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Abstract 
 
A univariate GARCH(p,q) process is quickly transformed to a univariate autoregressive 
moving-average process in squares of an underlying variable. For positive integer m, 
eigenvalue restrictions have been proposed as necessary and sufficient restrictions for 
existence of a unique mth moment of the output of a univariate GARCH process or, 
equivalently, the 2mth moment of the underlying variable. However, proofs in the literature 
that an eigenvalue restriction is necessary and sufficient for existence of unique 4th or higher 
even moments of the underlying variable, are either incorrect, incomplete, or unecessarily 
long. Thus, the paper contains a short and general proof that an eigenvalue restriction is 
necessary and sufficient for existence of a unique 4th moment of the underlying variable of a 
univariate GARCH process. The paper also derives an expression for computing the 4th 
moment in terms of the GARCH parameters, which immediately implies a necessary and 
sufficient inequality restriction for existence of the 4th moment. Because the inequality 
restriction is easily computed in a finite number of basic arithmetic operations on the GARCH 
parameters and does not require computing eigenvalues, it provides an easy means for 
computing "by hand" the 4th moment and for checking its existence for low-dimensional 
GARCH processes. Finally, the paper illustrates the computations with some GARCH(1,1) 
processes reported in the literature. 
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1. Introduction.

A univariate GARCH(p,q) process (Engle, 1982; Bollerslev, 1986) is

quickly transformed to a univariate autoregressive moving-average (ARMA)

process in squares of an underlying variable. Henceforth, for brevity, unless

otherwise qualified, we indicate "GARCH(p,q)" by "GARCH." GARCH processes and

their generalizations (Mittnik, Paolella, and Rachev, 2002) have been used to

model volatilities or time-varying variances of underlying variables, usually

financial-asset returns or residuals from estimated time-series models. GARCH

processes are usually considered to have Gaussian or normally distributed

disturbances, however, because asset returns can have large volatilities,

such as the unexpected large drop in the U.S. stock market in October 1987,

their distributions are often ascribed "heavier" tails than implied by the

Gaussian distribution. Thus, Mandelbrot (1963a,b) studied asset-return

distributions using stable-Paretian distributions. More recently, McCulloch

(1997), Rachev and Mittnik (2000), and others studied time series of asset

returns using GARCH and other processes driven by stable-Paretian and other

heavy-tailed disturbances. Thus, it is useful to have a method for easily

computing the 4th moment of an underlying variable of a univariate GARCH

process, to check whether it exists and, if so, whether it indicates heavier

than Gaussian tails. All the moments considered here are unconditional.

For positive integer m, eigenvalue restrictions have been proposed as

necessary and sufficient conditions for existence of a unique 2mth moment of

the underlying variable of a univariate GARCH process. Proofs in the

literature that an eigenvalue restriction is necessary and sufficient for

existence of unique 4th or higher even moments of the underlying variable of

a GARCH process are either incorrect, incomplete, or unecessarily long.

Before detailing the present paper's contribution to this literature, we

clarify our use of the term "4th moment." A GARCH process is a type of ARMA

process which linearly transforms squared disturbances, 2
tε , to squared

variables, 2
ty , so that the process nonlinearly transforms unsquared or

underlying disturbances, εt, to unsquared or underlying variables, yt. Thus,

the "2mth moment of the underlying variable of a GARCH process" is the 2mth

moment of yt and is equivalent to the mth moment of 
2
ty . In this regard, a

GARCH process is (covariance) stationary if and only if the underlying

variable, yt, has a 2nd moment. Thus, unless otherwise qualified, "4th moment"

means the 4th moment of yt.
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The paper contains a short and general proof that an eigenvalue

restriction is necessary and sufficient for existence of the unique 4th

moment of the underlying variable of a univariate GARCH process. The paper

derives an expression for computing the 4th moment in terms of the GARCH

parameters, which immediately implies a necessary and sufficient inequality

restriction for checking the moment's existence. Because the eigenvalue and

inequality restrictions are separately necessary and sufficient for the

moment's existence, they are equivalent. Because the inequality restriction

is easily computed in a finite number of basic arithmetic operations on the

GARCH parameters and does not require computing eigenvalues, it provides an

easy means for computing "by hand" the 4th moment and for checking its

existence for low-dimensional GARCH processes.

