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1. Introduction 
 

In contests like political competitions, rent-seeking or R&D races, a contestant basically 

has two options to increase her probability of success. She can spend effort to improve 

her own performance and/or effort that reduces a particular rival’s performance. The 

latter effort is usually understood as sabotage. There is a growing and interesting 

literature on sabotage or negative activities in contests and organizations, for example 

Auriol et al. (2003), Chen (2003), Konrad (2000), Kräkel (2004), Lazear (1989), and 

Skarpedas and Grofman (1995). The authors characterize equilibria in contests with 

sabotage and compare them with the equilibria when sabotage is not possible. 

 All these articles investigate single-stage contests1 and, thus, necessarily focus on 

sabotage of current opponents. But contestants sometimes have incentives to sabotage 

potential or future rivals. Chen (2003, footnote 1) observes that “[o]ne example in U.S. 

politics is Mario Cuomo, ex governor of New York. For many years, he had been 

considered a top contender for the U.S. presidency, but he eventually faded from the 

scene. Simply, too many people had seen him as a potential rival.” (italics ours). A 

similar example is Howard Dean. For a long time, he was seen a top candidate of the 

Democrats in the 2004 U.S. presidential election. One may even argue that he would 

have been the stronger rival for the Republican candidate George Bush, since he was a 

strong opponent of the Iraq war, while the actual candidate of the Democrats, John Kerry, 

was titled a “Flip-Flopper” with respect to the Iraq war. But during the primaries of the 

Democrats in autumn 2003, several negative reports of Bush-friendly media appeared and 

 
1 Kräkel (2004) examines a two-stage game but not a two-stage contest. In his model, the contest for the 
prize only takes place in stage 2. In our model, the contest for the prize takes place in two stages. 
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reduced the chance of Dean to become the candidate of the Democrats.2 Further examples 

for sabotage of potential rivals can be found in TV game shows like “The weakest Link”, 

“Survivor” and “Big Brother”. 

Motivated by these examples, this paper investigates sabotage of potential rivals. 

We develop a two-stage elimination contest model with four players who differ in the 

valuation of winning the contest. In the first stage, the players are grouped in two semi-

finals. The winners of the semi-finals advance to the second stage, the final. Both stages 

are modeled as all-pay auctions. Sabotage is incorporated in the model by assuming that 

before the elimination contest each contestant can decide whether she will help the 

weaker player in the other semi-final. One may argue that this support should be called a 

“subsidy” instead of “sabotage”. We prefer to use the term (indirect) sabotage because 

although a player indeed subsidizes a weaker player in another group, the main goal of 

the subsidy is to weaken the stronger player’s chances of advancing to the next stage. 3

In this setting, we find that for a certain partition of players there is a pure-

strategy equilibrium in which only the most able contestant engages in sabotage while 

less able contestants do not. We also find that the most able contestant may prefer a 

situation where sabotage is allowed to one where sabotage is not allowed. For another 

 
2 Of Course, it is difficult to say whether Dean did not succeed because he was “sabotaged” by supporters 
of Bush or because he did not find enough supporters among the Democrats. Dean himself states that he 
was sabotaged. See his interview regarding the “The Scream” at the webpage http://www.crocuta.net/Dean/ 
Dean_Interview_NHPR_June29_2004.htm. Moreover, it is interesting to note that there were discussions 
among Bush supporters whether it is a suitable option “...to sabotage the opposing party's primary to ensure 
the nomination of the worst candidate possible” (http://www.pejmanesque.com/archives/003745.html). 
3 In our model, this indirect sabotage is indeed equivalent to directly sabotaging the future rival. We use the 
indirect modeling since it is often observed in reality. For example, in the 2004 U.S. election campaign 
traditional Republican campaign contributors simultaneously contributed to Ralph Nader (an independent 
candidate) and George Bush. The contribution to Ralph Nader is to ensure that he draws away some votes 
from the Democratic candidate, John Kerry. Hence the Republicans indirectly sabotaged John Kerry 
through a third party, Ralph Nader. We wish to emphasize that this is an example of indirect sabotage. It is 
not an example of sabotaging a potential rival. 

http://www.crocuta.net/Dean/ Dean_Interview_NHPR_June29_2004.htm
http://www.crocuta.net/Dean/ Dean_Interview_NHPR_June29_2004.htm
http://www.pejmanesque.com/archives/003745.html
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partition of players, there is a unique equilibrium in which none of the players engages in 

sabotage.  

Note that our model is based on the elimination contest in Groh et al. (2003). We 

introduce the sabotage of potential rivals in their model. However, our main focus is 

different. In an elimination contest without sabotage and four contestants, Groh et al. 

(2003) compare different partitions of contestants based on the following three criteria: 

(i) maximization of total productive effort in the contest, (ii) maximization of the 

probability of a final among the two top players, and (iii) maximization of the win 

probability for the top player. They also compare the partitions with respect to the 

property that a higher ranked player has a higher win probability. In contrast, we focus 

mainly on the sabotage incentives of the contestants under different partitions. 

The paper is organized as follows: the next section sets up the general model. In 

Section 3, we derive equilibria for specific partitions of players. Section 4 discusses our 

results and explains in more detail the relation to results obtained in previous sabotage 

models. Section 5 concludes. 

 

2. Indirect Sabotage in an Elimination Contest 

We consider a two-stage elimination contest as in Groh et al. (2003).4 However, unlike 

Groh et al. (2003), we introduce a pre-contest stage where players can decide to indirectly 

sabotage potential rivals. The contest is among four players labeled by 1, 2, 3, and 4. The 

timing of actions is as follows: In stage 0, players decide how much sabotage effort to 

expend. In stage 1 (the semi-finals), two players are put in a group in an all-pay auction 

 
4 For other papers on elimination contests, see Amegashie (1999, 2004), Gradstein and Konrad (1999) and 
Rosen (1986). 



where their valuations are their post-sabotage valuations. The winner in each group 

advances to stage 2 (the final), where the overall winner of the contest is determined 

again by an all-pay auction. 

 We call the efforts in the all-pay auctions on stage 1 and 2 “productive effort”. 

They are directly productive in the sense that a possible contest-designer puts a positive 

value on them. For example, in a sales contest, these efforts will be sales per contestant. 

