Journal of Political Economy, 82, pp. 34-55.
Saint-Paul, G. (2001), "The dynamics of exclusion and fiscal conservatism", Review of Economic Dynamics, 4, pp. 275-302.

Thum, C. and M. Thum (2001), "Repeated Interaction and the Public Provision of Private Goods", Scandinavian Journal of Economics, 103, pp. 625-643.

CESifo Working Paper Series

(for full list see www.cesifo.de)

1257 François Larmande and Jean-Pierre Ponssard, EVA and the Controllability-congruence Trade-off: An Empirical Investigation, August 2004

1258 Vesa Kanniainen and Jenni Pääkkönen, Anonymous Money, Moral Sentiments and Welfare, August 2004

1259 Panu Poutvaara and Andreas Wagener, Why is the Public Sector More Labor-Intensive? A Distortionary Tax Argument, August 2004

1260 Lars P. Feld and Stefan Voigt, Making Judges Independent - Some Proposals Regarding the Judiciary, August 2004

1261 Joop Hartog, Hans van Ophem, and Simona Maria Bajdechi, How Risky is Investment in Human Capital?, August 2004

1262 Thomas Eichner and Rüdiger Pethig, Efficient Nonanthropocentric Nature Protection, August 2004

1263 David-Jan Jansen and Jakob de Haan, Look Who's Talking: ECB Communication during the First Years of EMU, August 2004

1264 David F. Bradford, The X Tax in the World Economy, August 2004
1265 Hans-Werner Sinn, Migration, Social Standards and Replacement Incomes. How to Protect Low-income Workers in the Industrialized Countries against the Forces of Globalization and Market Integration, August 2004

1266 Wolfgang Leininger, Fending off one Means Fending off all: Evolutionary Stability in Submodular Games, August 2004

1267 Antoine Bommier and Bertrand Villeneuve, Risk Aversion and the Value of Risk to Life, September 2004

1268 Harrie A. A. Verbon and Lex Meijdam, Too Many Migrants, Too Few Services: A Model of Decision-making on Immigration and Integration with Cultural Distance, September 2004

1269 Thomas Eichner and Rüdiger Pethig, Economic Land Use, Ecosystem Services and Microfounded Species Dynamics, September 2004

1270 Federico Revelli, Performance Rating and Yardstick Competition in Social Service Provision, September 2004

1271 Gerhard O. Orosel and Klaus G. Zauner, Vertical Product Differentiation When Quality is Unobservable to Buyers, September 2004

1272 Christoph Böhringer, Stefan Boeters, and Michael Feil, Taxation and Unemployment: An Applied General Equilibrium Approach, September 2004

1273 Assaf Razin and Efraim Sadka, Welfare Migration: Is the Net Fiscal Burden a Good Measure of its Economics Impact on the Welfare of the Native-Born Population?, September 2004

1274 Tomer Blumkin and Volker Grossmann, Ideological Polarization, Sticky Information, and Policy Reforms, September 2004

1275 Katherine Baicker and Nora Gordon, The Effect of Mandated State Education Spending on Total Local Resources, September 2004

1276 Gabriel J. Felbermayr and Wilhelm Kohler, Exploring the Intensive and Extensive Margins of World Trade, September 2004

1277 John Burbidge, Katherine Cuff and John Leach, Capital Tax Competition with Heterogeneous Firms and Agglomeration Effects, September 2004

1278 Joern-Steffen Pischke, Labor Market Institutions, Wages and Investment, September 2004

1279 Josef Falkinger and Volker Grossmann, Institutions and Development: The Interaction between Trade Regime and Political System, September 2004

1280 Paolo Surico, Inflation Targeting and Nonlinear Policy Rules: The Case of Asymmetric Preferences, September 2004

1281 Ayal Kimhi, Growth, Inequality and Labor Markets in LDCs: A Survey, September 2004

1282 Robert Dur and Amihai Glazer, Optimal Incentive Contracts for a Worker who Envies his Boss, September 2004

1283 Klaus Abberger, Nonparametric Regression and the Detection of Turning Points in the Ifo Business Climate, September 2004

