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1 Introduction

The recent literature on the estimation of processes with spatially autocorrelated

errors distinguishes between two estimation principles: maximum likelihood estima-

tion (henceforth MLE; Cliff and Ord, 1981; Anselin, 1988; Lee, 2004) and estimation

by the generalized method of moments (henceforth GMM; Conley, 1999; Kelejian

and Prucha, 1999, 2002). Whereas MLE relies on normally distributed errors, GMM

is flexible with regard to the distribution of the innovations. However, this advantage

of GMM comes at the expense of an efficiency loss as compared to MLE.

This paper focuses on the small sample properties of Wald, Likelihood Ratio (LR),

and Lagrange Multiplier (LM) tests for processes with spatial autoregressive resid-

uals (SAR). Specifically, we provide a comparison of MLE- and GMM-based tests.

Whereas MLE naturally obtains variance-covariance estimates of all parameters in-

cluding the SAR coefficient, this does not hold true for all GMM-type models. For

instance, Kelejian and Prucha (1999) suggest a two-step procedure to estimate the

SAR coefficient that does not provide its standard error. Similarly, Conley (1999)

proposes a heteroskedasticity and autocorrelation consistent (HAC) non-parametric

estimator of the variance-covariance matrix that excludes the SAR coefficient. Kele-

jian and Prucha (2005b) suggest a HAC-estimator of the variance-covariance matrix

of the regression parameters that excludes the SAR parameter as well.1 In a re-

cent paper, Kelejian and Prucha (2005a) derive the asymptotic distribution of the

GMM-based SAR parameter under a set of general assumptions allowing for het-

eroskedasticity of the error term. In particular, they obtain a consistent estimate of

the variance of the SAR parameter upon which a test can be based.

So far, evidence on the relative performance of MLE- versus GMM-based tests for

SAR processes seems not to be available.2 It is this paper’s objective to investigate

1Conley’s (1999) approach works under a different set of assumptions than that one of Kelejian

and Prucha (2005b). See Lee (2001) for a related approach.
2Burridge (1980), Anselin and Rey (1991), Kelejian and Robinson (1992), Kelejian and Robinson

(1993), Anselin, Bera, Florax, and Yoon (1996), Anselin and Florax (1995), Kelejian and Robinson

(1997), Anselin (2001), Kelejian and Prucha (2001), Anselin and Moreno (2003), Kelejian and

Prucha (2005a) are excellent contributions on testing for spatial correlation, and by no means

this list is exhaustive. However, these papers partly do not focus on SAR but on different spatial

processes (e.g., Kelejian and Robinson, 1992, Anselin and Moreno, 2003), partly they consider
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the size and power of MLE-based versus GMM-based tests against spatially auto-

correlated residuals in small samples by setting up an extensive Monte Carlo study.

Our primary goal is to derive results that facilitate the choice among available tests

for applied researchers.

The next section lays out the data generating process and the Wald-, LR-, and LM-

type tests based on MLE and the GMM-based Wald-test. Section 3 describes the

design of our Monte Carlo study, whereas section 4 summarizes our main findings

with regard to the size and power of the tests. The last section concludes with a

summary of our main findings.

2 The Data-Generating Process

Ord (1975) type models with spatially autocorrelated residuals can be formulated

in the following way:3

y = Xβ + u, (1)

u = ρWu + ε,

where y is an n×1 vector of observations on the dependent variable, with n denoting

sample size. X is an n × k matrix of non-stochastic explanatory variables, where

limn→∞

1

n
X ′X exists and is non-singular. β is the k × 1 vector of parameters, and

u is an n × 1 vector of spatially autocorrelated disturbances. W denotes a row-

normalized spatial weights matrix of size n, ρ is the SAR parameter with |ρ| < 1.

only a single test principle (e.g., Kelejian and Robinson, 1992, Anselin, 2001, Kelejian and Prucha,

2001), and partly they focus only on MLE-based tests (e.g., Burridge, 1980, Anselin and Rey,

1991, Anselin, Bera, Florax, and Yoon, 1996, Anselin, 2001) or only on GMM-based estimates

(e.g., Kelejian and Robinson, 1993, Kelejian and Prucha, 2005a). Hence, the aim of previous

research was not to provide an analysis of a large class of tests against SAR based on MLE versus

GMM.
3There is an extensive line of research on the estimation and testing of models with endogenous

spatial lags (Anselin, 1988, Lee, 2003, Kelejian and Prucha, 1999, Pinkse, Slade, and Brett, 2002,

Saavedra, 2003). The GMM-type literature focuses on instrumental variable estimation and the

choice of optimal instruments. However, that branch of the literature does not focus on tests

against SAR.
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Hence, (I − ρW )−1 is non-singular and uniformly bounded in absolute value. ε is

an n×1 vector of errors, εi ∼ i.i.d.(0, σ2), with finite second and fourth moments. A

comprehensive set of assumptions underlying GMM-estimation is given in Kelejian

and Prucha (1999, 2005a).