The recent literature contains the following related results. In the

following, all statements of "necessity" and "sufficiency" refer to the

existence of the 4th moment of the underlying variable of a general

univariate GARCH process.

He and Terasvirta (1999) stated an inequality restriction (theorem 1,

p. 827) on a univariate GARCH process, which they claim (p. 833-840) is

necessary and sufficient. Ling and McAleer (2002) question (p. 724 and p.

728, note 1) whether He and Terasvirta's necessity proof is complete. In any

case, because they do not use a state-space representation, He and

Terasvirta's discussion is unnecessarily long. Karanasos (1999) stated

(theorem 3.1, p. 66) an inequality restriction and proved (pp. 73-74) its

necessity, but, as Ling and McAleer noted (pp. 723-724), he did not prove its

sufficiency. Ling (1999) stated and proved (theorem 6.2, p. 702) an

eigenvalue restriction's sufficiency.

Ling and McAleer (2002) stated (theorem 2.1, pp. 723-724) an eigenvalue

restriction and purportedly proved (pp. 726-727) its necessity. However, they

actually proved necessity only for the special case α1 > 0. Their proof works

if and only if (iff) α1 > 0 or β1 > 0, but not if α1 = β1 = 0. Ling and McAleer

claim (p. 727) their proof still works if α1 = β1 = 0, but as written it does

not because it requires a vector R to have all positive elements after a

certain number of repeated steps and this is not the case if α1 = β1 = 0. By

contrast, the proof given here holds for any univariate GARCH process.

Eigenvalue restrictions require computing eigenvalues, which can

generally be done analytically "by hand" only for matrices no larger than

three dimensional, hence, for GARCH processes with no more than three lags.
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Thus, generally, eigenvalue restrictions can be checked only numerically on a

computer. By contrast, as illustrated in section 4, the present necessary and

sufficient inequality restriction for the 4th moment's existence is easily

checked "by hand" in a finite number of basic arithmetic operations.

The remainder of the paper is organized as follows. Section 2 states a

univariate GARCH process in state-space form in order to derive the 4th-

moment inequality restriction. Section 3 proves that the inequality

restriction is necessary and sufficient for existence of a unique 4th moment

of the underlying variable of a univariate GARCH process of any degree.

Section 3 also proves that the 4th-moment inequality restriction is

equivalent to an eigenvalue restriction. Section 4 numerically illustrates

the 4th-moment inequality restriction with six GARCH(1,1) processes from the

literature. Section 5 contains concluding remarks.

2. State-Space Form of a GARCH(p,q) Process.

For discrete-time periods t, let 2
ty  = 2

tε ht denote the square of the

underlying variable in the process, where ht is generated by the univariate

GARCH process

(2.1)     ht = α0 + ∑ = −−εαn

1i it
2

iti h  + ∑ = −βn

1i itih ,

αi and βi are constant parameters, n = max(p,q), αi = 0 for i > p if p < n, βi

= 0 for i > q if q < n, and εt is a disturbance. Although the aim is to verify

necessary and sufficient restrictions on the GARCH(p,q) parameters for

existence of the 4th moment of the underlying variable, 4
tEy  = E( 2

t
4
thε ),

because we assume the disturbance's 4th moment, E 4
tε , exists, we concentrate

on restrictions for existence of E 2
th .

Notation is simplified but no generality is lost when process (2.1) is

written as a GARCH(n,n) process. The proofs in section 3 do not depend on the

presence of the second summation in (2.1), ∑ = −βn

1i itih , hence, on whether q ≥

1 or q ≥ 0. The following GARCH assumptions allow q ≥ 0, but require p ≥ 1.

