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1 Introduction

The optimal timing problems of a discrete action constitute an important class of stochastic
control problems in economics and finance including optimal investment threshold decisions and
optimal exercise rules for financial options (for textbook treatments of these issues, see Dixit and
Pindyck (1994) and Björk (1998)). Optimal timing problems of this sort also arise and have been
studied in environmental and renewable resource economics including forest economics. In this
paper our focus is in renewable resource issues. First, we provide a brief survey of what has been
done in this literature and after that we present a new research question concerning the rational
management of a stochastically fluctuating renewable resource in the presence of stochastic price
dynamics.

Pindyck (1984) has studied the implications of stochastic fluctuations in the renewable re-
source stock on the return required to keep a unit of stock in situ and thereby the relationship
between the extraction and volatility of the renewable resource stock when harvesters are risk
neutral. He shows that stochastic fluctuations affect the optimal extraction rate via different
channels which run counter to each other. In Pindyck (2000) the real option theory is applied
to explore the optimal environmental policy in a framework with two stochastic variables, one
which captures uncertainty over future costs and benefits of reduced environmental degradation
and the other that captures uncertainty about the evolution of an ecosystem, which interact
with two irreversibilities, namely sunk costs associated with environmental regulation and sunk
benefits of avoided environmental degradation. In Pindyck (2002) the continuous time model of
environmental policy adopted in Pindyck (2000) is extended and generalized by focusing on how
irreversibilities and uncertainties interact in terms of timing of policy adoption.

In a different framework and with a different focus Bentolila and Bertola (1990) have analyzed
the implications of labor adjustment costs - linear hiring costs per new employees and linear firing
costs per dismissed workers - on risk-neutral firms’ employment policy under stochastic product
demand which follows a geometric Brownian motion process. Their results suggest that highly
regulated labor markets constrain the flexibility of firms’ employment policies because hiring a
worker is a risky proposition and the degree of uncertainty about the future is an important
parameter in terms of firms’ decision making.

In stochastic harvesting and forest rotation models the distinction between price and stocks
has not been usually done, but studies have mainly focused on the impact of stochastic forest
stand value on the harvesting threshold and the expected rotation length (see e.g. Alvarez
(2004), Alvarez and Koskela (2004), Sødal (2002) and Willassen (1998)). The early papers on
optimal harvesting under stochastic timber prices typically assume that the underlying timber
price evolves according to a geometric Brownian motion (cf. Clarke and Reed (1989), Reed and
Clarke (1990), Morck et. al (1989) and Thomson (1992)). Plantinga (1998) is an example of
a paper which examines mean-reverting prices numerically. See also Gjolberg and Guttormsen
(2002). Insley (2002) contrasts the implication of geometric Brownian motion and mean reverting
process of timber prices on harvesting decisions in the single rotation framework. The paper by
Insley and Rollins (2004) extends this model to an ongoing rotations framework under mean
reverting timber prices with the bare land value determined endogenously. They elaborate forest
stand value by postulating stochastic timber prices and deterministic wood volume. Their focus
is, however, on numerical illustrations associated with the Ontario forest sector. Saphores (2003)
has assumed a concave utility function for the resource manager and studies the issue that allows
for partial harvests and accounts for the risk of extinction and for biological assets with the
size-dependent stochastic growth. He derived a generalized version of the Faustmann formula
both for general growth functions and for harvesting cost specifications.

In this paper we separate the stochastic price and the stochastic stock dynamics and ana-
lyze the optimal harvesting policy and its determinants both theoretically and by using explicit
numerical illustrations. We derive several new results. First, we characterize the circumstances
under which the immediate depletion of the harvested stock is optimal and state a set of weak
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conditions under which the optimal harvesting policy can be characterized by a single harvesting
threshold, below which harvesting is suboptimal. Moreover, and importantly, we demonstrate
how the value of the optimal harvesting policy can be decomposed into the monetary value of the
current stock and the expected yield accrued from the future harvesting opportunities resulting
from the unharvested stock. Since the instantaneous depletion of the entire stock is an admissible
harvesting policy the latter part of the presented decomposition of the value can be interpreted
as the excess return accrued from following the optimal policy and leaving part of the stock
unharvested (hence the excess return generated by the optimal policy can also be interpreted as
the value of waiting). Second, we show that both the value of the optimal harvesting policy and
the value of the associated single harvesting opportunity (an optimal depletion policy) can be
expressed in a separable form where only the current price and the expected per capita growth of
the price process affect the threshold while under risk neutrality the volatility of price dynamics
will have no effect. Third, and naturally, the optimal harvesting threshold under stochastic price
and stock dynamics exceeds the threshold characterizing the optimal policy in the deterministic
case. This means that uncertainty will make waiting valuable and postpone the rational exer-
cise of harvesting opportunities compared with the deterministic case. Thus, our results are in
line with the findings of the modern literature on irreversible investment under uncertainty (cf.
Dixit and Pindyck (1994)). Fourth, we show that the value of sequential harvesting opportunity
dominates the value of the associated optimal depletion problem and that the optimal harvesting
threshold is higher when harvesting can be exercised only once than in the sequential case. This
observation is based on the intuitively clear property that the required exercise premium is higher
when harvesting can be exercised only once than in the case where it can be repeated later on
in the future. Fifth, and interestingly, our results indicate that higher flexibility of admissible
harvesting policies does not only increase the value of the optimal harvesting policy but also
increases the rate at which the value grows as a function of the harvested stock. Finally, we
present explicit numerical illustrations by modelling the stochastic price as a standard geometric
Brownian motion and the stock dynamics as a stochastic mean reverting process. Under these
assumptions we analyze the relationship between the stock volatility and the optimal harvesting
threshold both in the single and in the sequential harvesting cases. We also study the impact of
stock dynamics volatility on the value of the optimal harvesting policy and the optimal depletion
policy.