3 Tests on Spatially Autocorrelated Errors

3.1 Estimators

For estimation and testing, we consider two different principles: MLE and GMM-

estimation. MLE assumes normally distributed errors, and the log-likelihood func-

tion for the data generating process outlined above is given by (see Anselin, 1988)

lnL = −n
2

ln(2π)−n
2

ln(σ2)− 1

2σ2
(y−Xβ)′(I−ρW )′(I−ρW )(y−Xβ)+ln |I−ρW |.

(2)

This log-likelihood function can be concentrated to a non-linear function of the

spatial parameter ρ only. Hence, optimization can be accomplished by univariate

non-linear techniques based on the Nelder-Mead Simplex method (see Lagarias,

Reeds, Wright, and Wright, 1998). Standard errors are derived from the inverse of

the information matrix (see Anselin, 1988, for details).

In contrast, GMM does not rely on distributional assumptions and the estimators are

easy to calculate (see Kelejian and Prucha, 1999, 2005b). The moment conditions

related to ρ and σ2 are given by:

E[
1

n
ε′ε] = σ2 (3)

E[
1

n
ε′ε] = σ2

1

n
tr(WW ′) (4)

E[
1

n
ε′ε] = 0 (5)

After substituting the first moment condition into the second one and using the

notation u = Wu and u = W 2u, the two moment conditions for ρ can be written
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as follows:

E

[
1

n

(
u − ρu

)
′
(
u − ρu

)]
= E

[
1

n
(u − ρu)′ (u − ρu)

]
tr(W ′W )

n
(6)

E

[
1

n

(
u − ρu

)
′

(u − ρu)

]
= 0. (7)

A consistent estimate of the residuals u is obtained by ordinary least squares, ignor-

ing the spatial correlation of the error term. These residuals are plugged into the

above moment conditions to obtain a consistent estimate of ρ. For the subsequent

exposition, it is useful to write the above two moment conditions in vector form as

Γ̃

(
ρ

ρ2

)
= γ̃. The estimate of the spatial correlation coefficient ρ̃ is defined as

ρ̃ = arg min



(

γ̃ − Γ̃

(
ρ

ρ2

))′

Υ̃
−1

(
γ̃ − Γ̃

(
ρ

ρ2

))
 , (8)

where Υ̃ is a 2 × 2 symmetric positive semidefinite (moments) weighting matrix.

Kelejian and Prucha (2005a) recently derived the limit distribution of ρ̃ as well as

a consistent parametric estimate of its variance:

√
n(ρ̃− ρ) ∼ N(0,Ωρ̃), (9)

They showed that Ωρ̃ can be consistently estimated by:

Ω̃ρ̃ = (J̃
′

Υ̃J̃)−1J̃
′

Υ̃Ψ̃Υ̃J̃(J̃
′

Υ̃J̃)−1, (10)

where

J̃ = Γ̃

(
1

2ρ̃

)
,

Ψ̃ =
[
ψ̃rs

]
r,s=1,2

, ψ̃rs = σ̃4(2n)−1tr[(Ar + A′

r)(As + A′

s)],

A1 = W ′W − diagn
i=1

(
n−1tr(W ′W )

)
, and

A2 = W ,

For one variant of the test, we use Υ̃ = I2. The Wald-test based on this estimate is

referred to as ’Wald GMM’. Kelejian and Prucha (2005a) also showed that inserting

a consistent estimate Ψ̃
−1

for Υ̃ leads to the efficient GMM estimator of ρ. The

Wald-test based on the estimate with the efficient GMM estimator is referred to as

’Wald GMM eff.’.
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3.2 Test Statistics for ρ = 0

The most common test forH0 : ρ = 0 is the Moran I test statistic, which tests for the

lack of spatial correlation in the residuals against an unspecified alternative. Under

the present assumptions, the Moran I test statistic is equivalent to an MLE-based

LM-test (see Kelejian and Prucha, 2001).