We assume the following for GARCH process (2.1): (i) n = max(p,q), for

p ≥ 1 and q ≥ 0; (ii) α0 > 0, (iii) αi ≥ 0 and βi ≥ 0, for i = 1, ..., n; (iv)

αi > 0, for one or more i = 1, ..., n; (v) αn > 0 or βn > 0, or both; and, (vi)
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εt is distributed identically, independently, with zero mean, Eεt = 0, finite

positive variance, 2
εσ  = 2

tEε  > 0, and finite positive 4th moment, 4
εσ  = 4

tEε  >

0, which is the central and noncentral 4th moment of εt because Eεt = 0. As

usual, without loss of generality, we set 2
εσ  = 1 and, thus, effectively merge

2
εσ  into αi.

Assumption (v) is convenient but unnecessary, because if αn = βn = 0,

then, assumption (iv) guarantees that we can reduce n until αi > 0 for some i

= 1, ..., n-1. We take "εt is distributed independently" to mean that εt is

distributed independently not just of past values of itself but also of past

values of ht. We do not need any particular distributional assumption such as

Gaussianity.

Finally, we assume GARCH process (2.1) is stationary. Throughout, by

"stationarity" we mean weak or covariance stationarity. By constrast, for

example, Nelson (1990) considers strong stationarity of GARCH(1,1) processes.

Following Milhoj (1985), Bollerslev (1986) proved that, for αi ≥ 0 and βi ≥ 0,

process (2.1) is stationary iff (vii) ∑ =

n

1i if  < 1, where fi = αi + βi. Although

the final theorem 4 here proves that GARCH process (2.1) is stationary if E 2
th

exists, we assume stationarity in order to simplify the discussion.

In sum, we assume (i) to (vii) for GARCH process (2.1) and call these

"the GARCH assumptions."

If GARCH process (2.1) is stationary, then, its mean, Eht = µ, exists,

is positive, and is given by

(2.2)     µ = αo/(1 - ∑ =

n

1i if ).

Let a tilde denote a mean-adjusted variable, so that th
~  = ht - µ and 2

t
~ε  = 2

tε

- 2
εσ  = 2

tε  - 1. Then, we write the mean-adjusted form of GARCH process (2.1)

in the ARMA form

(2.3)     th
~  = ∑ = −

n

1i iti h
~f  + ∑ = −ξn

1i itig ,

where ξt = 2
t
~ε ht, fi = αi + βi, and gi = αi.
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A state-space form of an ARMA process comprises an observation equation

and a state equation in terms of a state vector. Let xt = (x1,t, ..., xn,t)T

denote an n×1 state vector, where superscript T denotes transposition. Then,

following Ansley and Kohn (1983), we can write ARMA equation (2.3) in state-

space form, with observation equation th
~  = T

1e xt, where e1 = (1, 0, ..., 0)T is

the n×1 vector with first element 1 and all other elements 0, and state

equation

(2.4)     xt = Fxt-1 + gξt-1,  F = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0....0f

1...

0....

......

......

..10f

0...01f

n

2

1

,  g = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

n

1

g

.

.

.

.

.

g

.

Observation equation th
~  = T

1e xt implies th
~  is the first element of xt. Because

F is a companion matrix, its eigenvalues are identical to the roots of the

characteristic equation λn - f1λn-1 - ... - fn-1λ - fn = 0 (Anderson, 1958, p.

177), so that stationarity condition ∑ =

n

1i if  < 1 is equivalent to ρ(F) < 1,

where ρ(F) denotes the spectral radius or maximal absolute eigenvalue of F. We

say that the state equation (2.4) is stationary and the state-transition

matrix F is stable iff ρ(F) < 1.

3. 4th-Moment Inequality and Eigenvalue Restrictions.