We proceed as follows. In section 2 we present a framework to study the harvesting problem
when both price and resource stock are stochastic and demonstrate several new analytical results.
Section 3 illustrates our theoretical findings explicitly through numerical calculations. Finally,
there is a concluding section.

2 The Harvesting Problem

In this section we characterize the optimal harvesting problem both in terms of harvesting size and
timing in a general framework under stochastic price and stochastic stock dynamics. We proceed
as follows: First, we specify the underlying resource stock and price dynamics. Second, we
provide a set of weak conditions under which the optimal harvesting policy can be characterized
by a single harvesting threshold. Moreover, we provide alternative characterizations of the value
of the optimal harvesting policy by decomposing it into the monetary value of the current stock
and of the expected yield accrued from the future harvesting opportunities resulting from the
unharvested stock. Third, under these conditions we characterize both the value of the optimal
sequential harvesting policy and the value of the associated single harvesting opportunity as the
separable form in terms of the impact of the current price and the expected per capita growth
rate on the harvesting threshold. Finally, we characterize the properties of the optimal harvesting
policy and compare the value of the sequential harvesting opportunity both to the value policy
of the associated optimal depletion policy and to the deterministic case.

We assume that the stochastic dynamics of the underlying harvested stock are described by
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the Itô stochastic differential equation

dXZ
t = µ(XZ

t )dt + ησ(XZ
t )dWt − dZt, XZ

0 = x, (2.1)

where η ≥ 0 is an exogenously given constant multiplier and Wt is Brownian motion. We assume
that the volatility coefficient σ : R+ 7→ R+ is positive at all states (i.e. that σ(x) > 0 for all
x ∈ R+) and that both the drift coefficient µ : R+ 7→ R and the volatility coefficient σ(x) are
sufficiently smooth (at least continuous) mappings guaranteeing the existence of a solution for
(2.1). We call an irreversible harvesting policy Z admissible if it is non-negative, non-decreasing,
right-continuous, and {Ft}-adapted, and denote the set of admissible harvesting policies as Λ.
We denote as Xt the controlled stochastic resource stock dynamics in the absence of harvesting
(i.e. when Z ≡ 0) and assume that the upper boundary ∞ is natural for Xt. We also assume that
the lower boundary 0 is either natural, exit, or regular for Xt. In case it is regular, we assume
that is killing (see Borodin and Salminen (2002), pp. 14–20, for a thorough characterization of
the boundary behavior of linear diffusions).

Having characterized the stochastic dynamics of the harvested stock modelling the stochas-
tically fluctuating renewable resource, we now assume that the price of a harvested unit of stock
evolves on the state-space R+ according to the diffusion characterized by the following stochastic
differential equation

dpt = αptdt + β(pt)ptdW̃t, p0 = p ∈ R+, (2.2)

where the expected per capita growth rate α ∈ R+ is an exogenously given constant, W̃t is
Brownian motion which is assumed to be independent of Wt driving the stochastic dynamics
in (2.1), and β : R+ 7→ R+ is a sufficiently smooth mapping satisfying the standard Novikov
condition (cf. Øksendal (2003), p. 162). This assumption implies that, although the volatility
coefficient of the diffusion characterizing the underlying price dynamics may be non-linear, the
price is always expected to grow at an exponential rate, that is, E[pt] = peαt. We also assume
that both 0 and ∞ are natural boundaries for the price process pt and, therefore, that even
though pt may tend towards the boundaries of its state space it never attains these boundaries
in finite time.

Given these assumptions, we now investigate the optimal sequential harvesting problem (a
singular stochastic control problem)

V (x, p) = sup
Z∈Λ

E(x,p)

∫ τZ
0

0

e−rspsdZs, (2.3)

where τZ
0 = inf{t ≥ 0 : XZ

t ≤ 0} denotes the first date at which the harvested stock is de-
pleted and becomes extinct. For the sake of comparison, we also consider the associated optimal
depletion problem

J(x, p) = sup
τ<τ0

E(x,p)

[
e−rτpτXτ

]
, (2.4)

where τ0 = inf{t ≥ 0 : Xt ≤ 0} denotes the first date at which the harvested stock vanishes. It is
worth noticing that problem (2.4) can be interpreted as the determination of the date at which
a single harvesting opportunity should be exercised. Since this depletion policy belongs into the
class of admissible harvesting policies Λ, we observe that the value J(x, p) can always be attained
in the sequential harvesting case while the opposite result is naturally not true. Before stating
our first result on the optimal harvesting policies and their values, we first define the mapping
π : R+ 7→ R measuring the growth rate of the expected net present value of the harvested stock
as

π(x) = µ(x)− (r − α)x.

We will assume throughout this study that the expected cumulative net present value of the
flow π(x) from the present up to an arbitrarily distant future exists and is finite. We can now
establish the following.
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Lemma 2.1. Assume that the expected net present value of the harvested stock is non-increasing.
Then, the optimal policy is to instantaneously deplete the entire stock. Put formally, if µ(x) +
αx ≤ rx for all x ∈ R+, then V (x, p) = J(x, p) = px, Z0 = x, τZ

0 = 0, and τ = 0.

Proof. See Appendix A.

Lemma 2.1 characterizes those circumstances under which the immediate depletion of the
harvested stock is optimal. As intuitively is clear, postponing the harvesting decision into the
future is suboptimal whenever the expected rate of return associated with the deferral of the
irreversible decision falls short of its opportunity cost at all states. Consequently, this means
that in the case of Lemma 2.1 the excess return associated with the deferral of the harvesting
decision further into the future is zero.