In the specified model with SAR-errors, one is able to test directly for ρ = 0 against

ρ 6= 0. For this, we rely on the three familiar asymptotic testing principles, i.e., the

Wald-test, the LR-test, and the LM-test. First, we calculate the following statistics

regarding the null hypothesis H0 : ρ = 0 by means of the MLE approach:

WML =
ρ̂

σ̂ρ

,WML ∼ N(0, 1), (12)

LRML = −2(LLu − LLr), LRML ∼ χ2

df=1
, (13)

LMML =
1

n
(û′Wû/σ̂2)2, LMML ∼ χ2

df=1
, (14)

where a ’̂’ refers to ML estimates. σ̂ρ is the estimated standard error which is the

diagonal element corresponding to ρ in the inverse of the information matrix; LLr

(LLu) is the restricted (unrestricted) log-likelihood. In our case LLr is obtained by

an ordinary regression. df = 1 is short for 1 degree of freedom.

Under GMM-estimation, a Wald-type test based on the parametric variance estimate

following Kelejian and Prucha (2005a) can be employed to test for ρ = 0. This test

may serve as an alternative to the frequently used Moran I test under GMM (see

Cliff and Ord, 1981; Kelejian and Prucha, 2001).

4 Design of Monte Carlo Experiments

The regression part of our model is β0 + β1xi, where we choose β0 = β1 = 1. We

assume that xi is uniformly distributed in the interval [0, 1]. In order to generate the

weighting scheme, the observation units are randomly placed on a grid of different

sizes (see Table 1). The weighting matrix W exhibits typical elements Wij = e−dij ,

for i 6= j and Wii = 0, where dij is the Euklidean distance between grid points i and

j. If dij > 7 we set Wij = 0 to limit the memory of the spatial process.
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We consider two different lattices for sample sizes of n = 100 and n = 500 to infer the

properties of the tests regarding the sparseness of the weighting matrix (see Table

1). The SAR parameter ρ varies between −0.5 and 0.5 in steps of 0.1. We focus

on the performance of the three (Wald-, LR-, and LM-type) test statistics based

on MLE versus the Wald-test based on GMM estimates. Since the performance of

GMM versus MLE is expected to face a trade-off between sample size and deviation

from the assumption of normally distributed remainder errors, we consider three

sample sizes (n = 100, 250, 500) and three different underlying error distributions.

Following Kelejian and Prucha (1999) and Anselin and Moreno (2003), we consider

a normal, a lognormal, and a mixture of normal and lognormal distributions of

the disturbances (referred to as ’mixed normal errors’). In the benchmark case of

normally distributed errors, we assume that εi are i.i.d. N(0, 1) with i = 1, ..., n.

Alternatively, we use the standardized version of the lognormal distribution. We

assume in this case that εi = [exp(ξi) − exp(0.5)]/[exp(2) − exp(1)]0.5, where the

ξi are i.i.d. N(0, 1). The standardization implies that the εi are i.i.d. (0, 1). This

lognormal distribution is positively skewed. The third distribution is a standardized

version of a mixture of normals in which a normally distributed random variable (ξi)

is contaminated by another (ηi) that has a larger variance; the ξi are i.i.d. N(0, 1),

and the ηi are i.i.d. N(0, 100). We assume that εi = [λiξi+(1−λi)ηi]/(5.95)
0.5, where

the λi are i.i.d. Bernoulli variables with Prob(λi = 1) = 0.95. Also the processes λi,

ξi, and ηi are assumed to be jointly independent. Again the standardization implies

that the εi are i.i.d. (0, 1). This distribution exhibits thicker tails than the normal.
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Altogether, we analyze 165 experiments,4 for each of which we conduct 1000 Monte

Carlo runs. The main results can be summarized as follows.

5 Monte Carlo Simulation Results

5.1 Size of the Tests

Tables 2 − 4 summarize the rejection frequencies of the considered tests under H0

using the 5 percent critical value significance level to investigate the size of the tests

in small and medium sized samples.

Let us first focus on Table 2, where the errors are drawn from a normal distribution.

All considered tests tend to be properly sized even in samples of moderate size,

and as sample size increases the rejection frequencies converge to the true ones as

expected. In particular, the GMM Wald-test performs as well as MLE-based tests

with respect to test size even in small samples.