We are interested in proving that derived restrictions for existence of

4
tEy  = E( 2

t
4
thε ) are necessary and sufficient. However, we assume that E 4

tε

exists; 2
tEh  and E 2

th
~  are linked by 2

tEh  = E 2
th

~  + µ2; E 2
th

~  and V are linked by

2
th

~E  = v11 = 
T
1e Ve1; and, theorem 2 proves that v11 exists iff V exists, where

v11 and V are defined two paragraphs below. Thus, proving that restrictions

for existence of 4
tEy  are necessary and sufficient reduces to proving such

restrictions for V.

We shall generally maintain two terminological conventions. First, when

we write an inequality such as "x ≥ 0" we shall mean not only that the

inequality holds but that the variable in it exists and, hence, is finite.
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Second, as noted before, we refer to assumptions (i) to (vii) on GARCH

process (2.1) as "the GARCH assumptions."

Post-multiplying equation (2.4) by its transpose, taking unconditional

expectation, E, of the result, and apply independence assumption (vi), so

that Ext
T
tξ  = 0n×1, the n×1 zero vector, implies the Lyapunov equation V = FVFT

+ (E 2
tξ )ggT, where V = T

ttxEx . Then, E 2
tξ  = 22

t)
~(E ε (E 2

th
~  + 2E th

~ µ + µ2) = 22
t)
~(E ε (E 2

th
~

+ µ2), because t
~ε  and th

~  are stochastically independent and th
~E  = 0. In

particular, 2
th

~  depends only on constant parameters and variables dated before

period t. Thus, the Lyapunov equation is equivalent to

(3.1)     V = FVFT + θg T
1e Ve1gT + µ2θggT,

where θ = 22
t)
~(E ε  = 4

tEε  - ( 2
tEε )2 = 4

εσ  - ( 2
εσ )2 = 4

εσ  - 1 > 0 (e.g., by Jensen's

inequality). When εt is Gaussian, 4
εσ  = 3, so that θ = 2.

Using vec(ABC) = [CT⊗A]vec(B), for matrices A, B, and C conformable to

the product ABC (Magnus and Neudecker, 1988, p. 30), where vec(⋅) denotes the

column vectorization of a matrix (column 1 on top of column 2, etc.) and ⊗

denotes the Kronecker product. We state equation (3.1) equivalently as

(3.2)     w = Aw + µ2θ(g⊗g),

where w = vec(V) and A = F⊗F + θ(g⊗g)(e1⊗e1)T.

Gantmacher (1959, pp. 50-57) discusses the following implications of

irreducibility. A matrix or vector, M, is nonnegative (M ≥ 0) or positive (M >

0) iff all of its elements are nonnegative or positive. A real, n×n, and

nonnegative matrix, M, is irreducible iff it has no invariant coordinate

subspace with dimension less than n. A theorem by Frobenius says that if M is

a real, n×n, nonnegative, and irreducible matrix, then, M has an eigenvalue,

λ, and associated left or right eigenvector, z, such that λ is real, positive,

and equal to the maximal absolute eigenvalue of M or λ = ρ(M), and z is real

and positive. We need the following lemma.

LEMMA 1: Assume that GARCH assumptions (i) to (vii) hold. Then, matrices F ≥ 0

and A = F⊗F + θ(g⊗g)(e1⊗e1)T ≥ 0 are irreducible.
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PROOF OF LEMMA 1: Let ei denote the n×1 elementary vector i, with one in

position i and zeroes elsewhere. The n-dimensional real vector space is

spanned by e1, ..., en. Consider f1 = 0, ..., fn-1 = 0 and n successive mappings

with F starting from en: Fen = en-1, F2en = en-2, ..., Fn-1en = e1, and Fnen = fnen.