Having considered the case where the instantaneous depletion of the harvested stock is opti-
mal, we now proceed to analyze the more complex cases where waiting is valuable and, therefore,
where the immediate depletion of a renewable resource is not optimal. In order to accomplish
that task, we now assume that the discount rate dominates the percentage growth rate of the
price, that is, that r > α, and denote as ψη(x) the increasing fundamental solution of the ordinary
differential equation (cf. Borodin and Salminen (2002), pp. 17–19)

1
2
η2σ2(x)u′′(x) + µ(x)u′(x)− (r − α)u(x) = 0. (2.5)

Our main result characterizing the optimal sequential harvesting policy for a broad class of
processes modelling the stochastic dynamics of the underlying harvested stock is now summarized
in the following.

Theorem 2.2. Assume that the growth rate of the expected net present value of the harvested
stock satisfies the conditions limx→∞ π(x) < 0 and that

(i) if 0 is unattainable for Xt then there is a unique threshold x̂ ∈ (0,∞) such that π(x) is
increasing on (0, x̂), decreasing on (x̂,∞), and limx↓0 µ(x) ≥ 0;

(ii) if 0 is attainable for Xt then there is a unique threshold x̂ ∈ [0,∞) such that π(x) is
increasing on (0, x̂), decreasing on (x̂,∞) and limx↓0 µ(x) > 0.

Then, the value of the optimal harvesting policy reads as

V (x, p) =

{
px + pπ(x∗η)

r−α x ≥ x∗η
pψη(x)
ψ′η(x∗η) x < x∗η,

(2.6)

where the optimal harvesting threshold x∗η = argmin{ψ′η(x)} > x̂ is the unique root of the ordinary
necessary first order optimality condition ψ′′η (x∗η) = 0. Moreover, Vx(x, p) ≥ p and Vxx(x, p) ≤ 0
for all (x, p) ∈ R2

+.

Proof. See Appendix B.

Theorem 2.2 states a set of weak conditions under which the optimal harvesting policy can
be characterized by a single harvesting threshold below which harvesting is always suboptimal.
Especially, Theorem 2.2 proves that the value of the optimal policy can be expressed in the
separable form

V (x, p) = p sup
Z∈Λ

Ex

∫ τZ
0

0

e−(r−α)sdZs.

Thus, we observe that in the present example only the current price and its expected per capita
growth rate affect the optimal harvesting threshold and its value while the volatility of the price
dynamics has no effect on the optimal policy. This observation is naturally based on the assumed
risk neutrality of the resource manager. It is also worth noticing that Theorem 2.2 proves that
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the optimal harvesting threshold x∗η exceeds the threshold x̂ at which the growth rate of the
expected net present value of the harvested stock is at its maximum. Since x̂ is the threshold
at which the harvesting opportunity is exercised in the deterministic case, we find that in the
present case the stochasticity of the dynamics of the harvested stock makes waiting valuable and
thus postpones the rational exercise in comparison with the deterministic case.

It is worth noticing that the conditions of Theorem 2.2 are relatively weak, since no strong
concavity properties are required for the validity of the conclusions of our theorem. However,
it is clear that most models subject to mean reversion (for example, models subject to pure
compensation; cf. Clark (1976), section 1.1) satisfy the conditions of Theorem 2.2. This result
is established in the following.

Corollary 2.3. Assume that the drift coefficient µ(x) is continuously differentiable, strictly
concave, and satisfies the boundary conditions µ(0) = 0 and limx↓0 µ′(x) > r−α > limx→∞ µ′(x).
Then the conditions of Theorem 2.2 are satisfied and the value of the optimal harvesting policy
reads as in (2.6).

Proof. Under assumptions of our corollary π(x) is continuously differentiable, strictly concave,
and satisfies the boundary conditions π(0) = 0 and limx↓0 π′(x) > 0 > limx→∞ π′(x). Thus,
the continuity and monotonicity of the derivative π′(x) implies that the mapping π(x) attains a
unique global maximum at x̂ ∈ R+. Moreover, for all x ≥ y > x̂ it holds

π(x) ≤ π(y) + π′(y)(x− y)

proving that π(x) ↓ −∞ as x → ∞. Thus, the conditions of Theorem 2.2 are satisfied and the
alleged result follows.

Corollary 2.3 states a set of regularity conditions under which the conditions of Theorem 2.2
are satisfied and, therefore, under which the optimal harvesting threshold can be characterized
by a single harvesting threshold at which harvesting should be irreversibly initiated. It is worth
noticing that since the optimal threshold is attained on the set where the expected growth rate
of the net present value of the harvested stock is decreasing we have the inequality µ′(x∗η)+α ≤ r
so that at the optimum the marginal rate of return from a harvested unit has to fall short its
opportunity cost. A second important implication of Theorem 2.2 presenting the value of the
optimal harvesting policy in terms of the value of instantaneous depletion of the harvested stock
and the value of the future harvesting potential is now summarized in the following.

Corollary 2.4. Assume that the conditions of Theorem 2.2 are satisfied. Then, the value of the
optimal harvesting policy can be re-expressed on the set (0, x∗η) where harvesting is suboptimal as
V (x, p) = px + pK(x), where

K(x) = (Rr−απ)(x)− (Rr−απ)′(x∗η)
ψ′η(x∗η)

ψη(x),

measures the expected cumulative stock of the future harvesting opportunities and

(Rr−απ)(x) = Ex

∫ τ0

0

e−(r−α)sπ(Xs)ds

describes the expected cumulative present value of the flow π(x) from the present up to a poten-
tially infinite future.

Proof. See Appendix C.

Corollary 2.4 presents an alternative characterization of the value of the optimal harvesting
policy compared with (2.6) in Theorem 2.2. According to this representation the value can be
expressed in terms of the monetary value of the current stock and the expected yield accrued
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from the future harvesting opportunities resulting from leaving a part of the stock unharvested.
Hence, the formulation of the value of the optimal harvesting policy presented in Corollary 2.4 can
be interpreted as an intertemporal decomposition of the values of the harvesting opportunities
available to the harvester. Moreover, since px measures the monetary value of the current
stock, we find that the term pK(x) can be interpreted as the excess monetary return accrued
by following the optimal policy and leaving part of the stock unharvested. A third important
implication of Theorem 2.2 characterizing the marginal value of the harvesting opportunity (and,
therefore, Tobin’s marginal q; for an excellent survey of the classical q-theory of investment, see
Abel 1990 and Caballero 1999) is now stated in our next corollary.