4Three error processes (normal, lognormal, mixed normal), eleven values of the SAR parameter

ρ = [−0.5,−0.4, ..., 0.4, 0.5], and three sample sizes (n = 100, 250, 500). Additionally, we run all

experiments for n = 100 and n = 500 for alternative lattices.
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If the errors follow a lognormal distribution (Table 3), the size of the MLE-based

tests tends to be slightly lower than in the case of normally distributed errors,

specifically in case of the the LM- and LR-MLE based tests. Note, this is not the

case for the GMM-based Wald-tests.

The results for mixed normally distributed errors in Table 4 indicate that in small

samples (n = 100 in our case) the size distortion of the tests is somewhat smaller

than for lognormally distributed errors. With more observations, the MLE-based

tests perform quite well and exhibit approximately the same size as in the lognormal

case. The GMM based test which relies on the asymptotically efficient weighting

scheme is oversized. However, with just a few exceptions the GMM-based Wald-

test based on the simple weighting scheme is properly sized in all cases and can be

recommended for applied research in this respect.

Figures 1−5 provide further details on the size of the tests at various critical values.

These figures correspond to p-value plots suggested by Davidson and MacKinnon
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Figure 1: P-value plots for tests regarding H0 : ρ = 0 given normally distributed

errors, n = 100. Lattice size is 20 by 20.

(1998) for three different sample sizes (n = 100, 250, 500). For sample sizes of

100 and 500, we illustrate how an increasing lattice size, which is equivalent to an

increasing sparseness of the spatial weighting matrix at given n, changes the size

of the various test statistics. Applied researchers typically pay attention only to

Type I errors, and hypothesis tests are usually carried out at levels of 10 percent

or smaller. Therefore, we focus on values of p ≤ 0.12 on the abscissa of the plots.

Ideally, actual size would coincide with nominal size, reflected by the locus referred

to as the ideal line in the figures.

The figures indicate that both the GMM-based Wald-test and the MLE-based LR-

statistic work very well, even in small samples of n = 100. According to Figure

1, the GMM-based Wald-test outperforms the MLE-based LM- and Wald-tests in

terms of size, if the sample size is small. The former tends to be undersized, and
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Figure 2: P-value plots for tests regarding H0 : ρ = 0 given normally distributed

errors, n = 100. Lattice size is 32 by 32.

the latter is oversized. As expected, the performance in terms of actual size of all

tests considered in Figures 1 − 5 improves as we increase the sample size. For this,

compare Figures 1, 3, and 5.5

The performance of the tests relative to each other is similar in case of lognormally

or mixed normally distributed errors (these figures are not reported for the sake of

brevity but available from the authors upon request). If anything, the deviations

from the ideal line tend to be stronger as we deviate from the normal error distribu-

tion. Also, the convergence of the p-value loci for the various tests towards the ideal

line is slower as the sample size increases than with normally distributed errors.

5Note that the number of observations increases in the same way as the number of cells on the

respective lattice. Hence, the sparseness increases as n increases.
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Figure 3: P-value plots for tests regarding H0 : ρ = 0 given normally distributed

errors, n = 250. Lattice size is 32 by 32.
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Figure 4: P-value plots for tests regarding H0 : ρ = 0 given normally distributed

errors, n = 500. Lattice size is 32 by 32.
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Figure 5: P-value plots for tests regarding H0 : ρ = 0 given normally distributed

errors, n = 500. Lattice size is 45 by 45.
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Figure 6: Power function for tests regarding H0 : ρ = 0 at a significance level of 5%

given normally distributed errors, n = 100. Lattice size is 20 by 20.

5.2 Power of the Tests

We use a nominal size of 0.05 and 11 different values of the spatial autocorrelation

parameter ρ in the interval [−0.5,−0.4, ..., 0.4, 0.5] to compare the five considered

test statistics with respect to their power. Our findings are illustrated graphically

for the case of normally distributed errors in Figures 6−10, where we plot the power

function for all (MLE-based and GMM-based) tests corresponding to a sample size

of 100, 250, and 500, respectively. Again, we illustrate how the power of the tests

depends on the sparseness of the weighting scheme at given n. For this, compare

Figure 6 with Figure 7 and Figure 9 with Figure 10, respectively.

Two observations are worth noting. First, the power functions are asymmetric with

respect to ρ. Especially, this is the case in small samples and at a low sparseness of

the weighting matrix (see Figure 6). At n = 100 the MLE-based LM-test exhibits

lower power for negative values of ρ as compared to the other test. If ρ is positive,
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Figure 7: Power function for tests regarding H0 : ρ = 0 at a significance level of 5%

given normally distributed errors, n = 100. Lattice size is 32 by 32.