The first n-1 mapped vectors are equal to the first n-1 elementary vectors,

e1, ..., en-1; because fn > 0, the last mapped vector lies in the space spanned

by the last elementary vector, en. Thus, starting from en and successively

mapping n times with F, the mapped vectors span the n-dimensional real vector

space. The same conclusion holds if we start the mappings from any other

elementary vector and if f1 ≥ 0, ..., fn-1 ≥ 0. Thus, F is irreducible. F⊗F ≥ 0

and, by a similar argument in n×n-block form, is irreducible. Because F⊗F ≥ 0

and ≠ 0, θ > 0, (g⊗g)(e1⊗e1)T ≥ 0 and ≠ 0, adding (g⊗g)(e1⊗e1)T ≥ 0 and ≠ 0 to

F⊗F only increases the absolute values of the nonnegative elements of the

first block-column of F⊗F and does not change its irreducibility. Thus, A =

F⊗F + θ(g⊗g)(e1⊗e1)T is irreducible and lemma 1 is proved.

The proof of lemma 1 depends on fn > 0, so that if fn = 0 because αn = βn

= 0, maintaining the lemma requires reducing n until fn > 0.

3.1. Necessary and Sufficient Inequality Restriction.

Stationarity or ρ(F) < 1 implies that B = ∑ ∞

= 0i
iTTi )F(ggF  ≥ 0 exists

(Wilkinson, 1965, p. 59), so that equation (3.1) can be stated equivalently

as

(3.3)     V = (v11 + µ2)θB,

where v11 = 
T
1e Ve1, the (1,1) element of V. Pre-multiplying equation (3.3) by

T
1e , postmultiplying the result by e1, and rearranging, leads to equation

(3.4), where b11 = 
T
1e Be1, the (1,1) element of B. Thus, we have theorem 1,

which states the necessary and sufficient restriction 0 < θb11 < 1 for

existence of 2
th

~E  = v11 > 0.

THEOREM 1: Assume that GARCH assumptions (i) to (vii) hold. Then,
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(3.4)     v11 = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

θ−
θ

µ
11

112

b1

b
 > 0

exists iff, in addition, 0 < θb11 < 1.

PROOF OF THEOREM 1: The GARCH assumptions imply that µ > 0 and θ > 0 exist. In

particular, stationarity implies that B ≥ 0 exists. Because F ≥ 0 and is

irreducible (lemma 1) and g ≥ 0 and ≠ 0, b11 = T
1e Be1 ≥ T

1e FjggT(FT)je1 > 0, for

some positive integer j. Thus, µ2θb11 > 0 and equation (3.4) implies that v11 >

0 exists iff, in addition, θb11 < 1 and theorem 1 is proved.

Next, equation (3.3) implies theorem 2, which links the existence of V

with the existence of v11.

THEOREM 2: Assume that GARCH assumptions (i) to (vii) hold. Then, V ≥ 0 exists

iff v11 > 0 exists.

PROOF OF THEOREM 2: Suppose that V ≥ 0 exists. Then, v11 = T
1e Ve1  ≥ 0 exists.

The GARCH assumptions imply that µ > 0 and θ > 0 exist, that F is stable,

nonnegative, and irreducible, and that g ≥ 0 and ≠ 0. These properties imply

that B ≥ 0 and b11 > 0 exist. Thus, equation (3.3) implies that v11 = (v11 +

µ2)θb11 ≥ µ2θb11 > 0 and necessity is proved. Suppose that v11 > 0 exists. The

GARCH assumptions imply that µ > 0, θ > 0, and B ≥ 0 exist. Thus, equation

(3.3) implies that V ≥ 0 exists and sufficiency and theorem 2 are proved.

3.2. Necessary and Sufficient Eigenvalue Restriction.

Equation (3.2) has the unique solution w = µ2θ( 2n
I -A)-1(g⊗g) iff 2n

I -A is

nonsingular, where 2n
I  denotes the n2×n2 identity matrix, and this occurs iff

A has no eigenvalue equal to one, because each eigenvalue of 2n
I -A is one

minus an eigenvalue of A. Theorem 3 tells us that v11 > 0 only if ρ(A) < 1,

because otherwise w might have unacceptable negative values.
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THEOREM 3:  Assume that GARCH assumptions (i) to (vii) hold. Then, w = vec(V)

≥ 0 and v11 = w1 > 0 exist, where w1 denotes the first element of w, iff, in

addition, ρ(A) < 1.