Corollary 2.5. Assume that the conditions of Theorem 2.2 are satisfied. Then, the marginal
value of the optimal harvesting policy can be re-expressed as

Vx(x, p) = pψ′η(x) inf
y≥x

[
1

ψ′η(y)

]
= p + p(Rr−απ)′(x)− pψ′η(x) inf

y≥x

[
(Rr−απ)′(y)

ψ′η(y)

]
. (2.7)

Especially, if µ(x) and σ(x) are continuously differentiable with Lipschitz-continuous derivatives
and σ′(x) is bounded, then (2.7) can be re-expressed as

Vx(x, p) = p sup
τ<τ̂0

Ex

[
e
∫ τ
0 π′(X̂s)ds

]
, (2.8)

where the process X̂t evolves according to the stochastic dynamics described by the stochastic
differential equation

dX̂t = (µ(X̂t) + σ′(X̂t)σ(X̂t))dt + σ(X̂t)dŴt, X̂0 = x,

and τ̂0 = inf{t ≥ 0 : X̂t ≤ 0}.
Proof. See Appendix D.

Corollary 2.5 demonstrates that the marginal value of the optimal harvesting policy can be
expressed in terms of an associated non-linear programming problem. Thus, Corollary 2.5 proves
that the optimal harvesting policy does not only maximize the expected cumulative present value
of the harvesting yield from the present up to a potentially infinite future, but it simultaneously
also maximizes the rate at which this value grows (and, therefore, the marginal value of a har-
vested unit of stock). Interestingly, our results indicate that under a set of sufficient smoothness
conditions the marginal value of the harvesting opportunity can be interpreted in terms of an
associated optimal timing problem. A fourth interesting implication of the findings of Theorem
2.2, demonstrating how the flexibility of an admissible harvesting policy affects the maximal
attainable expected cumulative present value of the future harvesting yields, is now summarized
in the following.

Corollary 2.6. Assume that the conditions of our Theorem 2.2 are satisfied. Then the value of
the optimal harvesting strategy satisfies the inequality V (x, p) ≥ Ic(x, p), where

Ic(x, p) = sup
ν∈Γ

E(x,p)

N∑

k=1

e−rτk [pτk
Xν

τk− − c]

denotes the value of the associated stochastic impulse control problem, c ≥ 0 is a known ex-
ogenously given constant measuring the harvesting costs, Γ is the set of admissible harvesting
strategies characterized by the potentially infinite joint sequence ν = {(τk, ζk)}N

k=1, N ≤ ∞, where
{τk}N

k=1 denotes an increasing sequence of harvesting dates and {ζk}N
k=1 denotes a sequence of

non-negative harvests exerted at the corresponding harvesting dates, and

Xν
t = x +

∫ t

0

µ(Xν
s )ds +

∫ t

0

σ(Xν
s )dWs −

K∑

j=1

ζj , t ∈ [τK , τK+1).
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Proof. See Appendix E.

Corollary 2.6 demonstrates the intuitively clear result that increased flexibility increases the
value of the harvesting opportunity. More precisely, according to Corollary 2.6 the value of the
associated discrete impulse control problem (which is known in forest economics as a Faustman-
nian ongoing rotation problem) is smaller than the value of the considered sequential optimal
harvesting problem.

Having presented the main implications of our main theorem characterizing the optimal
harvesting policy and its value, we now plan to analyze the comparative static properties of
the optimal policy and, especially, the impact of increased volatility in the harvested stock on
the optimal policy and its value. Our main conclusion on this topic is now summarized in the
following.

Theorem 2.7. Assume that the conditions of Theorem 2.2 are satisfied. Then increased volatility
decreases the value V (x, p) and increases the optimal exercise threshold x∗η. More precisely,
∂V (x, p)/∂η < 0 and ∂x∗η/∂η > 0.

Proof. See Appendix F.

Theorem 2.7 demonstrates that given the conditions of Theorem 2.2 higher volatility in the
harvested stock decreases the value of the optimal harvesting policy and postpones the rational
exercise of the harvesting opportunity by increasing the optimal harvesting threshold at which
the harvesting opportunity should be exercised. The negativity of the sign of the relationship
between stock volatility and the value of the harvesting opportunity is a natural implication of the
concavity of the value of the optimal policy. The positivity of the sign of the relationship between
stock volatility and the optimal harvesting threshold, in turn, follows from the monotonicity of
the growth rate of the expected net present value of the harvested stock. More precisely, since
increased stock volatility decreases the value of the harvesting opportunity while leaving the
monetary value of the current stock unchanged, we find that higher stock volatility decreases the
excess return associated to the optimal policy as well. Since this excess return can be expressed
on the harvesting region in terms of the growth rate of the expected net present value of the
harvested stock and this rate is decreasing on the set where harvesting is optimal we find that
increased stock volatility will unambiguously decelerate harvesting by increasing the threshold
at which the harvesting opportunity should be irreversibly exercised.

Our main result on the associated optimal depletion problem modelling the valuation of a
single harvesting opportunity is now summarized in the following.

Theorem 2.8. Assume that there is a threshold x0 ∈ R+ such that π(x) T 0 whenever x S x0.
Then, the value of the optimal harvesting policy reads as

J(x, p) = pψη(x) sup
y≥x

[
y

ψη(y)

]
=

{
px x ≥ x̃η

p
ψη(x)
ψ′η(x̃η) x < x̃η,

(2.9)

where the optimal harvesting threshold x̃η > x0 is the unique root of the first order optimality
condition ψη(x̃η) = x̃ηψ′η(x̃η). Moreover, the value of the optimal harvesting policy can be re-
expressed as J(x, p) = px + pL(x), where

L(x) = (Rr−απ)(x)− ψη(x) inf
y≥x

[
(Rr−απ)(y)

ψη(y)

]

measures the early exercise premium.