15



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.05
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

P
o
w
e
r

Wald MLE

LR MLE

LM MLE

Wald GMM

Wald GMM eff.

Figure 8: Power function for tests regarding H0 : ρ = 0 at a significance level of 5%

given normally distributed errors, n = 250. Lattice size is 32 by 32.
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Figure 9: Power function for tests regarding H0 : ρ = 0 at a significance level of 5%

given normally distributed errors, n = 500. Lattice size is 32 by 32.
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Figure 10: Power function for tests regarding H0 : ρ = 0 at a significance level of

5% given normally distributed errors, n = 500. Lattice size is 45 by 45.
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the power of the GMM-based tests is somewhat lower. One has to bear in mind,

however, that the MLE-based LM-test tends to be undersized and the MLE-based

LR-test is oversized in small samples. This fact also contributes to the differences

in the power function. Second and not very surprisingly, the power functions of all

tests (i) exhibit narrower waists and (ii) become more similar as the sample size n

grows larger.

So far, we have focused on normally distributed errors. The power functions for

lognormally and mixed normally distributed errors are summarized in Tables 5 and

6. Two results are especially worth paying attention to. First, for lognormally

distributed errors (see Table 5) the MLE-based Wald test and the GMM-based

Wald-test seem most reliable regarding their size and power in small to medium

sized samples. Second, these two tests exhibit higher power than the MLE-based

LM-test if ρ is much smaller than zero. Similar findings are obtained in case of

mixed normally distributed errors. However, in this case also the MLE-based LR-

test performs quite well and exhibits high power even in small samples. The MLE-

based Wald- and LR-tests as well as the GMM-based Wald-test work better than

the MLE-based LM-test if ρ is much smaller than zero.

Finally, we briefly summarize the importance of the sample size (n), the sparseness

of the population of spatial lattices (Sparseness, Sparseness×ρ2 ), the sign and size

of the SAR parameter (ρ, ρ2, n × ρ2), and the deviation from a normal error dis-

tribution (Lognormal×ρ2, Mixed Normal×ρ2) for the power of the tests by means

of response surface regressions.6 The logistically transformed rejection probabilities

are employed as the dependent variables throughout. We run separate regression

models for each type of the considered test statistics. Table 7 reports the corre-

sponding response surface parameter estimates. Here, we only highlight the most

important results.

First, there is an overall negative impact of sample size on the rejection probability.

The reason for this is that the tests tend to be oversized in small samples. Second,

the power functions are parabolic as indicated by the significantly positive coefficient

6Also, we have estimated a set of less parsimonious specifications that includes the main effects

of Lognormal and Mixed Normal. However, it turns out that these determinants do not contribute

significantly to the explanation of the rejection probabilities.
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of ρ2. Third, the size and power of the tests seem independent of the choice among

the considered error distributions. Only for the efficient GMM-based Wald-test,

the power tends to be significantly lower in case of lognormally or mixed normally

distributed errors as compared to normally distributed ones. The sparseness of

(irregular) spatial weighting matrices is a very important determinant. Both the

size and the power of the tests increase significantly with the sparseness of the

lattice.

6 Conclusions

This paper compares MLE-based and GMM-based tests against spatially autocor-

related errors in Ord-type spatial models. In doing so, we consider a test based on

the recently derived parametric estimate of the GMM-based variance of the SAR

parameter. The small sample properties are investigated in a Monte-Carlo study.

Assuming different spatial processes, previous research tended to point to a better

performance of MLE-based tests rather than GMM-based ones, especially, in small

samples. However, our findings do not support this view for testing against SAR.

Two versions of a Wald-test based on the variance of the SAR parameter under

GMM derived by Kelejian and Prucha (2005a) perform as well as MLE-based tests

in case of normally distributed errors. The GMM-based Wald-tests tend to perform

extremely well irrespective of the underlying error distribution, and they outperform

the MLE-based LM-test in terms of both size and power in small to moderately-sized

samples for negative values of the SAR parameter. Across the board (i.e., across

sample sizes and error distributions), our results support the use of both MLE-

based tests and the GMM-based Wald-tests. Regarding GMM-based Wald-tests,

in particular that one based on one-step estimates using the simple fixed moments

weighting matrix can be recommended for applied researchers even in small sample

applications.
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