PROOF OF THEOREM 3: Suppose that ρ(A) < 1. Then, ρ( 2n
I -A) < 1, so that w =

µ2θ( 2n
I -A)-1(g⊗g) uniquely solves equation (3.2). The GARCH assumptions imply

that θ > 0 and µ > 0 exist. The solution w = µ2θ( 2n
I -A)-1(g⊗g) implies that w =

µ2θ( 2n
I  + A + A2 + ...)(g⊗g). The irreducibility of A implies that

(e1⊗e1)TAj(g⊗g) > 0, for some positive integer j. See the proof of lemma 1.

Thus, v11 = w1 > 0 and sufficiency is proved. Suppose that δxT = xTA, where δ is

a maximal eigenvalue of A, so that |δ| = ρ(A), and x is an associated left

eigenvector of A. Because A is real, nonnegative, and irreducible,

Frobenius's theorem (Gantmacher, 1959, pp. 50-57) implies that δ and x are

real and positive. Pre-multiplying equation (3.2) by xT implies that

(3.5)     (1 - δ)xTw = µ2θxT(g⊗g).

However, x > 0, w ≥ 0, w1 > 0, and g⊗g ≥ 0 and ≠ 0 imply that xTw > 0 and

xT(g⊗g) > 0. Thus, µ2θ > 0 implies that 1-δ = µ2θxT(g⊗g)/xTw > 0, so that

equation (3.5) implies that δ = ρ(A) < 1 and necessity and theorem 3 are

proved.

Putting together theorems 1 to 3 implies that θb11 < 1 and ρ(A) < 1 are

equivalent necessary and sufficient restrictions for existence of the 4th

moment of the underlying variable of GARCH process (2.1). We state this

conclusion formally as corollary 1.

COROLLARY 1: Assume that GARCH assumptions (i) to (viii) hold. Then, θb11 < 1

iff ρ(A) < 1.

Statistics tells us that a 4th moment exists only if the corresponding

2nd moment exists. Here, this means that ρ(A) < 1 only if ρ(F) < 1. Theorem 4

generalizes this result and shows that 4th-moment existence implies stronger

restrictions than stationarity or 2nd-moment existence. For example, under
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the GARCH assumptions, stationarity occurs iff B ≥ 0 and b11 > 0 exist, but

4th-moment existence occurs iff, in addition, θb11 < 1.

THEOREM 4: ρ(F)2 < ρ(A), where A = F⊗F + θ(g⊗g)(e1⊗e1)T.

PROOF of THEOREM 4: Let λ2(z⊗z)T = (z⊗z)T(F⊗F) and δx = Ax, where λ and δ are

maximal eigenvalues of F and A, so that |λ| = ρ(F) and |δ| = ρ(A), and z and x

are associated left and right eigenvalues of F and A. The GARCH assumptions

and Frobenius's theorem imply that λ, δ, z, and x are real and positive. Pre-

multiplying δx = Ax by (z⊗z)T and rearranging implies that

(3.6)     (δ - λ2)(z⊗z)Tx = θ(zTg)2x1,

where x1 denotes the first element of x. However, θ > 0, z > 0, x > 0, g ≥ 0,

and g ≠ 0, imply that (z⊗z)Tx > 0, zTg > 0, and x1 > 0, so that equation (3.6)

implies that δ - λ2 = θ(zTg)2x1/(z⊗z)Tx > 0 and theorem 4 is proved.

4. Illustration of the 4th-Moment Inequality Restriction.

We now illustrate equation (3.4) in table 1 with six GARCH(1,1)

processes from the literature. To do this, we first write b11 in terms of a

finite number of basic arithmetic operations on fi and gi. Pre-multiplying B =

∑ ∞

= 0i
iTTi )F(ggF  by F, post-multiplying the result by FT, subtracting the result

from the initial equation for B, and rearranging, implies that

(3.7)     B = FBFT + ggT,

which is a Lyapunov equation, linear in B.