Proof. See Appendix G.
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Theorem 2.8 states a set of weak conditions under which the optimal depletion policy can be
characterized in terms of a single harvesting threshold at which the considered single harvesting
opportunity should be irreversibly exercised. As in the case of Theorem 2.2, we again find that the
growth rate of the expected net present value of the harvested stock is the principal determinant
of the optimal harvesting policy and its value. Along the lines of Theorem 2.2, Theorem 2.8
proves that the value of the optimal depletion policy can be expressed in the separable form

J(x, p) = p sup
τ

Ex

[
e−(r−α)τXτ

]
.

Theorem 2.8 also states a decomposition of the value into a term capturing the monetary value of
the current stock and the value accrued from postponing the harvesting decision into the future.
Interestingly, according to this decomposition the excess return pL(x) accrued from following the
optimal policy reads in the continuation region (0, x̃η) where harvesting is suboptimal as

L(x) = (Rr−απ)(x)− ψη(x)
(Rr−απ)′(x̃η)

ψ′η(x̃η)
.

This expression resembles the excess return associated to the continuous singular harvesting
strategy considered in Theorem 2.2. However, it does not coincide with that value as is established
in our following theorem characterizing the relationship between the value of the sequential and
the single harvesting opportunity.

Theorem 2.9. Assume that the conditions of Theorem 2.2 are satisfied. Then, x̃η > x∗η,
V (x, p) ≥ J(x, p), Vx(x, p) ≥ Jx(x, p), Vp(x, p) ≥ Jp(x, p), and Vxp(x, p) ≥ Jxp(x, p) for all
(p, x) ∈ R2

+.

Proof. See Appendix H.

Theorem 2.9 proves that the value of the sequential harvesting opportunity dominates the
value of the associated optimal depletion problem. This result is intuitively clear, since the
instantaneous depletion of the harvested stock is an admissible policy in the sequential case
as well. It is the ability to leave part of the stock unharvested and in this way postpone the
depletion of the stock into the future which creates the excess return capturing the value of the
future harvesting opportunities and, therefore, measuring the value of waiting. In accordance
with this observation, Theorem 2.9 also proves that the optimal harvesting threshold is higher in
the case where the harvesting can be exercised only once than in the sequential case. Interestingly,
Theorem 2.9 also demonstrates that increased flexibility of the class of admissible policies does
not only increase the value of the optimal policy, it also increases the rate at which this value
increases (cf. Alvarez and Virtanen (2004)).

3 Illustration

In section 2 we demonstrated several new theoretical results on the general harvesting problem
in the presence of both stochastic timber price and harvested stock dynamics in the case when
harvesting can be exercised only once and in the sequential case when the harvesting opportunity
can be repeated later on in the future. We now illustrate these results explicitly by characterizing
the underlying stochastic price dynamics as a standard geometric Brownian motion and the stock
dynamics as a stochastic mean reverting process. We elaborate the relationship between stock
volatility and the optimal harvesting threshold both in the single and in the sequential harvesting
cases and show how higher volatility raises the optimal harvesting threshold. Moreover, we
illustrate the impact of the volatility of stock dynamics on the value of the optimal sequential
harvesting policy and on the value of the optimal depletion policy. Higher volatility decreases
the value of sequential harvesting policy while its effect is ambiguous on the value of optimal
depletion policy.
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In order to illustrate the results of our previous section explicitly we now assume that the
unit price pt evolves according to a standard geometric Brownian motion and, therefore, that
β(p) = βp, where β > 0 is an exogenously given constant. In order to introduce mean reverting
stock dynamics, we assume that µ(x) = µx(1− γx) and that σ(x) = σx, where µ, γ, σ ∈ R+ are
exogenously determined constants.

It is now clear that if µ ≤ r − α then the conditions of Lemma 2.1 are satisfied and the
instantaneous depletion of the stock is optimal. However, if µ > r − α then the conditions of
part (i) of our Theorem 2.2 is satisfied since 0 is a natural boundary for the considered mean
reverting diffusion and π′(x) = µ(1− 2γx)− (r−α) T 0 when x T (µ− r +α)/(2γ). In this case,

ψσ(x) = xθσM

(
θσ, 2θσ +

2µ

σ2
,
2µγ

σ2
x

)
,

where

θσ =
1
2
− µ

σ2
+

√(
1
2
− µ

σ2

)2

+
2(r − α)

σ2
∈ (0, 1)

denotes the positive root of the characteristic equation σ2a(a− 1)/2 + µa− (r − α) = 0, and M
denotes the confluent hypergeometric function (cf. Abramowitz and Stegun (1968), pp. 555-566).
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Figure 1: The optimal harvesting thresholds

Figure 1 describes the optimal harvesting thresholds as a function of the resource stock dy-
namics volatility. Naturally, higher volatility postpones the rational exercise of the optimal
harvesting opportunity both in the sequential case and in the case where harvesting will be ex-
ercised only once. According to Figure 2 higher volatility decreases the value of the optimal
sequential harvesting policy due to the concavity of the value of optimal policy. Figure 3 de-
scribes the relationship between volatility and the value of the optimal depletion policy. Now
the relationship is ambiguous due to the fact that the optimal depletion threshold is attained on
the region where the value function is convex.