But the sabotage effort in stage 0 is directly "unproductive" because the contest designer 

does not value this effort. Note, however, that we only focus on the positive implications 

of sabotage and do not discuss the optimal design of our contest. 
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}

Our equilibrium concept is subgame perfection. We look for a subgame perfect 

equilibrium of our game by backward induction. We begin with stage 2: Denote the two 

finalists by  with { 4,3,2,1j,i ∈ ji ≠ . The finalists expend productive effort  and 

 in hope of winning the prize. Players i and j valuations of the prize are  and 

, respectively. Unless otherwise indicated, we assume that V

0eif ≥

0e jf ≥ iV

jV 1 > V2 > V3 > V4 > 0 and 

these valuations are commonly known by all contestants. The prize is awarded to the 

player with the higher effort. In case both efforts are the same, each finalist receives the 

prize with probability 21 . As in Groh et al. (2003), the finalists in stage 2 additionally 

receive a payment of k > 0, regardless of their effort in this stage.5 Hence, for , 

player i’s payoff in the final is 

jfif ee >

ifi ekV −+ . If jfif ee < , then she receives  and in ifek −

                                                 
5 As pointed out in Groh et al. (2003), “... this is a necessary condition for the existence of equilibria in the 
semi-finals”. Otherwise, there are, at least, two players whose valuations in the semi-finals are zero. These 
players will exert no effort in the semi-finals. But then a pure-strategy effort of zero is not an equilibrium 
strategy. 
 



case of , her payoff is jfif ee = ifi ek2V −+ . The payoff of player j is computed in the 

same way. 

 It is well known that the equilibrium effort levels in such an all-pay auction are in 

mixed strategies. Based on results in Baye et al. (1996) and Hillman and Riley (1989), we 

can write the expected payoffs of player i and j in this equilibrium respectively as 

 ( ) { } k0,VVmaxj,i ji2 +−=Π , ( ) { } k0,VVmaxi,j ij2 +−=Π .  (1) 

If , the equilibrium winning probabilities of player i and j are ji VV ≥ ij2i V2V1p −=  

and , and equilibrium total expected effort amounts to 2i2j p1p −= ( )j j iV 1 V V 2+ . In 

case of , we simply have to exchange the indices i and j in order to obtain the 

equilibrium winning probabilities and equilibrium total effort. For a given partition of 

players, the equilibrium in stage 2 is unique (see, Baye et al., 1996). 

ji VV ≤

 Let us now formalize stage 1. We denote the players in one semi-final by 

 and in the other semi-final by { 4,3,2,1,h ∈ } { }4,3,2,1n,m ∈  where nmh ≠≠≠ . Both 

semi-finals are all-pay auctions. To account for indirect sabotage, we assume that the 

valuation of a player in stage 1 is increased by the effort which other players expend in 

stage 0 in order to help this player and to indirectly sabotage potential rivals. This support 

can be interpreted as, e.g., an extra payment which the supported player receives or as a 

cost subsidy which improves the ability of the supported player in the semi-final. For the 

latter interpretation, note that the valuations in all-pay-auctions can be interpreted as the  
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abilities of the contestants (Baye et al., 1996). 6 

The support of m given to h is denoted by , the support of n to h by 

 and so on. Thus, player h’s and player ’s valuation of winning the semi-final 

can be written as 

0emh ≥

0enh ≥

 ( ) ( ) ( ) nhmh21n21n1h eem,hp1n,hp ++Π−+Π=Π ,    (2) 

 ( ) ( ) ( ) nm21n21n1 eem,p1n,p ++Π−+Π=Π ,    (3) 

where  is the probability that n wins her semi-final against m.1np 7  The first two terms in 

(2) represent player h’s expected payoff if she advances to the final and meets either m or 

n. The last two terms in (2) equal the support player h receives from m and n. If there 

were no help, a player’s valuation will be equal to the first two terms in the above 

expressions. A similar interpretation holds for (3). The valuations of m and n in the other 

semi-final are 

 ( ) ( ) ( ) mhm21211m eeh,mp1,mp ++Π−+Π=Π ,    (4) 

 ( ) ( ) ( ) nhn21211n eeh,np1,np ++Π−+Π=Π ,     (5) 

where  is the probability that  wins her semi-final against h. The equilibria in the 

semi-finals are again in mixed-strategies. The equilibrium in each group is unique and 

can be characterized in the same way as the equilibrium in stage 2: The expected payoffs 

1p

                                                 
6For the sake of analysis and to help focus on the role of sabotaging potential rivals, we do not consider 
sabotage of current rivals as in the single-state contests of Konrad (1999), Chen (2003), and Kräkel (2004). 
Moreover, note that in stage 2, the players' valuations revert to Vi and Vj. That is, the effect of sabotage is 
not permanent. 
7 To give the reader an idea of how the help given to a player in a contest might increase her valuation, 
consider a contest where a player has a cost of effort e and valuation, V. If the success probability is P, we 
can write her payoff as PV – e. Suppose someone subsidies her cost of effort such that (1-α) of her cost is 
reimbursed, where 0 < α < 1. Then her payoff is now PV – αe. But this can re-written as α[PV/α – e]. Given 
that α is constant, this is equivalent to the original contest with no subsidy but with a player whose 
valuation has increased from V to V/α. Hence, we capture the help given to a player as an increase in her 
valuation.
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are analogous to (1) except for replacing the V’s by the Π ’s defined in (2) – (5). And 

also the equilibrium total effort and the equilibrium winning probabilities,  and , 

can be computed with the help of (2) – (5). In doing so, it is important to note that the 

valuations (2) – (5) themselves depend on  and . Hence, when we solve the model 

in the next section, we have to compute  and  by determining a fixed point (see 

also Groh et al., 2003). 

1np 1p

1np 1p

1np 1p

 Finally, we turn to stage 0 where the players determine their sabotage effort. The 

overall-payoffs of the players in stage 0 can be written as 

 { } hnhm11h0h ee0,max −−Π−Π=Π ,      (6) 

 { } nm1h10 ee0,max −−Π−Π=Π ,      (7) 

 { } mmh1n1m0m ee0,max −−Π−Π=Π ,      (8) 

 { } nnh1m1n0n ee0,max −−Π−Π=Π .      (9) 

The players’ payoff in (6) – (9) equals the expected payoff the players receive from the 

semi-final (the maximum terms) less the sabotage efforts. In stage 0, we look for a pure-

strategy equilibrium in the sabotage effort levels.  