The companion form of F suggests that equation (3.7) can be solved for

b11 by eliminating elements of B from "back to front" until only b11 remains.

Although such an approach might generally be overly complex and impractical,

it is easily applied when n = 2. We consider n = 2 in part because it

includes nearly all the GARCH processes we have seen in the empirical

literature. For n = 2, equation (3.7) implies that
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(3.8)     b11 = 
2

2
1

2
2

2
12

211
2
2

2
12

ff2)ff1)(f1(

ggf2)gg)(f1(

−−−−

++−
.

The GARCH nonegativity assumptions fi ≥ 0 and gi ≥ 0 and the stationarity

assumption ∑ =

n

1i if  < 1 imply that the numerator and denominator in equation

(3.8) are both positive.

Although a GARCH process linearly transforms squared disturbances, 2
tε ,

into squared variables, 2
ty , it nonlinearly transforms εt to yt, so that yt is

non-Gaussian even when εt is Gaussian. We may consider this nonpreservation of

Gaussianity in terms of kurtosis, by considering equation (3.4) as

(3.9)     
εk

ky  = 
11

11

b1

b

θ−
θ

 + 1,

where ky = 4
tEy /( 2

tEy )2 and kε = 4
tEε /( 2

tEε )2 are the kurtoses of yt and εt.

Equation (3.9) implies that a GARCH transformation always increases kurtosis.

Table 1 considers only the case of n = 1 or GARCH(1,1) processes, which

covers most of the empirical literature. Some exceptions are Engle (1982) and

Geweke (1988) who consider nonstationary GARCH(0,4) and GARCH(0,2) processes

which we exclude because they do not have 4th moments. In table 1, we assume

that εt ~ N(0,1) (Gaussian, zero mean, unit variance) even though Bollerslev,

Drost and Klaassen, and Hsieh assume that εt is non-Gaussian. The cases in

table 1 are ordered by increasing f1 = α1 + β1 and, for n = 1, 2
εσ  = 1, and θ =

2, equations (3.8) and (3.9) reduce to

(3.10)    b11 = 2
1

2
1

f1

g

−
 = 

2
11

2
1

)(1 β+α−
α

,

(3.11)    
εk

ky  = 
2
1

2
1

2
1

g2f1

f1

−−

−
 = 

2
1

2
11

2
11

2)(1

)(1

α−β+α−

β+α−
.

Table 1 contains values of θb11 and ky/kε, for θ = 2, according to equations

(3.10) and (3.11) for six GARCH(1,1) processes from the literature.
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Table 1: Examples of θb11 and ky/kε for GARCH(1,1) processes and θ = 2.

Case Date, Authors
1α 1β f1 θ 11b ky/kε

1 1982, Engle .955 .000 .955 20.6 ∞
2 1986, Bollerslev .135 .829 .964 .516 2.07

3 1989, Baillie-Bollerslev .061 .910 .971 .130 1.15

4 1987, Bollerslev .057 .921 .978 .149 1.18

5 1997, Drost-Klaassen .052 .932 .984 .170 1.21

6 1989, Hsieh .191 .806 .997 12.2 ∞

Table 1 depicts small α1 (cases 2 to 5) associated with small θb11 < 1,

for θ = 2, and finite ky/kε, larger and large α1 (cases 6 and 1) associated

with large θb11 > 1 and infinite ky/kε, and, this pattern appears to be

independent of the value of β1 and to depend more on the value of α1 (compare

cases 1 and 6 with cases 2 to 5). The pattern is confirmed in figure 1, which

depicts the feasible area of α1 and β1 in which the underlying variable in a

scalar GARCH(1,1) process with εt ~ N(0,1) has 2nd and 4th moments. The

feasible area for stationarity or 2nd-moment existence is between the

horizontal-α1 axis, the vertical-β1 axis, and the straight line β1 = 1 - α1;

the feasible subarea for 4th-moment existence is between the axes and the

curved line β1 = -α1 + 
2
121 α− . Evidently, 4th-moment existence restricts both