4 Conclusions

In this paper we have analyzed optimal harvesting policy and its determinants both theoretically
and by using explicit numerical illustrations in a general framework where both price and stock
dynamics are stochastic and resource manager is risk neutral. We have derived several new re-
sults. First, we specified the circumstances under which the immediate depletion of the harvested
stock is optimal and stated a set of weak conditions under which the optimal harvesting policy
can be characterized by a single harvesting threshold. Second, we have shown that both the value
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Figure 2: The Impact of Increased Volatility on the Value V (x, 1)
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Figure 3: The Impact of Increased Volatility on the Value J(x, 1)

of the optimal harvesting policy and the value of the associated single harvesting opportunity can
be expressed as a separable form in such a way that only the current price and the expected per
capita growth rate affect the threshold while under risk neutrality the volatility of price dynamics
will have no effect. Moreover, we demonstrated how the value of the optimal harvesting policy
can be decomposed into the monetary value of the current stock and of the expected yield ac-
crued from the future harvesting opportunities resulting from the unharvested stock. Third, the
optimal harvesting threshold under stochastic price and stock dynamics exceeds the threshold
of the deterministic case meaning that stochasticity makes waiting valuable and postpones the
rational exercise compared with the deterministic case. Fourth, we demonstrated that the value
of sequential harvesting opportunity dominates the value of the associated optimal depletion
problem and that the optimal harvesting threshold is higher in the case where harvesting can be
exercised only once than in the sequential case. Fifth, and interestingly, our findings indicate that
higher flexibility of admissible policies does not only increase the value of optimal policy but also
increases the rate at which the value increases. Finally, we used explicit numerical illustrations
by specifying a standard geometric Brownian motion for stochastic price and a stochastic mean
reverting process for stock dynamics to elaborate the relationship between stock volatility and
optimal harvesting threshold both in the single and sequential harvesting cases and the impact
of volatility on the value of optimal harvesting policy and optimal depletion policy. The optimal
harvesting thresholds depend positively on the volatility of stock dynamics both in the sequential
case and in the case where harvesting will be exercised only once. Moreover, higher volatility
increases the value of the sequential harvesting policy while the relationship between volatility
and the value of the optimal depletion policy is ambiguous.

Even though the preset study analyzes a relatively general class of harvesting problem, there
are two potentially interesting directions towards which the analysis could be extended. First,
it is not clear how relaxing the assumed geometric nature of the local expected growth of the

10



underlying price dynamics affects the optimal harvesting decision and its value. Second, given
the length of the considered planning horizon, assuming constant discounting overlooks the po-
tentially significant role of interest rate variability and, especially, of interest rate uncertainty.
Unfortunately, the introduction of such generalizations is out of the scope of the present study
and, therefore, left for future research.
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A Proof of Lemma 2.1

Proof. In order to establish the validity of the alleged result, we first present the following lemma
stating a set of sufficient conditions needed for the verification of the optimality of a proposed
admissible sequential harvesting strategy.

Lemma A.1. Assume that there is a twice continuously differentiable mapping H : R2
+ 7→ R+

satisfying the conditions

(i) Hx(x, p) ≥ p for all (x, p) ∈ R2
+,

(ii) (GηH)(x, p) ≤ rH(x, p) for all (x, p) ∈ R2
+, where

Gη =
1
2
σ2(x)

∂2

∂x2
+

1
2
β2(p)p2 ∂2

∂p2
+ µ(x)

∂

∂x
+ αp

∂

∂p

denotes the differential operator associated with the two-dimensional diffusion (Xt, pt).

Then, H(x, p) ≥ V (x, p) for all (x, p) ∈ R2
+.

Proof. Assume that a mapping H(x, p) satisfies the conditions of our Lemma. Then, the gener-
alized Itô theorem implies that

E(x,p)[e−rTN H(XZ
TN

, pTN )] = H(x, p) + E(x,p)

∫ TN

0

e−rs((GηH)(XZ
s , ps)− rH(XZ

s , ps))ds

−E(x,p)

∫ TN

0

e−rsHx(XZ
s , ps)dZc

s +
∑

s≤TN

e−rs(H(XZ
s−, ps)−H(XZ

s , ps)),

where TN = inf{t ≥ 0 : XZ
t 6∈ (N−1, N)} ∧ inf{t ≥ 0 : pt 6∈ (N−1, N)} ∧ N ∧ τZ

0 is an almost
surely finite stopping time converging towards τZ

0 as N → ∞ and Zc
t denotes the continuous

part of the admissible harvesting policy Zt. The continuous differentiability of H(x, p), the mean
value theorem, and inequality (i) implies that H(XZ

s−, ps) −H(XZ
s , ps) ≤ −ps∆Zs, where ∆Zs

denotes the jump part of the admissible harvesting policy. Combining this observation with the
non-negativity of the value H(x, p) and inequality (ii) finally implies that for all (x, p) ∈ R2

+ and
all admissible harvesting policies it holds

H(x, p) ≥ E(x,p)

∫ TN

0

e−rspsdZs.

Letting now N ↑ ∞ and applying the Fatou theorem then yields

H(x, p) ≥ E(x,p)

∫ τZ
0

0

e−rspsdZs.

Since this inequality is valid for all admissible harvesting policies, it is valid for the optimal as
well and, therefore we find that H(x, p) ≥ V (x, p).