  

3. Equilibrium under Different Seedings of Players 

There are different partitions of players in the semi-finals. These partitions are called 

seedings. Obviously, the properties of the equilibrium in our three-stage contest game 

depend on the seeding in the semi-finals. In what follows, we will therefore characterize 

the equilibrium for different seedings. 
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3.1 Seeding A: {1-3} and {2-4} 

Suppose first that, in stage 1, players 1 and 3 belong to one group and players 2 and 4 

belong to the other group (we call this grouping of players seeding A). In the notation of 

the previous section, we have 1h = , 3= , 2m =  and 4n = . Obviously, player 4 will 

not engage in sabotage, i.e. 0ee 4341 ==  is her dominant strategy, because according to 

V1 > V2 > V3 > V4 > 0  and (1) her expected payoff from the contest in stage 2 is k 

regardless of who she meets in that stage. Moreover, players 1 and 3 will benefit, if at all, 

only from sabotaging player 2 and player 2 only from sabotaging player 1. This implies 

. 0eee 213212 ===

Given these insights and taking into account the equilibrium expected payoffs (1) 

in the final, we may specify the players’ semi-final valuations (2) – (5) as 

 ( ) ( )( ) ( ) kVVpVVkVVp1kVVp 4241212141414111 +−+−=+−−++−=Π , (10) 

 ( ) ( ) ( ) 2343412341434131 ekVVpekp1kVVp ++−=+−++−=Π ,  (11) 

 ( ) ( ) ( ) kVVpkp1kVVp 323131323121 +−=−++−=Π ,    (12) 

 ( ) 34143414313141 eekeekpkp1 ++=+++−=Π .    (13) 

In stage 2, player 2’s net payoff if she meets player 3 instead of player 1 is . This 

is an upper bound for her support of player 3, i.e., 

32 VV −

3223 VVe −≤ . In the semi-final 

between players 1 and 3, we then obtain from (10) and (11) 

 ( ) ( )( )324121233241213111 VV1pVVeVVpVV −−+−≥−−+−=Π−Π , (14) 

given . Thus, no matter the relative size of the valuations  and , 

player 1 has a higher valuation than player 3 in stage 1 (i.e., 

3223 VVe −≤ 41Π 21Π

3111 Π>Π ), if 
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3221 VVVV −≥− . It follows that when they contest in an all-pay auction in stage 1, 

player 1 will get a positive expected payoff, but player 3 will get a zero expected payoff. 

Hence,  implies that in stage 0 player 3 will not invest in sabotage. 

Therefore, in a reduced-form game obtained via backward induction,  is a 

dominant strategy for player 3 in stage 0.  

3221 VVVV −≥−

0e34 =

 It remains to specify the sabotage effort levels of player 1 and 2,  and  

Since  implies 

14e 23e .

3221 VVVV −≥− 3111 Π>Π , only two cases have to be distinguished: In 

case 1, we have  and 3111 Π>Π 4121 Π≤Π . According to (6) – (9) and the dominant 

strategies derived so far, the players’ payoffs in stage 0 are 

 ( ) 1432412114311110 eVVpVVe −−+−=−Π−Π=Π , 030 =Π ,  (15) 

 ( )323114214140 V Vpe −−=Π−Π=Π , 2320 e−=Π .    (16) 

In case 2, we have  and 3111 Π>Π 4121 Π≥Π , and the players’ payoffs in stage 0 become 

 ( ) 142332412114311110 eeVVpVVe −−−+−=−Π−Π=Π , 030 =Π , (17) 

 ( ) 2314323123412120 eeV Vpe −−−=−Π−Π=Π , 040 =Π .  (18) 

Players 1 and 2 will set their sabotage effort levels such that their payoff in stage 0 is 

maximized. In doing so, each of them takes into account the effect of her sabotage effort 

on the winning probabilities in stage 1,  and . We look for a pure-strategy 

equilibrium. For notational convenience, let 

41p 31p

21 VV:a −= , 32 VV:b −=  and . 

We then obtain 

43 VV:c −=
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Proposition 1: Suppose the players’ valuations are such that V1 > V2 > V3 > V4 and  

V1 – V2 ≥ V2 – V3, players 1 and 3 belong to one group and players 2 and 4 belong to 

another group and . Then there exists a pure-strategy subgame perfect equilibrium 

in which only the most able player (i.e., player 1) engages in sabotage. Her equilibrium 

sabotage effort 0e  is determined by  

0k →

*
14 >

 
( )[ ] ( ) ( )

( ) ( )[ ] ( )
1

ecba64bcecba4ecb8

bcecba4ecba64bcecba4
cb

2*
14

2*
14

2*
14

*
14

2*
14

2*
142 =

+++−−+

−−−−+++−−
.  (19) 

The equilibrium is such that, 4121 Π<Π , 3111 Π>Π , 21p41 > , 21p31 < , , 

 and . 

010 >Π

040 >Π 03020 =Π=Π

 

Proof: We first look for a possible equilibrium in case 1, i.e. 3111 Π>Π  and . 

The players’ stage 0 payoffs in this case are captured by (15) and (16).  

immediately implies that  is a dominant strategy for player 2 in this subgame. In 

order to obtain player 1’s optimal sabotage effort, we first have to determine the 

equilibrium winning probabilities in stage 1,  and , as functions of the sabotage 

effort chosen in stage 0. These functions are determined by using a result of Baye et al. 