1284 Werner Güth and Rupert Sausgruber, Tax Morale and Optimal Taxation, September 2004

1285 Luis H. R. Alvarez and Erkki Koskela, Does Risk Aversion Accelerate Optimal Forest Rotation under Uncertainty?, September 2004

1286 Giorgio Brunello and Maria De Paola, Market Failures and the Under-Provision of Training, September 2004

1287 Sanjeev Goyal, Marco van der Leij and José Luis Moraga-González, Economics: An Emerging Small World?, September 2004

1288 Sandro Maffei, Nikolai Raabe and Heinrich W. Ursprung, Political Repression and Child Labor: Theory and Empirical Evidence, September 2004

1289 Georg Götz and Klaus Gugler, Market Concentration and Product Variety under Spatial Competition: Evidence from Retail Gasoline, September 2004

1290 Jonathan Temple and Ludger Wößmann, Dualism and Cross-Country Growth Regressions, September 2004

1291 Ravi Kanbur, Jukka Pirttilä and Matti Tuomala, Non-Welfarist Optimal Taxation and Behavioral Public Economics, October 2004

1292 Maarten C. W. Janssen, José Luis Moraga-González and Matthijs R. Wildenbeest, Consumer Search and Oligopolistic Pricing: An Empirical Investigation, October 2004

1293 Kira Börner and Christa Hainz, The Political Economy of Corruption and the Role of Financial Institutions, October 2004

1294 Christoph A. Schaltegger and Lars P. Feld, Do Large Cabinets Favor Large Governments? Evidence from Swiss Sub-Federal Jurisdictions, October 2004

1295 Marc-Andreas Mündler, The Existence of Informationally Efficient Markets When Individuals Are Rational, October 2004

1296 Hendrik Jürges, Wolfram F. Richter and Kerstin Schneider, Teacher Quality and Incentives: Theoretical and Empirical Effects of Standards on Teacher Quality, October 2004

1297 David S. Evans and Michael Salinger, An Empirical Analysis of Bundling and Tying: Over-the-Counter Pain Relief and Cold Medicines, October 2004

1298 Gershon Ben-Shakhar, Gary Bornstein, Astrid Hopfensitz and Frans van Winden, Reciprocity and Emotions: Arousal, Self-Reports, and Expectations, October 2004

1299 B. Zorina Khan and Kenneth L. Sokoloff, Institutions and Technological Innovation During Early Economic Growth: Evidence from the Great Inventors of the United States, 1790 - 1930, October 2004

1300 Piero Gottardi and Roberto Serrano, Market Power and Information Revelation in Dynamic Trading, October 2004

1301 Alan V. Deardorff, Who Makes the Rules of Globalization?, October 2004
1302 Sheilagh Ogilvie, The Use and Abuse of Trust: Social Capital and its Deployment by Early Modern Guilds, October 2004

1303 Mario Jametti and Thomas von Ungern-Sternberg, Disaster Insurance or a Disastrous Insurance - Natural Disaster Insurance in France, October 2004

1304 Pieter A. Gautier and José Luis Moraga-González, Strategic Wage Setting and Coordination Frictions with Multiple Applications, October 2004

1305 Julia Darby, Anton Muscatelli and Graeme Roy, Fiscal Federalism, Fiscal Consolidations and Cuts in Central Government Grants: Evidence from an Event Study, October 2004

1306 Michael Waldman, Antitrust Perspectives for Durable-Goods Markets, October 2004
1307 Josef Honerkamp, Stefan Moog and Bernd Raffelhüschen, Earlier or Later: A General Equilibrium Analysis of Bringing Forward an Already Announced Tax Reform, October 2004

1308 M. Hashem Pesaran, A Pair-Wise Approach to Testing for Output and Growth Convergence, October 2004

1309 John Bishop and Ferran Mane, Educational Reform and Disadvantaged Students: Are They Better Off or Worse Off?, October 2004