α1 and β1, but restricts α1 more: if a univariate GARCH(1,1) process is

stationary and its underlying variable has a 4th moment, then, a minimum α1 =

0 implies a maximum β1 = 1, but a minimum β1 = 0 implies a maximum α1 = 3/1  ≅

.5773, because β1 is either real and negative or complex with a negative real

part when 3/1  < α1 < 1. Adding 4th-moment existence to 2nd-moment existence,

reduces the feasible area of α1 and β1 by about one third. Adding more GARCH

lags (n > 1) or higher even-moment existence further reduces the feasible

area of α1 and β1.
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Figure 1: Parameter Regions for 2nd and 4th Moment Existence
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Equations (3.8) to (3.11), table 1, and figure 1, illustrate an

important advantage of inequality restriction θb11 < 1 over eigenvalue

restriction ρ(A) < 1. For n = 2, equation (3.8) states θb11 < 1 in terms of a

finite number of basic arithmetic operations on the GARCH parameters, and,

for n = 1, table 1 evaluates and figure 1 depicts this inequality. In

principle, this could be done for any n, but, when n is large enough,

algebraic detail becomes overwhelming. By contrast, generally, an eigenvalue

restriction can be written out explicitly in terms of the GARCH parameters

only when n ≤ 3. When n > 3, this can be done only in unlikely cases in which

the characteristic polynomial of A = F⊗F + θ(g⊗g)(e1⊗e1)T factors into

polynomials of degree ≤ 3.

5. Conclusion.

Either equation (3.4) or (3.9) indicate that the underlying variable,

yt, of univariate GARCH process (2.1) has a 4th moment iff 0 < θb11 < 1 exists.

Non-Gaussian disturbances without 4th moments, in particular, stable Paretian

disturbances, have been considered (McCulloch, 1997; Rachev and Mittnik,

2000). Whether or not a disturbance has a 4th moment, in practice we would

like to know whether an estimated GARCH process preserves existence of a

disturbance's 4th moment. This would involve developing a statistical test of
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θb11 < 1 which accounts for the sampling variability of an estimated θb11,

based on the estimated GARCH parameters. Ideally, this would be an easily

formed test, based on standard parameter estimates, along the lines of Dickey

and Fuller's (1979) test of unit-root nonstationarity of an autoregressive

linear time-series process.

Various papers in the literature claim to prove necessity and

sufficiency of restrictions for 4th-moment existence in univariate GARCH

processes, but most do not discuss any sort of nonnegativity (e.g., Hafner,

2003). Here, we see the crucial role of nonnegativity in the necessity

proofs. Nonnegativity also figures crucially in existence proofs of

stationarity of GARCH processes, but there nonnegativity occurs more simply,

as is seen in equation (2.2). Bougerol and Picard (1992) and Ling and McAleer

(2002) are exceptions in the literature for discussing nonnegativity in their

respective existence proofs for 2nd and 4th moments of GARCH processes.

The state-space form of a GARCH process used here is simpler than the

forms used by Bougerol and Picard (1992), Ling and McAleer (2002), and

Mittnik, Paolella, and Rachev (2002), because the transition matrix F is

nonstochastic. Thus, the proofs here are based on more elementary concepts

and are simpler. For example, there is no need to consider a stochastic

Lyapunov exponent and to verify its convergence, as in Bougerol and Picard

(1992).

Finally, for any positive integer m, it would be interesting to

generalize present restrictions to necessary and sufficient restrictions for

existence of unique 2mth-moments of the underlying variable of a univariate

GARCH process (cf., Ling and McAleer, 2002).
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