(1996). Given  and 

4121 Π≤Π

2320 e−=Π

0e23 =

31p 41p

3111 Π>Π 4121 Π≤Π , we obtain 

 ( ) k2pcb2a2
kcp

2
p

41

41

11

31
31 +++

+
=

Π
Π

= , 
k2e2
kbp

1
2

1p
14

31

41

21
41 +

+
−=

Π
Π

−= . 
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The fixed point of these equations with respect to  and  yields the desired 

functions. It is obtained by simultaneously solving the two equations above. For our 

purposes, we only need the solution for . Letting gives 

31p 41p

41p 0k →

 
( ) ( )[ ] ( )

( ) 14

2
14

2
1414

41 ecb8
ecba64bcecba4bceacb4

p
+

+++−−+−−+
= .  (20) 

Player 1 sets  such that  from (15) is maximized. Taking into account the 

derivative of (20) with respect to  yields 

14e 10Π

14e

 
( )[ ] ( ) ( )

( ) ( )[ ] ( )
.1

ecba64bcecba4ecb8

bcecba4ecba64bcecba4
cb

de
d

2
14

2
14

2
14

14
2
14

2
142

14

10 −
+++−−+

−−−−+++−−
=

Π
 (21) 

The lowest sabotage effort which player 1 can choose in case 1 is the one which equates 

 and  or, equivalently, which reduces the winning probability of player 4 to 21Π 41Π

21p41 = . From (20) we obtain 21p41 =  iff ( ) min
1414 e:c2b2a4bce =++= . If we 

evaluate player 1’s marginal payoff (21) at , we obtain min
1414 ee =

 ( )
( ) 0

cba4c
bcba2

de
d 2

ee
14

10
min
1414

>
++
++

=
Π

=
.      (22) 

This implies that, in case 1, player 1 always chooses an interior solution . 

This is the solution to  = 0 in (21) above or, equivalently, to (19). We assume 

that a feasible solution exists. Indeed, we present an example in corollary 1. We can 

therefore conjecture that a possible candidate for a pure-strategy equilibrium is one in 

which players 2, 3, and 4 do not invest in sabotage, but player 1 chooses  

where  is implicitly defined by (19). In this possible equilibrium, we have 

0ee min
1414 >>

1410 de/dΠ

0ee min
14

*
14 >>

*
14e 4121 Π<Π , 

, 3111 Π>Π 21p41 >  and 21p31 < . To ensure that the candidate equilibrium is indeed 
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an equilibrium, we have to make sure that the players do not have an incentive to deviate 

from their choice when we turn to case 2. 

 In case 2, we have 3111 Π>Π  and 4121 Π≥Π . The stage 0 payoffs are captured by 

(17) and (18). The winning probabilities in stage 1,  and , are now functions of the 

sabotage efforts  and . Using results of Baye et al. (1996) yield 

31p 41p

14e 23e

 ( ) k2pcb2a2
kecp

2
p

41

2341

11

31
31 +++

++
=

Π
Π

= , 
k2bp2

ke
2

p
31

14

21

41
41 +

+
=

Π
Π

= . 

Solving these equations with respect to  and  and letting  gives 31p 41p 0k →

 
( ) ( )[ ]

ab4
abce4ecbbeecbbe

p 14
2

14231423
31

++−++−
= ,    (23) 

 
( ) ( )[ ]

bc2
abce4ecbbebeecb

p 14
2

14232314
41

++−+−+
= .   (24) 

Consider first player 2. She chooses  such that 23e 20Π  from (18) is maximized. Taking 

into account the derivative of (23) with respect to  yields  23e

 
( )[ ] ( )

( )[ ]
1

abce4ecbbe

ecbbeabce4ecbbe
a4

b
de
d

14
2

1423

142314
2

1423

23

20 −
++−

+−+++−
=

Π . 

Since we assume V1 – V2 ≥ V2 – V3 or , it is straightforward to show that ba ≥

0ded 2320 <Π  for all . Hence, player 2 has the dominant strategy  in 

this subgame and has no incentive to deviate from the candidate equilibrium we 

determined in case 1.  

0e,e 1423 ≥ 0e23 =

Next turn to player 1. She sets  such that 14e 10Π  from (17) is maximized. Taking 

into account the derivatives of (24) with respect to  yields  14e
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( ) ( ) ( )

( )
1

abce4ecbc2

abc2ecbabce4ecbcb
de
d

14
2
14

2

14
2

14
2
14

2

14

10 −
++

++++++
=

Π
,   (25) 

 
( )[ ] 0

abce4ecb

cba2
de

d
23

14
2
14

2

22

2
14

10
2

<
++

−=
Π

.      (26) 

If , then the numerator in (25) tends to  while the denominator tends to 

0. Hence,  implies 

0e14 → 0abc2 >

0e14 → ∞→Π 1410 ded . If ∞→14e , then L’Hôpital’s rule yields 

0cbded 1410 >→Π  Equation (26) then implies 0ded 1410 >Π  for all . Hence, 

player 1 chooses  as large as possible. Since it is straightforward to show that an 

increase in  increases  and decreases 

0e14 ≥

14e

14e 3111 Π−Π 4121 Π−Π , player 1 sets  such that 

 or, equivalently, 

14e

4121 Π=Π 21p41 = . Using (24) and 0e23 = , we again obtain 21p41 =  

iff . But we know from our analysis of case 1, that player 1 obtains a higher 

payoff if she chooses . Hence, player 1 also has no incentive to deviate 

from the candidate equilibrium in case 1. Therefore, this candidate equilibrium is indeed 

a pure-strategy equilibrium. This completes the proof of proposition 1. QED. 

min
1414 ee =

min
14

*
1414 eee >=

 

Proposition 1 states that under seeding A, there exists a pure-strategy equilibrium 

in which the most able contestant invests in sabotage, but all other (less able) contestants 

do not. The intuition is straightforward: Player 1 prefers to play the final against the 

weakest player (i.e. player 4) instead of the second-best player (i.e. player 2). Hence, 

player 1 supports player 4 such that this player has a higher chance of winning her semi-

final than player 2, even though player 2 is more able in the sense that she has a larger 

valuation of winning the final. This indirect sabotage of player 2 by player 1 implies that 
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player 1’s and 4’s expected payoff in stage 0 is strictly positive, while players 2 and 3 

have zero expected payoff in stage 0. We will further discuss the rational of this result in 

section 4, when we compare our results with those of previous works. 

 Equation (19) can explicitly be solved for the equilibrium sabotage effort of 

player 1. This would yield some insights about the impact which the model parameters 

have on the magnitude of the sabotage effort. But in the general case, it does not provide 

useful analytical results. To highlight some properties of the sabotage equilibrium, we 

therefore focus on the special case where the differences between the valuations are 

equal, i.e. V1 – V2 = V2 – V3 = V3 – V4 :=  x > 0 or, equivalently, a = b = c  x > 0. 