1310 Alfredo Schclarek, Consumption and Keynesian Fiscal Policy, October 2004
1311 Wolfram F. Richter, Efficiency Effects of Tax Deductions for Work-Related Expenses, October 2004

1312 Franco Mariuzzo, Patrick Paul Walsh and Ciara Whelan, EU Merger Control in Differentiated Product Industries, October 2004

1313 Kurt Schmidheiny, Income Segregation and Local Progressive Taxation: Empirical Evidence from Switzerland, October 2004

1314 David S. Evans, Andrei Hagiu and Richard Schmalensee, A Survey of the Economic Role of Software Platforms in Computer-Based Industries, October 2004

1315 Frank Riedel and Elmar Wolfstetter, Immediate Demand Reduction in Simultaneous Ascending Bid Auctions, October 2004

1316 Patricia Crifo and Jean-Louis Rullière, Incentives and Anonymity Principle: Crowding Out Toward Users, October 2004

1317 Attila Ambrus and Rossella Argenziano, Network Markets and Consumers Coordination, October 2004

1318 Margarita Katsimi and Thomas Moutos, Monopoly, Inequality and Redistribution Via the Public Provision of Private Goods, October 2004

[^0]: ${ }^{1}$ Other papers showing that there is not, necessarily, a divergence between theory (based on the median-voter framework) and empirical evidence include Lee and Roemer (1999), Benabou (2000), Saint-Paul (2001) and Alesina, Glaeser and Sacerdote (2001).

[^1]: ${ }^{2}$ Our modeling follows Besley and Coate (1991) (see, also, Munro (1991), Boadway and Marchand (1995), Blomquist and Christiansen (1995, 1999), Thum and Thum (2002)) who used the idea that people with different incomes can value publicly provided goods differently, in order to show how public provision can induce selfselection (e.g. only the poor choose to consume the relatively low quality of the good provided by the government - with the rich prefering to avail themselves of higher quality varieties which are privately supplied) and achieve redistribution with lower efficiency costs than if cash transfers were used.

[^2]: ${ }^{3}$ The assumption that it may take more (efficiency) units of labour to produce any variety of the verticallydifferentiated product in the public sector may be justified on the grounds of imperfect monitoring which could be a result of the absence of competitive pressure or due to the lack of transparency of property rights.
 ${ }^{4}$ The Cobb-Douglas utility function has the advantage - in addition to being easy to work with - that it produces results which are independent of the level of the economy's average income.

[^3]: ${ }^{5}$ The implication of this is that the household which will be indifferent between a privately offered and the publicly offered variety will have higher income than the median voter $(\theta>m)$.

[^4]: ${ }^{7}$ It is worth mentioning that in case the government was not involved in producing the vertically-differentiated product (and providing it freely to all those wishing to consume the publicly-provided variety), but was instead returning the tax proceeds in a lump -sum way to every household, then the median voter would prefer a tax rate equal to 100%. This is, of course, due to our assumption that there are no-disincentive effects of higher taxes in our model (see, Harms and Zink (2003) for a review of theories suggesting mechanisms leadind to limited redistribution). In this sense public provision of private goods may be a relatively inexpensive way for highincome individuals to avoid expropriation by the poor (Roemer (1998) suggests an alternative way to avoid such expropriation, namely increasing the salience of some non-economic issues). In a fuller model, the mode of redistribution would itself be endogenous - thus enhancing the role of the agenda setting institutions in modern democracies (see, Persson and Tabellini (2003) for an empirical analysis of modes of governance).

[^5]: ${ }^{8}$ It is worth noting that the impact of monopoly on the tax rate is -ceteris paribus- quantitatively more important than the degree of equality, i.e. the tax rate is higher under monopoly by about two percentage points (than in the competitive case), but it varies less than one percentage point as the degree of inequality changes.

[^6]: ${ }^{9}$ The conditions under which the median voter chooses a positive tax rate, are less stringent than in the perfectly competitive case. With monopoly, β can be as low as 0.4 and still the median voter would prefer a positive tax rate. In the perfectly competitive case, if the degree of inequality is low, the median voter will not prefer a positive tax rate for $\beta<0.8$.