Given the proof of the verification Lemma A.1 we notice that the twice continuously differen-
tiable mapping H(x, p) = px satisfies the condition Hx(x, p) = p and (GηH)(x, p) − rH(x, p) =
pπ(x) ≤ 0 for all (x, p) ∈ R2

+. Consequently, the conditions of Lemma A.1 are satisfied and
V (x, p) ≤ px. However, since this value can be attained by choosing the admissible harvesting
strategy Z0 = x (implying that τZ

0 = 0) we find that V (x, p) ≥ px which finally demonstrates
that V (x, p) = px. The identity J(x, p) = px and optimality the of the stopping time τ = 0 now
follows from the inequality (GηH)(x, p)− rH(x, p) = pπ(x) ≤ 0 for all (x, p) ∈ R2

+.
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B Proof of Theorem 2.2

Proof. As was established in Alvarez (2004) the uniform integrability of the flow π(x) implies
that

1
2
η2σ2(x)

ψ′′η (x)
S′η(x)

= (r − α)
∫ x

0

ψη(y)π(y)m′
η(y)dy − π(x)

ψ′η(x)
S′η(x)

, (B.1)

where

S′η(x) = exp
(
−

∫
2µ(x)dx

η2σ2(x)

)

denotes the density of the scale function Sη(x) and m′
η(x) = 2/(η2σ2(x)S′η(x)) denotes the density

of the speed measure mη of the underlying diffusion Xt (cf. Borodin and Salminen (2002), p.
17). It in now clear that our assumptions imply the existence and uniqueness of a threshold
x0 > x̂ such that π(x0) = 0. Letting x ↑ x0 in (B.1) now yields

1
2
η2σ2(x0)

ψ′′η (x0)
S′η(x0)

= (r − α)
∫ x0

0

ψη(y)π(y)m′
η(y)dy > 0,

since our assumptions imply that π(x) > 0 for all x < x0. Moreover, as was established in
Alvarez (2001) the right hand side of (B.1) is non-increasing (non-decreasing) on the set where
the mapping π(x) is non-decreasing (non-increasing). Thus, if the conditions of part (ii) our
theorem are satisfied then

lim
x↓0

[
(r − α)

∫ x

0

ψη(y)π(y)m′
η(y)dy − π(x)

ψ′η(x)
S′η(x)

]
= −π(0)

ψ′η(0)
S′η(0)

< 0

proving the existence and uniqueness of x∗η = argmin{ψ′η(x)} ∈ (x̂, x0) in that case. On the other
hand, if the conditions of part (i) are satisfied then (B.1) can be re-expressed as

1
2
η2σ2(x)

ψ′′η (x)
S′η(x)

= (r − α)
∫ x

0

ψη(y)(π(y)− π(x))m′
η(y)dy

which, in turn, implies that ψ′′η (x) < 0 for all x ∈ (0, x̂) and, therefore, proves the existence
and uniqueness of x∗η = argmin{ψ′η(x)} ∈ (x̂, x0) in that case as well. Moreover, since ψη(x)
satisfies the ordinary second order linear differential equation (2.5) we find by letting x → x∗η
that µ(x∗η)ψ′η(x∗η) = (r − α)ψη(x∗η).

Denote now the proposed value function as V̄ (x, p). Given the observations stated above
we immediately find that V̄ (x, p) is twice continuously differentiable and satisfies the variational
inequality V̄x(x, p) ≥ p for all (x, p) ∈ R2

+. Moreover, since (GηV̄ )(x, p) = rV̄ (x, p) for all (p, x) ∈
R+× (0, x∗η) and (GηV̄ )(x, p)−rV̄ (x, p) = p(π(x)−π(x∗η)) ≤ 0 for all (p, x) ∈ R+× (x∗η,∞) (since
the optimal threshold is attained on the set where π(x) is decreasing) we find that the proposed
value function satisfies the conditions of our auxiliary lemma A.1 and, therefore, dominates the
value of the optimal policy, that is, V̄ (x, p) ≥ V (x, p). However, since the proposed value can
be attained by applying the admissible singular control policy (a local time push; cf. Harrison
(1985))

Zt =

{
(x− x∗η)+ t = 0
L(t, x∗η) t > 0,

where L(t, x∗η) denotes the local time of the process Xt at the state x∗η we find that V (x, p) ≥
V̄ (x, p) proving that V (x, p) = V̄ (x, p). Finally, since ψ′′η (x) < 0 for all x ∈ (0, x∗η), we find that
Vxx(x, p) ≤ 0 for all (x, p) ∈ R2

+.
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C Proof of Corollary 2.4

Proof. Given the assumed uniform integrability of the flow π(x) we know that the expected
cumulative present value of the flow π(x) from the present up to a potentially infinite future can
be expressed as

(Rr−απ)(x) = B−1ϕη(x)
∫ x

0

ψη(y)π(y)m′
η(y)dy + B−1ψη(x)

∫ ∞

x

ϕη(y)π(y)m′
η(y)dy, (C.1)

where ϕη(x) denotes the decreasing fundamental solution of the ordinary linear second order
differential equation (2.5) and B = (ψ′η(x)ϕη(x)− ψη(x)ϕ′η(x))/S′η(x) > 0 denotes the constant
Wronskian of the fundamental solutions (cf. Borodin and Salminen (2002), pp. 17–19). Standard
differentiation of (C.1) now yields that

ψ′η(x)
S′η(x)

(Rr−απ)(x)− (Rr−απ)′(x)
S′η(x)

ψη(x) =
∫ x

0

ψη(y)π(y)m′
η(y)dy. (C.2)

Combining this observation with the identity

ψη(x)
S′η(x)

− x
ψ′η(x)
S′η(x)

=
∫ x

0

ψη(y)π(y)m′
η(y)dy (C.3)

now implies that

(Rr−απ)′(x) + 1
ψ′η(x)

=
(Rr−απ)(x) + x

ψη(x)
(C.4)

and, therefore, that
d

dx

[
(Rr−απ)(x) + x

ψη(x)

]
= 0.

Hence, combining these observations now prove that for all x ∈ R+ it holds that

(Rr−απ)(x) + x

ψη(x)
=

(Rr−απ)(x∗η) + x∗η
ψη(x∗η)

=
(Rr−απ)′(x∗η) + 1

ψ′η(x∗η)
(C.5)

from which the alleged result follows.