Equation (19) then has three and only three solutions with respect to player 1’s sabotage 

effort: 

:=

4xe14 =  and ( ) 36108xe14 ±−= . But only the first solution is positive and 

only for this solution is the second-order condition for a local maximum satisfied. Using 

equations (15) and (20), player 1’s payoff at 4xe14 = can be shown to equal 

( ) 0x483x10 >>+=Π . To show that this is a global maximum, we evaluate player 

1’s payoff at the extreme ends of the domain of e14 (i.e., at 0 and V2 – V4 = 2x). Using 

(15) and (20), player 1’s payoff at e14 = 0 is equal to x, since the limiting value of p41 = 0 

given e14 = 0. Using (15), player 1’s payoff is ( ) 01px 41 <−  at e14 = 2x. Therefore, the 

payoffs at the extreme ends of the domain of e14 are less than ( ) x483x10 >+=Π , and 

the global maximum of player 1’s payoff is at 4xe14 = . Since, players 2, 3, and 4 have 

strictly dominant strategies, we have a unique pure-strategy equilibrium with player 1’s 

sabotage effort 4xe*
14 = .8 Using (10) – (13), (15), (16) and (20) it is straightforward to 

                                                 
8 Note that 4xe*

14 =  = c/4 < V2 – V4.  
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compute the accompanying equilibrium winning probabilities, valuations in stage 1 and 

payoffs in stage 0. Overall, we obtain 

 

Corollary 1: Under the same conditions as in proposition 1 and additionally V1 – V2 = 

V2 – V3 = V3 – V4  x > 0, there exists a unique pure-strategy subgame perfect 

equilibrium in which only the most able player (i.e., player 1) chooses a positive 

sabotage effort 

:=

4xe*
14 = . In this equilibrium, we have ( ) 422x21 −=Π  < 414x Π= , 

( )21x11 +=Π  > 3122x Π= , 2121p41 >= , ( ) 21422p31 <−= , 

( ) 0483x10 >+=Π , ( ) 0412x40 >−=Π  and . 03020 =Π=Π

 

Corollary 1 states that in the special case of equal differences between the players’ 

valuations, the sabotage equilibrium derived in proposition 1 is unique. Moreover, player 

1’s sabotage effort as well as the stage 0 expected payoffs of players 1 and 4 are 

increasing in x. The rationale of this insight is as follows: The larger the (common) 

difference between the valuations of the players, the larger is player 1’s benefit from 

playing a final against player 4 instead of player 2. Hence, an increase in x makes 

sabotage more profitable for player 1 such that player 1 chooses a higher sabotage effort 

and the payoffs of players 1 and 4 increase. 

 With the semi-final valuations listed in corollary 1, we are also able to compute 

the productive effort levels in the final and the semi-finals. Let  be total expected 

productive effort in a semi-final between players i and j when there is sabotage and let 

S
ijE

S
ijE~  be total expected productive effort in the semi-final between i and j when there is no 
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sabotage. Similarly,  and  denote total expected productive effort in the final when 

there is sabotage and when there is no sabotage, respectively. In appendix A, we prove

FE FE~

9

 

Proposition 2: Under the same conditions as in corollary 1, we have 0E~E S
13

S
13 => , 

0E~E S
24

S
24 => ,  and FF E~E < FS

24
S
13

FS
24

S
13 E~E~E~EEE ++<++ . 

 

The intuition for these results is as follows: In the semi-final of the sabotage equilibrium, 

player 1 supports player 4. Hence, player 4 is stronger than in the no-sabotage 

equilibrium so that player 2 has to exert a larger productive effort resulting in an increase 

in the aggregate expected effort levels in the semi-final between 2 and 4 compared to the 

case without sabotage ( 0E~E S
24

S
24 => ). Moreover, advancing to the final becomes more 

attractive to the participants of the other semi-final, players 1 and 3, since player 4 has a 

higher chance of winning her semi-final. Hence, players 1 and 3 choose higher 

productive effort levels than in the no-sabotage equilibrium ( 0E~E S
13

S
13 => ). In sum, 

sabotage is good for the productive effort levels in the semi-finals. However, the 

expected effort level in the final is reduced by sabotage ( FF E~E < ). The reason is that the 

final is now not necessarily between the strongest players (in the case without sabotage, 

the final takes place between players 1 and 2 with almost sure certainty, see Groh et al., 

2003). Sabotage is therefore bad for productive effort in the final. And this negative 

effect of sabotage on productive effort in the final outweighs the positive effect of 

                                                 
9 The first two results in proposition 2 are true also for the general case where a, b and/or c may be different 
from x. But for the rest of the results in proposition 2, we need the condition a=b=c=x. 
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sabotage on productive effort in the semi-finals so that total productive effort from both 

stages is reduced by sabotage. 

 

3.2 Seeding B: {1-2} and {3-4} 

Now suppose the two strongest players are grouped in one semi-final and the two 

weakest players in the other semi-final (we call this grouping seeding B). In the notation 

of section 2, we may write , 2h = 1= , 4m =  and 3n = . If at all, players 1 and 2 will 

benefit only from indirectly sabotaging player 3 and players 3 and 4 only from sabotaging 

player 1. Hence, we can already identify 0eeee 41312313 ====  as dominant strategies.  

Given this insight and computing the equilibrium expected payoffs (1) in the 

final, we may now specify the players’ semi-final valuations (2) – (5) as  

 ( ) ( )( ) ( ) kVVpVVkVVp1kVVp 4331414131313111 +−−−=+−−++−=Π  (27) 

 ( ) ( )( ) 42324231323121 eekVVp1kVVp +++−−++−=Π   

 ( ) 4232433142 eekVVpVV +++−−−=      (28) 

        (29) ( ) kkp1kp 111131 =−+=Π

 ( ) 24142414111141 eekeekp1kp ++=++−+=Π      (30) 

where  is the probability that player 3 advances to the final and  is the probability 

that player 1 advances to the final. 

31p 11p

 To determine the equilibrium on stage 0 of the game, note first that (29) and (30) 

imply . Hence, the payoffs of players 3 and 4 on stage 0 are 

 and 

0ee 24143141 ≥+=Π−Π

3230 e−=Π 42241442314140 eeee −+=−Π−Π=Π , respectively. These payoffs 

immediately imply , i.e., players 3 and 4 do not invest in sabotage. A similar 0ee 4232 ==
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argument holds for the semi-final between players 1 and 2. From (27), (28) and 

 we obtain 0ee 4232 == 0VV 212111 >−=Π−Π . This implies 2420 e−=Π  and 

142114211110 eVVe −−=−Π−Π=Π . It follows that 0ee 2414 == , i.e., players 1 and 2 

also do not have an incentive for sabotage. We summarize this finding in 

 

Proposition 3: Suppose the players’ valuations are such that V1 > V2 > V3 > V4 and  

players 1 and 2 belong to one group and players 3 and 4 belong to another group. Then 

there exists a unique pure-strategy subgame perfect equilibrium in which no player 

engages in sabotage.  

 

Players 3 and 4 have a smaller valuation of the final than players 1 and 2. Hence, both 

know that, even if they win the semi-final, the payoff in the final will be k, independent 

of whether they play the final against player 1 or player 2. Hence, indirectly sabotaging 

player 1 does not pay for the two weakest players, so they choose a zero sabotage effort. 

Player 1 is stronger than player 2 in the semi-final among the two strongest players. 

Given the zero sabotage efforts of players 3 and 4, player 2’s expected payoff from the 

semi-final is zero regardless of her sabotage effort. Hence, player 2 also chooses a zero 

sabotage effort. Finally, player 1’s payoff from the semi-final against player 2 equals the 

difference between her valuation and that of player 2, independent of the sabotage effort 

player 1 chooses. Hence, player 1 also decides to abstain from sabotage. In sum, under 

seeding B the possibility to sabotage potential rivals does not change the equilibrium in 

the final and the semi-final found in Groh et. al (2003).10  

                                                 
10 Note also that proposition 3 is true not only in the limiting case k → 0, but for all values of k > 0. 
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3.3  Seeding C: {1,4} and {2,3} 

Finally, we take a look at the case where the strongest and the weakest player are grouped 

in one semi-final and the two middle players are grouped in the other semi-final (we call 

this grouping seeding C). In the notation of section 2, we may write , , 1h = 4= 2m =  

and . For this seeding, appendix B proves 3n =

 

Proposition 4: Suppose the players’ valuations are such that V1 > V2 > V3 > V4 and  

 players 1 and 4 belong to one group and players 2 and 3 belong to another group and 

. Then  0k →

(i) there does not exist a pure-strategy subgame perfect equilibrium in which 

only the most able player invests in sabotage, and  

(ii) there does not exist a pure-strategy subgame perfect equilibrium in which 

none of the players invest in sabotage. 

 

The insight of this proposition is that in seeding C we cannot have pure-strategy 

equilibria as those derived in seedings A and B. The intuition of part (i) is that in seeding 

C, player 2 has the highest benefit from sabotage (i.e., V2 – V4). Hence, an equilibrium in 

which player 1 – who has a lower benefit from sabotage (i.e., V2 – V3) – invests in 

sabotage but player 2 does not, is not possible. The rational of part (ii) is that, in contrast 

to seeding B, in both semi-finals of seeding C at least one player would benefit from 

sabotage (remember that in the semi-final {3,4} under seeding B none of the players 
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benefits from sabotage and this is the driving force for the no-sabotage equilibrium in 

proposition 3). 

 Notice that also in seeding C player 4 does not engage in sabotage. For players 

2 and 3, only one of them will engage in sabotage, because at least one of them will not 

have a bigger semi-final valuation than the other. Hence, proposition 4 implies that an 

equilibrium, if it exists, must have the property that at least one player (either 2 or 3) and 

at most two players (1 and 2 or 1 and 3) will engage in sabotage. If there exists an 

equilibrium in which only one player invests in sabotage, that player cannot be player 1, 

given proposition 4(i). But if player 1 does not invest in sabotage, then player 2 has a 

bigger semi-final valuation than player 3. Therefore, if only one player engages in 

sabotage, then that player must be player 2. Unfortunately, due to the discontinuity of the 

winning probabilities and the payoff functions which lead to proposition 4 (see the proof 

in appendix B), it is difficult to analytically derive an equilibrium for seeding C in the 

case of V1 > V2 > V3 > V4. 

 In appendix C, we show that in case of V1 > V2 = V3 > V4, there is a pure-

strategy subgame perfect equilibrium under seeding C in which no player engages in 

sabotage. Indeed, if V2 = V3 (b = 0), then it is straightforward to show that there is no 

sabotage in any of the seedings. But this insight implies that V2 > V3 is crucial to the 

sabotage equilibrium we derived in proposition 1 for seeding A.11

 

 

 

 
11 Note that the probabilities in equations (23) and (24) are undefined if b = 0 (i.e., V2 = V3). 
 



 

4. Discussion of Results 

In proposition 1, the result that 21p41 >  is interesting. Player 4 has a higher winning 

probability than player 2 in the semi-final although player 2 has a higher ability. Chen 

(2003) also finds that a player with a higher ability might have a lower probability of 

success than a player with a lower ability because other contestants direct more sabotage 

effort at the player with a higher ability. 

In what follows, all the results when sabotage is not feasible are taken from Groh 

et al. (2003). If sabotage is not feasible, player 1’s success probability in seeding A12 is 1 

as . Player 1’s probability of success in stage 1 is less than 1, if sabotage is 

feasible.

0k →

13 However, player 1 prefers the sabotage equilibrium because the probability of 

meeting player 4 is higher.14 Player 2 has a higher success probability if sabotage is not 

feasible. She prefers the no-sabotage equilibrium (i.e., when sabotage is not feasible) 

because her payoff is positive which is greater than her zero payoff in the sabotage 

equilibrium. Player 3 is indifferent because her payoff is zero in both equilibria but player 

4 prefers the sabotage equilibrium. In sum, if the goal is to improve the selection 

properties of the contest, then allowing sabotage is bad because the top two players, 1 and 

2, have lower success probabilities in the sabotage equilibrium than in the no-sabotage 

equilibrium. However, the sabotage equilibrium may be preferred by some of the players 

including the most able player.  