D Proof of Corollary 2.5

Proof. The first representation of the marginal value follows from the inequality ψ′′η (x) S 0 when

x S x∗η. On the other hand, applying (C.1) now yields

d

dx

[
(Rr−απ)′(x)

ψ′η(x)

]
=

2S′η(x)
η2σ2(x)

[
(r − α)

∫ x

0

ψη(y)π(y)m′
η(y)dy − π(x)

ψ′η(x)
S′η(x)

]
= ψ′′η (x).

Hence,
d

dx

[
(Rr−απ)′(x)

ψ′η(x)

]
S 0, x S x∗η = argmin

{
(Rr−απ)′(x)

ψ′η(x)

}

from which the latter representation follows. The associated optimal stopping problem can then
be derived as in Alvarez (2001).
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E Proof of Corollary 2.6

Proof. As was established in the proof of Theorem 2.2 the value of the optimal harvesting policy
satisfies the conditions (a) V ∈ C2(R2

+), (b) (GηV )(x, p) − rV (x, p) ≤ 0 for all (x, p) ∈ R2
+,

and (c) Vx(x, p) ≥ p for all (x, p) ∈ R2
+. Standard integration of the inequality (c) over the set

[x, x − ζ] yields V (x, p) − V (x − ζ, p) ≥ pζ ≥ pζ − c. Therefore, we find that the value V (x, p)
satisfies for all (x, p) ∈ R2

+ the quasi-variational inequality

V (x, p) ≥ sup
ζ∈[0,x]

[pζ − c + V (x− ζ, p)]

which finally proves that V (x, p) ≥ Ic(x, p).

F Proof of Theorem 2.7

Proof. Denote the value of the optimal harvesting policy defined with respect to the more volatile
dynamics characterized by the parameter η̂ > η as V̂ (x, p). The concavity and twice continuous
differentiability of V (x, p) now implies that for all (x, p) ∈ R2

+ it holds

(Gη̂V )(x, p)− rV (x, p) ≤ ((Gη̂ − Gη)V )(x, p) =
1
2
σ2(x)(η̂2 − η2)Vxx(x, p) ≤ 0.

Since Vx(x, p) ≥ p for all (x, p) ∈ R2
+ as well, we find that V (x, p) satisfies the conditions of

the verification Lemma A.1 and, therefore, satisfies the inequality V (x, p) ≥ V̂ (x, p). In order
to establish that increased volatility increases the optimal harvesting threshold we observe that
on (max(x∗η, x∗η̂),∞) we have V (x, p) − V̂ (x, p) = p(π(x∗η) − π(x∗η̂))/(r − α) ≥ 0 implying that
x∗η ≤ x∗η̂ since the optimal threshold is attained on the set where π(x) is decreasing.

G Proof of Theorem 2.8

Proof. Equation (C.3) implies that

d

dx

[
x

ψη(x)

]
=

S′η(x)
ψ2

η(x)

∫ x

0

ψη(y)π(y)m′
η(y)dy. (G.1)

Thus, we observe that x/ψη(x) is increasing as long as x ≤ x0 since π(x) > 0 for all x ∈ (0, x0).
Assume now that x > k > x0. Then, the standard mean value theorem for integrals implies that

∫ x

0

ψη(y)π(y)m′
η(y)dy =

∫ k

0

ψη(y)π(y)m′
η(y)dy +

π(ξ)
r − α

[
ψ′η(x)
S′η(x)

− ψ′η(k)
S′η(k)

]

and, therefore, that

lim
x→∞

∫ x

0

ψη(y)π(y)m′
η(y)dy = −∞

since ψ′η(x)/S′η(x) →∞ as x →∞ and π(ξ) < 0. This proves that x/ψη(x) attains at least one
maximum on the set (x0,∞). Uniqueness now follows from the inequality

d

dx

∫ x

0

ψη(y)π(y)m′
η(y)dy = ψη(x)π(x)m′

η(x) T 0, x S x0.

Denote now as J̄(x, p) the proposed value function. Since

J̄(x, p) = pEx

[
e−(r−α)τx̃η Xx̃η

]
,
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where x̃η = inf{t ≥ 0 : Xt ≥ x̃η} denotes the potentially optimal harvesting date we immediately
find that J(x, p) ≥ J̄(x, p). To prove the opposite inequality, we first observe that the proposed
value function is continuously differentiable on R2

+, twice continuously differentiable outside
the harvesting threshold x̃η, and satisfies the conditions J̄xx(x̃η+, p) = 0 ≤ J̄xx(x̃η−, p) =
pψ′′η (x̃η)/ψ′η(x̃η) < ∞. Moreover, since (GηJ̄)(x, p) = rJ̄(x, p) on R+ × (0, x̃η) and (GηJ̄)(x, p)−
rJ̄(x, p) = pπ(x) ≤ 0 on R+ × (x̃η,∞) we notice that J̄(x, p) constitutes a r-excessive majorant
of the payoff px for the diffusion (Xt, pt) and, therefore, that J(x, p) ≤ J̄(x, p) which proves that
J(x, p) = J̄(x, p). Finally, the representations of the value function follow from (G.1) and from
(C.5).

H Proof of Theorem 2.9

Proof. Since x∗η ∈ (x̂, x0) and x̃η > 0 we immediately find that x∗η < x̃η. The inequality
Vx(x, p) ≥ Jx(x, p) for all (x, p) ∈ R2

+ now follows directly from the identity x∗η = argmin{ψ′η(x)}
and the monotonicity of ψ′η(x) on (x∗η,∞). Since limx↓0 V (x, p) = limx↓0 J(x, p) = 0 we find
by integrating the inequality Vx(x, p) ≥ Jx(x, p) that V (x, p) ≥ J(x, p) for all (x, p) ∈ R2

+.
Finally, the inequalities Vp(x, p) ≥ Jp(x, p) and Vpx(x, p) ≥ Jpx(x, p) follow from the inequalities
Vx(x, p) ≥ Jx(x, p) and V (x, p) ≥ J(x, p) and the separability of the values.
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