                                                 
12 Notice that we label the seedings differently from Groh et al. (2003).  
13 It is easy to show that p31 > 0, which implies that p11 < 1. The proof of this result is available on request. 
But corollary 1 gives an example. 
14 Notice that, in proposition 1, player 1 could have chosen e14 = 0 in the sabotage equilibrium (given that 
the others players have chosen zero sabotage) but she did not. Clearly, she must be better off by choosing a 
positive level of sabotage. 
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Indeed, a difference between our result and Chen (2003) is that the most able 

player may be better off when indirect sabotage is allowed. This result is not possible in 

Chen (2003), where only direct sabotage is allowed. Another difference is that in Chen 

(2003) it is never the case that a more able player engages in sabotage but a less able 

player does not.15 In our model, this is possible. In seeding A, it is not surprising that 

player 1 is the only one who engages in sabotage once we notice that she derives the 

highest benefit from sabotage. The benefits of a successful sabotage are V2 – V4, V2 – V3, 

V3 – V4, and zero to players 1, 2, 3, and 4, respectively. It is easy to see that V2 – V4 is 

the highest of these benefits. 

 It is insightful to examine the difference in results between seedings A and B. 

The main difference between proposition 1 (seeding A) and proposition 3 (seeding B) is 

that player 1 invests in sabotage in seeding A but not in seeding B. This result accords 

with intuition. In seeding A, player 1’s benefit of successful sabotage is that she meets 

player 4 instead of player 2. In seeding B, player 1’s benefit of successful sabotage is that 

she meets player 4 instead of player 3. Clearly, player 1’s benefit of sabotage is higher 

under seeding A than under seeding B. This explains why player 1 invests in sabotage 

under seeding A, but never does in seeding B.  

 An alternative explanation for why player 1 does not invest in sabotage in 

seeding B is based on the observation that sabotage is a public good. Notice that the 

benefits of sabotage by a player are also enjoyed by the player in his group. In seeding B, 

 
15In a model with two players where only the sabotage of current rivals is possible, Kräkel (2004) also finds 
an equilibrium in which only the more able player invests in sabotage. However, sabotage is costless is in 
his model. Also, he does not investigate sabotage of potential rivals, so the rationale of the result in his 
model is completely different from the one in our model. Finally, his model is unable to generate equilibria 
where no player invests in sabotage or a player with lower ability has a higher probability of success.  
  



if player 1 sabotages player 3, that also benefits player 2. Given the public good nature of 

sabotage, a necessary condition for player 1 to invest in sabotage is that the benefits of 

sabotage must be bigger for player 1 than for player 2 such that the difference  

 increases. But this difference is a constant, 2111 Π−Π 0VV 212111 >−=Π−Π  in 

seeding B. Conversely, in seeding A, the difference 

( 3241213111 VVpVV )−+−=Π−Π  is increasing in the success probability of player 

4.  Notice that player 1 gets a positive payoff no matter who she meets in the final.  

Player 3 only gets a positive payoff if she meets player 4. The difference in the gains 

from this public good (i.e., sabotage) are not the same. It is not surprising then that player 

1, the player with the higher valuation (gain) for this public good, provides the public 

good in seeding A. 

 It is important to note that sabotage and productive effort are not perfect 

substitutes although they both have the same constant marginal costs. This is because a 

player has to first think of winning before sabotaging. In other words, it may make sense 

to invest in only productive effort and nothing in sabotage but it never makes sense to 

invest in only sabotage but invest nothing in productive effort. There is no point in 

investing in sabotage, if you have no chance of winning. 

To obtain proposition 1, we assumed that V1 – V2 ≥ V2 – V3. This condition 

ensures that player 3 will not invest in sabotage because her expected payoff in stage 1 is 

zero. However, player 3's valuation is increasing in the sabotage effort of player 2. Also, 

player 2's valuation is increasing in 31Π . Therefore, player 2 derives a benefit from 

helping player 3. The reason why player 2 sets e23 = 0 is because while there are benefits 

of sabotaging, the cost required to do so is too much. Note also that even though  
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player 1's payoff is always positive, it decreases as 31Π  increases but is never zero, given  

V1 – V2 ≥ V2 – V3. 

  

5. Conclusion 

In this paper, we have explored a hitherto uncharted area of research on contests: the 

sabotage of potential rivals. The only papers which examine sabotage in a model with 

non-identical players are Chen (2003) and Kräkel (2004). In these models, where players 

sabotage current rivals, there is always an equilibrium in which someone engages in 

sabotage. In contrast, in our model, where players sabotage potential rivals there could be 

a unique equilibrium with no sabotage. We also find that only the most-able player may 

engage in sabotage and indeed prefers a situation where sabotage is allowed to one where 

sabotage is banned. While our analysis was based on certain simplifying assumptions, we 

were still able to obtain interesting results which had not been known in the literature. 

 There are several possible areas of future research. For example, in proving 

proposition 1, we had to assume a special condition which simplified the analysis 

significantly. A possible task for future research is to relax this condition, but it should be 

noted that this is fairly challenging. Another extension would be to incorporate the 

sabotage of current rivals in addition to the sabotage of potential rivals in the same 

model. We could also consider making sabotage permanent. That is, helping a weaker 

player to win in the semi-final makes this player stronger if she advances to the final. 

Moreover, sabotage through a third-party might be more socially acceptable than 

direct sabotage. For example, people frown upon negative campaign information by a 

politician against her rival. But positive information about a potential rival’s current 

opponent will not be seen as a negative conduct. Hence direct and indirect sabotage 
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might have different social costs and it may be worthwhile to investigate the normative 

implications of this. In our model, the implicit assumption is that the cost of direct 

sabotage is infinitely large (i.e., prohibitive). 

 

Appendix A: Proof of Proposition 2 

Groh et al. (2003) show that 0E~E~ S
24

S
13 == . Applying the result from Baye et al. (1996) 

yields ( ) 21E 113131
S
13 ΠΠ+Π= . Inserting the stage 1 valuations from corollary 1 gives 

( ) ( ) 022223xES
13 >++= . Similarly, ( ) ( ) 08258x21E 312121

S
24 >−=ΠΠ+Π= . 

This completes the proof of the first part of proposition 2. 

 For proving , note that Groh et al. (2003) show FF E~E < ( ) 2VV1VE~ 122
F += . In 

our sabotage equilibrium we obtain 
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 (A.1) 

We know that ( ) ( ) 2VV1V2VV1V 144122 +>+ , since . Moreover, 

 implies , 

42 VV >

xcba === xVV 12 −= x2VV 13 −=  and x3VV 14 −= .  requires 

. We then obtain after some computations 

0V4 >

x3V1 >

 0xxV4V2
V
V1

2
V

V
V1

2
V 2

1
2

1
3

44

1

22 >−−⇔⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ . 

This condition is always satisfied, since due to  it can be written as 

. In the same way, we obtain  

x3V1 >

0xxV2xxV4V2 2
1

2
1

2
1 >−>−−
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which is always satisfied since . Taking into account 

these relations as well as 

0xxV4xxV2V2 2
1

2
1

2
1 >−>−−

( )( ) ( ) ( ) 1p1pp1pp1p1pp 4131314141314131 =−+−+−−+  in (A.1) 

proves . FF E~E <

 To complete the proof, we define FS
24

S
13

FS
24

S
13 E~E~E~EEE: −−−++=∆  and show 

that . Inserting all E’s and E ’s yields after some computations 0<∆ ~

 ( ) ( ) ( ) ( )
( )( )xVx2VV8

x2326Vx23031xV21720V234x
111

3
1

22
1

3
1

−−
+++−+++−

=∆ . 

The idea of the proof is to take as given  and to maximize 1V ∆  with respect to x subject 

to the constraint 3Vx0 1<< . Differentiating ∆ , it is straightforward to show that 

0dxd 22 >∆ . Hence,  is convex in x and reaches a maximum either for  or ∆ 0x →

3Vx 1→ . Calculating the limits yields 0lim
0x

=∆
→

 and 016Vlim 13Vx 1

<−=∆
→

. Hence, in 

the relevant range  is always negative as required.  QED ∆

 

Appendix B: Proof of Proposition 4 

Suppose we have an equilibrium where at most player 1 invests in sabotage, i.e.  

and all other sabotage efforts are zero. Computing the expected payoffs in the mixed-

strategy equilibrium of stage 2 according to (1), we may write the stage 1 valuations of 

the players as 

0e13 ≥

 ( ) ( )( ) ( ) kVVpVVkVVp1kVVp 3231212131313111 +−+−=+−−++−=Π , (B.1) 

 ,       (B.2) ( ) kkp1kp 313141 =−+=Π
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 ( ) ( ) ( ) kVVpkp1kVVp 424141424121 +−=−++−=Π ,    (B.3) 

 ( ) ( ) ( ) 1343411341434131 ekVVpekp1kVVp ++−=+−++−=Π .  (B.4) 

With this insight, we can prove both parts of proposition 4 by contradiction. Consider 

first part (i). Suppose we have an equilibrium where only player 1 invests in sabotage, i.e. 

. Equations (B.1) and (B.2) imply 0e13 > ( ) 0VVpVV 3231214111 >−+−=Π−Π . Hence, 

we only have to distinguish two cases: case 1 with 4111 Π>Π  and 3121 Π≥Π , and case 2 

with  and . According to (B.3) and (B.4), case 1 is possible only if 

. But  and the results in Baye et al. (1996) imply 

4111 Π>Π 2131 Π≥Π

4113 bpe ≤ 4111 Π>Π
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41
41 ++

=
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= . 

Letting  yields  and, thus, the condition for case 1 is . But 

this contradicts . To put another way, case 1 is only possible for . 

0k → 0p41 = 0bpe 4113 =≤

0e13 > 0e13 =

 It remains to derive a contradiction in case 2. 4111 Π>Π  and 3121 Π≤Π  now 

imply  

 
( )

k2e2cp2
ke2pbc

2
1p

1341

1341

31

21
31 ++

++−
=

Π
Π

−= ,  
k2bp2a2

k
2

p
3111

41
41 ++

=
Π
Π

= . 

The fixed point of these equations for  is 0k → 0p41 =  and 1p31 = . Note that this is true 

independent of the sabotage effort level. But 4111 Π>Π  and 1p31 =  also imply 

 and, thus,  cannot be an equilibrium: For every 

, player 1 has an incentive to reduce , since this increases her stage 0 payoff 

without changing . This contradiction completes the proof of part (i). 

13133110 ebaebpa −+=−+=Π 0e13 >

0e13 > 13e

1p31 =
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 Let us now turn to part (ii). Suppose we have an equilibrium in which none of 

the players invest in sabotage so that also .0e13 =  Then we are back to lemma 2 of Groh 

et al. (2003), where  and 0p41 = 21p31 = . Player 1’s payoff is 2ba10 +=Π . Suppose 

now player 1 deviates from this equilibrium, and invests a small but positive  in 

sabotage. Then we know from our analysis of part (i) that  jumps from 1/2 to 1 

(remember that for  only case 2 is possible). For player 1’s payoff we then obtain 

0e13 >

31p

0e13 >

2baeba 1310 +>−+=Π , since there always exists a small but positive  such that 13e

2be0 13 << . Hence, player 1 will deviate from a zero sabotage equilibrium. This proves 

part (ii) of proposition 4.   QED 

 

Appendix C: Equilibrium in Seeding C if V1 > V2 = V3 > V4  

In this appendix we prove  

 

Proposition 5: Suppose the players’ valuations are such that V1 > V2 = V3 > V4 and  

 players 1 and 4 belong to one group and players 2 and 3 belong to another group. Then 

there exists a unique pure-strategy subgame perfect equilibrium in which no player 

engages in sabotage. 

 

Suppose first . We know that player 4 never invests in sabotage. Since V2131 Π≤Π 2 = V3 

and players 2 and 3 are in the same group, it follows that player 1 will not invest in 

sabotage. Using the results in Baye et al. (1996), 2131 Π≤Π  imply 3430 e−=Π  which, in 

turn, yields . For player 2, we obtain  0e34 =
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244124312120 ebpe −=−Π−Π=Π .      (C.1) 

But V2 = V3 implies b = 0. Therefore, . Hence, no player invests in sabotage if 

. 

0e24 =

2131 Π≤Π

Now turn to the case 2131 Π≥Π . Again, player 4 will not invest in sabotage and b = 

0 implies that player 1 will not invest in sabotage. 2131 Π≥Π  implies . For player 

3, we obtain 

0e24 =

344134213130 ebpe −−=−Π−Π=Π       (C.2) 

But b = 0 implies . Also for 0e34 = 2131 Π≥Π  no player invests in sabotage and in both 

cases, the equilibrium is unique.  QED 
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